xref: /netbsd-src/sys/kern/subr_autoconf.c (revision daf6c4152fcddc27c445489775ed1f66ab4ea9a9)
1 /* $NetBSD: subr_autoconf.c,v 1.213 2011/02/06 23:25:17 jmcneill Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.213 2011/02/06 23:25:17 jmcneill Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85 
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <machine/limits.h>
114 
115 /*
116  * Autoconfiguration subroutines.
117  */
118 
119 /*
120  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
121  * devices and drivers are found via these tables.
122  */
123 extern struct cfdata cfdata[];
124 extern const short cfroots[];
125 
126 /*
127  * List of all cfdriver structures.  We use this to detect duplicates
128  * when other cfdrivers are loaded.
129  */
130 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
131 extern struct cfdriver * const cfdriver_list_initial[];
132 
133 /*
134  * Initial list of cfattach's.
135  */
136 extern const struct cfattachinit cfattachinit[];
137 
138 /*
139  * List of cfdata tables.  We always have one such list -- the one
140  * built statically when the kernel was configured.
141  */
142 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
143 static struct cftable initcftable;
144 
145 #define	ROOT ((device_t)NULL)
146 
147 struct matchinfo {
148 	cfsubmatch_t fn;
149 	struct	device *parent;
150 	const int *locs;
151 	void	*aux;
152 	struct	cfdata *match;
153 	int	pri;
154 };
155 
156 struct alldevs_foray {
157 	int			af_s;
158 	struct devicelist	af_garbage;
159 };
160 
161 static char *number(char *, int);
162 static void mapply(struct matchinfo *, cfdata_t);
163 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
164 static void config_devdelete(device_t);
165 static void config_devunlink(device_t, struct devicelist *);
166 static void config_makeroom(int, struct cfdriver *);
167 static void config_devlink(device_t);
168 static void config_alldevs_unlock(int);
169 static int config_alldevs_lock(void);
170 static void config_alldevs_enter(struct alldevs_foray *);
171 static void config_alldevs_exit(struct alldevs_foray *);
172 
173 static void config_collect_garbage(struct devicelist *);
174 static void config_dump_garbage(struct devicelist *);
175 
176 static void pmflock_debug(device_t, const char *, int);
177 
178 static device_t deviter_next1(deviter_t *);
179 static void deviter_reinit(deviter_t *);
180 
181 struct deferred_config {
182 	TAILQ_ENTRY(deferred_config) dc_queue;
183 	device_t dc_dev;
184 	void (*dc_func)(device_t);
185 };
186 
187 TAILQ_HEAD(deferred_config_head, deferred_config);
188 
189 struct deferred_config_head deferred_config_queue =
190 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
191 struct deferred_config_head interrupt_config_queue =
192 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
193 int interrupt_config_threads = 8;
194 struct deferred_config_head mountroot_config_queue =
195 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
196 int mountroot_config_threads = 2;
197 static bool root_is_mounted = false;
198 
199 static void config_process_deferred(struct deferred_config_head *, device_t);
200 
201 /* Hooks to finalize configuration once all real devices have been found. */
202 struct finalize_hook {
203 	TAILQ_ENTRY(finalize_hook) f_list;
204 	int (*f_func)(device_t);
205 	device_t f_dev;
206 };
207 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
208 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
209 static int config_finalize_done;
210 
211 /* list of all devices */
212 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
213 static kmutex_t alldevs_mtx;
214 static volatile bool alldevs_garbage = false;
215 static volatile devgen_t alldevs_gen = 1;
216 static volatile int alldevs_nread = 0;
217 static volatile int alldevs_nwrite = 0;
218 
219 static int config_pending;		/* semaphore for mountroot */
220 static kmutex_t config_misc_lock;
221 static kcondvar_t config_misc_cv;
222 
223 static bool detachall = false;
224 
225 #define	STREQ(s1, s2)			\
226 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
227 
228 static bool config_initialized = false;	/* config_init() has been called. */
229 
230 static int config_do_twiddle;
231 static callout_t config_twiddle_ch;
232 
233 static void sysctl_detach_setup(struct sysctllog **);
234 
235 typedef int (*cfdriver_fn)(struct cfdriver *);
236 static int
237 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
238 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
239 	const char *style, bool dopanic)
240 {
241 	void (*pr)(const char *, ...) = dopanic ? panic : printf;
242 	int i = 0, error = 0, e2;
243 
244 	for (i = 0; cfdriverv[i] != NULL; i++) {
245 		if ((error = drv_do(cfdriverv[i])) != 0) {
246 			pr("configure: `%s' driver %s failed: %d",
247 			    cfdriverv[i]->cd_name, style, error);
248 			goto bad;
249 		}
250 	}
251 
252 	KASSERT(error == 0);
253 	return 0;
254 
255  bad:
256 	printf("\n");
257 	for (i--; i >= 0; i--) {
258 		e2 = drv_undo(cfdriverv[i]);
259 		KASSERT(e2 == 0);
260 	}
261 
262 	return error;
263 }
264 
265 typedef int (*cfattach_fn)(const char *, struct cfattach *);
266 static int
267 frob_cfattachvec(const struct cfattachinit *cfattachv,
268 	cfattach_fn att_do, cfattach_fn att_undo,
269 	const char *style, bool dopanic)
270 {
271 	const struct cfattachinit *cfai = NULL;
272 	void (*pr)(const char *, ...) = dopanic ? panic : printf;
273 	int j = 0, error = 0, e2;
274 
275 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
276 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
277 			if ((error = att_do(cfai->cfai_name,
278 			    cfai->cfai_list[j]) != 0)) {
279 				pr("configure: attachment `%s' "
280 				    "of `%s' driver %s failed: %d",
281 				    cfai->cfai_list[j]->ca_name,
282 				    cfai->cfai_name, style, error);
283 				goto bad;
284 			}
285 		}
286 	}
287 
288 	KASSERT(error == 0);
289 	return 0;
290 
291  bad:
292 	/*
293 	 * Rollback in reverse order.  dunno if super-important, but
294 	 * do that anyway.  Although the code looks a little like
295 	 * someone did a little integration (in the math sense).
296 	 */
297 	printf("\n");
298 	if (cfai) {
299 		bool last;
300 
301 		for (last = false; last == false; ) {
302 			if (cfai == &cfattachv[0])
303 				last = true;
304 			for (j--; j >= 0; j--) {
305 				e2 = att_undo(cfai->cfai_name,
306 				    cfai->cfai_list[j]);
307 				KASSERT(e2 == 0);
308 			}
309 			if (!last) {
310 				cfai--;
311 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
312 					;
313 			}
314 		}
315 	}
316 
317 	return error;
318 }
319 
320 /*
321  * Initialize the autoconfiguration data structures.  Normally this
322  * is done by configure(), but some platforms need to do this very
323  * early (to e.g. initialize the console).
324  */
325 void
326 config_init(void)
327 {
328 
329 	KASSERT(config_initialized == false);
330 
331 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
332 
333 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
334 	cv_init(&config_misc_cv, "cfgmisc");
335 
336 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
337 
338 	frob_cfdrivervec(cfdriver_list_initial,
339 	    config_cfdriver_attach, NULL, "bootstrap", true);
340 	frob_cfattachvec(cfattachinit,
341 	    config_cfattach_attach, NULL, "bootstrap", true);
342 
343 	initcftable.ct_cfdata = cfdata;
344 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
345 
346 	config_initialized = true;
347 }
348 
349 /*
350  * Init or fini drivers and attachments.  Either all or none
351  * are processed (via rollback).  It would be nice if this were
352  * atomic to outside consumers, but with the current state of
353  * locking ...
354  */
355 int
356 config_init_component(struct cfdriver * const *cfdriverv,
357 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
358 {
359 	int error;
360 
361 	if ((error = frob_cfdrivervec(cfdriverv,
362 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
363 		return error;
364 	if ((error = frob_cfattachvec(cfattachv,
365 	    config_cfattach_attach, config_cfattach_detach,
366 	    "init", false)) != 0) {
367 		frob_cfdrivervec(cfdriverv,
368 	            config_cfdriver_detach, NULL, "init rollback", true);
369 		return error;
370 	}
371 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
372 		frob_cfattachvec(cfattachv,
373 		    config_cfattach_detach, NULL, "init rollback", true);
374 		frob_cfdrivervec(cfdriverv,
375 	            config_cfdriver_detach, NULL, "init rollback", true);
376 		return error;
377 	}
378 
379 	return 0;
380 }
381 
382 int
383 config_fini_component(struct cfdriver * const *cfdriverv,
384 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
385 {
386 	int error;
387 
388 	if ((error = config_cfdata_detach(cfdatav)) != 0)
389 		return error;
390 	if ((error = frob_cfattachvec(cfattachv,
391 	    config_cfattach_detach, config_cfattach_attach,
392 	    "fini", false)) != 0) {
393 		if (config_cfdata_attach(cfdatav, 0) != 0)
394 			panic("config_cfdata fini rollback failed");
395 		return error;
396 	}
397 	if ((error = frob_cfdrivervec(cfdriverv,
398 	    config_cfdriver_detach, config_cfdriver_attach,
399 	    "fini", false)) != 0) {
400 		frob_cfattachvec(cfattachv,
401 	            config_cfattach_attach, NULL, "fini rollback", true);
402 		if (config_cfdata_attach(cfdatav, 0) != 0)
403 			panic("config_cfdata fini rollback failed");
404 		return error;
405 	}
406 
407 	return 0;
408 }
409 
410 void
411 config_init_mi(void)
412 {
413 
414 	if (!config_initialized)
415 		config_init();
416 
417 	sysctl_detach_setup(NULL);
418 }
419 
420 void
421 config_deferred(device_t dev)
422 {
423 	config_process_deferred(&deferred_config_queue, dev);
424 	config_process_deferred(&interrupt_config_queue, dev);
425 	config_process_deferred(&mountroot_config_queue, dev);
426 }
427 
428 static void
429 config_interrupts_thread(void *cookie)
430 {
431 	struct deferred_config *dc;
432 
433 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
434 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
435 		(*dc->dc_func)(dc->dc_dev);
436 		kmem_free(dc, sizeof(*dc));
437 		config_pending_decr();
438 	}
439 	kthread_exit(0);
440 }
441 
442 void
443 config_create_interruptthreads()
444 {
445 	int i;
446 
447 	for (i = 0; i < interrupt_config_threads; i++) {
448 		(void)kthread_create(PRI_NONE, 0, NULL,
449 		    config_interrupts_thread, NULL, NULL, "config");
450 	}
451 }
452 
453 static void
454 config_mountroot_thread(void *cookie)
455 {
456 	struct deferred_config *dc;
457 
458 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
459 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
460 		(*dc->dc_func)(dc->dc_dev);
461 		kmem_free(dc, sizeof(*dc));
462 	}
463 	kthread_exit(0);
464 }
465 
466 void
467 config_create_mountrootthreads()
468 {
469 	int i;
470 
471 	if (!root_is_mounted)
472 		root_is_mounted = true;
473 
474 	for (i = 0; i < mountroot_config_threads; i++) {
475 		(void)kthread_create(PRI_NONE, 0, NULL,
476 		    config_mountroot_thread, NULL, NULL, "config");
477 	}
478 }
479 
480 /*
481  * Announce device attach/detach to userland listeners.
482  */
483 static void
484 devmon_report_device(device_t dev, bool isattach)
485 {
486 #if NDRVCTL > 0
487 	prop_dictionary_t ev;
488 	const char *parent;
489 	const char *what;
490 	device_t pdev = device_parent(dev);
491 
492 	ev = prop_dictionary_create();
493 	if (ev == NULL)
494 		return;
495 
496 	what = (isattach ? "device-attach" : "device-detach");
497 	parent = (pdev == NULL ? "root" : device_xname(pdev));
498 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
499 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
500 		prop_object_release(ev);
501 		return;
502 	}
503 
504 	devmon_insert(what, ev);
505 #endif
506 }
507 
508 /*
509  * Add a cfdriver to the system.
510  */
511 int
512 config_cfdriver_attach(struct cfdriver *cd)
513 {
514 	struct cfdriver *lcd;
515 
516 	/* Make sure this driver isn't already in the system. */
517 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
518 		if (STREQ(lcd->cd_name, cd->cd_name))
519 			return EEXIST;
520 	}
521 
522 	LIST_INIT(&cd->cd_attach);
523 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
524 
525 	return 0;
526 }
527 
528 /*
529  * Remove a cfdriver from the system.
530  */
531 int
532 config_cfdriver_detach(struct cfdriver *cd)
533 {
534 	struct alldevs_foray af;
535 	int i, rc = 0;
536 
537 	config_alldevs_enter(&af);
538 	/* Make sure there are no active instances. */
539 	for (i = 0; i < cd->cd_ndevs; i++) {
540 		if (cd->cd_devs[i] != NULL) {
541 			rc = EBUSY;
542 			break;
543 		}
544 	}
545 	config_alldevs_exit(&af);
546 
547 	if (rc != 0)
548 		return rc;
549 
550 	/* ...and no attachments loaded. */
551 	if (LIST_EMPTY(&cd->cd_attach) == 0)
552 		return EBUSY;
553 
554 	LIST_REMOVE(cd, cd_list);
555 
556 	KASSERT(cd->cd_devs == NULL);
557 
558 	return 0;
559 }
560 
561 /*
562  * Look up a cfdriver by name.
563  */
564 struct cfdriver *
565 config_cfdriver_lookup(const char *name)
566 {
567 	struct cfdriver *cd;
568 
569 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
570 		if (STREQ(cd->cd_name, name))
571 			return cd;
572 	}
573 
574 	return NULL;
575 }
576 
577 /*
578  * Add a cfattach to the specified driver.
579  */
580 int
581 config_cfattach_attach(const char *driver, struct cfattach *ca)
582 {
583 	struct cfattach *lca;
584 	struct cfdriver *cd;
585 
586 	cd = config_cfdriver_lookup(driver);
587 	if (cd == NULL)
588 		return ESRCH;
589 
590 	/* Make sure this attachment isn't already on this driver. */
591 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
592 		if (STREQ(lca->ca_name, ca->ca_name))
593 			return EEXIST;
594 	}
595 
596 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
597 
598 	return 0;
599 }
600 
601 /*
602  * Remove a cfattach from the specified driver.
603  */
604 int
605 config_cfattach_detach(const char *driver, struct cfattach *ca)
606 {
607 	struct alldevs_foray af;
608 	struct cfdriver *cd;
609 	device_t dev;
610 	int i, rc = 0;
611 
612 	cd = config_cfdriver_lookup(driver);
613 	if (cd == NULL)
614 		return ESRCH;
615 
616 	config_alldevs_enter(&af);
617 	/* Make sure there are no active instances. */
618 	for (i = 0; i < cd->cd_ndevs; i++) {
619 		if ((dev = cd->cd_devs[i]) == NULL)
620 			continue;
621 		if (dev->dv_cfattach == ca) {
622 			rc = EBUSY;
623 			break;
624 		}
625 	}
626 	config_alldevs_exit(&af);
627 
628 	if (rc != 0)
629 		return rc;
630 
631 	LIST_REMOVE(ca, ca_list);
632 
633 	return 0;
634 }
635 
636 /*
637  * Look up a cfattach by name.
638  */
639 static struct cfattach *
640 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
641 {
642 	struct cfattach *ca;
643 
644 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
645 		if (STREQ(ca->ca_name, atname))
646 			return ca;
647 	}
648 
649 	return NULL;
650 }
651 
652 /*
653  * Look up a cfattach by driver/attachment name.
654  */
655 struct cfattach *
656 config_cfattach_lookup(const char *name, const char *atname)
657 {
658 	struct cfdriver *cd;
659 
660 	cd = config_cfdriver_lookup(name);
661 	if (cd == NULL)
662 		return NULL;
663 
664 	return config_cfattach_lookup_cd(cd, atname);
665 }
666 
667 /*
668  * Apply the matching function and choose the best.  This is used
669  * a few times and we want to keep the code small.
670  */
671 static void
672 mapply(struct matchinfo *m, cfdata_t cf)
673 {
674 	int pri;
675 
676 	if (m->fn != NULL) {
677 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
678 	} else {
679 		pri = config_match(m->parent, cf, m->aux);
680 	}
681 	if (pri > m->pri) {
682 		m->match = cf;
683 		m->pri = pri;
684 	}
685 }
686 
687 int
688 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
689 {
690 	const struct cfiattrdata *ci;
691 	const struct cflocdesc *cl;
692 	int nlocs, i;
693 
694 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
695 	KASSERT(ci);
696 	nlocs = ci->ci_loclen;
697 	KASSERT(!nlocs || locs);
698 	for (i = 0; i < nlocs; i++) {
699 		cl = &ci->ci_locdesc[i];
700 		/* !cld_defaultstr means no default value */
701 		if ((!(cl->cld_defaultstr)
702 		     || (cf->cf_loc[i] != cl->cld_default))
703 		    && cf->cf_loc[i] != locs[i])
704 			return 0;
705 	}
706 
707 	return config_match(parent, cf, aux);
708 }
709 
710 /*
711  * Helper function: check whether the driver supports the interface attribute
712  * and return its descriptor structure.
713  */
714 static const struct cfiattrdata *
715 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
716 {
717 	const struct cfiattrdata * const *cpp;
718 
719 	if (cd->cd_attrs == NULL)
720 		return 0;
721 
722 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
723 		if (STREQ((*cpp)->ci_name, ia)) {
724 			/* Match. */
725 			return *cpp;
726 		}
727 	}
728 	return 0;
729 }
730 
731 /*
732  * Lookup an interface attribute description by name.
733  * If the driver is given, consider only its supported attributes.
734  */
735 const struct cfiattrdata *
736 cfiattr_lookup(const char *name, const struct cfdriver *cd)
737 {
738 	const struct cfdriver *d;
739 	const struct cfiattrdata *ia;
740 
741 	if (cd)
742 		return cfdriver_get_iattr(cd, name);
743 
744 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
745 		ia = cfdriver_get_iattr(d, name);
746 		if (ia)
747 			return ia;
748 	}
749 	return 0;
750 }
751 
752 /*
753  * Determine if `parent' is a potential parent for a device spec based
754  * on `cfp'.
755  */
756 static int
757 cfparent_match(const device_t parent, const struct cfparent *cfp)
758 {
759 	struct cfdriver *pcd;
760 
761 	/* We don't match root nodes here. */
762 	if (cfp == NULL)
763 		return 0;
764 
765 	pcd = parent->dv_cfdriver;
766 	KASSERT(pcd != NULL);
767 
768 	/*
769 	 * First, ensure this parent has the correct interface
770 	 * attribute.
771 	 */
772 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
773 		return 0;
774 
775 	/*
776 	 * If no specific parent device instance was specified (i.e.
777 	 * we're attaching to the attribute only), we're done!
778 	 */
779 	if (cfp->cfp_parent == NULL)
780 		return 1;
781 
782 	/*
783 	 * Check the parent device's name.
784 	 */
785 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
786 		return 0;	/* not the same parent */
787 
788 	/*
789 	 * Make sure the unit number matches.
790 	 */
791 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
792 	    cfp->cfp_unit == parent->dv_unit)
793 		return 1;
794 
795 	/* Unit numbers don't match. */
796 	return 0;
797 }
798 
799 /*
800  * Helper for config_cfdata_attach(): check all devices whether it could be
801  * parent any attachment in the config data table passed, and rescan.
802  */
803 static void
804 rescan_with_cfdata(const struct cfdata *cf)
805 {
806 	device_t d;
807 	const struct cfdata *cf1;
808 	deviter_t di;
809 
810 
811 	/*
812 	 * "alldevs" is likely longer than a modules's cfdata, so make it
813 	 * the outer loop.
814 	 */
815 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
816 
817 		if (!(d->dv_cfattach->ca_rescan))
818 			continue;
819 
820 		for (cf1 = cf; cf1->cf_name; cf1++) {
821 
822 			if (!cfparent_match(d, cf1->cf_pspec))
823 				continue;
824 
825 			(*d->dv_cfattach->ca_rescan)(d,
826 				cfdata_ifattr(cf1), cf1->cf_loc);
827 
828 			config_deferred(d);
829 		}
830 	}
831 	deviter_release(&di);
832 }
833 
834 /*
835  * Attach a supplemental config data table and rescan potential
836  * parent devices if required.
837  */
838 int
839 config_cfdata_attach(cfdata_t cf, int scannow)
840 {
841 	struct cftable *ct;
842 
843 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
844 	ct->ct_cfdata = cf;
845 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
846 
847 	if (scannow)
848 		rescan_with_cfdata(cf);
849 
850 	return 0;
851 }
852 
853 /*
854  * Helper for config_cfdata_detach: check whether a device is
855  * found through any attachment in the config data table.
856  */
857 static int
858 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
859 {
860 	const struct cfdata *cf1;
861 
862 	for (cf1 = cf; cf1->cf_name; cf1++)
863 		if (d->dv_cfdata == cf1)
864 			return 1;
865 
866 	return 0;
867 }
868 
869 /*
870  * Detach a supplemental config data table. Detach all devices found
871  * through that table (and thus keeping references to it) before.
872  */
873 int
874 config_cfdata_detach(cfdata_t cf)
875 {
876 	device_t d;
877 	int error = 0;
878 	struct cftable *ct;
879 	deviter_t di;
880 
881 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
882 	     d = deviter_next(&di)) {
883 		if (!dev_in_cfdata(d, cf))
884 			continue;
885 		if ((error = config_detach(d, 0)) != 0)
886 			break;
887 	}
888 	deviter_release(&di);
889 	if (error) {
890 		aprint_error_dev(d, "unable to detach instance\n");
891 		return error;
892 	}
893 
894 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
895 		if (ct->ct_cfdata == cf) {
896 			TAILQ_REMOVE(&allcftables, ct, ct_list);
897 			kmem_free(ct, sizeof(*ct));
898 			return 0;
899 		}
900 	}
901 
902 	/* not found -- shouldn't happen */
903 	return EINVAL;
904 }
905 
906 /*
907  * Invoke the "match" routine for a cfdata entry on behalf of
908  * an external caller, usually a "submatch" routine.
909  */
910 int
911 config_match(device_t parent, cfdata_t cf, void *aux)
912 {
913 	struct cfattach *ca;
914 
915 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
916 	if (ca == NULL) {
917 		/* No attachment for this entry, oh well. */
918 		return 0;
919 	}
920 
921 	return (*ca->ca_match)(parent, cf, aux);
922 }
923 
924 /*
925  * Iterate over all potential children of some device, calling the given
926  * function (default being the child's match function) for each one.
927  * Nonzero returns are matches; the highest value returned is considered
928  * the best match.  Return the `found child' if we got a match, or NULL
929  * otherwise.  The `aux' pointer is simply passed on through.
930  *
931  * Note that this function is designed so that it can be used to apply
932  * an arbitrary function to all potential children (its return value
933  * can be ignored).
934  */
935 cfdata_t
936 config_search_loc(cfsubmatch_t fn, device_t parent,
937 		  const char *ifattr, const int *locs, void *aux)
938 {
939 	struct cftable *ct;
940 	cfdata_t cf;
941 	struct matchinfo m;
942 
943 	KASSERT(config_initialized);
944 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
945 
946 	m.fn = fn;
947 	m.parent = parent;
948 	m.locs = locs;
949 	m.aux = aux;
950 	m.match = NULL;
951 	m.pri = 0;
952 
953 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
954 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
955 
956 			/* We don't match root nodes here. */
957 			if (!cf->cf_pspec)
958 				continue;
959 
960 			/*
961 			 * Skip cf if no longer eligible, otherwise scan
962 			 * through parents for one matching `parent', and
963 			 * try match function.
964 			 */
965 			if (cf->cf_fstate == FSTATE_FOUND)
966 				continue;
967 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
968 			    cf->cf_fstate == FSTATE_DSTAR)
969 				continue;
970 
971 			/*
972 			 * If an interface attribute was specified,
973 			 * consider only children which attach to
974 			 * that attribute.
975 			 */
976 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
977 				continue;
978 
979 			if (cfparent_match(parent, cf->cf_pspec))
980 				mapply(&m, cf);
981 		}
982 	}
983 	return m.match;
984 }
985 
986 cfdata_t
987 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
988     void *aux)
989 {
990 
991 	return config_search_loc(fn, parent, ifattr, NULL, aux);
992 }
993 
994 /*
995  * Find the given root device.
996  * This is much like config_search, but there is no parent.
997  * Don't bother with multiple cfdata tables; the root node
998  * must always be in the initial table.
999  */
1000 cfdata_t
1001 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1002 {
1003 	cfdata_t cf;
1004 	const short *p;
1005 	struct matchinfo m;
1006 
1007 	m.fn = fn;
1008 	m.parent = ROOT;
1009 	m.aux = aux;
1010 	m.match = NULL;
1011 	m.pri = 0;
1012 	m.locs = 0;
1013 	/*
1014 	 * Look at root entries for matching name.  We do not bother
1015 	 * with found-state here since only one root should ever be
1016 	 * searched (and it must be done first).
1017 	 */
1018 	for (p = cfroots; *p >= 0; p++) {
1019 		cf = &cfdata[*p];
1020 		if (strcmp(cf->cf_name, rootname) == 0)
1021 			mapply(&m, cf);
1022 	}
1023 	return m.match;
1024 }
1025 
1026 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1027 
1028 /*
1029  * The given `aux' argument describes a device that has been found
1030  * on the given parent, but not necessarily configured.  Locate the
1031  * configuration data for that device (using the submatch function
1032  * provided, or using candidates' cd_match configuration driver
1033  * functions) and attach it, and return true.  If the device was
1034  * not configured, call the given `print' function and return 0.
1035  */
1036 device_t
1037 config_found_sm_loc(device_t parent,
1038 		const char *ifattr, const int *locs, void *aux,
1039 		cfprint_t print, cfsubmatch_t submatch)
1040 {
1041 	cfdata_t cf;
1042 
1043 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1044 		return(config_attach_loc(parent, cf, locs, aux, print));
1045 	if (print) {
1046 		if (config_do_twiddle && cold)
1047 			twiddle();
1048 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1049 	}
1050 
1051 	return NULL;
1052 }
1053 
1054 device_t
1055 config_found_ia(device_t parent, const char *ifattr, void *aux,
1056     cfprint_t print)
1057 {
1058 
1059 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1060 }
1061 
1062 device_t
1063 config_found(device_t parent, void *aux, cfprint_t print)
1064 {
1065 
1066 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1067 }
1068 
1069 /*
1070  * As above, but for root devices.
1071  */
1072 device_t
1073 config_rootfound(const char *rootname, void *aux)
1074 {
1075 	cfdata_t cf;
1076 
1077 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1078 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1079 	aprint_error("root device %s not configured\n", rootname);
1080 	return NULL;
1081 }
1082 
1083 /* just like sprintf(buf, "%d") except that it works from the end */
1084 static char *
1085 number(char *ep, int n)
1086 {
1087 
1088 	*--ep = 0;
1089 	while (n >= 10) {
1090 		*--ep = (n % 10) + '0';
1091 		n /= 10;
1092 	}
1093 	*--ep = n + '0';
1094 	return ep;
1095 }
1096 
1097 /*
1098  * Expand the size of the cd_devs array if necessary.
1099  *
1100  * The caller must hold alldevs_mtx. config_makeroom() may release and
1101  * re-acquire alldevs_mtx, so callers should re-check conditions such
1102  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1103  * returns.
1104  */
1105 static void
1106 config_makeroom(int n, struct cfdriver *cd)
1107 {
1108 	int old, new;
1109 	device_t *osp, *nsp;
1110 
1111 	alldevs_nwrite++;
1112 
1113 	for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1114 		;
1115 
1116 	while (n >= cd->cd_ndevs) {
1117 		/*
1118 		 * Need to expand the array.
1119 		 */
1120 		old = cd->cd_ndevs;
1121 		osp = cd->cd_devs;
1122 
1123 		/* Release alldevs_mtx around allocation, which may
1124 		 * sleep.
1125 		 */
1126 		mutex_exit(&alldevs_mtx);
1127 		nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1128 		if (nsp == NULL)
1129 			panic("%s: could not expand cd_devs", __func__);
1130 		mutex_enter(&alldevs_mtx);
1131 
1132 		/* If another thread moved the array while we did
1133 		 * not hold alldevs_mtx, try again.
1134 		 */
1135 		if (cd->cd_devs != osp) {
1136 			mutex_exit(&alldevs_mtx);
1137 			kmem_free(nsp, sizeof(device_t[new]));
1138 			mutex_enter(&alldevs_mtx);
1139 			continue;
1140 		}
1141 
1142 		memset(nsp + old, 0, sizeof(device_t[new - old]));
1143 		if (old != 0)
1144 			memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1145 
1146 		cd->cd_ndevs = new;
1147 		cd->cd_devs = nsp;
1148 		if (old != 0) {
1149 			mutex_exit(&alldevs_mtx);
1150 			kmem_free(osp, sizeof(device_t[old]));
1151 			mutex_enter(&alldevs_mtx);
1152 		}
1153 	}
1154 	alldevs_nwrite--;
1155 }
1156 
1157 /*
1158  * Put dev into the devices list.
1159  */
1160 static void
1161 config_devlink(device_t dev)
1162 {
1163 	int s;
1164 
1165 	s = config_alldevs_lock();
1166 
1167 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1168 
1169 	dev->dv_add_gen = alldevs_gen;
1170 	/* It is safe to add a device to the tail of the list while
1171 	 * readers and writers are in the list.
1172 	 */
1173 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1174 	config_alldevs_unlock(s);
1175 }
1176 
1177 static void
1178 config_devfree(device_t dev)
1179 {
1180 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1181 
1182 	if (dev->dv_cfattach->ca_devsize > 0)
1183 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1184 	if (priv)
1185 		kmem_free(dev, sizeof(*dev));
1186 }
1187 
1188 /*
1189  * Caller must hold alldevs_mtx.
1190  */
1191 static void
1192 config_devunlink(device_t dev, struct devicelist *garbage)
1193 {
1194 	struct device_garbage *dg = &dev->dv_garbage;
1195 	cfdriver_t cd = device_cfdriver(dev);
1196 	int i;
1197 
1198 	KASSERT(mutex_owned(&alldevs_mtx));
1199 
1200  	/* Unlink from device list.  Link to garbage list. */
1201 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1202 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1203 
1204 	/* Remove from cfdriver's array. */
1205 	cd->cd_devs[dev->dv_unit] = NULL;
1206 
1207 	/*
1208 	 * If the device now has no units in use, unlink its softc array.
1209 	 */
1210 	for (i = 0; i < cd->cd_ndevs; i++) {
1211 		if (cd->cd_devs[i] != NULL)
1212 			break;
1213 	}
1214 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1215 	if (i == cd->cd_ndevs) {
1216 		dg->dg_ndevs = cd->cd_ndevs;
1217 		dg->dg_devs = cd->cd_devs;
1218 		cd->cd_devs = NULL;
1219 		cd->cd_ndevs = 0;
1220 	}
1221 }
1222 
1223 static void
1224 config_devdelete(device_t dev)
1225 {
1226 	struct device_garbage *dg = &dev->dv_garbage;
1227 	device_lock_t dvl = device_getlock(dev);
1228 
1229 	if (dg->dg_devs != NULL)
1230 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1231 
1232 	cv_destroy(&dvl->dvl_cv);
1233 	mutex_destroy(&dvl->dvl_mtx);
1234 
1235 	KASSERT(dev->dv_properties != NULL);
1236 	prop_object_release(dev->dv_properties);
1237 
1238 	if (dev->dv_activity_handlers)
1239 		panic("%s with registered handlers", __func__);
1240 
1241 	if (dev->dv_locators) {
1242 		size_t amount = *--dev->dv_locators;
1243 		kmem_free(dev->dv_locators, amount);
1244 	}
1245 
1246 	config_devfree(dev);
1247 }
1248 
1249 static int
1250 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1251 {
1252 	int unit;
1253 
1254 	if (cf->cf_fstate == FSTATE_STAR) {
1255 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1256 			if (cd->cd_devs[unit] == NULL)
1257 				break;
1258 		/*
1259 		 * unit is now the unit of the first NULL device pointer,
1260 		 * or max(cd->cd_ndevs,cf->cf_unit).
1261 		 */
1262 	} else {
1263 		unit = cf->cf_unit;
1264 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1265 			unit = -1;
1266 	}
1267 	return unit;
1268 }
1269 
1270 static int
1271 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1272 {
1273 	struct alldevs_foray af;
1274 	int unit;
1275 
1276 	config_alldevs_enter(&af);
1277 	for (;;) {
1278 		unit = config_unit_nextfree(cd, cf);
1279 		if (unit == -1)
1280 			break;
1281 		if (unit < cd->cd_ndevs) {
1282 			cd->cd_devs[unit] = dev;
1283 			dev->dv_unit = unit;
1284 			break;
1285 		}
1286 		config_makeroom(unit, cd);
1287 	}
1288 	config_alldevs_exit(&af);
1289 
1290 	return unit;
1291 }
1292 
1293 static device_t
1294 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1295 {
1296 	cfdriver_t cd;
1297 	cfattach_t ca;
1298 	size_t lname, lunit;
1299 	const char *xunit;
1300 	int myunit;
1301 	char num[10];
1302 	device_t dev;
1303 	void *dev_private;
1304 	const struct cfiattrdata *ia;
1305 	device_lock_t dvl;
1306 
1307 	cd = config_cfdriver_lookup(cf->cf_name);
1308 	if (cd == NULL)
1309 		return NULL;
1310 
1311 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1312 	if (ca == NULL)
1313 		return NULL;
1314 
1315 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1316 	    ca->ca_devsize < sizeof(struct device))
1317 		panic("config_devalloc: %s", cf->cf_atname);
1318 
1319 	/* get memory for all device vars */
1320 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1321 	if (ca->ca_devsize > 0) {
1322 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1323 		if (dev_private == NULL)
1324 			panic("config_devalloc: memory allocation for device softc failed");
1325 	} else {
1326 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1327 		dev_private = NULL;
1328 	}
1329 
1330 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1331 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1332 	} else {
1333 		dev = dev_private;
1334 	}
1335 	if (dev == NULL)
1336 		panic("config_devalloc: memory allocation for device_t failed");
1337 
1338 	dev->dv_class = cd->cd_class;
1339 	dev->dv_cfdata = cf;
1340 	dev->dv_cfdriver = cd;
1341 	dev->dv_cfattach = ca;
1342 	dev->dv_activity_count = 0;
1343 	dev->dv_activity_handlers = NULL;
1344 	dev->dv_private = dev_private;
1345 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1346 
1347 	myunit = config_unit_alloc(dev, cd, cf);
1348 	if (myunit == -1) {
1349 		config_devfree(dev);
1350 		return NULL;
1351 	}
1352 
1353 	/* compute length of name and decimal expansion of unit number */
1354 	lname = strlen(cd->cd_name);
1355 	xunit = number(&num[sizeof(num)], myunit);
1356 	lunit = &num[sizeof(num)] - xunit;
1357 	if (lname + lunit > sizeof(dev->dv_xname))
1358 		panic("config_devalloc: device name too long");
1359 
1360 	dvl = device_getlock(dev);
1361 
1362 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1363 	cv_init(&dvl->dvl_cv, "pmfsusp");
1364 
1365 	memcpy(dev->dv_xname, cd->cd_name, lname);
1366 	memcpy(dev->dv_xname + lname, xunit, lunit);
1367 	dev->dv_parent = parent;
1368 	if (parent != NULL)
1369 		dev->dv_depth = parent->dv_depth + 1;
1370 	else
1371 		dev->dv_depth = 0;
1372 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1373 	if (locs) {
1374 		KASSERT(parent); /* no locators at root */
1375 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1376 		dev->dv_locators =
1377 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1378 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1379 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1380 	}
1381 	dev->dv_properties = prop_dictionary_create();
1382 	KASSERT(dev->dv_properties != NULL);
1383 
1384 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1385 	    "device-driver", dev->dv_cfdriver->cd_name);
1386 	prop_dictionary_set_uint16(dev->dv_properties,
1387 	    "device-unit", dev->dv_unit);
1388 
1389 	return dev;
1390 }
1391 
1392 /*
1393  * Attach a found device.
1394  */
1395 device_t
1396 config_attach_loc(device_t parent, cfdata_t cf,
1397 	const int *locs, void *aux, cfprint_t print)
1398 {
1399 	device_t dev;
1400 	struct cftable *ct;
1401 	const char *drvname;
1402 
1403 	dev = config_devalloc(parent, cf, locs);
1404 	if (!dev)
1405 		panic("config_attach: allocation of device softc failed");
1406 
1407 	/* XXX redundant - see below? */
1408 	if (cf->cf_fstate != FSTATE_STAR) {
1409 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1410 		cf->cf_fstate = FSTATE_FOUND;
1411 	}
1412 
1413 	config_devlink(dev);
1414 
1415 	if (config_do_twiddle && cold)
1416 		twiddle();
1417 	else
1418 		aprint_naive("Found ");
1419 	/*
1420 	 * We want the next two printfs for normal, verbose, and quiet,
1421 	 * but not silent (in which case, we're twiddling, instead).
1422 	 */
1423 	if (parent == ROOT) {
1424 		aprint_naive("%s (root)", device_xname(dev));
1425 		aprint_normal("%s (root)", device_xname(dev));
1426 	} else {
1427 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1428 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1429 		if (print)
1430 			(void) (*print)(aux, NULL);
1431 	}
1432 
1433 	/*
1434 	 * Before attaching, clobber any unfound devices that are
1435 	 * otherwise identical.
1436 	 * XXX code above is redundant?
1437 	 */
1438 	drvname = dev->dv_cfdriver->cd_name;
1439 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1440 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1441 			if (STREQ(cf->cf_name, drvname) &&
1442 			    cf->cf_unit == dev->dv_unit) {
1443 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1444 					cf->cf_fstate = FSTATE_FOUND;
1445 			}
1446 		}
1447 	}
1448 	device_register(dev, aux);
1449 
1450 	/* Let userland know */
1451 	devmon_report_device(dev, true);
1452 
1453 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1454 
1455 	if (!device_pmf_is_registered(dev))
1456 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1457 
1458 	config_process_deferred(&deferred_config_queue, dev);
1459 
1460 	device_register_post_config(dev, aux);
1461 	return dev;
1462 }
1463 
1464 device_t
1465 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1466 {
1467 
1468 	return config_attach_loc(parent, cf, NULL, aux, print);
1469 }
1470 
1471 /*
1472  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1473  * way are silently inserted into the device tree, and their children
1474  * attached.
1475  *
1476  * Note that because pseudo-devices are attached silently, any information
1477  * the attach routine wishes to print should be prefixed with the device
1478  * name by the attach routine.
1479  */
1480 device_t
1481 config_attach_pseudo(cfdata_t cf)
1482 {
1483 	device_t dev;
1484 
1485 	dev = config_devalloc(ROOT, cf, NULL);
1486 	if (!dev)
1487 		return NULL;
1488 
1489 	/* XXX mark busy in cfdata */
1490 
1491 	if (cf->cf_fstate != FSTATE_STAR) {
1492 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1493 		cf->cf_fstate = FSTATE_FOUND;
1494 	}
1495 
1496 	config_devlink(dev);
1497 
1498 #if 0	/* XXXJRT not yet */
1499 	device_register(dev, NULL);	/* like a root node */
1500 #endif
1501 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1502 	config_process_deferred(&deferred_config_queue, dev);
1503 	return dev;
1504 }
1505 
1506 /*
1507  * Caller must hold alldevs_mtx.
1508  */
1509 static void
1510 config_collect_garbage(struct devicelist *garbage)
1511 {
1512 	device_t dv;
1513 
1514 	KASSERT(!cpu_intr_p());
1515 	KASSERT(!cpu_softintr_p());
1516 	KASSERT(mutex_owned(&alldevs_mtx));
1517 
1518 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1519 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1520 			if (dv->dv_del_gen != 0)
1521 				break;
1522 		}
1523 		if (dv == NULL) {
1524 			alldevs_garbage = false;
1525 			break;
1526 		}
1527 		config_devunlink(dv, garbage);
1528 	}
1529 	KASSERT(mutex_owned(&alldevs_mtx));
1530 }
1531 
1532 static void
1533 config_dump_garbage(struct devicelist *garbage)
1534 {
1535 	device_t dv;
1536 
1537 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1538 		TAILQ_REMOVE(garbage, dv, dv_list);
1539 		config_devdelete(dv);
1540 	}
1541 }
1542 
1543 /*
1544  * Detach a device.  Optionally forced (e.g. because of hardware
1545  * removal) and quiet.  Returns zero if successful, non-zero
1546  * (an error code) otherwise.
1547  *
1548  * Note that this code wants to be run from a process context, so
1549  * that the detach can sleep to allow processes which have a device
1550  * open to run and unwind their stacks.
1551  */
1552 int
1553 config_detach(device_t dev, int flags)
1554 {
1555 	struct alldevs_foray af;
1556 	struct cftable *ct;
1557 	cfdata_t cf;
1558 	const struct cfattach *ca;
1559 	struct cfdriver *cd;
1560 #ifdef DIAGNOSTIC
1561 	device_t d;
1562 #endif
1563 	int rv = 0, s;
1564 
1565 #ifdef DIAGNOSTIC
1566 	cf = dev->dv_cfdata;
1567 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1568 	    cf->cf_fstate != FSTATE_STAR)
1569 		panic("config_detach: %s: bad device fstate %d",
1570 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1571 #endif
1572 	cd = dev->dv_cfdriver;
1573 	KASSERT(cd != NULL);
1574 
1575 	ca = dev->dv_cfattach;
1576 	KASSERT(ca != NULL);
1577 
1578 	s = config_alldevs_lock();
1579 	if (dev->dv_del_gen != 0) {
1580 		config_alldevs_unlock(s);
1581 #ifdef DIAGNOSTIC
1582 		printf("%s: %s is already detached\n", __func__,
1583 		    device_xname(dev));
1584 #endif /* DIAGNOSTIC */
1585 		return ENOENT;
1586 	}
1587 	alldevs_nwrite++;
1588 	config_alldevs_unlock(s);
1589 
1590 	if (!detachall &&
1591 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1592 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1593 		rv = EOPNOTSUPP;
1594 	} else if (ca->ca_detach != NULL) {
1595 		rv = (*ca->ca_detach)(dev, flags);
1596 	} else
1597 		rv = EOPNOTSUPP;
1598 
1599 	/*
1600 	 * If it was not possible to detach the device, then we either
1601 	 * panic() (for the forced but failed case), or return an error.
1602 	 *
1603 	 * If it was possible to detach the device, ensure that the
1604 	 * device is deactivated.
1605 	 */
1606 	if (rv == 0)
1607 		dev->dv_flags &= ~DVF_ACTIVE;
1608 	else if ((flags & DETACH_FORCE) == 0)
1609 		goto out;
1610 	else {
1611 		panic("config_detach: forced detach of %s failed (%d)",
1612 		    device_xname(dev), rv);
1613 	}
1614 
1615 	/*
1616 	 * The device has now been successfully detached.
1617 	 */
1618 
1619 	/* Let userland know */
1620 	devmon_report_device(dev, false);
1621 
1622 #ifdef DIAGNOSTIC
1623 	/*
1624 	 * Sanity: If you're successfully detached, you should have no
1625 	 * children.  (Note that because children must be attached
1626 	 * after parents, we only need to search the latter part of
1627 	 * the list.)
1628 	 */
1629 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1630 	    d = TAILQ_NEXT(d, dv_list)) {
1631 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1632 			printf("config_detach: detached device %s"
1633 			    " has children %s\n", device_xname(dev), device_xname(d));
1634 			panic("config_detach");
1635 		}
1636 	}
1637 #endif
1638 
1639 	/* notify the parent that the child is gone */
1640 	if (dev->dv_parent) {
1641 		device_t p = dev->dv_parent;
1642 		if (p->dv_cfattach->ca_childdetached)
1643 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1644 	}
1645 
1646 	/*
1647 	 * Mark cfdata to show that the unit can be reused, if possible.
1648 	 */
1649 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1650 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1651 			if (STREQ(cf->cf_name, cd->cd_name)) {
1652 				if (cf->cf_fstate == FSTATE_FOUND &&
1653 				    cf->cf_unit == dev->dv_unit)
1654 					cf->cf_fstate = FSTATE_NOTFOUND;
1655 			}
1656 		}
1657 	}
1658 
1659 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1660 		aprint_normal_dev(dev, "detached\n");
1661 
1662 out:
1663 	config_alldevs_enter(&af);
1664 	KASSERT(alldevs_nwrite != 0);
1665 	--alldevs_nwrite;
1666 	if (rv == 0 && dev->dv_del_gen == 0) {
1667 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
1668 			config_devunlink(dev, &af.af_garbage);
1669 		else {
1670 			dev->dv_del_gen = alldevs_gen;
1671 			alldevs_garbage = true;
1672 		}
1673 	}
1674 	config_alldevs_exit(&af);
1675 
1676 	return rv;
1677 }
1678 
1679 int
1680 config_detach_children(device_t parent, int flags)
1681 {
1682 	device_t dv;
1683 	deviter_t di;
1684 	int error = 0;
1685 
1686 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1687 	     dv = deviter_next(&di)) {
1688 		if (device_parent(dv) != parent)
1689 			continue;
1690 		if ((error = config_detach(dv, flags)) != 0)
1691 			break;
1692 	}
1693 	deviter_release(&di);
1694 	return error;
1695 }
1696 
1697 device_t
1698 shutdown_first(struct shutdown_state *s)
1699 {
1700 	if (!s->initialized) {
1701 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1702 		s->initialized = true;
1703 	}
1704 	return shutdown_next(s);
1705 }
1706 
1707 device_t
1708 shutdown_next(struct shutdown_state *s)
1709 {
1710 	device_t dv;
1711 
1712 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1713 		;
1714 
1715 	if (dv == NULL)
1716 		s->initialized = false;
1717 
1718 	return dv;
1719 }
1720 
1721 bool
1722 config_detach_all(int how)
1723 {
1724 	static struct shutdown_state s;
1725 	device_t curdev;
1726 	bool progress = false;
1727 
1728 	if ((how & RB_NOSYNC) != 0)
1729 		return false;
1730 
1731 	for (curdev = shutdown_first(&s); curdev != NULL;
1732 	     curdev = shutdown_next(&s)) {
1733 		aprint_debug(" detaching %s, ", device_xname(curdev));
1734 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1735 			progress = true;
1736 			aprint_debug("success.");
1737 		} else
1738 			aprint_debug("failed.");
1739 	}
1740 	return progress;
1741 }
1742 
1743 static bool
1744 device_is_ancestor_of(device_t ancestor, device_t descendant)
1745 {
1746 	device_t dv;
1747 
1748 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1749 		if (device_parent(dv) == ancestor)
1750 			return true;
1751 	}
1752 	return false;
1753 }
1754 
1755 int
1756 config_deactivate(device_t dev)
1757 {
1758 	deviter_t di;
1759 	const struct cfattach *ca;
1760 	device_t descendant;
1761 	int s, rv = 0, oflags;
1762 
1763 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1764 	     descendant != NULL;
1765 	     descendant = deviter_next(&di)) {
1766 		if (dev != descendant &&
1767 		    !device_is_ancestor_of(dev, descendant))
1768 			continue;
1769 
1770 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1771 			continue;
1772 
1773 		ca = descendant->dv_cfattach;
1774 		oflags = descendant->dv_flags;
1775 
1776 		descendant->dv_flags &= ~DVF_ACTIVE;
1777 		if (ca->ca_activate == NULL)
1778 			continue;
1779 		s = splhigh();
1780 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1781 		splx(s);
1782 		if (rv != 0)
1783 			descendant->dv_flags = oflags;
1784 	}
1785 	deviter_release(&di);
1786 	return rv;
1787 }
1788 
1789 /*
1790  * Defer the configuration of the specified device until all
1791  * of its parent's devices have been attached.
1792  */
1793 void
1794 config_defer(device_t dev, void (*func)(device_t))
1795 {
1796 	struct deferred_config *dc;
1797 
1798 	if (dev->dv_parent == NULL)
1799 		panic("config_defer: can't defer config of a root device");
1800 
1801 #ifdef DIAGNOSTIC
1802 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1803 		if (dc->dc_dev == dev)
1804 			panic("config_defer: deferred twice");
1805 	}
1806 #endif
1807 
1808 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1809 	if (dc == NULL)
1810 		panic("config_defer: unable to allocate callback");
1811 
1812 	dc->dc_dev = dev;
1813 	dc->dc_func = func;
1814 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1815 	config_pending_incr();
1816 }
1817 
1818 /*
1819  * Defer some autoconfiguration for a device until after interrupts
1820  * are enabled.
1821  */
1822 void
1823 config_interrupts(device_t dev, void (*func)(device_t))
1824 {
1825 	struct deferred_config *dc;
1826 
1827 	/*
1828 	 * If interrupts are enabled, callback now.
1829 	 */
1830 	if (cold == 0) {
1831 		(*func)(dev);
1832 		return;
1833 	}
1834 
1835 #ifdef DIAGNOSTIC
1836 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1837 		if (dc->dc_dev == dev)
1838 			panic("config_interrupts: deferred twice");
1839 	}
1840 #endif
1841 
1842 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1843 	if (dc == NULL)
1844 		panic("config_interrupts: unable to allocate callback");
1845 
1846 	dc->dc_dev = dev;
1847 	dc->dc_func = func;
1848 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1849 	config_pending_incr();
1850 }
1851 
1852 /*
1853  * Defer some autoconfiguration for a device until after root file system
1854  * is mounted (to load firmware etc).
1855  */
1856 void
1857 config_mountroot(device_t dev, void (*func)(device_t))
1858 {
1859 	struct deferred_config *dc;
1860 
1861 	/*
1862 	 * If root file system is mounted, callback now.
1863 	 */
1864 	if (root_is_mounted) {
1865 		(*func)(dev);
1866 		return;
1867 	}
1868 
1869 #ifdef DIAGNOSTIC
1870 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1871 		if (dc->dc_dev == dev)
1872 			panic("%s: deferred twice", __func__);
1873 	}
1874 #endif
1875 
1876 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1877 	if (dc == NULL)
1878 		panic("%s: unable to allocate callback", __func__);
1879 
1880 	dc->dc_dev = dev;
1881 	dc->dc_func = func;
1882 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1883 }
1884 
1885 /*
1886  * Process a deferred configuration queue.
1887  */
1888 static void
1889 config_process_deferred(struct deferred_config_head *queue,
1890     device_t parent)
1891 {
1892 	struct deferred_config *dc, *ndc;
1893 
1894 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1895 		ndc = TAILQ_NEXT(dc, dc_queue);
1896 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1897 			TAILQ_REMOVE(queue, dc, dc_queue);
1898 			(*dc->dc_func)(dc->dc_dev);
1899 			kmem_free(dc, sizeof(*dc));
1900 			config_pending_decr();
1901 		}
1902 	}
1903 }
1904 
1905 /*
1906  * Manipulate the config_pending semaphore.
1907  */
1908 void
1909 config_pending_incr(void)
1910 {
1911 
1912 	mutex_enter(&config_misc_lock);
1913 	config_pending++;
1914 	mutex_exit(&config_misc_lock);
1915 }
1916 
1917 void
1918 config_pending_decr(void)
1919 {
1920 
1921 #ifdef DIAGNOSTIC
1922 	if (config_pending == 0)
1923 		panic("config_pending_decr: config_pending == 0");
1924 #endif
1925 	mutex_enter(&config_misc_lock);
1926 	config_pending--;
1927 	if (config_pending == 0)
1928 		cv_broadcast(&config_misc_cv);
1929 	mutex_exit(&config_misc_lock);
1930 }
1931 
1932 /*
1933  * Register a "finalization" routine.  Finalization routines are
1934  * called iteratively once all real devices have been found during
1935  * autoconfiguration, for as long as any one finalizer has done
1936  * any work.
1937  */
1938 int
1939 config_finalize_register(device_t dev, int (*fn)(device_t))
1940 {
1941 	struct finalize_hook *f;
1942 
1943 	/*
1944 	 * If finalization has already been done, invoke the
1945 	 * callback function now.
1946 	 */
1947 	if (config_finalize_done) {
1948 		while ((*fn)(dev) != 0)
1949 			/* loop */ ;
1950 	}
1951 
1952 	/* Ensure this isn't already on the list. */
1953 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1954 		if (f->f_func == fn && f->f_dev == dev)
1955 			return EEXIST;
1956 	}
1957 
1958 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
1959 	f->f_func = fn;
1960 	f->f_dev = dev;
1961 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1962 
1963 	return 0;
1964 }
1965 
1966 void
1967 config_finalize(void)
1968 {
1969 	struct finalize_hook *f;
1970 	struct pdevinit *pdev;
1971 	extern struct pdevinit pdevinit[];
1972 	int errcnt, rv;
1973 
1974 	/*
1975 	 * Now that device driver threads have been created, wait for
1976 	 * them to finish any deferred autoconfiguration.
1977 	 */
1978 	mutex_enter(&config_misc_lock);
1979 	while (config_pending != 0)
1980 		cv_wait(&config_misc_cv, &config_misc_lock);
1981 	mutex_exit(&config_misc_lock);
1982 
1983 	KERNEL_LOCK(1, NULL);
1984 
1985 	/* Attach pseudo-devices. */
1986 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1987 		(*pdev->pdev_attach)(pdev->pdev_count);
1988 
1989 	/* Run the hooks until none of them does any work. */
1990 	do {
1991 		rv = 0;
1992 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1993 			rv |= (*f->f_func)(f->f_dev);
1994 	} while (rv != 0);
1995 
1996 	config_finalize_done = 1;
1997 
1998 	/* Now free all the hooks. */
1999 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2000 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2001 		kmem_free(f, sizeof(*f));
2002 	}
2003 
2004 	KERNEL_UNLOCK_ONE(NULL);
2005 
2006 	errcnt = aprint_get_error_count();
2007 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2008 	    (boothowto & AB_VERBOSE) == 0) {
2009 		mutex_enter(&config_misc_lock);
2010 		if (config_do_twiddle) {
2011 			config_do_twiddle = 0;
2012 			printf_nolog(" done.\n");
2013 		}
2014 		mutex_exit(&config_misc_lock);
2015 		if (errcnt != 0) {
2016 			printf("WARNING: %d error%s while detecting hardware; "
2017 			    "check system log.\n", errcnt,
2018 			    errcnt == 1 ? "" : "s");
2019 		}
2020 	}
2021 }
2022 
2023 void
2024 config_twiddle_init()
2025 {
2026 
2027 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2028 		config_do_twiddle = 1;
2029 	}
2030 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2031 }
2032 
2033 void
2034 config_twiddle_fn(void *cookie)
2035 {
2036 
2037 	mutex_enter(&config_misc_lock);
2038 	if (config_do_twiddle) {
2039 		twiddle();
2040 		callout_schedule(&config_twiddle_ch, mstohz(100));
2041 	}
2042 	mutex_exit(&config_misc_lock);
2043 }
2044 
2045 static int
2046 config_alldevs_lock(void)
2047 {
2048 	mutex_enter(&alldevs_mtx);
2049 	return 0;
2050 }
2051 
2052 static void
2053 config_alldevs_enter(struct alldevs_foray *af)
2054 {
2055 	TAILQ_INIT(&af->af_garbage);
2056 	af->af_s = config_alldevs_lock();
2057 	config_collect_garbage(&af->af_garbage);
2058 }
2059 
2060 static void
2061 config_alldevs_exit(struct alldevs_foray *af)
2062 {
2063 	config_alldevs_unlock(af->af_s);
2064 	config_dump_garbage(&af->af_garbage);
2065 }
2066 
2067 /*ARGSUSED*/
2068 static void
2069 config_alldevs_unlock(int s)
2070 {
2071 	mutex_exit(&alldevs_mtx);
2072 }
2073 
2074 /*
2075  * device_lookup:
2076  *
2077  *	Look up a device instance for a given driver.
2078  */
2079 device_t
2080 device_lookup(cfdriver_t cd, int unit)
2081 {
2082 	device_t dv;
2083 	int s;
2084 
2085 	s = config_alldevs_lock();
2086 	KASSERT(mutex_owned(&alldevs_mtx));
2087 	if (unit < 0 || unit >= cd->cd_ndevs)
2088 		dv = NULL;
2089 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2090 		dv = NULL;
2091 	config_alldevs_unlock(s);
2092 
2093 	return dv;
2094 }
2095 
2096 /*
2097  * device_lookup_private:
2098  *
2099  *	Look up a softc instance for a given driver.
2100  */
2101 void *
2102 device_lookup_private(cfdriver_t cd, int unit)
2103 {
2104 
2105 	return device_private(device_lookup(cd, unit));
2106 }
2107 
2108 /*
2109  * device_find_by_xname:
2110  *
2111  *	Returns the device of the given name or NULL if it doesn't exist.
2112  */
2113 device_t
2114 device_find_by_xname(const char *name)
2115 {
2116 	device_t dv;
2117 	deviter_t di;
2118 
2119 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2120 		if (strcmp(device_xname(dv), name) == 0)
2121 			break;
2122 	}
2123 	deviter_release(&di);
2124 
2125 	return dv;
2126 }
2127 
2128 /*
2129  * device_find_by_driver_unit:
2130  *
2131  *	Returns the device of the given driver name and unit or
2132  *	NULL if it doesn't exist.
2133  */
2134 device_t
2135 device_find_by_driver_unit(const char *name, int unit)
2136 {
2137 	struct cfdriver *cd;
2138 
2139 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2140 		return NULL;
2141 	return device_lookup(cd, unit);
2142 }
2143 
2144 /*
2145  * Power management related functions.
2146  */
2147 
2148 bool
2149 device_pmf_is_registered(device_t dev)
2150 {
2151 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2152 }
2153 
2154 bool
2155 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2156 {
2157 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2158 		return true;
2159 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2160 		return false;
2161 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2162 	    dev->dv_driver_suspend != NULL &&
2163 	    !(*dev->dv_driver_suspend)(dev, qual))
2164 		return false;
2165 
2166 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2167 	return true;
2168 }
2169 
2170 bool
2171 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2172 {
2173 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2174 		return true;
2175 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2176 		return false;
2177 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2178 	    dev->dv_driver_resume != NULL &&
2179 	    !(*dev->dv_driver_resume)(dev, qual))
2180 		return false;
2181 
2182 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2183 	return true;
2184 }
2185 
2186 bool
2187 device_pmf_driver_shutdown(device_t dev, int how)
2188 {
2189 
2190 	if (*dev->dv_driver_shutdown != NULL &&
2191 	    !(*dev->dv_driver_shutdown)(dev, how))
2192 		return false;
2193 	return true;
2194 }
2195 
2196 bool
2197 device_pmf_driver_register(device_t dev,
2198     bool (*suspend)(device_t, const pmf_qual_t *),
2199     bool (*resume)(device_t, const pmf_qual_t *),
2200     bool (*shutdown)(device_t, int))
2201 {
2202 	dev->dv_driver_suspend = suspend;
2203 	dev->dv_driver_resume = resume;
2204 	dev->dv_driver_shutdown = shutdown;
2205 	dev->dv_flags |= DVF_POWER_HANDLERS;
2206 	return true;
2207 }
2208 
2209 static const char *
2210 curlwp_name(void)
2211 {
2212 	if (curlwp->l_name != NULL)
2213 		return curlwp->l_name;
2214 	else
2215 		return curlwp->l_proc->p_comm;
2216 }
2217 
2218 void
2219 device_pmf_driver_deregister(device_t dev)
2220 {
2221 	device_lock_t dvl = device_getlock(dev);
2222 
2223 	dev->dv_driver_suspend = NULL;
2224 	dev->dv_driver_resume = NULL;
2225 
2226 	mutex_enter(&dvl->dvl_mtx);
2227 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2228 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2229 		/* Wake a thread that waits for the lock.  That
2230 		 * thread will fail to acquire the lock, and then
2231 		 * it will wake the next thread that waits for the
2232 		 * lock, or else it will wake us.
2233 		 */
2234 		cv_signal(&dvl->dvl_cv);
2235 		pmflock_debug(dev, __func__, __LINE__);
2236 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2237 		pmflock_debug(dev, __func__, __LINE__);
2238 	}
2239 	mutex_exit(&dvl->dvl_mtx);
2240 }
2241 
2242 bool
2243 device_pmf_driver_child_register(device_t dev)
2244 {
2245 	device_t parent = device_parent(dev);
2246 
2247 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2248 		return true;
2249 	return (*parent->dv_driver_child_register)(dev);
2250 }
2251 
2252 void
2253 device_pmf_driver_set_child_register(device_t dev,
2254     bool (*child_register)(device_t))
2255 {
2256 	dev->dv_driver_child_register = child_register;
2257 }
2258 
2259 static void
2260 pmflock_debug(device_t dev, const char *func, int line)
2261 {
2262 	device_lock_t dvl = device_getlock(dev);
2263 
2264 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2265 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2266 	    dev->dv_flags);
2267 }
2268 
2269 static bool
2270 device_pmf_lock1(device_t dev)
2271 {
2272 	device_lock_t dvl = device_getlock(dev);
2273 
2274 	while (device_pmf_is_registered(dev) &&
2275 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2276 		dvl->dvl_nwait++;
2277 		pmflock_debug(dev, __func__, __LINE__);
2278 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2279 		pmflock_debug(dev, __func__, __LINE__);
2280 		dvl->dvl_nwait--;
2281 	}
2282 	if (!device_pmf_is_registered(dev)) {
2283 		pmflock_debug(dev, __func__, __LINE__);
2284 		/* We could not acquire the lock, but some other thread may
2285 		 * wait for it, also.  Wake that thread.
2286 		 */
2287 		cv_signal(&dvl->dvl_cv);
2288 		return false;
2289 	}
2290 	dvl->dvl_nlock++;
2291 	dvl->dvl_holder = curlwp;
2292 	pmflock_debug(dev, __func__, __LINE__);
2293 	return true;
2294 }
2295 
2296 bool
2297 device_pmf_lock(device_t dev)
2298 {
2299 	bool rc;
2300 	device_lock_t dvl = device_getlock(dev);
2301 
2302 	mutex_enter(&dvl->dvl_mtx);
2303 	rc = device_pmf_lock1(dev);
2304 	mutex_exit(&dvl->dvl_mtx);
2305 
2306 	return rc;
2307 }
2308 
2309 void
2310 device_pmf_unlock(device_t dev)
2311 {
2312 	device_lock_t dvl = device_getlock(dev);
2313 
2314 	KASSERT(dvl->dvl_nlock > 0);
2315 	mutex_enter(&dvl->dvl_mtx);
2316 	if (--dvl->dvl_nlock == 0)
2317 		dvl->dvl_holder = NULL;
2318 	cv_signal(&dvl->dvl_cv);
2319 	pmflock_debug(dev, __func__, __LINE__);
2320 	mutex_exit(&dvl->dvl_mtx);
2321 }
2322 
2323 device_lock_t
2324 device_getlock(device_t dev)
2325 {
2326 	return &dev->dv_lock;
2327 }
2328 
2329 void *
2330 device_pmf_bus_private(device_t dev)
2331 {
2332 	return dev->dv_bus_private;
2333 }
2334 
2335 bool
2336 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2337 {
2338 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2339 		return true;
2340 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2341 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2342 		return false;
2343 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2344 	    dev->dv_bus_suspend != NULL &&
2345 	    !(*dev->dv_bus_suspend)(dev, qual))
2346 		return false;
2347 
2348 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2349 	return true;
2350 }
2351 
2352 bool
2353 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2354 {
2355 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2356 		return true;
2357 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2358 	    dev->dv_bus_resume != NULL &&
2359 	    !(*dev->dv_bus_resume)(dev, qual))
2360 		return false;
2361 
2362 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2363 	return true;
2364 }
2365 
2366 bool
2367 device_pmf_bus_shutdown(device_t dev, int how)
2368 {
2369 
2370 	if (*dev->dv_bus_shutdown != NULL &&
2371 	    !(*dev->dv_bus_shutdown)(dev, how))
2372 		return false;
2373 	return true;
2374 }
2375 
2376 void
2377 device_pmf_bus_register(device_t dev, void *priv,
2378     bool (*suspend)(device_t, const pmf_qual_t *),
2379     bool (*resume)(device_t, const pmf_qual_t *),
2380     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2381 {
2382 	dev->dv_bus_private = priv;
2383 	dev->dv_bus_resume = resume;
2384 	dev->dv_bus_suspend = suspend;
2385 	dev->dv_bus_shutdown = shutdown;
2386 	dev->dv_bus_deregister = deregister;
2387 }
2388 
2389 void
2390 device_pmf_bus_deregister(device_t dev)
2391 {
2392 	if (dev->dv_bus_deregister == NULL)
2393 		return;
2394 	(*dev->dv_bus_deregister)(dev);
2395 	dev->dv_bus_private = NULL;
2396 	dev->dv_bus_suspend = NULL;
2397 	dev->dv_bus_resume = NULL;
2398 	dev->dv_bus_deregister = NULL;
2399 }
2400 
2401 void *
2402 device_pmf_class_private(device_t dev)
2403 {
2404 	return dev->dv_class_private;
2405 }
2406 
2407 bool
2408 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2409 {
2410 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2411 		return true;
2412 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2413 	    dev->dv_class_suspend != NULL &&
2414 	    !(*dev->dv_class_suspend)(dev, qual))
2415 		return false;
2416 
2417 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2418 	return true;
2419 }
2420 
2421 bool
2422 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2423 {
2424 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2425 		return true;
2426 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2427 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2428 		return false;
2429 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2430 	    dev->dv_class_resume != NULL &&
2431 	    !(*dev->dv_class_resume)(dev, qual))
2432 		return false;
2433 
2434 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2435 	return true;
2436 }
2437 
2438 void
2439 device_pmf_class_register(device_t dev, void *priv,
2440     bool (*suspend)(device_t, const pmf_qual_t *),
2441     bool (*resume)(device_t, const pmf_qual_t *),
2442     void (*deregister)(device_t))
2443 {
2444 	dev->dv_class_private = priv;
2445 	dev->dv_class_suspend = suspend;
2446 	dev->dv_class_resume = resume;
2447 	dev->dv_class_deregister = deregister;
2448 }
2449 
2450 void
2451 device_pmf_class_deregister(device_t dev)
2452 {
2453 	if (dev->dv_class_deregister == NULL)
2454 		return;
2455 	(*dev->dv_class_deregister)(dev);
2456 	dev->dv_class_private = NULL;
2457 	dev->dv_class_suspend = NULL;
2458 	dev->dv_class_resume = NULL;
2459 	dev->dv_class_deregister = NULL;
2460 }
2461 
2462 bool
2463 device_active(device_t dev, devactive_t type)
2464 {
2465 	size_t i;
2466 
2467 	if (dev->dv_activity_count == 0)
2468 		return false;
2469 
2470 	for (i = 0; i < dev->dv_activity_count; ++i) {
2471 		if (dev->dv_activity_handlers[i] == NULL)
2472 			break;
2473 		(*dev->dv_activity_handlers[i])(dev, type);
2474 	}
2475 
2476 	return true;
2477 }
2478 
2479 bool
2480 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2481 {
2482 	void (**new_handlers)(device_t, devactive_t);
2483 	void (**old_handlers)(device_t, devactive_t);
2484 	size_t i, old_size, new_size;
2485 	int s;
2486 
2487 	old_handlers = dev->dv_activity_handlers;
2488 	old_size = dev->dv_activity_count;
2489 
2490 	for (i = 0; i < old_size; ++i) {
2491 		KASSERT(old_handlers[i] != handler);
2492 		if (old_handlers[i] == NULL) {
2493 			old_handlers[i] = handler;
2494 			return true;
2495 		}
2496 	}
2497 
2498 	new_size = old_size + 4;
2499 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2500 
2501 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2502 	new_handlers[old_size] = handler;
2503 	memset(new_handlers + old_size + 1, 0,
2504 	    sizeof(int [new_size - (old_size+1)]));
2505 
2506 	s = splhigh();
2507 	dev->dv_activity_count = new_size;
2508 	dev->dv_activity_handlers = new_handlers;
2509 	splx(s);
2510 
2511 	if (old_handlers != NULL)
2512 		kmem_free(old_handlers, sizeof(void * [old_size]));
2513 
2514 	return true;
2515 }
2516 
2517 void
2518 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2519 {
2520 	void (**old_handlers)(device_t, devactive_t);
2521 	size_t i, old_size;
2522 	int s;
2523 
2524 	old_handlers = dev->dv_activity_handlers;
2525 	old_size = dev->dv_activity_count;
2526 
2527 	for (i = 0; i < old_size; ++i) {
2528 		if (old_handlers[i] == handler)
2529 			break;
2530 		if (old_handlers[i] == NULL)
2531 			return; /* XXX panic? */
2532 	}
2533 
2534 	if (i == old_size)
2535 		return; /* XXX panic? */
2536 
2537 	for (; i < old_size - 1; ++i) {
2538 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2539 			continue;
2540 
2541 		if (i == 0) {
2542 			s = splhigh();
2543 			dev->dv_activity_count = 0;
2544 			dev->dv_activity_handlers = NULL;
2545 			splx(s);
2546 			kmem_free(old_handlers, sizeof(void *[old_size]));
2547 		}
2548 		return;
2549 	}
2550 	old_handlers[i] = NULL;
2551 }
2552 
2553 /* Return true iff the device_t `dev' exists at generation `gen'. */
2554 static bool
2555 device_exists_at(device_t dv, devgen_t gen)
2556 {
2557 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2558 	    dv->dv_add_gen <= gen;
2559 }
2560 
2561 static bool
2562 deviter_visits(const deviter_t *di, device_t dv)
2563 {
2564 	return device_exists_at(dv, di->di_gen);
2565 }
2566 
2567 /*
2568  * Device Iteration
2569  *
2570  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2571  *     each device_t's in the device tree.
2572  *
2573  * deviter_init(di, flags): initialize the device iterator `di'
2574  *     to "walk" the device tree.  deviter_next(di) will return
2575  *     the first device_t in the device tree, or NULL if there are
2576  *     no devices.
2577  *
2578  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2579  *     caller intends to modify the device tree by calling
2580  *     config_detach(9) on devices in the order that the iterator
2581  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2582  *     nearest the "root" of the device tree to be returned, first;
2583  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2584  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2585  *     indicating both that deviter_init() should not respect any
2586  *     locks on the device tree, and that deviter_next(di) may run
2587  *     in more than one LWP before the walk has finished.
2588  *
2589  *     Only one DEVITER_F_RW iterator may be in the device tree at
2590  *     once.
2591  *
2592  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2593  *
2594  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2595  *     DEVITER_F_LEAVES_FIRST are used in combination.
2596  *
2597  * deviter_first(di, flags): initialize the device iterator `di'
2598  *     and return the first device_t in the device tree, or NULL
2599  *     if there are no devices.  The statement
2600  *
2601  *         dv = deviter_first(di);
2602  *
2603  *     is shorthand for
2604  *
2605  *         deviter_init(di);
2606  *         dv = deviter_next(di);
2607  *
2608  * deviter_next(di): return the next device_t in the device tree,
2609  *     or NULL if there are no more devices.  deviter_next(di)
2610  *     is undefined if `di' was not initialized with deviter_init() or
2611  *     deviter_first().
2612  *
2613  * deviter_release(di): stops iteration (subsequent calls to
2614  *     deviter_next() will return NULL), releases any locks and
2615  *     resources held by the device iterator.
2616  *
2617  * Device iteration does not return device_t's in any particular
2618  * order.  An iterator will never return the same device_t twice.
2619  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2620  * is called repeatedly on the same `di', it will eventually return
2621  * NULL.  It is ok to attach/detach devices during device iteration.
2622  */
2623 void
2624 deviter_init(deviter_t *di, deviter_flags_t flags)
2625 {
2626 	device_t dv;
2627 	int s;
2628 
2629 	memset(di, 0, sizeof(*di));
2630 
2631 	s = config_alldevs_lock();
2632 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2633 		flags |= DEVITER_F_RW;
2634 
2635 	if ((flags & DEVITER_F_RW) != 0)
2636 		alldevs_nwrite++;
2637 	else
2638 		alldevs_nread++;
2639 	di->di_gen = alldevs_gen++;
2640 	config_alldevs_unlock(s);
2641 
2642 	di->di_flags = flags;
2643 
2644 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2645 	case DEVITER_F_LEAVES_FIRST:
2646 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2647 			if (!deviter_visits(di, dv))
2648 				continue;
2649 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2650 		}
2651 		break;
2652 	case DEVITER_F_ROOT_FIRST:
2653 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2654 			if (!deviter_visits(di, dv))
2655 				continue;
2656 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2657 		}
2658 		break;
2659 	default:
2660 		break;
2661 	}
2662 
2663 	deviter_reinit(di);
2664 }
2665 
2666 static void
2667 deviter_reinit(deviter_t *di)
2668 {
2669 	if ((di->di_flags & DEVITER_F_RW) != 0)
2670 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2671 	else
2672 		di->di_prev = TAILQ_FIRST(&alldevs);
2673 }
2674 
2675 device_t
2676 deviter_first(deviter_t *di, deviter_flags_t flags)
2677 {
2678 	deviter_init(di, flags);
2679 	return deviter_next(di);
2680 }
2681 
2682 static device_t
2683 deviter_next2(deviter_t *di)
2684 {
2685 	device_t dv;
2686 
2687 	dv = di->di_prev;
2688 
2689 	if (dv == NULL)
2690 		return NULL;
2691 
2692 	if ((di->di_flags & DEVITER_F_RW) != 0)
2693 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2694 	else
2695 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2696 
2697 	return dv;
2698 }
2699 
2700 static device_t
2701 deviter_next1(deviter_t *di)
2702 {
2703 	device_t dv;
2704 
2705 	do {
2706 		dv = deviter_next2(di);
2707 	} while (dv != NULL && !deviter_visits(di, dv));
2708 
2709 	return dv;
2710 }
2711 
2712 device_t
2713 deviter_next(deviter_t *di)
2714 {
2715 	device_t dv = NULL;
2716 
2717 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2718 	case 0:
2719 		return deviter_next1(di);
2720 	case DEVITER_F_LEAVES_FIRST:
2721 		while (di->di_curdepth >= 0) {
2722 			if ((dv = deviter_next1(di)) == NULL) {
2723 				di->di_curdepth--;
2724 				deviter_reinit(di);
2725 			} else if (dv->dv_depth == di->di_curdepth)
2726 				break;
2727 		}
2728 		return dv;
2729 	case DEVITER_F_ROOT_FIRST:
2730 		while (di->di_curdepth <= di->di_maxdepth) {
2731 			if ((dv = deviter_next1(di)) == NULL) {
2732 				di->di_curdepth++;
2733 				deviter_reinit(di);
2734 			} else if (dv->dv_depth == di->di_curdepth)
2735 				break;
2736 		}
2737 		return dv;
2738 	default:
2739 		return NULL;
2740 	}
2741 }
2742 
2743 void
2744 deviter_release(deviter_t *di)
2745 {
2746 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2747 	int s;
2748 
2749 	s = config_alldevs_lock();
2750 	if (rw)
2751 		--alldevs_nwrite;
2752 	else
2753 		--alldevs_nread;
2754 	/* XXX wake a garbage-collection thread */
2755 	config_alldevs_unlock(s);
2756 }
2757 
2758 const char *
2759 cfdata_ifattr(const struct cfdata *cf)
2760 {
2761 	return cf->cf_pspec->cfp_iattr;
2762 }
2763 
2764 bool
2765 ifattr_match(const char *snull, const char *t)
2766 {
2767 	return (snull == NULL) || strcmp(snull, t) == 0;
2768 }
2769 
2770 void
2771 null_childdetached(device_t self, device_t child)
2772 {
2773 	/* do nothing */
2774 }
2775 
2776 static void
2777 sysctl_detach_setup(struct sysctllog **clog)
2778 {
2779 	const struct sysctlnode *node = NULL;
2780 
2781 	sysctl_createv(clog, 0, NULL, &node,
2782 		CTLFLAG_PERMANENT,
2783 		CTLTYPE_NODE, "kern", NULL,
2784 		NULL, 0, NULL, 0,
2785 		CTL_KERN, CTL_EOL);
2786 
2787 	if (node == NULL)
2788 		return;
2789 
2790 	sysctl_createv(clog, 0, &node, NULL,
2791 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2792 		CTLTYPE_BOOL, "detachall",
2793 		SYSCTL_DESCR("Detach all devices at shutdown"),
2794 		NULL, 0, &detachall, 0,
2795 		CTL_CREATE, CTL_EOL);
2796 }
2797