1 /* $NetBSD: subr_autoconf.c,v 1.177 2009/05/29 23:27:08 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.177 2009/05/29 23:27:08 dyoung Exp $"); 81 82 #include "opt_ddb.h" 83 #include "drvctl.h" 84 85 #include <sys/param.h> 86 #include <sys/device.h> 87 #include <sys/disklabel.h> 88 #include <sys/conf.h> 89 #include <sys/kauth.h> 90 #include <sys/malloc.h> 91 #include <sys/kmem.h> 92 #include <sys/systm.h> 93 #include <sys/kernel.h> 94 #include <sys/errno.h> 95 #include <sys/proc.h> 96 #include <sys/reboot.h> 97 #include <sys/kthread.h> 98 #include <sys/buf.h> 99 #include <sys/dirent.h> 100 #include <sys/vnode.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 111 #include <sys/disk.h> 112 113 #include <machine/limits.h> 114 115 #include "opt_userconf.h" 116 #ifdef USERCONF 117 #include <sys/userconf.h> 118 #endif 119 120 #ifdef __i386__ 121 #include "opt_splash.h" 122 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 123 #include <dev/splash/splash.h> 124 extern struct splash_progress *splash_progress_state; 125 #endif 126 #endif 127 128 /* 129 * Autoconfiguration subroutines. 130 */ 131 132 /* 133 * ioconf.c exports exactly two names: cfdata and cfroots. All system 134 * devices and drivers are found via these tables. 135 */ 136 extern struct cfdata cfdata[]; 137 extern const short cfroots[]; 138 139 /* 140 * List of all cfdriver structures. We use this to detect duplicates 141 * when other cfdrivers are loaded. 142 */ 143 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 144 extern struct cfdriver * const cfdriver_list_initial[]; 145 146 /* 147 * Initial list of cfattach's. 148 */ 149 extern const struct cfattachinit cfattachinit[]; 150 151 /* 152 * List of cfdata tables. We always have one such list -- the one 153 * built statically when the kernel was configured. 154 */ 155 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 156 static struct cftable initcftable; 157 158 #define ROOT ((device_t)NULL) 159 160 struct matchinfo { 161 cfsubmatch_t fn; 162 struct device *parent; 163 const int *locs; 164 void *aux; 165 struct cfdata *match; 166 int pri; 167 }; 168 169 static char *number(char *, int); 170 static void mapply(struct matchinfo *, cfdata_t); 171 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 172 static void config_devdealloc(device_t); 173 static void config_makeroom(int, struct cfdriver *); 174 static void config_devlink(device_t); 175 static void config_devunlink(device_t); 176 static void config_twiddle_fn(void *); 177 178 static void pmflock_debug(device_t, const char *, int); 179 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO); 180 181 static device_t deviter_next1(deviter_t *); 182 static void deviter_reinit(deviter_t *); 183 184 struct deferred_config { 185 TAILQ_ENTRY(deferred_config) dc_queue; 186 device_t dc_dev; 187 void (*dc_func)(device_t); 188 }; 189 190 TAILQ_HEAD(deferred_config_head, deferred_config); 191 192 struct deferred_config_head deferred_config_queue = 193 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 194 struct deferred_config_head interrupt_config_queue = 195 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 196 int interrupt_config_threads = 8; 197 198 static void config_process_deferred(struct deferred_config_head *, device_t); 199 200 /* Hooks to finalize configuration once all real devices have been found. */ 201 struct finalize_hook { 202 TAILQ_ENTRY(finalize_hook) f_list; 203 int (*f_func)(device_t); 204 device_t f_dev; 205 }; 206 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 207 TAILQ_HEAD_INITIALIZER(config_finalize_list); 208 static int config_finalize_done; 209 210 /* list of all devices */ 211 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 212 kcondvar_t alldevs_cv; 213 kmutex_t alldevs_mtx; 214 static int alldevs_nread = 0; 215 static int alldevs_nwrite = 0; 216 static lwp_t *alldevs_writer = NULL; 217 218 static int config_pending; /* semaphore for mountroot */ 219 static kmutex_t config_misc_lock; 220 static kcondvar_t config_misc_cv; 221 222 static int detachall = 0; 223 224 #define STREQ(s1, s2) \ 225 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 226 227 static int config_initialized; /* config_init() has been called. */ 228 229 static int config_do_twiddle; 230 static callout_t config_twiddle_ch; 231 232 struct vnode * 233 opendisk(struct device *dv) 234 { 235 int bmajor, bminor; 236 struct vnode *tmpvn; 237 int error; 238 dev_t dev; 239 240 /* 241 * Lookup major number for disk block device. 242 */ 243 bmajor = devsw_name2blk(device_xname(dv), NULL, 0); 244 if (bmajor == -1) 245 return NULL; 246 247 bminor = minor(device_unit(dv)); 248 /* 249 * Fake a temporary vnode for the disk, open it, and read 250 * and hash the sectors. 251 */ 252 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) : 253 MAKEDISKDEV(bmajor, bminor, RAW_PART); 254 if (bdevvp(dev, &tmpvn)) 255 panic("%s: can't alloc vnode for %s", __func__, 256 device_xname(dv)); 257 error = VOP_OPEN(tmpvn, FREAD, NOCRED); 258 if (error) { 259 #ifndef DEBUG 260 /* 261 * Ignore errors caused by missing device, partition, 262 * or medium. 263 */ 264 if (error != ENXIO && error != ENODEV) 265 #endif 266 printf("%s: can't open dev %s (%d)\n", 267 __func__, device_xname(dv), error); 268 vput(tmpvn); 269 return NULL; 270 } 271 272 return tmpvn; 273 } 274 275 int 276 config_handle_wedges(struct device *dv, int par) 277 { 278 struct dkwedge_list wl; 279 struct dkwedge_info *wi; 280 struct vnode *vn; 281 char diskname[16]; 282 int i, error; 283 284 if ((vn = opendisk(dv)) == NULL) 285 return -1; 286 287 wl.dkwl_bufsize = sizeof(*wi) * 16; 288 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK); 289 290 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED); 291 VOP_CLOSE(vn, FREAD, NOCRED); 292 vput(vn); 293 if (error) { 294 #ifdef DEBUG_WEDGE 295 printf("%s: List wedges returned %d\n", 296 device_xname(dv), error); 297 #endif 298 free(wi, M_TEMP); 299 return -1; 300 } 301 302 #ifdef DEBUG_WEDGE 303 printf("%s: Returned %u(%u) wedges\n", device_xname(dv), 304 wl.dkwl_nwedges, wl.dkwl_ncopied); 305 #endif 306 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv), 307 par + 'a'); 308 309 for (i = 0; i < wl.dkwl_ncopied; i++) { 310 #ifdef DEBUG_WEDGE 311 printf("%s: Looking for %s in %s\n", 312 device_xname(dv), diskname, wi[i].dkw_wname); 313 #endif 314 if (strcmp(wi[i].dkw_wname, diskname) == 0) 315 break; 316 } 317 318 if (i == wl.dkwl_ncopied) { 319 #ifdef DEBUG_WEDGE 320 printf("%s: Cannot find wedge with parent %s\n", 321 device_xname(dv), diskname); 322 #endif 323 free(wi, M_TEMP); 324 return -1; 325 } 326 327 #ifdef DEBUG_WEDGE 328 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n", 329 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname, 330 (unsigned long long)wi[i].dkw_offset, 331 (unsigned long long)wi[i].dkw_size); 332 #endif 333 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size); 334 free(wi, M_TEMP); 335 return 0; 336 } 337 338 /* 339 * Initialize the autoconfiguration data structures. Normally this 340 * is done by configure(), but some platforms need to do this very 341 * early (to e.g. initialize the console). 342 */ 343 void 344 config_init(void) 345 { 346 const struct cfattachinit *cfai; 347 int i, j; 348 349 if (config_initialized) 350 return; 351 352 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE); 353 cv_init(&alldevs_cv, "alldevs"); 354 355 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 356 cv_init(&config_misc_cv, "cfgmisc"); 357 358 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 359 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 360 361 /* allcfdrivers is statically initialized. */ 362 for (i = 0; cfdriver_list_initial[i] != NULL; i++) { 363 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) 364 panic("configure: duplicate `%s' drivers", 365 cfdriver_list_initial[i]->cd_name); 366 } 367 368 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { 369 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 370 if (config_cfattach_attach(cfai->cfai_name, 371 cfai->cfai_list[j]) != 0) 372 panic("configure: duplicate `%s' attachment " 373 "of `%s' driver", 374 cfai->cfai_list[j]->ca_name, 375 cfai->cfai_name); 376 } 377 } 378 379 initcftable.ct_cfdata = cfdata; 380 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 381 382 config_initialized = 1; 383 } 384 385 void 386 config_deferred(device_t dev) 387 { 388 config_process_deferred(&deferred_config_queue, dev); 389 config_process_deferred(&interrupt_config_queue, dev); 390 } 391 392 static void 393 config_interrupts_thread(void *cookie) 394 { 395 struct deferred_config *dc; 396 397 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 398 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 399 (*dc->dc_func)(dc->dc_dev); 400 kmem_free(dc, sizeof(*dc)); 401 config_pending_decr(); 402 } 403 kthread_exit(0); 404 } 405 406 /* 407 * Configure the system's hardware. 408 */ 409 void 410 configure(void) 411 { 412 /* Initialize data structures. */ 413 config_init(); 414 pmf_init(); 415 #if NDRVCTL > 0 416 drvctl_init(); 417 #endif 418 419 #ifdef USERCONF 420 if (boothowto & RB_USERCONF) 421 user_config(); 422 #endif 423 424 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 425 config_do_twiddle = 1; 426 printf_nolog("Detecting hardware..."); 427 } 428 429 /* 430 * Do the machine-dependent portion of autoconfiguration. This 431 * sets the configuration machinery here in motion by "finding" 432 * the root bus. When this function returns, we expect interrupts 433 * to be enabled. 434 */ 435 cpu_configure(); 436 } 437 438 void 439 configure2(void) 440 { 441 CPU_INFO_ITERATOR cii; 442 struct cpu_info *ci; 443 int i, s; 444 445 /* 446 * Now that we've found all the hardware, start the real time 447 * and statistics clocks. 448 */ 449 initclocks(); 450 451 cold = 0; /* clocks are running, we're warm now! */ 452 s = splsched(); 453 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING; 454 splx(s); 455 456 /* Boot the secondary processors. */ 457 for (CPU_INFO_FOREACH(cii, ci)) { 458 uvm_cpu_attach(ci); 459 } 460 mp_online = true; 461 #if defined(MULTIPROCESSOR) 462 cpu_boot_secondary_processors(); 463 #endif 464 465 /* Setup the runqueues and scheduler. */ 466 runq_init(); 467 sched_init(); 468 469 /* 470 * Bus scans can make it appear as if the system has paused, so 471 * twiddle constantly while config_interrupts() jobs are running. 472 */ 473 config_twiddle_fn(NULL); 474 475 /* 476 * Create threads to call back and finish configuration for 477 * devices that want interrupts enabled. 478 */ 479 for (i = 0; i < interrupt_config_threads; i++) { 480 (void)kthread_create(PRI_NONE, 0, NULL, 481 config_interrupts_thread, NULL, NULL, "config"); 482 } 483 484 /* Get the threads going and into any sleeps before continuing. */ 485 yield(); 486 } 487 488 /* 489 * Announce device attach/detach to userland listeners. 490 */ 491 static void 492 devmon_report_device(device_t dev, bool isattach) 493 { 494 #if NDRVCTL > 0 495 prop_dictionary_t ev; 496 const char *parent; 497 const char *what; 498 device_t pdev = device_parent(dev); 499 500 ev = prop_dictionary_create(); 501 if (ev == NULL) 502 return; 503 504 what = (isattach ? "device-attach" : "device-detach"); 505 parent = (pdev == NULL ? "root" : device_xname(pdev)); 506 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 507 !prop_dictionary_set_cstring(ev, "parent", parent)) { 508 prop_object_release(ev); 509 return; 510 } 511 512 devmon_insert(what, ev); 513 #endif 514 } 515 516 /* 517 * Add a cfdriver to the system. 518 */ 519 int 520 config_cfdriver_attach(struct cfdriver *cd) 521 { 522 struct cfdriver *lcd; 523 524 /* Make sure this driver isn't already in the system. */ 525 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 526 if (STREQ(lcd->cd_name, cd->cd_name)) 527 return EEXIST; 528 } 529 530 LIST_INIT(&cd->cd_attach); 531 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 532 533 return 0; 534 } 535 536 /* 537 * Remove a cfdriver from the system. 538 */ 539 int 540 config_cfdriver_detach(struct cfdriver *cd) 541 { 542 int i; 543 544 /* Make sure there are no active instances. */ 545 for (i = 0; i < cd->cd_ndevs; i++) { 546 if (cd->cd_devs[i] != NULL) 547 return EBUSY; 548 } 549 550 /* ...and no attachments loaded. */ 551 if (LIST_EMPTY(&cd->cd_attach) == 0) 552 return EBUSY; 553 554 LIST_REMOVE(cd, cd_list); 555 556 KASSERT(cd->cd_devs == NULL); 557 558 return 0; 559 } 560 561 /* 562 * Look up a cfdriver by name. 563 */ 564 struct cfdriver * 565 config_cfdriver_lookup(const char *name) 566 { 567 struct cfdriver *cd; 568 569 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 570 if (STREQ(cd->cd_name, name)) 571 return cd; 572 } 573 574 return NULL; 575 } 576 577 /* 578 * Add a cfattach to the specified driver. 579 */ 580 int 581 config_cfattach_attach(const char *driver, struct cfattach *ca) 582 { 583 struct cfattach *lca; 584 struct cfdriver *cd; 585 586 cd = config_cfdriver_lookup(driver); 587 if (cd == NULL) 588 return ESRCH; 589 590 /* Make sure this attachment isn't already on this driver. */ 591 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 592 if (STREQ(lca->ca_name, ca->ca_name)) 593 return EEXIST; 594 } 595 596 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 597 598 return 0; 599 } 600 601 /* 602 * Remove a cfattach from the specified driver. 603 */ 604 int 605 config_cfattach_detach(const char *driver, struct cfattach *ca) 606 { 607 struct cfdriver *cd; 608 device_t dev; 609 int i; 610 611 cd = config_cfdriver_lookup(driver); 612 if (cd == NULL) 613 return ESRCH; 614 615 /* Make sure there are no active instances. */ 616 for (i = 0; i < cd->cd_ndevs; i++) { 617 if ((dev = cd->cd_devs[i]) == NULL) 618 continue; 619 if (dev->dv_cfattach == ca) 620 return EBUSY; 621 } 622 623 LIST_REMOVE(ca, ca_list); 624 625 return 0; 626 } 627 628 /* 629 * Look up a cfattach by name. 630 */ 631 static struct cfattach * 632 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 633 { 634 struct cfattach *ca; 635 636 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 637 if (STREQ(ca->ca_name, atname)) 638 return ca; 639 } 640 641 return NULL; 642 } 643 644 /* 645 * Look up a cfattach by driver/attachment name. 646 */ 647 struct cfattach * 648 config_cfattach_lookup(const char *name, const char *atname) 649 { 650 struct cfdriver *cd; 651 652 cd = config_cfdriver_lookup(name); 653 if (cd == NULL) 654 return NULL; 655 656 return config_cfattach_lookup_cd(cd, atname); 657 } 658 659 /* 660 * Apply the matching function and choose the best. This is used 661 * a few times and we want to keep the code small. 662 */ 663 static void 664 mapply(struct matchinfo *m, cfdata_t cf) 665 { 666 int pri; 667 668 if (m->fn != NULL) { 669 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 670 } else { 671 pri = config_match(m->parent, cf, m->aux); 672 } 673 if (pri > m->pri) { 674 m->match = cf; 675 m->pri = pri; 676 } 677 } 678 679 int 680 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 681 { 682 const struct cfiattrdata *ci; 683 const struct cflocdesc *cl; 684 int nlocs, i; 685 686 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver); 687 KASSERT(ci); 688 nlocs = ci->ci_loclen; 689 KASSERT(!nlocs || locs); 690 for (i = 0; i < nlocs; i++) { 691 cl = &ci->ci_locdesc[i]; 692 /* !cld_defaultstr means no default value */ 693 if ((!(cl->cld_defaultstr) 694 || (cf->cf_loc[i] != cl->cld_default)) 695 && cf->cf_loc[i] != locs[i]) 696 return 0; 697 } 698 699 return config_match(parent, cf, aux); 700 } 701 702 /* 703 * Helper function: check whether the driver supports the interface attribute 704 * and return its descriptor structure. 705 */ 706 static const struct cfiattrdata * 707 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 708 { 709 const struct cfiattrdata * const *cpp; 710 711 if (cd->cd_attrs == NULL) 712 return 0; 713 714 for (cpp = cd->cd_attrs; *cpp; cpp++) { 715 if (STREQ((*cpp)->ci_name, ia)) { 716 /* Match. */ 717 return *cpp; 718 } 719 } 720 return 0; 721 } 722 723 /* 724 * Lookup an interface attribute description by name. 725 * If the driver is given, consider only its supported attributes. 726 */ 727 const struct cfiattrdata * 728 cfiattr_lookup(const char *name, const struct cfdriver *cd) 729 { 730 const struct cfdriver *d; 731 const struct cfiattrdata *ia; 732 733 if (cd) 734 return cfdriver_get_iattr(cd, name); 735 736 LIST_FOREACH(d, &allcfdrivers, cd_list) { 737 ia = cfdriver_get_iattr(d, name); 738 if (ia) 739 return ia; 740 } 741 return 0; 742 } 743 744 /* 745 * Determine if `parent' is a potential parent for a device spec based 746 * on `cfp'. 747 */ 748 static int 749 cfparent_match(const device_t parent, const struct cfparent *cfp) 750 { 751 struct cfdriver *pcd; 752 753 /* We don't match root nodes here. */ 754 if (cfp == NULL) 755 return 0; 756 757 pcd = parent->dv_cfdriver; 758 KASSERT(pcd != NULL); 759 760 /* 761 * First, ensure this parent has the correct interface 762 * attribute. 763 */ 764 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 765 return 0; 766 767 /* 768 * If no specific parent device instance was specified (i.e. 769 * we're attaching to the attribute only), we're done! 770 */ 771 if (cfp->cfp_parent == NULL) 772 return 1; 773 774 /* 775 * Check the parent device's name. 776 */ 777 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 778 return 0; /* not the same parent */ 779 780 /* 781 * Make sure the unit number matches. 782 */ 783 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 784 cfp->cfp_unit == parent->dv_unit) 785 return 1; 786 787 /* Unit numbers don't match. */ 788 return 0; 789 } 790 791 /* 792 * Helper for config_cfdata_attach(): check all devices whether it could be 793 * parent any attachment in the config data table passed, and rescan. 794 */ 795 static void 796 rescan_with_cfdata(const struct cfdata *cf) 797 { 798 device_t d; 799 const struct cfdata *cf1; 800 deviter_t di; 801 802 803 /* 804 * "alldevs" is likely longer than a modules's cfdata, so make it 805 * the outer loop. 806 */ 807 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 808 809 if (!(d->dv_cfattach->ca_rescan)) 810 continue; 811 812 for (cf1 = cf; cf1->cf_name; cf1++) { 813 814 if (!cfparent_match(d, cf1->cf_pspec)) 815 continue; 816 817 (*d->dv_cfattach->ca_rescan)(d, 818 cf1->cf_pspec->cfp_iattr, cf1->cf_loc); 819 } 820 } 821 deviter_release(&di); 822 } 823 824 /* 825 * Attach a supplemental config data table and rescan potential 826 * parent devices if required. 827 */ 828 int 829 config_cfdata_attach(cfdata_t cf, int scannow) 830 { 831 struct cftable *ct; 832 833 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 834 ct->ct_cfdata = cf; 835 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 836 837 if (scannow) 838 rescan_with_cfdata(cf); 839 840 return 0; 841 } 842 843 /* 844 * Helper for config_cfdata_detach: check whether a device is 845 * found through any attachment in the config data table. 846 */ 847 static int 848 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 849 { 850 const struct cfdata *cf1; 851 852 for (cf1 = cf; cf1->cf_name; cf1++) 853 if (d->dv_cfdata == cf1) 854 return 1; 855 856 return 0; 857 } 858 859 /* 860 * Detach a supplemental config data table. Detach all devices found 861 * through that table (and thus keeping references to it) before. 862 */ 863 int 864 config_cfdata_detach(cfdata_t cf) 865 { 866 device_t d; 867 int error = 0; 868 struct cftable *ct; 869 deviter_t di; 870 871 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 872 d = deviter_next(&di)) { 873 if (!dev_in_cfdata(d, cf)) 874 continue; 875 if ((error = config_detach(d, 0)) != 0) 876 break; 877 } 878 deviter_release(&di); 879 if (error) { 880 aprint_error_dev(d, "unable to detach instance\n"); 881 return error; 882 } 883 884 TAILQ_FOREACH(ct, &allcftables, ct_list) { 885 if (ct->ct_cfdata == cf) { 886 TAILQ_REMOVE(&allcftables, ct, ct_list); 887 kmem_free(ct, sizeof(*ct)); 888 return 0; 889 } 890 } 891 892 /* not found -- shouldn't happen */ 893 return EINVAL; 894 } 895 896 /* 897 * Invoke the "match" routine for a cfdata entry on behalf of 898 * an external caller, usually a "submatch" routine. 899 */ 900 int 901 config_match(device_t parent, cfdata_t cf, void *aux) 902 { 903 struct cfattach *ca; 904 905 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 906 if (ca == NULL) { 907 /* No attachment for this entry, oh well. */ 908 return 0; 909 } 910 911 return (*ca->ca_match)(parent, cf, aux); 912 } 913 914 /* 915 * Iterate over all potential children of some device, calling the given 916 * function (default being the child's match function) for each one. 917 * Nonzero returns are matches; the highest value returned is considered 918 * the best match. Return the `found child' if we got a match, or NULL 919 * otherwise. The `aux' pointer is simply passed on through. 920 * 921 * Note that this function is designed so that it can be used to apply 922 * an arbitrary function to all potential children (its return value 923 * can be ignored). 924 */ 925 cfdata_t 926 config_search_loc(cfsubmatch_t fn, device_t parent, 927 const char *ifattr, const int *locs, void *aux) 928 { 929 struct cftable *ct; 930 cfdata_t cf; 931 struct matchinfo m; 932 933 KASSERT(config_initialized); 934 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 935 936 m.fn = fn; 937 m.parent = parent; 938 m.locs = locs; 939 m.aux = aux; 940 m.match = NULL; 941 m.pri = 0; 942 943 TAILQ_FOREACH(ct, &allcftables, ct_list) { 944 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 945 946 /* We don't match root nodes here. */ 947 if (!cf->cf_pspec) 948 continue; 949 950 /* 951 * Skip cf if no longer eligible, otherwise scan 952 * through parents for one matching `parent', and 953 * try match function. 954 */ 955 if (cf->cf_fstate == FSTATE_FOUND) 956 continue; 957 if (cf->cf_fstate == FSTATE_DNOTFOUND || 958 cf->cf_fstate == FSTATE_DSTAR) 959 continue; 960 961 /* 962 * If an interface attribute was specified, 963 * consider only children which attach to 964 * that attribute. 965 */ 966 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr)) 967 continue; 968 969 if (cfparent_match(parent, cf->cf_pspec)) 970 mapply(&m, cf); 971 } 972 } 973 return m.match; 974 } 975 976 cfdata_t 977 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 978 void *aux) 979 { 980 981 return config_search_loc(fn, parent, ifattr, NULL, aux); 982 } 983 984 /* 985 * Find the given root device. 986 * This is much like config_search, but there is no parent. 987 * Don't bother with multiple cfdata tables; the root node 988 * must always be in the initial table. 989 */ 990 cfdata_t 991 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 992 { 993 cfdata_t cf; 994 const short *p; 995 struct matchinfo m; 996 997 m.fn = fn; 998 m.parent = ROOT; 999 m.aux = aux; 1000 m.match = NULL; 1001 m.pri = 0; 1002 m.locs = 0; 1003 /* 1004 * Look at root entries for matching name. We do not bother 1005 * with found-state here since only one root should ever be 1006 * searched (and it must be done first). 1007 */ 1008 for (p = cfroots; *p >= 0; p++) { 1009 cf = &cfdata[*p]; 1010 if (strcmp(cf->cf_name, rootname) == 0) 1011 mapply(&m, cf); 1012 } 1013 return m.match; 1014 } 1015 1016 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1017 1018 /* 1019 * The given `aux' argument describes a device that has been found 1020 * on the given parent, but not necessarily configured. Locate the 1021 * configuration data for that device (using the submatch function 1022 * provided, or using candidates' cd_match configuration driver 1023 * functions) and attach it, and return true. If the device was 1024 * not configured, call the given `print' function and return 0. 1025 */ 1026 device_t 1027 config_found_sm_loc(device_t parent, 1028 const char *ifattr, const int *locs, void *aux, 1029 cfprint_t print, cfsubmatch_t submatch) 1030 { 1031 cfdata_t cf; 1032 1033 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1034 if (splash_progress_state) 1035 splash_progress_update(splash_progress_state); 1036 #endif 1037 1038 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1039 return(config_attach_loc(parent, cf, locs, aux, print)); 1040 if (print) { 1041 if (config_do_twiddle && cold) 1042 twiddle(); 1043 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1044 } 1045 1046 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1047 if (splash_progress_state) 1048 splash_progress_update(splash_progress_state); 1049 #endif 1050 1051 return NULL; 1052 } 1053 1054 device_t 1055 config_found_ia(device_t parent, const char *ifattr, void *aux, 1056 cfprint_t print) 1057 { 1058 1059 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1060 } 1061 1062 device_t 1063 config_found(device_t parent, void *aux, cfprint_t print) 1064 { 1065 1066 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1067 } 1068 1069 /* 1070 * As above, but for root devices. 1071 */ 1072 device_t 1073 config_rootfound(const char *rootname, void *aux) 1074 { 1075 cfdata_t cf; 1076 1077 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 1078 return config_attach(ROOT, cf, aux, (cfprint_t)NULL); 1079 aprint_error("root device %s not configured\n", rootname); 1080 return NULL; 1081 } 1082 1083 /* just like sprintf(buf, "%d") except that it works from the end */ 1084 static char * 1085 number(char *ep, int n) 1086 { 1087 1088 *--ep = 0; 1089 while (n >= 10) { 1090 *--ep = (n % 10) + '0'; 1091 n /= 10; 1092 } 1093 *--ep = n + '0'; 1094 return ep; 1095 } 1096 1097 /* 1098 * Expand the size of the cd_devs array if necessary. 1099 */ 1100 static void 1101 config_makeroom(int n, struct cfdriver *cd) 1102 { 1103 int old, new; 1104 device_t *nsp; 1105 1106 if (n < cd->cd_ndevs) 1107 return; 1108 1109 /* 1110 * Need to expand the array. 1111 */ 1112 old = cd->cd_ndevs; 1113 if (old == 0) 1114 new = 4; 1115 else 1116 new = old * 2; 1117 while (new <= n) 1118 new *= 2; 1119 cd->cd_ndevs = new; 1120 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP); 1121 if (nsp == NULL) 1122 panic("config_attach: %sing dev array", 1123 old != 0 ? "expand" : "creat"); 1124 memset(nsp + old, 0, sizeof(device_t [new - old])); 1125 if (old != 0) { 1126 memcpy(nsp, cd->cd_devs, sizeof(device_t [old])); 1127 kmem_free(cd->cd_devs, sizeof(device_t [old])); 1128 } 1129 cd->cd_devs = nsp; 1130 } 1131 1132 static void 1133 config_devlink(device_t dev) 1134 { 1135 struct cfdriver *cd = dev->dv_cfdriver; 1136 1137 /* put this device in the devices array */ 1138 config_makeroom(dev->dv_unit, cd); 1139 if (cd->cd_devs[dev->dv_unit]) 1140 panic("config_attach: duplicate %s", device_xname(dev)); 1141 cd->cd_devs[dev->dv_unit] = dev; 1142 1143 /* It is safe to add a device to the tail of the list while 1144 * readers are in the list, but not while a writer is in 1145 * the list. Wait for any writer to complete. 1146 */ 1147 mutex_enter(&alldevs_mtx); 1148 while (alldevs_nwrite != 0 && alldevs_writer != curlwp) 1149 cv_wait(&alldevs_cv, &alldevs_mtx); 1150 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */ 1151 cv_signal(&alldevs_cv); 1152 mutex_exit(&alldevs_mtx); 1153 } 1154 1155 static void 1156 config_devunlink(device_t dev) 1157 { 1158 struct cfdriver *cd = dev->dv_cfdriver; 1159 int i; 1160 1161 /* Unlink from device list. */ 1162 TAILQ_REMOVE(&alldevs, dev, dv_list); 1163 1164 /* Remove from cfdriver's array. */ 1165 cd->cd_devs[dev->dv_unit] = NULL; 1166 1167 /* 1168 * If the device now has no units in use, deallocate its softc array. 1169 */ 1170 for (i = 0; i < cd->cd_ndevs; i++) { 1171 if (cd->cd_devs[i] != NULL) 1172 return; 1173 } 1174 /* nothing found; deallocate */ 1175 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs])); 1176 cd->cd_devs = NULL; 1177 cd->cd_ndevs = 0; 1178 } 1179 1180 static device_t 1181 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1182 { 1183 struct cfdriver *cd; 1184 struct cfattach *ca; 1185 size_t lname, lunit; 1186 const char *xunit; 1187 int myunit; 1188 char num[10]; 1189 device_t dev; 1190 void *dev_private; 1191 const struct cfiattrdata *ia; 1192 device_lock_t dvl; 1193 1194 cd = config_cfdriver_lookup(cf->cf_name); 1195 if (cd == NULL) 1196 return NULL; 1197 1198 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1199 if (ca == NULL) 1200 return NULL; 1201 1202 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1203 ca->ca_devsize < sizeof(struct device)) 1204 panic("config_devalloc: %s", cf->cf_atname); 1205 1206 #ifndef __BROKEN_CONFIG_UNIT_USAGE 1207 if (cf->cf_fstate == FSTATE_STAR) { 1208 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++) 1209 if (cd->cd_devs[myunit] == NULL) 1210 break; 1211 /* 1212 * myunit is now the unit of the first NULL device pointer, 1213 * or max(cd->cd_ndevs,cf->cf_unit). 1214 */ 1215 } else { 1216 myunit = cf->cf_unit; 1217 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL) 1218 return NULL; 1219 } 1220 #else 1221 myunit = cf->cf_unit; 1222 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */ 1223 1224 /* compute length of name and decimal expansion of unit number */ 1225 lname = strlen(cd->cd_name); 1226 xunit = number(&num[sizeof(num)], myunit); 1227 lunit = &num[sizeof(num)] - xunit; 1228 if (lname + lunit > sizeof(dev->dv_xname)) 1229 panic("config_devalloc: device name too long"); 1230 1231 /* get memory for all device vars */ 1232 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1233 if (ca->ca_devsize > 0) { 1234 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1235 if (dev_private == NULL) 1236 panic("config_devalloc: memory allocation for device softc failed"); 1237 } else { 1238 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1239 dev_private = NULL; 1240 } 1241 1242 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1243 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1244 } else { 1245 dev = dev_private; 1246 } 1247 if (dev == NULL) 1248 panic("config_devalloc: memory allocation for device_t failed"); 1249 1250 dvl = device_getlock(dev); 1251 1252 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1253 cv_init(&dvl->dvl_cv, "pmfsusp"); 1254 1255 dev->dv_class = cd->cd_class; 1256 dev->dv_cfdata = cf; 1257 dev->dv_cfdriver = cd; 1258 dev->dv_cfattach = ca; 1259 dev->dv_unit = myunit; 1260 dev->dv_activity_count = 0; 1261 dev->dv_activity_handlers = NULL; 1262 dev->dv_private = dev_private; 1263 memcpy(dev->dv_xname, cd->cd_name, lname); 1264 memcpy(dev->dv_xname + lname, xunit, lunit); 1265 dev->dv_parent = parent; 1266 if (parent != NULL) 1267 dev->dv_depth = parent->dv_depth + 1; 1268 else 1269 dev->dv_depth = 0; 1270 dev->dv_flags = DVF_ACTIVE; /* always initially active */ 1271 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */ 1272 if (locs) { 1273 KASSERT(parent); /* no locators at root */ 1274 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr, 1275 parent->dv_cfdriver); 1276 dev->dv_locators = 1277 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1278 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1279 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1280 } 1281 dev->dv_properties = prop_dictionary_create(); 1282 KASSERT(dev->dv_properties != NULL); 1283 1284 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1285 "device-driver", dev->dv_cfdriver->cd_name); 1286 prop_dictionary_set_uint16(dev->dv_properties, 1287 "device-unit", dev->dv_unit); 1288 1289 return dev; 1290 } 1291 1292 static void 1293 config_devdealloc(device_t dev) 1294 { 1295 device_lock_t dvl = device_getlock(dev); 1296 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1297 1298 cv_destroy(&dvl->dvl_cv); 1299 mutex_destroy(&dvl->dvl_mtx); 1300 1301 KASSERT(dev->dv_properties != NULL); 1302 prop_object_release(dev->dv_properties); 1303 1304 if (dev->dv_activity_handlers) 1305 panic("config_devdealloc with registered handlers"); 1306 1307 if (dev->dv_locators) { 1308 size_t amount = *--dev->dv_locators; 1309 kmem_free(dev->dv_locators, amount); 1310 } 1311 1312 if (dev->dv_cfattach->ca_devsize > 0) 1313 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1314 if (priv) 1315 kmem_free(dev, sizeof(*dev)); 1316 } 1317 1318 /* 1319 * Attach a found device. 1320 */ 1321 device_t 1322 config_attach_loc(device_t parent, cfdata_t cf, 1323 const int *locs, void *aux, cfprint_t print) 1324 { 1325 device_t dev; 1326 struct cftable *ct; 1327 const char *drvname; 1328 1329 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1330 if (splash_progress_state) 1331 splash_progress_update(splash_progress_state); 1332 #endif 1333 1334 dev = config_devalloc(parent, cf, locs); 1335 if (!dev) 1336 panic("config_attach: allocation of device softc failed"); 1337 1338 /* XXX redundant - see below? */ 1339 if (cf->cf_fstate != FSTATE_STAR) { 1340 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1341 cf->cf_fstate = FSTATE_FOUND; 1342 } 1343 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1344 else 1345 cf->cf_unit++; 1346 #endif 1347 1348 config_devlink(dev); 1349 1350 if (config_do_twiddle && cold) 1351 twiddle(); 1352 else 1353 aprint_naive("Found "); 1354 /* 1355 * We want the next two printfs for normal, verbose, and quiet, 1356 * but not silent (in which case, we're twiddling, instead). 1357 */ 1358 if (parent == ROOT) { 1359 aprint_naive("%s (root)", device_xname(dev)); 1360 aprint_normal("%s (root)", device_xname(dev)); 1361 } else { 1362 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1363 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1364 if (print) 1365 (void) (*print)(aux, NULL); 1366 } 1367 1368 /* 1369 * Before attaching, clobber any unfound devices that are 1370 * otherwise identical. 1371 * XXX code above is redundant? 1372 */ 1373 drvname = dev->dv_cfdriver->cd_name; 1374 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1375 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1376 if (STREQ(cf->cf_name, drvname) && 1377 cf->cf_unit == dev->dv_unit) { 1378 if (cf->cf_fstate == FSTATE_NOTFOUND) 1379 cf->cf_fstate = FSTATE_FOUND; 1380 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1381 /* 1382 * Bump the unit number on all starred cfdata 1383 * entries for this device. 1384 */ 1385 if (cf->cf_fstate == FSTATE_STAR) 1386 cf->cf_unit++; 1387 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1388 } 1389 } 1390 } 1391 #ifdef __HAVE_DEVICE_REGISTER 1392 device_register(dev, aux); 1393 #endif 1394 1395 /* Let userland know */ 1396 devmon_report_device(dev, true); 1397 1398 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1399 if (splash_progress_state) 1400 splash_progress_update(splash_progress_state); 1401 #endif 1402 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1403 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1404 if (splash_progress_state) 1405 splash_progress_update(splash_progress_state); 1406 #endif 1407 1408 if (!device_pmf_is_registered(dev)) 1409 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1410 1411 config_process_deferred(&deferred_config_queue, dev); 1412 return dev; 1413 } 1414 1415 device_t 1416 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1417 { 1418 1419 return config_attach_loc(parent, cf, NULL, aux, print); 1420 } 1421 1422 /* 1423 * As above, but for pseudo-devices. Pseudo-devices attached in this 1424 * way are silently inserted into the device tree, and their children 1425 * attached. 1426 * 1427 * Note that because pseudo-devices are attached silently, any information 1428 * the attach routine wishes to print should be prefixed with the device 1429 * name by the attach routine. 1430 */ 1431 device_t 1432 config_attach_pseudo(cfdata_t cf) 1433 { 1434 device_t dev; 1435 1436 dev = config_devalloc(ROOT, cf, NULL); 1437 if (!dev) 1438 return NULL; 1439 1440 /* XXX mark busy in cfdata */ 1441 1442 if (cf->cf_fstate != FSTATE_STAR) { 1443 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1444 cf->cf_fstate = FSTATE_FOUND; 1445 } 1446 1447 config_devlink(dev); 1448 1449 #if 0 /* XXXJRT not yet */ 1450 #ifdef __HAVE_DEVICE_REGISTER 1451 device_register(dev, NULL); /* like a root node */ 1452 #endif 1453 #endif 1454 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1455 config_process_deferred(&deferred_config_queue, dev); 1456 return dev; 1457 } 1458 1459 /* 1460 * Detach a device. Optionally forced (e.g. because of hardware 1461 * removal) and quiet. Returns zero if successful, non-zero 1462 * (an error code) otherwise. 1463 * 1464 * Note that this code wants to be run from a process context, so 1465 * that the detach can sleep to allow processes which have a device 1466 * open to run and unwind their stacks. 1467 */ 1468 int 1469 config_detach(device_t dev, int flags) 1470 { 1471 struct cftable *ct; 1472 cfdata_t cf; 1473 const struct cfattach *ca; 1474 struct cfdriver *cd; 1475 #ifdef DIAGNOSTIC 1476 device_t d; 1477 #endif 1478 int rv = 0; 1479 1480 #ifdef DIAGNOSTIC 1481 cf = dev->dv_cfdata; 1482 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1483 cf->cf_fstate != FSTATE_STAR) 1484 panic("config_detach: %s: bad device fstate %d", 1485 device_xname(dev), cf ? cf->cf_fstate : -1); 1486 #endif 1487 cd = dev->dv_cfdriver; 1488 KASSERT(cd != NULL); 1489 1490 ca = dev->dv_cfattach; 1491 KASSERT(ca != NULL); 1492 1493 KASSERT(curlwp != NULL); 1494 mutex_enter(&alldevs_mtx); 1495 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 1496 ; 1497 else while (alldevs_nread != 0 || 1498 (alldevs_nwrite != 0 && alldevs_writer != curlwp)) 1499 cv_wait(&alldevs_cv, &alldevs_mtx); 1500 if (alldevs_nwrite++ == 0) 1501 alldevs_writer = curlwp; 1502 mutex_exit(&alldevs_mtx); 1503 1504 /* 1505 * Ensure the device is deactivated. If the device doesn't 1506 * have an activation entry point, we allow DVF_ACTIVE to 1507 * remain set. Otherwise, if DVF_ACTIVE is still set, the 1508 * device is busy, and the detach fails. 1509 */ 1510 if (!detachall && 1511 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1512 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1513 rv = EBUSY; /* XXX EOPNOTSUPP? */ 1514 } else if ((rv = config_deactivate(dev)) == EOPNOTSUPP) 1515 rv = 0; /* Do not treat EOPNOTSUPP as an error */ 1516 1517 /* 1518 * Try to detach the device. If that's not possible, then 1519 * we either panic() (for the forced but failed case), or 1520 * return an error. 1521 */ 1522 if (rv == 0) { 1523 if (ca->ca_detach != NULL) 1524 rv = (*ca->ca_detach)(dev, flags); 1525 else 1526 rv = EOPNOTSUPP; 1527 } 1528 if (rv != 0) { 1529 if ((flags & DETACH_FORCE) == 0) 1530 goto out; 1531 else 1532 panic("config_detach: forced detach of %s failed (%d)", 1533 device_xname(dev), rv); 1534 } 1535 1536 dev->dv_flags &= ~DVF_ACTIVE; 1537 1538 /* 1539 * The device has now been successfully detached. 1540 */ 1541 1542 /* Let userland know */ 1543 devmon_report_device(dev, false); 1544 1545 #ifdef DIAGNOSTIC 1546 /* 1547 * Sanity: If you're successfully detached, you should have no 1548 * children. (Note that because children must be attached 1549 * after parents, we only need to search the latter part of 1550 * the list.) 1551 */ 1552 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1553 d = TAILQ_NEXT(d, dv_list)) { 1554 if (d->dv_parent == dev) { 1555 printf("config_detach: detached device %s" 1556 " has children %s\n", device_xname(dev), device_xname(d)); 1557 panic("config_detach"); 1558 } 1559 } 1560 #endif 1561 1562 /* notify the parent that the child is gone */ 1563 if (dev->dv_parent) { 1564 device_t p = dev->dv_parent; 1565 if (p->dv_cfattach->ca_childdetached) 1566 (*p->dv_cfattach->ca_childdetached)(p, dev); 1567 } 1568 1569 /* 1570 * Mark cfdata to show that the unit can be reused, if possible. 1571 */ 1572 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1573 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1574 if (STREQ(cf->cf_name, cd->cd_name)) { 1575 if (cf->cf_fstate == FSTATE_FOUND && 1576 cf->cf_unit == dev->dv_unit) 1577 cf->cf_fstate = FSTATE_NOTFOUND; 1578 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1579 /* 1580 * Note that we can only re-use a starred 1581 * unit number if the unit being detached 1582 * had the last assigned unit number. 1583 */ 1584 if (cf->cf_fstate == FSTATE_STAR && 1585 cf->cf_unit == dev->dv_unit + 1) 1586 cf->cf_unit--; 1587 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1588 } 1589 } 1590 } 1591 1592 config_devunlink(dev); 1593 1594 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1595 aprint_normal_dev(dev, "detached\n"); 1596 1597 config_devdealloc(dev); 1598 1599 out: 1600 mutex_enter(&alldevs_mtx); 1601 if (--alldevs_nwrite == 0) 1602 alldevs_writer = NULL; 1603 cv_signal(&alldevs_cv); 1604 mutex_exit(&alldevs_mtx); 1605 return rv; 1606 } 1607 1608 int 1609 config_detach_children(device_t parent, int flags) 1610 { 1611 device_t dv; 1612 deviter_t di; 1613 int error = 0; 1614 1615 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1616 dv = deviter_next(&di)) { 1617 if (device_parent(dv) != parent) 1618 continue; 1619 if ((error = config_detach(dv, flags)) != 0) 1620 break; 1621 } 1622 deviter_release(&di); 1623 return error; 1624 } 1625 1626 int 1627 config_activate(device_t dev) 1628 { 1629 const struct cfattach *ca = dev->dv_cfattach; 1630 int rv = 0, oflags = dev->dv_flags; 1631 1632 if (ca->ca_activate == NULL) 1633 return EOPNOTSUPP; 1634 1635 if ((dev->dv_flags & DVF_ACTIVE) == 0) { 1636 dev->dv_flags |= DVF_ACTIVE; 1637 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE); 1638 if (rv) 1639 dev->dv_flags = oflags; 1640 } 1641 return rv; 1642 } 1643 1644 int 1645 config_deactivate(device_t dev) 1646 { 1647 const struct cfattach *ca = dev->dv_cfattach; 1648 int rv = 0, oflags = dev->dv_flags; 1649 1650 if (ca->ca_activate == NULL) 1651 return EOPNOTSUPP; 1652 1653 if (dev->dv_flags & DVF_ACTIVE) { 1654 dev->dv_flags &= ~DVF_ACTIVE; 1655 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE); 1656 if (rv) 1657 dev->dv_flags = oflags; 1658 } 1659 return rv; 1660 } 1661 1662 /* 1663 * Defer the configuration of the specified device until all 1664 * of its parent's devices have been attached. 1665 */ 1666 void 1667 config_defer(device_t dev, void (*func)(device_t)) 1668 { 1669 struct deferred_config *dc; 1670 1671 if (dev->dv_parent == NULL) 1672 panic("config_defer: can't defer config of a root device"); 1673 1674 #ifdef DIAGNOSTIC 1675 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL; 1676 dc = TAILQ_NEXT(dc, dc_queue)) { 1677 if (dc->dc_dev == dev) 1678 panic("config_defer: deferred twice"); 1679 } 1680 #endif 1681 1682 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1683 if (dc == NULL) 1684 panic("config_defer: unable to allocate callback"); 1685 1686 dc->dc_dev = dev; 1687 dc->dc_func = func; 1688 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1689 config_pending_incr(); 1690 } 1691 1692 /* 1693 * Defer some autoconfiguration for a device until after interrupts 1694 * are enabled. 1695 */ 1696 void 1697 config_interrupts(device_t dev, void (*func)(device_t)) 1698 { 1699 struct deferred_config *dc; 1700 1701 /* 1702 * If interrupts are enabled, callback now. 1703 */ 1704 if (cold == 0) { 1705 (*func)(dev); 1706 return; 1707 } 1708 1709 #ifdef DIAGNOSTIC 1710 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL; 1711 dc = TAILQ_NEXT(dc, dc_queue)) { 1712 if (dc->dc_dev == dev) 1713 panic("config_interrupts: deferred twice"); 1714 } 1715 #endif 1716 1717 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1718 if (dc == NULL) 1719 panic("config_interrupts: unable to allocate callback"); 1720 1721 dc->dc_dev = dev; 1722 dc->dc_func = func; 1723 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1724 config_pending_incr(); 1725 } 1726 1727 /* 1728 * Process a deferred configuration queue. 1729 */ 1730 static void 1731 config_process_deferred(struct deferred_config_head *queue, 1732 device_t parent) 1733 { 1734 struct deferred_config *dc, *ndc; 1735 1736 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1737 ndc = TAILQ_NEXT(dc, dc_queue); 1738 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1739 TAILQ_REMOVE(queue, dc, dc_queue); 1740 (*dc->dc_func)(dc->dc_dev); 1741 kmem_free(dc, sizeof(*dc)); 1742 config_pending_decr(); 1743 } 1744 } 1745 } 1746 1747 /* 1748 * Manipulate the config_pending semaphore. 1749 */ 1750 void 1751 config_pending_incr(void) 1752 { 1753 1754 mutex_enter(&config_misc_lock); 1755 config_pending++; 1756 mutex_exit(&config_misc_lock); 1757 } 1758 1759 void 1760 config_pending_decr(void) 1761 { 1762 1763 #ifdef DIAGNOSTIC 1764 if (config_pending == 0) 1765 panic("config_pending_decr: config_pending == 0"); 1766 #endif 1767 mutex_enter(&config_misc_lock); 1768 config_pending--; 1769 if (config_pending == 0) 1770 cv_broadcast(&config_misc_cv); 1771 mutex_exit(&config_misc_lock); 1772 } 1773 1774 /* 1775 * Register a "finalization" routine. Finalization routines are 1776 * called iteratively once all real devices have been found during 1777 * autoconfiguration, for as long as any one finalizer has done 1778 * any work. 1779 */ 1780 int 1781 config_finalize_register(device_t dev, int (*fn)(device_t)) 1782 { 1783 struct finalize_hook *f; 1784 1785 /* 1786 * If finalization has already been done, invoke the 1787 * callback function now. 1788 */ 1789 if (config_finalize_done) { 1790 while ((*fn)(dev) != 0) 1791 /* loop */ ; 1792 } 1793 1794 /* Ensure this isn't already on the list. */ 1795 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1796 if (f->f_func == fn && f->f_dev == dev) 1797 return EEXIST; 1798 } 1799 1800 f = kmem_alloc(sizeof(*f), KM_SLEEP); 1801 f->f_func = fn; 1802 f->f_dev = dev; 1803 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1804 1805 return 0; 1806 } 1807 1808 void 1809 config_finalize(void) 1810 { 1811 struct finalize_hook *f; 1812 struct pdevinit *pdev; 1813 extern struct pdevinit pdevinit[]; 1814 int errcnt, rv; 1815 1816 /* 1817 * Now that device driver threads have been created, wait for 1818 * them to finish any deferred autoconfiguration. 1819 */ 1820 mutex_enter(&config_misc_lock); 1821 while (config_pending != 0) 1822 cv_wait(&config_misc_cv, &config_misc_lock); 1823 mutex_exit(&config_misc_lock); 1824 1825 KERNEL_LOCK(1, NULL); 1826 1827 /* Attach pseudo-devices. */ 1828 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 1829 (*pdev->pdev_attach)(pdev->pdev_count); 1830 1831 /* Run the hooks until none of them does any work. */ 1832 do { 1833 rv = 0; 1834 TAILQ_FOREACH(f, &config_finalize_list, f_list) 1835 rv |= (*f->f_func)(f->f_dev); 1836 } while (rv != 0); 1837 1838 config_finalize_done = 1; 1839 1840 /* Now free all the hooks. */ 1841 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 1842 TAILQ_REMOVE(&config_finalize_list, f, f_list); 1843 kmem_free(f, sizeof(*f)); 1844 } 1845 1846 KERNEL_UNLOCK_ONE(NULL); 1847 1848 errcnt = aprint_get_error_count(); 1849 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 1850 (boothowto & AB_VERBOSE) == 0) { 1851 mutex_enter(&config_misc_lock); 1852 if (config_do_twiddle) { 1853 config_do_twiddle = 0; 1854 printf_nolog(" done.\n"); 1855 } 1856 mutex_exit(&config_misc_lock); 1857 if (errcnt != 0) { 1858 printf("WARNING: %d error%s while detecting hardware; " 1859 "check system log.\n", errcnt, 1860 errcnt == 1 ? "" : "s"); 1861 } 1862 } 1863 } 1864 1865 void 1866 config_twiddle_fn(void *cookie) 1867 { 1868 1869 mutex_enter(&config_misc_lock); 1870 if (config_do_twiddle) { 1871 twiddle(); 1872 callout_schedule(&config_twiddle_ch, mstohz(100)); 1873 } 1874 mutex_exit(&config_misc_lock); 1875 } 1876 1877 /* 1878 * device_lookup: 1879 * 1880 * Look up a device instance for a given driver. 1881 */ 1882 device_t 1883 device_lookup(cfdriver_t cd, int unit) 1884 { 1885 1886 if (unit < 0 || unit >= cd->cd_ndevs) 1887 return NULL; 1888 1889 return cd->cd_devs[unit]; 1890 } 1891 1892 /* 1893 * device_lookup: 1894 * 1895 * Look up a device instance for a given driver. 1896 */ 1897 void * 1898 device_lookup_private(cfdriver_t cd, int unit) 1899 { 1900 device_t dv; 1901 1902 if (unit < 0 || unit >= cd->cd_ndevs) 1903 return NULL; 1904 1905 if ((dv = cd->cd_devs[unit]) == NULL) 1906 return NULL; 1907 1908 return dv->dv_private; 1909 } 1910 1911 /* 1912 * Accessor functions for the device_t type. 1913 */ 1914 devclass_t 1915 device_class(device_t dev) 1916 { 1917 1918 return dev->dv_class; 1919 } 1920 1921 cfdata_t 1922 device_cfdata(device_t dev) 1923 { 1924 1925 return dev->dv_cfdata; 1926 } 1927 1928 cfdriver_t 1929 device_cfdriver(device_t dev) 1930 { 1931 1932 return dev->dv_cfdriver; 1933 } 1934 1935 cfattach_t 1936 device_cfattach(device_t dev) 1937 { 1938 1939 return dev->dv_cfattach; 1940 } 1941 1942 int 1943 device_unit(device_t dev) 1944 { 1945 1946 return dev->dv_unit; 1947 } 1948 1949 const char * 1950 device_xname(device_t dev) 1951 { 1952 1953 return dev->dv_xname; 1954 } 1955 1956 device_t 1957 device_parent(device_t dev) 1958 { 1959 1960 return dev->dv_parent; 1961 } 1962 1963 bool 1964 device_is_active(device_t dev) 1965 { 1966 int active_flags; 1967 1968 active_flags = DVF_ACTIVE; 1969 active_flags |= DVF_CLASS_SUSPENDED; 1970 active_flags |= DVF_DRIVER_SUSPENDED; 1971 active_flags |= DVF_BUS_SUSPENDED; 1972 1973 return (dev->dv_flags & active_flags) == DVF_ACTIVE; 1974 } 1975 1976 bool 1977 device_is_enabled(device_t dev) 1978 { 1979 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE; 1980 } 1981 1982 bool 1983 device_has_power(device_t dev) 1984 { 1985 int active_flags; 1986 1987 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED; 1988 1989 return (dev->dv_flags & active_flags) == DVF_ACTIVE; 1990 } 1991 1992 int 1993 device_locator(device_t dev, u_int locnum) 1994 { 1995 1996 KASSERT(dev->dv_locators != NULL); 1997 return dev->dv_locators[locnum]; 1998 } 1999 2000 void * 2001 device_private(device_t dev) 2002 { 2003 2004 /* 2005 * The reason why device_private(NULL) is allowed is to simplify the 2006 * work of a lot of userspace request handlers (i.e., c/bdev 2007 * handlers) which grab cfdriver_t->cd_units[n]. 2008 * It avoids having them test for it to be NULL and only then calling 2009 * device_private. 2010 */ 2011 return dev == NULL ? NULL : dev->dv_private; 2012 } 2013 2014 prop_dictionary_t 2015 device_properties(device_t dev) 2016 { 2017 2018 return dev->dv_properties; 2019 } 2020 2021 /* 2022 * device_is_a: 2023 * 2024 * Returns true if the device is an instance of the specified 2025 * driver. 2026 */ 2027 bool 2028 device_is_a(device_t dev, const char *dname) 2029 { 2030 2031 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0; 2032 } 2033 2034 /* 2035 * device_find_by_xname: 2036 * 2037 * Returns the device of the given name or NULL if it doesn't exist. 2038 */ 2039 device_t 2040 device_find_by_xname(const char *name) 2041 { 2042 device_t dv; 2043 deviter_t di; 2044 2045 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2046 if (strcmp(device_xname(dv), name) == 0) 2047 break; 2048 } 2049 deviter_release(&di); 2050 2051 return dv; 2052 } 2053 2054 /* 2055 * device_find_by_driver_unit: 2056 * 2057 * Returns the device of the given driver name and unit or 2058 * NULL if it doesn't exist. 2059 */ 2060 device_t 2061 device_find_by_driver_unit(const char *name, int unit) 2062 { 2063 struct cfdriver *cd; 2064 2065 if ((cd = config_cfdriver_lookup(name)) == NULL) 2066 return NULL; 2067 return device_lookup(cd, unit); 2068 } 2069 2070 /* 2071 * Power management related functions. 2072 */ 2073 2074 bool 2075 device_pmf_is_registered(device_t dev) 2076 { 2077 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2078 } 2079 2080 bool 2081 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS) 2082 { 2083 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2084 return true; 2085 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2086 return false; 2087 if (*dev->dv_driver_suspend != NULL && 2088 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL)) 2089 return false; 2090 2091 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2092 return true; 2093 } 2094 2095 bool 2096 device_pmf_driver_resume(device_t dev PMF_FN_ARGS) 2097 { 2098 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2099 return true; 2100 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2101 return false; 2102 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) 2103 return false; 2104 if (*dev->dv_driver_resume != NULL && 2105 !(*dev->dv_driver_resume)(dev PMF_FN_CALL)) 2106 return false; 2107 2108 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2109 return true; 2110 } 2111 2112 bool 2113 device_pmf_driver_shutdown(device_t dev, int how) 2114 { 2115 2116 if (*dev->dv_driver_shutdown != NULL && 2117 !(*dev->dv_driver_shutdown)(dev, how)) 2118 return false; 2119 return true; 2120 } 2121 2122 bool 2123 device_pmf_driver_register(device_t dev, 2124 bool (*suspend)(device_t PMF_FN_PROTO), 2125 bool (*resume)(device_t PMF_FN_PROTO), 2126 bool (*shutdown)(device_t, int)) 2127 { 2128 dev->dv_driver_suspend = suspend; 2129 dev->dv_driver_resume = resume; 2130 dev->dv_driver_shutdown = shutdown; 2131 dev->dv_flags |= DVF_POWER_HANDLERS; 2132 return true; 2133 } 2134 2135 static const char * 2136 curlwp_name(void) 2137 { 2138 if (curlwp->l_name != NULL) 2139 return curlwp->l_name; 2140 else 2141 return curlwp->l_proc->p_comm; 2142 } 2143 2144 void 2145 device_pmf_driver_deregister(device_t dev) 2146 { 2147 device_lock_t dvl = device_getlock(dev); 2148 2149 dev->dv_driver_suspend = NULL; 2150 dev->dv_driver_resume = NULL; 2151 2152 mutex_enter(&dvl->dvl_mtx); 2153 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2154 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2155 /* Wake a thread that waits for the lock. That 2156 * thread will fail to acquire the lock, and then 2157 * it will wake the next thread that waits for the 2158 * lock, or else it will wake us. 2159 */ 2160 cv_signal(&dvl->dvl_cv); 2161 pmflock_debug(dev, __func__, __LINE__); 2162 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2163 pmflock_debug(dev, __func__, __LINE__); 2164 } 2165 mutex_exit(&dvl->dvl_mtx); 2166 } 2167 2168 bool 2169 device_pmf_driver_child_register(device_t dev) 2170 { 2171 device_t parent = device_parent(dev); 2172 2173 if (parent == NULL || parent->dv_driver_child_register == NULL) 2174 return true; 2175 return (*parent->dv_driver_child_register)(dev); 2176 } 2177 2178 void 2179 device_pmf_driver_set_child_register(device_t dev, 2180 bool (*child_register)(device_t)) 2181 { 2182 dev->dv_driver_child_register = child_register; 2183 } 2184 2185 void 2186 device_pmf_self_resume(device_t dev PMF_FN_ARGS) 2187 { 2188 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2189 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0) 2190 dev->dv_flags &= ~DVF_SELF_SUSPENDED; 2191 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2192 } 2193 2194 bool 2195 device_is_self_suspended(device_t dev) 2196 { 2197 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0; 2198 } 2199 2200 void 2201 device_pmf_self_suspend(device_t dev PMF_FN_ARGS) 2202 { 2203 bool self = (flags & PMF_F_SELF) != 0; 2204 2205 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2206 2207 if (!self) 2208 dev->dv_flags &= ~DVF_SELF_SUSPENDED; 2209 else if (device_is_active(dev)) 2210 dev->dv_flags |= DVF_SELF_SUSPENDED; 2211 2212 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2213 } 2214 2215 static void 2216 pmflock_debug(device_t dev, const char *func, int line) 2217 { 2218 device_lock_t dvl = device_getlock(dev); 2219 2220 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2221 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2222 dev->dv_flags); 2223 } 2224 2225 static void 2226 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS) 2227 { 2228 device_lock_t dvl = device_getlock(dev); 2229 2230 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x " 2231 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(), 2232 dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL); 2233 } 2234 2235 static bool 2236 device_pmf_lock1(device_t dev PMF_FN_ARGS) 2237 { 2238 device_lock_t dvl = device_getlock(dev); 2239 2240 while (device_pmf_is_registered(dev) && 2241 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2242 dvl->dvl_nwait++; 2243 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2244 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2245 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2246 dvl->dvl_nwait--; 2247 } 2248 if (!device_pmf_is_registered(dev)) { 2249 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2250 /* We could not acquire the lock, but some other thread may 2251 * wait for it, also. Wake that thread. 2252 */ 2253 cv_signal(&dvl->dvl_cv); 2254 return false; 2255 } 2256 dvl->dvl_nlock++; 2257 dvl->dvl_holder = curlwp; 2258 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2259 return true; 2260 } 2261 2262 bool 2263 device_pmf_lock(device_t dev PMF_FN_ARGS) 2264 { 2265 bool rc; 2266 device_lock_t dvl = device_getlock(dev); 2267 2268 mutex_enter(&dvl->dvl_mtx); 2269 rc = device_pmf_lock1(dev PMF_FN_CALL); 2270 mutex_exit(&dvl->dvl_mtx); 2271 2272 return rc; 2273 } 2274 2275 void 2276 device_pmf_unlock(device_t dev PMF_FN_ARGS) 2277 { 2278 device_lock_t dvl = device_getlock(dev); 2279 2280 KASSERT(dvl->dvl_nlock > 0); 2281 mutex_enter(&dvl->dvl_mtx); 2282 if (--dvl->dvl_nlock == 0) 2283 dvl->dvl_holder = NULL; 2284 cv_signal(&dvl->dvl_cv); 2285 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2286 mutex_exit(&dvl->dvl_mtx); 2287 } 2288 2289 device_lock_t 2290 device_getlock(device_t dev) 2291 { 2292 return &dev->dv_lock; 2293 } 2294 2295 void * 2296 device_pmf_bus_private(device_t dev) 2297 { 2298 return dev->dv_bus_private; 2299 } 2300 2301 bool 2302 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS) 2303 { 2304 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2305 return true; 2306 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2307 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2308 return false; 2309 if (*dev->dv_bus_suspend != NULL && 2310 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL)) 2311 return false; 2312 2313 dev->dv_flags |= DVF_BUS_SUSPENDED; 2314 return true; 2315 } 2316 2317 bool 2318 device_pmf_bus_resume(device_t dev PMF_FN_ARGS) 2319 { 2320 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2321 return true; 2322 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) 2323 return false; 2324 if (*dev->dv_bus_resume != NULL && 2325 !(*dev->dv_bus_resume)(dev PMF_FN_CALL)) 2326 return false; 2327 2328 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2329 return true; 2330 } 2331 2332 bool 2333 device_pmf_bus_shutdown(device_t dev, int how) 2334 { 2335 2336 if (*dev->dv_bus_shutdown != NULL && 2337 !(*dev->dv_bus_shutdown)(dev, how)) 2338 return false; 2339 return true; 2340 } 2341 2342 void 2343 device_pmf_bus_register(device_t dev, void *priv, 2344 bool (*suspend)(device_t PMF_FN_PROTO), 2345 bool (*resume)(device_t PMF_FN_PROTO), 2346 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2347 { 2348 dev->dv_bus_private = priv; 2349 dev->dv_bus_resume = resume; 2350 dev->dv_bus_suspend = suspend; 2351 dev->dv_bus_shutdown = shutdown; 2352 dev->dv_bus_deregister = deregister; 2353 } 2354 2355 void 2356 device_pmf_bus_deregister(device_t dev) 2357 { 2358 if (dev->dv_bus_deregister == NULL) 2359 return; 2360 (*dev->dv_bus_deregister)(dev); 2361 dev->dv_bus_private = NULL; 2362 dev->dv_bus_suspend = NULL; 2363 dev->dv_bus_resume = NULL; 2364 dev->dv_bus_deregister = NULL; 2365 } 2366 2367 void * 2368 device_pmf_class_private(device_t dev) 2369 { 2370 return dev->dv_class_private; 2371 } 2372 2373 bool 2374 device_pmf_class_suspend(device_t dev PMF_FN_ARGS) 2375 { 2376 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2377 return true; 2378 if (*dev->dv_class_suspend != NULL && 2379 !(*dev->dv_class_suspend)(dev PMF_FN_CALL)) 2380 return false; 2381 2382 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2383 return true; 2384 } 2385 2386 bool 2387 device_pmf_class_resume(device_t dev PMF_FN_ARGS) 2388 { 2389 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2390 return true; 2391 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2392 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2393 return false; 2394 if (*dev->dv_class_resume != NULL && 2395 !(*dev->dv_class_resume)(dev PMF_FN_CALL)) 2396 return false; 2397 2398 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2399 return true; 2400 } 2401 2402 void 2403 device_pmf_class_register(device_t dev, void *priv, 2404 bool (*suspend)(device_t PMF_FN_PROTO), 2405 bool (*resume)(device_t PMF_FN_PROTO), 2406 void (*deregister)(device_t)) 2407 { 2408 dev->dv_class_private = priv; 2409 dev->dv_class_suspend = suspend; 2410 dev->dv_class_resume = resume; 2411 dev->dv_class_deregister = deregister; 2412 } 2413 2414 void 2415 device_pmf_class_deregister(device_t dev) 2416 { 2417 if (dev->dv_class_deregister == NULL) 2418 return; 2419 (*dev->dv_class_deregister)(dev); 2420 dev->dv_class_private = NULL; 2421 dev->dv_class_suspend = NULL; 2422 dev->dv_class_resume = NULL; 2423 dev->dv_class_deregister = NULL; 2424 } 2425 2426 bool 2427 device_active(device_t dev, devactive_t type) 2428 { 2429 size_t i; 2430 2431 if (dev->dv_activity_count == 0) 2432 return false; 2433 2434 for (i = 0; i < dev->dv_activity_count; ++i) { 2435 if (dev->dv_activity_handlers[i] == NULL) 2436 break; 2437 (*dev->dv_activity_handlers[i])(dev, type); 2438 } 2439 2440 return true; 2441 } 2442 2443 bool 2444 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2445 { 2446 void (**new_handlers)(device_t, devactive_t); 2447 void (**old_handlers)(device_t, devactive_t); 2448 size_t i, old_size, new_size; 2449 int s; 2450 2451 old_handlers = dev->dv_activity_handlers; 2452 old_size = dev->dv_activity_count; 2453 2454 for (i = 0; i < old_size; ++i) { 2455 KASSERT(old_handlers[i] != handler); 2456 if (old_handlers[i] == NULL) { 2457 old_handlers[i] = handler; 2458 return true; 2459 } 2460 } 2461 2462 new_size = old_size + 4; 2463 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2464 2465 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2466 new_handlers[old_size] = handler; 2467 memset(new_handlers + old_size + 1, 0, 2468 sizeof(int [new_size - (old_size+1)])); 2469 2470 s = splhigh(); 2471 dev->dv_activity_count = new_size; 2472 dev->dv_activity_handlers = new_handlers; 2473 splx(s); 2474 2475 if (old_handlers != NULL) 2476 kmem_free(old_handlers, sizeof(void * [old_size])); 2477 2478 return true; 2479 } 2480 2481 void 2482 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2483 { 2484 void (**old_handlers)(device_t, devactive_t); 2485 size_t i, old_size; 2486 int s; 2487 2488 old_handlers = dev->dv_activity_handlers; 2489 old_size = dev->dv_activity_count; 2490 2491 for (i = 0; i < old_size; ++i) { 2492 if (old_handlers[i] == handler) 2493 break; 2494 if (old_handlers[i] == NULL) 2495 return; /* XXX panic? */ 2496 } 2497 2498 if (i == old_size) 2499 return; /* XXX panic? */ 2500 2501 for (; i < old_size - 1; ++i) { 2502 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2503 continue; 2504 2505 if (i == 0) { 2506 s = splhigh(); 2507 dev->dv_activity_count = 0; 2508 dev->dv_activity_handlers = NULL; 2509 splx(s); 2510 kmem_free(old_handlers, sizeof(void *[old_size])); 2511 } 2512 return; 2513 } 2514 old_handlers[i] = NULL; 2515 } 2516 2517 /* 2518 * Device Iteration 2519 * 2520 * deviter_t: a device iterator. Holds state for a "walk" visiting 2521 * each device_t's in the device tree. 2522 * 2523 * deviter_init(di, flags): initialize the device iterator `di' 2524 * to "walk" the device tree. deviter_next(di) will return 2525 * the first device_t in the device tree, or NULL if there are 2526 * no devices. 2527 * 2528 * `flags' is one or more of DEVITER_F_RW, indicating that the 2529 * caller intends to modify the device tree by calling 2530 * config_detach(9) on devices in the order that the iterator 2531 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2532 * nearest the "root" of the device tree to be returned, first; 2533 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2534 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2535 * indicating both that deviter_init() should not respect any 2536 * locks on the device tree, and that deviter_next(di) may run 2537 * in more than one LWP before the walk has finished. 2538 * 2539 * Only one DEVITER_F_RW iterator may be in the device tree at 2540 * once. 2541 * 2542 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2543 * 2544 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2545 * DEVITER_F_LEAVES_FIRST are used in combination. 2546 * 2547 * deviter_first(di, flags): initialize the device iterator `di' 2548 * and return the first device_t in the device tree, or NULL 2549 * if there are no devices. The statement 2550 * 2551 * dv = deviter_first(di); 2552 * 2553 * is shorthand for 2554 * 2555 * deviter_init(di); 2556 * dv = deviter_next(di); 2557 * 2558 * deviter_next(di): return the next device_t in the device tree, 2559 * or NULL if there are no more devices. deviter_next(di) 2560 * is undefined if `di' was not initialized with deviter_init() or 2561 * deviter_first(). 2562 * 2563 * deviter_release(di): stops iteration (subsequent calls to 2564 * deviter_next() will return NULL), releases any locks and 2565 * resources held by the device iterator. 2566 * 2567 * Device iteration does not return device_t's in any particular 2568 * order. An iterator will never return the same device_t twice. 2569 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2570 * is called repeatedly on the same `di', it will eventually return 2571 * NULL. It is ok to attach/detach devices during device iteration. 2572 */ 2573 void 2574 deviter_init(deviter_t *di, deviter_flags_t flags) 2575 { 2576 device_t dv; 2577 bool rw; 2578 2579 mutex_enter(&alldevs_mtx); 2580 if ((flags & DEVITER_F_SHUTDOWN) != 0) { 2581 flags |= DEVITER_F_RW; 2582 alldevs_nwrite++; 2583 alldevs_writer = NULL; 2584 alldevs_nread = 0; 2585 } else { 2586 rw = (flags & DEVITER_F_RW) != 0; 2587 2588 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 2589 ; 2590 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) || 2591 (rw && alldevs_nread != 0)) 2592 cv_wait(&alldevs_cv, &alldevs_mtx); 2593 2594 if (rw) { 2595 if (alldevs_nwrite++ == 0) 2596 alldevs_writer = curlwp; 2597 } else 2598 alldevs_nread++; 2599 } 2600 mutex_exit(&alldevs_mtx); 2601 2602 memset(di, 0, sizeof(*di)); 2603 2604 di->di_flags = flags; 2605 2606 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2607 case DEVITER_F_LEAVES_FIRST: 2608 TAILQ_FOREACH(dv, &alldevs, dv_list) 2609 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2610 break; 2611 case DEVITER_F_ROOT_FIRST: 2612 TAILQ_FOREACH(dv, &alldevs, dv_list) 2613 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2614 break; 2615 default: 2616 break; 2617 } 2618 2619 deviter_reinit(di); 2620 } 2621 2622 static void 2623 deviter_reinit(deviter_t *di) 2624 { 2625 if ((di->di_flags & DEVITER_F_RW) != 0) 2626 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2627 else 2628 di->di_prev = TAILQ_FIRST(&alldevs); 2629 } 2630 2631 device_t 2632 deviter_first(deviter_t *di, deviter_flags_t flags) 2633 { 2634 deviter_init(di, flags); 2635 return deviter_next(di); 2636 } 2637 2638 static device_t 2639 deviter_next1(deviter_t *di) 2640 { 2641 device_t dv; 2642 2643 dv = di->di_prev; 2644 2645 if (dv == NULL) 2646 ; 2647 else if ((di->di_flags & DEVITER_F_RW) != 0) 2648 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2649 else 2650 di->di_prev = TAILQ_NEXT(dv, dv_list); 2651 2652 return dv; 2653 } 2654 2655 device_t 2656 deviter_next(deviter_t *di) 2657 { 2658 device_t dv = NULL; 2659 2660 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2661 case 0: 2662 return deviter_next1(di); 2663 case DEVITER_F_LEAVES_FIRST: 2664 while (di->di_curdepth >= 0) { 2665 if ((dv = deviter_next1(di)) == NULL) { 2666 di->di_curdepth--; 2667 deviter_reinit(di); 2668 } else if (dv->dv_depth == di->di_curdepth) 2669 break; 2670 } 2671 return dv; 2672 case DEVITER_F_ROOT_FIRST: 2673 while (di->di_curdepth <= di->di_maxdepth) { 2674 if ((dv = deviter_next1(di)) == NULL) { 2675 di->di_curdepth++; 2676 deviter_reinit(di); 2677 } else if (dv->dv_depth == di->di_curdepth) 2678 break; 2679 } 2680 return dv; 2681 default: 2682 return NULL; 2683 } 2684 } 2685 2686 void 2687 deviter_release(deviter_t *di) 2688 { 2689 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2690 2691 mutex_enter(&alldevs_mtx); 2692 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 2693 --alldevs_nwrite; 2694 else { 2695 2696 if (rw) { 2697 if (--alldevs_nwrite == 0) 2698 alldevs_writer = NULL; 2699 } else 2700 --alldevs_nread; 2701 2702 cv_signal(&alldevs_cv); 2703 } 2704 mutex_exit(&alldevs_mtx); 2705 } 2706 2707 SYSCTL_SETUP(sysctl_detach_setup, "sysctl detach setup") 2708 { 2709 const struct sysctlnode *node = NULL; 2710 2711 sysctl_createv(clog, 0, NULL, &node, 2712 CTLFLAG_PERMANENT, 2713 CTLTYPE_NODE, "kern", NULL, 2714 NULL, 0, NULL, 0, 2715 CTL_KERN, CTL_EOL); 2716 2717 if (node == NULL) 2718 return; 2719 2720 sysctl_createv(clog, 0, &node, NULL, 2721 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2722 CTLTYPE_INT, "detachall", 2723 SYSCTL_DESCR("Detach all devices at shutdown"), 2724 NULL, 0, &detachall, 0, 2725 CTL_CREATE, CTL_EOL); 2726 } 2727