xref: /netbsd-src/sys/kern/subr_autoconf.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /* $NetBSD: subr_autoconf.c,v 1.177 2009/05/29 23:27:08 dyoung Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.177 2009/05/29 23:27:08 dyoung Exp $");
81 
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84 
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/vnode.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <machine/limits.h>
114 
115 #include "opt_userconf.h"
116 #ifdef USERCONF
117 #include <sys/userconf.h>
118 #endif
119 
120 #ifdef __i386__
121 #include "opt_splash.h"
122 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
123 #include <dev/splash/splash.h>
124 extern struct splash_progress *splash_progress_state;
125 #endif
126 #endif
127 
128 /*
129  * Autoconfiguration subroutines.
130  */
131 
132 /*
133  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
134  * devices and drivers are found via these tables.
135  */
136 extern struct cfdata cfdata[];
137 extern const short cfroots[];
138 
139 /*
140  * List of all cfdriver structures.  We use this to detect duplicates
141  * when other cfdrivers are loaded.
142  */
143 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
144 extern struct cfdriver * const cfdriver_list_initial[];
145 
146 /*
147  * Initial list of cfattach's.
148  */
149 extern const struct cfattachinit cfattachinit[];
150 
151 /*
152  * List of cfdata tables.  We always have one such list -- the one
153  * built statically when the kernel was configured.
154  */
155 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
156 static struct cftable initcftable;
157 
158 #define	ROOT ((device_t)NULL)
159 
160 struct matchinfo {
161 	cfsubmatch_t fn;
162 	struct	device *parent;
163 	const int *locs;
164 	void	*aux;
165 	struct	cfdata *match;
166 	int	pri;
167 };
168 
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdealloc(device_t);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_devunlink(device_t);
176 static void config_twiddle_fn(void *);
177 
178 static void pmflock_debug(device_t, const char *, int);
179 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
180 
181 static device_t deviter_next1(deviter_t *);
182 static void deviter_reinit(deviter_t *);
183 
184 struct deferred_config {
185 	TAILQ_ENTRY(deferred_config) dc_queue;
186 	device_t dc_dev;
187 	void (*dc_func)(device_t);
188 };
189 
190 TAILQ_HEAD(deferred_config_head, deferred_config);
191 
192 struct deferred_config_head deferred_config_queue =
193 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
194 struct deferred_config_head interrupt_config_queue =
195 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
196 int interrupt_config_threads = 8;
197 
198 static void config_process_deferred(struct deferred_config_head *, device_t);
199 
200 /* Hooks to finalize configuration once all real devices have been found. */
201 struct finalize_hook {
202 	TAILQ_ENTRY(finalize_hook) f_list;
203 	int (*f_func)(device_t);
204 	device_t f_dev;
205 };
206 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
207 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
208 static int config_finalize_done;
209 
210 /* list of all devices */
211 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
212 kcondvar_t alldevs_cv;
213 kmutex_t alldevs_mtx;
214 static int alldevs_nread = 0;
215 static int alldevs_nwrite = 0;
216 static lwp_t *alldevs_writer = NULL;
217 
218 static int config_pending;		/* semaphore for mountroot */
219 static kmutex_t config_misc_lock;
220 static kcondvar_t config_misc_cv;
221 
222 static int detachall = 0;
223 
224 #define	STREQ(s1, s2)			\
225 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
226 
227 static int config_initialized;		/* config_init() has been called. */
228 
229 static int config_do_twiddle;
230 static callout_t config_twiddle_ch;
231 
232 struct vnode *
233 opendisk(struct device *dv)
234 {
235 	int bmajor, bminor;
236 	struct vnode *tmpvn;
237 	int error;
238 	dev_t dev;
239 
240 	/*
241 	 * Lookup major number for disk block device.
242 	 */
243 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
244 	if (bmajor == -1)
245 		return NULL;
246 
247 	bminor = minor(device_unit(dv));
248 	/*
249 	 * Fake a temporary vnode for the disk, open it, and read
250 	 * and hash the sectors.
251 	 */
252 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
253 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
254 	if (bdevvp(dev, &tmpvn))
255 		panic("%s: can't alloc vnode for %s", __func__,
256 		    device_xname(dv));
257 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
258 	if (error) {
259 #ifndef DEBUG
260 		/*
261 		 * Ignore errors caused by missing device, partition,
262 		 * or medium.
263 		 */
264 		if (error != ENXIO && error != ENODEV)
265 #endif
266 			printf("%s: can't open dev %s (%d)\n",
267 			    __func__, device_xname(dv), error);
268 		vput(tmpvn);
269 		return NULL;
270 	}
271 
272 	return tmpvn;
273 }
274 
275 int
276 config_handle_wedges(struct device *dv, int par)
277 {
278 	struct dkwedge_list wl;
279 	struct dkwedge_info *wi;
280 	struct vnode *vn;
281 	char diskname[16];
282 	int i, error;
283 
284 	if ((vn = opendisk(dv)) == NULL)
285 		return -1;
286 
287 	wl.dkwl_bufsize = sizeof(*wi) * 16;
288 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
289 
290 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
291 	VOP_CLOSE(vn, FREAD, NOCRED);
292 	vput(vn);
293 	if (error) {
294 #ifdef DEBUG_WEDGE
295 		printf("%s: List wedges returned %d\n",
296 		    device_xname(dv), error);
297 #endif
298 		free(wi, M_TEMP);
299 		return -1;
300 	}
301 
302 #ifdef DEBUG_WEDGE
303 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
304 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
305 #endif
306 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
307 	    par + 'a');
308 
309 	for (i = 0; i < wl.dkwl_ncopied; i++) {
310 #ifdef DEBUG_WEDGE
311 		printf("%s: Looking for %s in %s\n",
312 		    device_xname(dv), diskname, wi[i].dkw_wname);
313 #endif
314 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
315 			break;
316 	}
317 
318 	if (i == wl.dkwl_ncopied) {
319 #ifdef DEBUG_WEDGE
320 		printf("%s: Cannot find wedge with parent %s\n",
321 		    device_xname(dv), diskname);
322 #endif
323 		free(wi, M_TEMP);
324 		return -1;
325 	}
326 
327 #ifdef DEBUG_WEDGE
328 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
329 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
330 		(unsigned long long)wi[i].dkw_offset,
331 		(unsigned long long)wi[i].dkw_size);
332 #endif
333 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
334 	free(wi, M_TEMP);
335 	return 0;
336 }
337 
338 /*
339  * Initialize the autoconfiguration data structures.  Normally this
340  * is done by configure(), but some platforms need to do this very
341  * early (to e.g. initialize the console).
342  */
343 void
344 config_init(void)
345 {
346 	const struct cfattachinit *cfai;
347 	int i, j;
348 
349 	if (config_initialized)
350 		return;
351 
352 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
353 	cv_init(&alldevs_cv, "alldevs");
354 
355 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
356 	cv_init(&config_misc_cv, "cfgmisc");
357 
358 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
359 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
360 
361 	/* allcfdrivers is statically initialized. */
362 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
363 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
364 			panic("configure: duplicate `%s' drivers",
365 			    cfdriver_list_initial[i]->cd_name);
366 	}
367 
368 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
369 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
370 			if (config_cfattach_attach(cfai->cfai_name,
371 						   cfai->cfai_list[j]) != 0)
372 				panic("configure: duplicate `%s' attachment "
373 				    "of `%s' driver",
374 				    cfai->cfai_list[j]->ca_name,
375 				    cfai->cfai_name);
376 		}
377 	}
378 
379 	initcftable.ct_cfdata = cfdata;
380 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
381 
382 	config_initialized = 1;
383 }
384 
385 void
386 config_deferred(device_t dev)
387 {
388 	config_process_deferred(&deferred_config_queue, dev);
389 	config_process_deferred(&interrupt_config_queue, dev);
390 }
391 
392 static void
393 config_interrupts_thread(void *cookie)
394 {
395 	struct deferred_config *dc;
396 
397 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
398 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
399 		(*dc->dc_func)(dc->dc_dev);
400 		kmem_free(dc, sizeof(*dc));
401 		config_pending_decr();
402 	}
403 	kthread_exit(0);
404 }
405 
406 /*
407  * Configure the system's hardware.
408  */
409 void
410 configure(void)
411 {
412 	/* Initialize data structures. */
413 	config_init();
414 	pmf_init();
415 #if NDRVCTL > 0
416 	drvctl_init();
417 #endif
418 
419 #ifdef USERCONF
420 	if (boothowto & RB_USERCONF)
421 		user_config();
422 #endif
423 
424 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
425 		config_do_twiddle = 1;
426 		printf_nolog("Detecting hardware...");
427 	}
428 
429 	/*
430 	 * Do the machine-dependent portion of autoconfiguration.  This
431 	 * sets the configuration machinery here in motion by "finding"
432 	 * the root bus.  When this function returns, we expect interrupts
433 	 * to be enabled.
434 	 */
435 	cpu_configure();
436 }
437 
438 void
439 configure2(void)
440 {
441 	CPU_INFO_ITERATOR cii;
442 	struct cpu_info *ci;
443 	int i, s;
444 
445 	/*
446 	 * Now that we've found all the hardware, start the real time
447 	 * and statistics clocks.
448 	 */
449 	initclocks();
450 
451 	cold = 0;	/* clocks are running, we're warm now! */
452 	s = splsched();
453 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
454 	splx(s);
455 
456 	/* Boot the secondary processors. */
457 	for (CPU_INFO_FOREACH(cii, ci)) {
458 		uvm_cpu_attach(ci);
459 	}
460 	mp_online = true;
461 #if defined(MULTIPROCESSOR)
462 	cpu_boot_secondary_processors();
463 #endif
464 
465 	/* Setup the runqueues and scheduler. */
466 	runq_init();
467 	sched_init();
468 
469 	/*
470 	 * Bus scans can make it appear as if the system has paused, so
471 	 * twiddle constantly while config_interrupts() jobs are running.
472 	 */
473 	config_twiddle_fn(NULL);
474 
475 	/*
476 	 * Create threads to call back and finish configuration for
477 	 * devices that want interrupts enabled.
478 	 */
479 	for (i = 0; i < interrupt_config_threads; i++) {
480 		(void)kthread_create(PRI_NONE, 0, NULL,
481 		    config_interrupts_thread, NULL, NULL, "config");
482 	}
483 
484 	/* Get the threads going and into any sleeps before continuing. */
485 	yield();
486 }
487 
488 /*
489  * Announce device attach/detach to userland listeners.
490  */
491 static void
492 devmon_report_device(device_t dev, bool isattach)
493 {
494 #if NDRVCTL > 0
495 	prop_dictionary_t ev;
496 	const char *parent;
497 	const char *what;
498 	device_t pdev = device_parent(dev);
499 
500 	ev = prop_dictionary_create();
501 	if (ev == NULL)
502 		return;
503 
504 	what = (isattach ? "device-attach" : "device-detach");
505 	parent = (pdev == NULL ? "root" : device_xname(pdev));
506 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
507 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
508 		prop_object_release(ev);
509 		return;
510 	}
511 
512 	devmon_insert(what, ev);
513 #endif
514 }
515 
516 /*
517  * Add a cfdriver to the system.
518  */
519 int
520 config_cfdriver_attach(struct cfdriver *cd)
521 {
522 	struct cfdriver *lcd;
523 
524 	/* Make sure this driver isn't already in the system. */
525 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
526 		if (STREQ(lcd->cd_name, cd->cd_name))
527 			return EEXIST;
528 	}
529 
530 	LIST_INIT(&cd->cd_attach);
531 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
532 
533 	return 0;
534 }
535 
536 /*
537  * Remove a cfdriver from the system.
538  */
539 int
540 config_cfdriver_detach(struct cfdriver *cd)
541 {
542 	int i;
543 
544 	/* Make sure there are no active instances. */
545 	for (i = 0; i < cd->cd_ndevs; i++) {
546 		if (cd->cd_devs[i] != NULL)
547 			return EBUSY;
548 	}
549 
550 	/* ...and no attachments loaded. */
551 	if (LIST_EMPTY(&cd->cd_attach) == 0)
552 		return EBUSY;
553 
554 	LIST_REMOVE(cd, cd_list);
555 
556 	KASSERT(cd->cd_devs == NULL);
557 
558 	return 0;
559 }
560 
561 /*
562  * Look up a cfdriver by name.
563  */
564 struct cfdriver *
565 config_cfdriver_lookup(const char *name)
566 {
567 	struct cfdriver *cd;
568 
569 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
570 		if (STREQ(cd->cd_name, name))
571 			return cd;
572 	}
573 
574 	return NULL;
575 }
576 
577 /*
578  * Add a cfattach to the specified driver.
579  */
580 int
581 config_cfattach_attach(const char *driver, struct cfattach *ca)
582 {
583 	struct cfattach *lca;
584 	struct cfdriver *cd;
585 
586 	cd = config_cfdriver_lookup(driver);
587 	if (cd == NULL)
588 		return ESRCH;
589 
590 	/* Make sure this attachment isn't already on this driver. */
591 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
592 		if (STREQ(lca->ca_name, ca->ca_name))
593 			return EEXIST;
594 	}
595 
596 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
597 
598 	return 0;
599 }
600 
601 /*
602  * Remove a cfattach from the specified driver.
603  */
604 int
605 config_cfattach_detach(const char *driver, struct cfattach *ca)
606 {
607 	struct cfdriver *cd;
608 	device_t dev;
609 	int i;
610 
611 	cd = config_cfdriver_lookup(driver);
612 	if (cd == NULL)
613 		return ESRCH;
614 
615 	/* Make sure there are no active instances. */
616 	for (i = 0; i < cd->cd_ndevs; i++) {
617 		if ((dev = cd->cd_devs[i]) == NULL)
618 			continue;
619 		if (dev->dv_cfattach == ca)
620 			return EBUSY;
621 	}
622 
623 	LIST_REMOVE(ca, ca_list);
624 
625 	return 0;
626 }
627 
628 /*
629  * Look up a cfattach by name.
630  */
631 static struct cfattach *
632 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
633 {
634 	struct cfattach *ca;
635 
636 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
637 		if (STREQ(ca->ca_name, atname))
638 			return ca;
639 	}
640 
641 	return NULL;
642 }
643 
644 /*
645  * Look up a cfattach by driver/attachment name.
646  */
647 struct cfattach *
648 config_cfattach_lookup(const char *name, const char *atname)
649 {
650 	struct cfdriver *cd;
651 
652 	cd = config_cfdriver_lookup(name);
653 	if (cd == NULL)
654 		return NULL;
655 
656 	return config_cfattach_lookup_cd(cd, atname);
657 }
658 
659 /*
660  * Apply the matching function and choose the best.  This is used
661  * a few times and we want to keep the code small.
662  */
663 static void
664 mapply(struct matchinfo *m, cfdata_t cf)
665 {
666 	int pri;
667 
668 	if (m->fn != NULL) {
669 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
670 	} else {
671 		pri = config_match(m->parent, cf, m->aux);
672 	}
673 	if (pri > m->pri) {
674 		m->match = cf;
675 		m->pri = pri;
676 	}
677 }
678 
679 int
680 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
681 {
682 	const struct cfiattrdata *ci;
683 	const struct cflocdesc *cl;
684 	int nlocs, i;
685 
686 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
687 	KASSERT(ci);
688 	nlocs = ci->ci_loclen;
689 	KASSERT(!nlocs || locs);
690 	for (i = 0; i < nlocs; i++) {
691 		cl = &ci->ci_locdesc[i];
692 		/* !cld_defaultstr means no default value */
693 		if ((!(cl->cld_defaultstr)
694 		     || (cf->cf_loc[i] != cl->cld_default))
695 		    && cf->cf_loc[i] != locs[i])
696 			return 0;
697 	}
698 
699 	return config_match(parent, cf, aux);
700 }
701 
702 /*
703  * Helper function: check whether the driver supports the interface attribute
704  * and return its descriptor structure.
705  */
706 static const struct cfiattrdata *
707 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
708 {
709 	const struct cfiattrdata * const *cpp;
710 
711 	if (cd->cd_attrs == NULL)
712 		return 0;
713 
714 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
715 		if (STREQ((*cpp)->ci_name, ia)) {
716 			/* Match. */
717 			return *cpp;
718 		}
719 	}
720 	return 0;
721 }
722 
723 /*
724  * Lookup an interface attribute description by name.
725  * If the driver is given, consider only its supported attributes.
726  */
727 const struct cfiattrdata *
728 cfiattr_lookup(const char *name, const struct cfdriver *cd)
729 {
730 	const struct cfdriver *d;
731 	const struct cfiattrdata *ia;
732 
733 	if (cd)
734 		return cfdriver_get_iattr(cd, name);
735 
736 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
737 		ia = cfdriver_get_iattr(d, name);
738 		if (ia)
739 			return ia;
740 	}
741 	return 0;
742 }
743 
744 /*
745  * Determine if `parent' is a potential parent for a device spec based
746  * on `cfp'.
747  */
748 static int
749 cfparent_match(const device_t parent, const struct cfparent *cfp)
750 {
751 	struct cfdriver *pcd;
752 
753 	/* We don't match root nodes here. */
754 	if (cfp == NULL)
755 		return 0;
756 
757 	pcd = parent->dv_cfdriver;
758 	KASSERT(pcd != NULL);
759 
760 	/*
761 	 * First, ensure this parent has the correct interface
762 	 * attribute.
763 	 */
764 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
765 		return 0;
766 
767 	/*
768 	 * If no specific parent device instance was specified (i.e.
769 	 * we're attaching to the attribute only), we're done!
770 	 */
771 	if (cfp->cfp_parent == NULL)
772 		return 1;
773 
774 	/*
775 	 * Check the parent device's name.
776 	 */
777 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
778 		return 0;	/* not the same parent */
779 
780 	/*
781 	 * Make sure the unit number matches.
782 	 */
783 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
784 	    cfp->cfp_unit == parent->dv_unit)
785 		return 1;
786 
787 	/* Unit numbers don't match. */
788 	return 0;
789 }
790 
791 /*
792  * Helper for config_cfdata_attach(): check all devices whether it could be
793  * parent any attachment in the config data table passed, and rescan.
794  */
795 static void
796 rescan_with_cfdata(const struct cfdata *cf)
797 {
798 	device_t d;
799 	const struct cfdata *cf1;
800 	deviter_t di;
801 
802 
803 	/*
804 	 * "alldevs" is likely longer than a modules's cfdata, so make it
805 	 * the outer loop.
806 	 */
807 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
808 
809 		if (!(d->dv_cfattach->ca_rescan))
810 			continue;
811 
812 		for (cf1 = cf; cf1->cf_name; cf1++) {
813 
814 			if (!cfparent_match(d, cf1->cf_pspec))
815 				continue;
816 
817 			(*d->dv_cfattach->ca_rescan)(d,
818 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
819 		}
820 	}
821 	deviter_release(&di);
822 }
823 
824 /*
825  * Attach a supplemental config data table and rescan potential
826  * parent devices if required.
827  */
828 int
829 config_cfdata_attach(cfdata_t cf, int scannow)
830 {
831 	struct cftable *ct;
832 
833 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
834 	ct->ct_cfdata = cf;
835 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
836 
837 	if (scannow)
838 		rescan_with_cfdata(cf);
839 
840 	return 0;
841 }
842 
843 /*
844  * Helper for config_cfdata_detach: check whether a device is
845  * found through any attachment in the config data table.
846  */
847 static int
848 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
849 {
850 	const struct cfdata *cf1;
851 
852 	for (cf1 = cf; cf1->cf_name; cf1++)
853 		if (d->dv_cfdata == cf1)
854 			return 1;
855 
856 	return 0;
857 }
858 
859 /*
860  * Detach a supplemental config data table. Detach all devices found
861  * through that table (and thus keeping references to it) before.
862  */
863 int
864 config_cfdata_detach(cfdata_t cf)
865 {
866 	device_t d;
867 	int error = 0;
868 	struct cftable *ct;
869 	deviter_t di;
870 
871 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
872 	     d = deviter_next(&di)) {
873 		if (!dev_in_cfdata(d, cf))
874 			continue;
875 		if ((error = config_detach(d, 0)) != 0)
876 			break;
877 	}
878 	deviter_release(&di);
879 	if (error) {
880 		aprint_error_dev(d, "unable to detach instance\n");
881 		return error;
882 	}
883 
884 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
885 		if (ct->ct_cfdata == cf) {
886 			TAILQ_REMOVE(&allcftables, ct, ct_list);
887 			kmem_free(ct, sizeof(*ct));
888 			return 0;
889 		}
890 	}
891 
892 	/* not found -- shouldn't happen */
893 	return EINVAL;
894 }
895 
896 /*
897  * Invoke the "match" routine for a cfdata entry on behalf of
898  * an external caller, usually a "submatch" routine.
899  */
900 int
901 config_match(device_t parent, cfdata_t cf, void *aux)
902 {
903 	struct cfattach *ca;
904 
905 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
906 	if (ca == NULL) {
907 		/* No attachment for this entry, oh well. */
908 		return 0;
909 	}
910 
911 	return (*ca->ca_match)(parent, cf, aux);
912 }
913 
914 /*
915  * Iterate over all potential children of some device, calling the given
916  * function (default being the child's match function) for each one.
917  * Nonzero returns are matches; the highest value returned is considered
918  * the best match.  Return the `found child' if we got a match, or NULL
919  * otherwise.  The `aux' pointer is simply passed on through.
920  *
921  * Note that this function is designed so that it can be used to apply
922  * an arbitrary function to all potential children (its return value
923  * can be ignored).
924  */
925 cfdata_t
926 config_search_loc(cfsubmatch_t fn, device_t parent,
927 		  const char *ifattr, const int *locs, void *aux)
928 {
929 	struct cftable *ct;
930 	cfdata_t cf;
931 	struct matchinfo m;
932 
933 	KASSERT(config_initialized);
934 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
935 
936 	m.fn = fn;
937 	m.parent = parent;
938 	m.locs = locs;
939 	m.aux = aux;
940 	m.match = NULL;
941 	m.pri = 0;
942 
943 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
944 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
945 
946 			/* We don't match root nodes here. */
947 			if (!cf->cf_pspec)
948 				continue;
949 
950 			/*
951 			 * Skip cf if no longer eligible, otherwise scan
952 			 * through parents for one matching `parent', and
953 			 * try match function.
954 			 */
955 			if (cf->cf_fstate == FSTATE_FOUND)
956 				continue;
957 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
958 			    cf->cf_fstate == FSTATE_DSTAR)
959 				continue;
960 
961 			/*
962 			 * If an interface attribute was specified,
963 			 * consider only children which attach to
964 			 * that attribute.
965 			 */
966 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
967 				continue;
968 
969 			if (cfparent_match(parent, cf->cf_pspec))
970 				mapply(&m, cf);
971 		}
972 	}
973 	return m.match;
974 }
975 
976 cfdata_t
977 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
978     void *aux)
979 {
980 
981 	return config_search_loc(fn, parent, ifattr, NULL, aux);
982 }
983 
984 /*
985  * Find the given root device.
986  * This is much like config_search, but there is no parent.
987  * Don't bother with multiple cfdata tables; the root node
988  * must always be in the initial table.
989  */
990 cfdata_t
991 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
992 {
993 	cfdata_t cf;
994 	const short *p;
995 	struct matchinfo m;
996 
997 	m.fn = fn;
998 	m.parent = ROOT;
999 	m.aux = aux;
1000 	m.match = NULL;
1001 	m.pri = 0;
1002 	m.locs = 0;
1003 	/*
1004 	 * Look at root entries for matching name.  We do not bother
1005 	 * with found-state here since only one root should ever be
1006 	 * searched (and it must be done first).
1007 	 */
1008 	for (p = cfroots; *p >= 0; p++) {
1009 		cf = &cfdata[*p];
1010 		if (strcmp(cf->cf_name, rootname) == 0)
1011 			mapply(&m, cf);
1012 	}
1013 	return m.match;
1014 }
1015 
1016 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1017 
1018 /*
1019  * The given `aux' argument describes a device that has been found
1020  * on the given parent, but not necessarily configured.  Locate the
1021  * configuration data for that device (using the submatch function
1022  * provided, or using candidates' cd_match configuration driver
1023  * functions) and attach it, and return true.  If the device was
1024  * not configured, call the given `print' function and return 0.
1025  */
1026 device_t
1027 config_found_sm_loc(device_t parent,
1028 		const char *ifattr, const int *locs, void *aux,
1029 		cfprint_t print, cfsubmatch_t submatch)
1030 {
1031 	cfdata_t cf;
1032 
1033 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1034 	if (splash_progress_state)
1035 		splash_progress_update(splash_progress_state);
1036 #endif
1037 
1038 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1039 		return(config_attach_loc(parent, cf, locs, aux, print));
1040 	if (print) {
1041 		if (config_do_twiddle && cold)
1042 			twiddle();
1043 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1044 	}
1045 
1046 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1047 	if (splash_progress_state)
1048 		splash_progress_update(splash_progress_state);
1049 #endif
1050 
1051 	return NULL;
1052 }
1053 
1054 device_t
1055 config_found_ia(device_t parent, const char *ifattr, void *aux,
1056     cfprint_t print)
1057 {
1058 
1059 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1060 }
1061 
1062 device_t
1063 config_found(device_t parent, void *aux, cfprint_t print)
1064 {
1065 
1066 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1067 }
1068 
1069 /*
1070  * As above, but for root devices.
1071  */
1072 device_t
1073 config_rootfound(const char *rootname, void *aux)
1074 {
1075 	cfdata_t cf;
1076 
1077 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1078 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1079 	aprint_error("root device %s not configured\n", rootname);
1080 	return NULL;
1081 }
1082 
1083 /* just like sprintf(buf, "%d") except that it works from the end */
1084 static char *
1085 number(char *ep, int n)
1086 {
1087 
1088 	*--ep = 0;
1089 	while (n >= 10) {
1090 		*--ep = (n % 10) + '0';
1091 		n /= 10;
1092 	}
1093 	*--ep = n + '0';
1094 	return ep;
1095 }
1096 
1097 /*
1098  * Expand the size of the cd_devs array if necessary.
1099  */
1100 static void
1101 config_makeroom(int n, struct cfdriver *cd)
1102 {
1103 	int old, new;
1104 	device_t *nsp;
1105 
1106 	if (n < cd->cd_ndevs)
1107 		return;
1108 
1109 	/*
1110 	 * Need to expand the array.
1111 	 */
1112 	old = cd->cd_ndevs;
1113 	if (old == 0)
1114 		new = 4;
1115 	else
1116 		new = old * 2;
1117 	while (new <= n)
1118 		new *= 2;
1119 	cd->cd_ndevs = new;
1120 	nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
1121 	if (nsp == NULL)
1122 		panic("config_attach: %sing dev array",
1123 		    old != 0 ? "expand" : "creat");
1124 	memset(nsp + old, 0, sizeof(device_t [new - old]));
1125 	if (old != 0) {
1126 		memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1127 		kmem_free(cd->cd_devs, sizeof(device_t [old]));
1128 	}
1129 	cd->cd_devs = nsp;
1130 }
1131 
1132 static void
1133 config_devlink(device_t dev)
1134 {
1135 	struct cfdriver *cd = dev->dv_cfdriver;
1136 
1137 	/* put this device in the devices array */
1138 	config_makeroom(dev->dv_unit, cd);
1139 	if (cd->cd_devs[dev->dv_unit])
1140 		panic("config_attach: duplicate %s", device_xname(dev));
1141 	cd->cd_devs[dev->dv_unit] = dev;
1142 
1143 	/* It is safe to add a device to the tail of the list while
1144 	 * readers are in the list, but not while a writer is in
1145 	 * the list.  Wait for any writer to complete.
1146 	 */
1147 	mutex_enter(&alldevs_mtx);
1148 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1149 		cv_wait(&alldevs_cv, &alldevs_mtx);
1150 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
1151 	cv_signal(&alldevs_cv);
1152 	mutex_exit(&alldevs_mtx);
1153 }
1154 
1155 static void
1156 config_devunlink(device_t dev)
1157 {
1158 	struct cfdriver *cd = dev->dv_cfdriver;
1159 	int i;
1160 
1161 	/* Unlink from device list. */
1162 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1163 
1164 	/* Remove from cfdriver's array. */
1165 	cd->cd_devs[dev->dv_unit] = NULL;
1166 
1167 	/*
1168 	 * If the device now has no units in use, deallocate its softc array.
1169 	 */
1170 	for (i = 0; i < cd->cd_ndevs; i++) {
1171 		if (cd->cd_devs[i] != NULL)
1172 			return;
1173 	}
1174 	/* nothing found; deallocate */
1175 	kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1176 	cd->cd_devs = NULL;
1177 	cd->cd_ndevs = 0;
1178 }
1179 
1180 static device_t
1181 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1182 {
1183 	struct cfdriver *cd;
1184 	struct cfattach *ca;
1185 	size_t lname, lunit;
1186 	const char *xunit;
1187 	int myunit;
1188 	char num[10];
1189 	device_t dev;
1190 	void *dev_private;
1191 	const struct cfiattrdata *ia;
1192 	device_lock_t dvl;
1193 
1194 	cd = config_cfdriver_lookup(cf->cf_name);
1195 	if (cd == NULL)
1196 		return NULL;
1197 
1198 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1199 	if (ca == NULL)
1200 		return NULL;
1201 
1202 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1203 	    ca->ca_devsize < sizeof(struct device))
1204 		panic("config_devalloc: %s", cf->cf_atname);
1205 
1206 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1207 	if (cf->cf_fstate == FSTATE_STAR) {
1208 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1209 			if (cd->cd_devs[myunit] == NULL)
1210 				break;
1211 		/*
1212 		 * myunit is now the unit of the first NULL device pointer,
1213 		 * or max(cd->cd_ndevs,cf->cf_unit).
1214 		 */
1215 	} else {
1216 		myunit = cf->cf_unit;
1217 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1218 			return NULL;
1219 	}
1220 #else
1221 	myunit = cf->cf_unit;
1222 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1223 
1224 	/* compute length of name and decimal expansion of unit number */
1225 	lname = strlen(cd->cd_name);
1226 	xunit = number(&num[sizeof(num)], myunit);
1227 	lunit = &num[sizeof(num)] - xunit;
1228 	if (lname + lunit > sizeof(dev->dv_xname))
1229 		panic("config_devalloc: device name too long");
1230 
1231 	/* get memory for all device vars */
1232 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1233 	if (ca->ca_devsize > 0) {
1234 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1235 		if (dev_private == NULL)
1236 			panic("config_devalloc: memory allocation for device softc failed");
1237 	} else {
1238 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1239 		dev_private = NULL;
1240 	}
1241 
1242 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1243 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1244 	} else {
1245 		dev = dev_private;
1246 	}
1247 	if (dev == NULL)
1248 		panic("config_devalloc: memory allocation for device_t failed");
1249 
1250 	dvl = device_getlock(dev);
1251 
1252 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1253 	cv_init(&dvl->dvl_cv, "pmfsusp");
1254 
1255 	dev->dv_class = cd->cd_class;
1256 	dev->dv_cfdata = cf;
1257 	dev->dv_cfdriver = cd;
1258 	dev->dv_cfattach = ca;
1259 	dev->dv_unit = myunit;
1260 	dev->dv_activity_count = 0;
1261 	dev->dv_activity_handlers = NULL;
1262 	dev->dv_private = dev_private;
1263 	memcpy(dev->dv_xname, cd->cd_name, lname);
1264 	memcpy(dev->dv_xname + lname, xunit, lunit);
1265 	dev->dv_parent = parent;
1266 	if (parent != NULL)
1267 		dev->dv_depth = parent->dv_depth + 1;
1268 	else
1269 		dev->dv_depth = 0;
1270 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
1271 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
1272 	if (locs) {
1273 		KASSERT(parent); /* no locators at root */
1274 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1275 				    parent->dv_cfdriver);
1276 		dev->dv_locators =
1277 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1278 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1279 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1280 	}
1281 	dev->dv_properties = prop_dictionary_create();
1282 	KASSERT(dev->dv_properties != NULL);
1283 
1284 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1285 	    "device-driver", dev->dv_cfdriver->cd_name);
1286 	prop_dictionary_set_uint16(dev->dv_properties,
1287 	    "device-unit", dev->dv_unit);
1288 
1289 	return dev;
1290 }
1291 
1292 static void
1293 config_devdealloc(device_t dev)
1294 {
1295 	device_lock_t dvl = device_getlock(dev);
1296 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1297 
1298 	cv_destroy(&dvl->dvl_cv);
1299 	mutex_destroy(&dvl->dvl_mtx);
1300 
1301 	KASSERT(dev->dv_properties != NULL);
1302 	prop_object_release(dev->dv_properties);
1303 
1304 	if (dev->dv_activity_handlers)
1305 		panic("config_devdealloc with registered handlers");
1306 
1307 	if (dev->dv_locators) {
1308 		size_t amount = *--dev->dv_locators;
1309 		kmem_free(dev->dv_locators, amount);
1310 	}
1311 
1312 	if (dev->dv_cfattach->ca_devsize > 0)
1313 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1314 	if (priv)
1315 		kmem_free(dev, sizeof(*dev));
1316 }
1317 
1318 /*
1319  * Attach a found device.
1320  */
1321 device_t
1322 config_attach_loc(device_t parent, cfdata_t cf,
1323 	const int *locs, void *aux, cfprint_t print)
1324 {
1325 	device_t dev;
1326 	struct cftable *ct;
1327 	const char *drvname;
1328 
1329 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1330 	if (splash_progress_state)
1331 		splash_progress_update(splash_progress_state);
1332 #endif
1333 
1334 	dev = config_devalloc(parent, cf, locs);
1335 	if (!dev)
1336 		panic("config_attach: allocation of device softc failed");
1337 
1338 	/* XXX redundant - see below? */
1339 	if (cf->cf_fstate != FSTATE_STAR) {
1340 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1341 		cf->cf_fstate = FSTATE_FOUND;
1342 	}
1343 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1344 	  else
1345 		cf->cf_unit++;
1346 #endif
1347 
1348 	config_devlink(dev);
1349 
1350 	if (config_do_twiddle && cold)
1351 		twiddle();
1352 	else
1353 		aprint_naive("Found ");
1354 	/*
1355 	 * We want the next two printfs for normal, verbose, and quiet,
1356 	 * but not silent (in which case, we're twiddling, instead).
1357 	 */
1358 	if (parent == ROOT) {
1359 		aprint_naive("%s (root)", device_xname(dev));
1360 		aprint_normal("%s (root)", device_xname(dev));
1361 	} else {
1362 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1363 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1364 		if (print)
1365 			(void) (*print)(aux, NULL);
1366 	}
1367 
1368 	/*
1369 	 * Before attaching, clobber any unfound devices that are
1370 	 * otherwise identical.
1371 	 * XXX code above is redundant?
1372 	 */
1373 	drvname = dev->dv_cfdriver->cd_name;
1374 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1375 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1376 			if (STREQ(cf->cf_name, drvname) &&
1377 			    cf->cf_unit == dev->dv_unit) {
1378 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1379 					cf->cf_fstate = FSTATE_FOUND;
1380 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1381 				/*
1382 				 * Bump the unit number on all starred cfdata
1383 				 * entries for this device.
1384 				 */
1385 				if (cf->cf_fstate == FSTATE_STAR)
1386 					cf->cf_unit++;
1387 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1388 			}
1389 		}
1390 	}
1391 #ifdef __HAVE_DEVICE_REGISTER
1392 	device_register(dev, aux);
1393 #endif
1394 
1395 	/* Let userland know */
1396 	devmon_report_device(dev, true);
1397 
1398 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1399 	if (splash_progress_state)
1400 		splash_progress_update(splash_progress_state);
1401 #endif
1402 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1403 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1404 	if (splash_progress_state)
1405 		splash_progress_update(splash_progress_state);
1406 #endif
1407 
1408 	if (!device_pmf_is_registered(dev))
1409 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1410 
1411 	config_process_deferred(&deferred_config_queue, dev);
1412 	return dev;
1413 }
1414 
1415 device_t
1416 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1417 {
1418 
1419 	return config_attach_loc(parent, cf, NULL, aux, print);
1420 }
1421 
1422 /*
1423  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1424  * way are silently inserted into the device tree, and their children
1425  * attached.
1426  *
1427  * Note that because pseudo-devices are attached silently, any information
1428  * the attach routine wishes to print should be prefixed with the device
1429  * name by the attach routine.
1430  */
1431 device_t
1432 config_attach_pseudo(cfdata_t cf)
1433 {
1434 	device_t dev;
1435 
1436 	dev = config_devalloc(ROOT, cf, NULL);
1437 	if (!dev)
1438 		return NULL;
1439 
1440 	/* XXX mark busy in cfdata */
1441 
1442 	if (cf->cf_fstate != FSTATE_STAR) {
1443 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1444 		cf->cf_fstate = FSTATE_FOUND;
1445 	}
1446 
1447 	config_devlink(dev);
1448 
1449 #if 0	/* XXXJRT not yet */
1450 #ifdef __HAVE_DEVICE_REGISTER
1451 	device_register(dev, NULL);	/* like a root node */
1452 #endif
1453 #endif
1454 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1455 	config_process_deferred(&deferred_config_queue, dev);
1456 	return dev;
1457 }
1458 
1459 /*
1460  * Detach a device.  Optionally forced (e.g. because of hardware
1461  * removal) and quiet.  Returns zero if successful, non-zero
1462  * (an error code) otherwise.
1463  *
1464  * Note that this code wants to be run from a process context, so
1465  * that the detach can sleep to allow processes which have a device
1466  * open to run and unwind their stacks.
1467  */
1468 int
1469 config_detach(device_t dev, int flags)
1470 {
1471 	struct cftable *ct;
1472 	cfdata_t cf;
1473 	const struct cfattach *ca;
1474 	struct cfdriver *cd;
1475 #ifdef DIAGNOSTIC
1476 	device_t d;
1477 #endif
1478 	int rv = 0;
1479 
1480 #ifdef DIAGNOSTIC
1481 	cf = dev->dv_cfdata;
1482 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1483 	    cf->cf_fstate != FSTATE_STAR)
1484 		panic("config_detach: %s: bad device fstate %d",
1485 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1486 #endif
1487 	cd = dev->dv_cfdriver;
1488 	KASSERT(cd != NULL);
1489 
1490 	ca = dev->dv_cfattach;
1491 	KASSERT(ca != NULL);
1492 
1493 	KASSERT(curlwp != NULL);
1494 	mutex_enter(&alldevs_mtx);
1495 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1496 		;
1497 	else while (alldevs_nread != 0 ||
1498 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1499 		cv_wait(&alldevs_cv, &alldevs_mtx);
1500 	if (alldevs_nwrite++ == 0)
1501 		alldevs_writer = curlwp;
1502 	mutex_exit(&alldevs_mtx);
1503 
1504 	/*
1505 	 * Ensure the device is deactivated.  If the device doesn't
1506 	 * have an activation entry point, we allow DVF_ACTIVE to
1507 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
1508 	 * device is busy, and the detach fails.
1509 	 */
1510 	if (!detachall &&
1511 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1512 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1513 		rv = EBUSY;	/* XXX EOPNOTSUPP? */
1514 	} else if ((rv = config_deactivate(dev)) == EOPNOTSUPP)
1515 		rv = 0;	/* Do not treat EOPNOTSUPP as an error */
1516 
1517 	/*
1518 	 * Try to detach the device.  If that's not possible, then
1519 	 * we either panic() (for the forced but failed case), or
1520 	 * return an error.
1521 	 */
1522 	if (rv == 0) {
1523 		if (ca->ca_detach != NULL)
1524 			rv = (*ca->ca_detach)(dev, flags);
1525 		else
1526 			rv = EOPNOTSUPP;
1527 	}
1528 	if (rv != 0) {
1529 		if ((flags & DETACH_FORCE) == 0)
1530 			goto out;
1531 		else
1532 			panic("config_detach: forced detach of %s failed (%d)",
1533 			    device_xname(dev), rv);
1534 	}
1535 
1536 	dev->dv_flags &= ~DVF_ACTIVE;
1537 
1538 	/*
1539 	 * The device has now been successfully detached.
1540 	 */
1541 
1542 	/* Let userland know */
1543 	devmon_report_device(dev, false);
1544 
1545 #ifdef DIAGNOSTIC
1546 	/*
1547 	 * Sanity: If you're successfully detached, you should have no
1548 	 * children.  (Note that because children must be attached
1549 	 * after parents, we only need to search the latter part of
1550 	 * the list.)
1551 	 */
1552 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1553 	    d = TAILQ_NEXT(d, dv_list)) {
1554 		if (d->dv_parent == dev) {
1555 			printf("config_detach: detached device %s"
1556 			    " has children %s\n", device_xname(dev), device_xname(d));
1557 			panic("config_detach");
1558 		}
1559 	}
1560 #endif
1561 
1562 	/* notify the parent that the child is gone */
1563 	if (dev->dv_parent) {
1564 		device_t p = dev->dv_parent;
1565 		if (p->dv_cfattach->ca_childdetached)
1566 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1567 	}
1568 
1569 	/*
1570 	 * Mark cfdata to show that the unit can be reused, if possible.
1571 	 */
1572 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1573 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1574 			if (STREQ(cf->cf_name, cd->cd_name)) {
1575 				if (cf->cf_fstate == FSTATE_FOUND &&
1576 				    cf->cf_unit == dev->dv_unit)
1577 					cf->cf_fstate = FSTATE_NOTFOUND;
1578 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1579 				/*
1580 				 * Note that we can only re-use a starred
1581 				 * unit number if the unit being detached
1582 				 * had the last assigned unit number.
1583 				 */
1584 				if (cf->cf_fstate == FSTATE_STAR &&
1585 				    cf->cf_unit == dev->dv_unit + 1)
1586 					cf->cf_unit--;
1587 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1588 			}
1589 		}
1590 	}
1591 
1592 	config_devunlink(dev);
1593 
1594 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1595 		aprint_normal_dev(dev, "detached\n");
1596 
1597 	config_devdealloc(dev);
1598 
1599 out:
1600 	mutex_enter(&alldevs_mtx);
1601 	if (--alldevs_nwrite == 0)
1602 		alldevs_writer = NULL;
1603 	cv_signal(&alldevs_cv);
1604 	mutex_exit(&alldevs_mtx);
1605 	return rv;
1606 }
1607 
1608 int
1609 config_detach_children(device_t parent, int flags)
1610 {
1611 	device_t dv;
1612 	deviter_t di;
1613 	int error = 0;
1614 
1615 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1616 	     dv = deviter_next(&di)) {
1617 		if (device_parent(dv) != parent)
1618 			continue;
1619 		if ((error = config_detach(dv, flags)) != 0)
1620 			break;
1621 	}
1622 	deviter_release(&di);
1623 	return error;
1624 }
1625 
1626 int
1627 config_activate(device_t dev)
1628 {
1629 	const struct cfattach *ca = dev->dv_cfattach;
1630 	int rv = 0, oflags = dev->dv_flags;
1631 
1632 	if (ca->ca_activate == NULL)
1633 		return EOPNOTSUPP;
1634 
1635 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1636 		dev->dv_flags |= DVF_ACTIVE;
1637 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1638 		if (rv)
1639 			dev->dv_flags = oflags;
1640 	}
1641 	return rv;
1642 }
1643 
1644 int
1645 config_deactivate(device_t dev)
1646 {
1647 	const struct cfattach *ca = dev->dv_cfattach;
1648 	int rv = 0, oflags = dev->dv_flags;
1649 
1650 	if (ca->ca_activate == NULL)
1651 		return EOPNOTSUPP;
1652 
1653 	if (dev->dv_flags & DVF_ACTIVE) {
1654 		dev->dv_flags &= ~DVF_ACTIVE;
1655 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1656 		if (rv)
1657 			dev->dv_flags = oflags;
1658 	}
1659 	return rv;
1660 }
1661 
1662 /*
1663  * Defer the configuration of the specified device until all
1664  * of its parent's devices have been attached.
1665  */
1666 void
1667 config_defer(device_t dev, void (*func)(device_t))
1668 {
1669 	struct deferred_config *dc;
1670 
1671 	if (dev->dv_parent == NULL)
1672 		panic("config_defer: can't defer config of a root device");
1673 
1674 #ifdef DIAGNOSTIC
1675 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1676 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1677 		if (dc->dc_dev == dev)
1678 			panic("config_defer: deferred twice");
1679 	}
1680 #endif
1681 
1682 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1683 	if (dc == NULL)
1684 		panic("config_defer: unable to allocate callback");
1685 
1686 	dc->dc_dev = dev;
1687 	dc->dc_func = func;
1688 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1689 	config_pending_incr();
1690 }
1691 
1692 /*
1693  * Defer some autoconfiguration for a device until after interrupts
1694  * are enabled.
1695  */
1696 void
1697 config_interrupts(device_t dev, void (*func)(device_t))
1698 {
1699 	struct deferred_config *dc;
1700 
1701 	/*
1702 	 * If interrupts are enabled, callback now.
1703 	 */
1704 	if (cold == 0) {
1705 		(*func)(dev);
1706 		return;
1707 	}
1708 
1709 #ifdef DIAGNOSTIC
1710 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1711 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1712 		if (dc->dc_dev == dev)
1713 			panic("config_interrupts: deferred twice");
1714 	}
1715 #endif
1716 
1717 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1718 	if (dc == NULL)
1719 		panic("config_interrupts: unable to allocate callback");
1720 
1721 	dc->dc_dev = dev;
1722 	dc->dc_func = func;
1723 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1724 	config_pending_incr();
1725 }
1726 
1727 /*
1728  * Process a deferred configuration queue.
1729  */
1730 static void
1731 config_process_deferred(struct deferred_config_head *queue,
1732     device_t parent)
1733 {
1734 	struct deferred_config *dc, *ndc;
1735 
1736 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1737 		ndc = TAILQ_NEXT(dc, dc_queue);
1738 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1739 			TAILQ_REMOVE(queue, dc, dc_queue);
1740 			(*dc->dc_func)(dc->dc_dev);
1741 			kmem_free(dc, sizeof(*dc));
1742 			config_pending_decr();
1743 		}
1744 	}
1745 }
1746 
1747 /*
1748  * Manipulate the config_pending semaphore.
1749  */
1750 void
1751 config_pending_incr(void)
1752 {
1753 
1754 	mutex_enter(&config_misc_lock);
1755 	config_pending++;
1756 	mutex_exit(&config_misc_lock);
1757 }
1758 
1759 void
1760 config_pending_decr(void)
1761 {
1762 
1763 #ifdef DIAGNOSTIC
1764 	if (config_pending == 0)
1765 		panic("config_pending_decr: config_pending == 0");
1766 #endif
1767 	mutex_enter(&config_misc_lock);
1768 	config_pending--;
1769 	if (config_pending == 0)
1770 		cv_broadcast(&config_misc_cv);
1771 	mutex_exit(&config_misc_lock);
1772 }
1773 
1774 /*
1775  * Register a "finalization" routine.  Finalization routines are
1776  * called iteratively once all real devices have been found during
1777  * autoconfiguration, for as long as any one finalizer has done
1778  * any work.
1779  */
1780 int
1781 config_finalize_register(device_t dev, int (*fn)(device_t))
1782 {
1783 	struct finalize_hook *f;
1784 
1785 	/*
1786 	 * If finalization has already been done, invoke the
1787 	 * callback function now.
1788 	 */
1789 	if (config_finalize_done) {
1790 		while ((*fn)(dev) != 0)
1791 			/* loop */ ;
1792 	}
1793 
1794 	/* Ensure this isn't already on the list. */
1795 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1796 		if (f->f_func == fn && f->f_dev == dev)
1797 			return EEXIST;
1798 	}
1799 
1800 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
1801 	f->f_func = fn;
1802 	f->f_dev = dev;
1803 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1804 
1805 	return 0;
1806 }
1807 
1808 void
1809 config_finalize(void)
1810 {
1811 	struct finalize_hook *f;
1812 	struct pdevinit *pdev;
1813 	extern struct pdevinit pdevinit[];
1814 	int errcnt, rv;
1815 
1816 	/*
1817 	 * Now that device driver threads have been created, wait for
1818 	 * them to finish any deferred autoconfiguration.
1819 	 */
1820 	mutex_enter(&config_misc_lock);
1821 	while (config_pending != 0)
1822 		cv_wait(&config_misc_cv, &config_misc_lock);
1823 	mutex_exit(&config_misc_lock);
1824 
1825 	KERNEL_LOCK(1, NULL);
1826 
1827 	/* Attach pseudo-devices. */
1828 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1829 		(*pdev->pdev_attach)(pdev->pdev_count);
1830 
1831 	/* Run the hooks until none of them does any work. */
1832 	do {
1833 		rv = 0;
1834 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1835 			rv |= (*f->f_func)(f->f_dev);
1836 	} while (rv != 0);
1837 
1838 	config_finalize_done = 1;
1839 
1840 	/* Now free all the hooks. */
1841 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1842 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1843 		kmem_free(f, sizeof(*f));
1844 	}
1845 
1846 	KERNEL_UNLOCK_ONE(NULL);
1847 
1848 	errcnt = aprint_get_error_count();
1849 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1850 	    (boothowto & AB_VERBOSE) == 0) {
1851 		mutex_enter(&config_misc_lock);
1852 		if (config_do_twiddle) {
1853 			config_do_twiddle = 0;
1854 			printf_nolog(" done.\n");
1855 		}
1856 		mutex_exit(&config_misc_lock);
1857 		if (errcnt != 0) {
1858 			printf("WARNING: %d error%s while detecting hardware; "
1859 			    "check system log.\n", errcnt,
1860 			    errcnt == 1 ? "" : "s");
1861 		}
1862 	}
1863 }
1864 
1865 void
1866 config_twiddle_fn(void *cookie)
1867 {
1868 
1869 	mutex_enter(&config_misc_lock);
1870 	if (config_do_twiddle) {
1871 		twiddle();
1872 		callout_schedule(&config_twiddle_ch, mstohz(100));
1873 	}
1874 	mutex_exit(&config_misc_lock);
1875 }
1876 
1877 /*
1878  * device_lookup:
1879  *
1880  *	Look up a device instance for a given driver.
1881  */
1882 device_t
1883 device_lookup(cfdriver_t cd, int unit)
1884 {
1885 
1886 	if (unit < 0 || unit >= cd->cd_ndevs)
1887 		return NULL;
1888 
1889 	return cd->cd_devs[unit];
1890 }
1891 
1892 /*
1893  * device_lookup:
1894  *
1895  *	Look up a device instance for a given driver.
1896  */
1897 void *
1898 device_lookup_private(cfdriver_t cd, int unit)
1899 {
1900 	device_t dv;
1901 
1902 	if (unit < 0 || unit >= cd->cd_ndevs)
1903 		return NULL;
1904 
1905 	if ((dv = cd->cd_devs[unit]) == NULL)
1906 		return NULL;
1907 
1908 	return dv->dv_private;
1909 }
1910 
1911 /*
1912  * Accessor functions for the device_t type.
1913  */
1914 devclass_t
1915 device_class(device_t dev)
1916 {
1917 
1918 	return dev->dv_class;
1919 }
1920 
1921 cfdata_t
1922 device_cfdata(device_t dev)
1923 {
1924 
1925 	return dev->dv_cfdata;
1926 }
1927 
1928 cfdriver_t
1929 device_cfdriver(device_t dev)
1930 {
1931 
1932 	return dev->dv_cfdriver;
1933 }
1934 
1935 cfattach_t
1936 device_cfattach(device_t dev)
1937 {
1938 
1939 	return dev->dv_cfattach;
1940 }
1941 
1942 int
1943 device_unit(device_t dev)
1944 {
1945 
1946 	return dev->dv_unit;
1947 }
1948 
1949 const char *
1950 device_xname(device_t dev)
1951 {
1952 
1953 	return dev->dv_xname;
1954 }
1955 
1956 device_t
1957 device_parent(device_t dev)
1958 {
1959 
1960 	return dev->dv_parent;
1961 }
1962 
1963 bool
1964 device_is_active(device_t dev)
1965 {
1966 	int active_flags;
1967 
1968 	active_flags = DVF_ACTIVE;
1969 	active_flags |= DVF_CLASS_SUSPENDED;
1970 	active_flags |= DVF_DRIVER_SUSPENDED;
1971 	active_flags |= DVF_BUS_SUSPENDED;
1972 
1973 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1974 }
1975 
1976 bool
1977 device_is_enabled(device_t dev)
1978 {
1979 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1980 }
1981 
1982 bool
1983 device_has_power(device_t dev)
1984 {
1985 	int active_flags;
1986 
1987 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1988 
1989 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1990 }
1991 
1992 int
1993 device_locator(device_t dev, u_int locnum)
1994 {
1995 
1996 	KASSERT(dev->dv_locators != NULL);
1997 	return dev->dv_locators[locnum];
1998 }
1999 
2000 void *
2001 device_private(device_t dev)
2002 {
2003 
2004 	/*
2005 	 * The reason why device_private(NULL) is allowed is to simplify the
2006 	 * work of a lot of userspace request handlers (i.e., c/bdev
2007 	 * handlers) which grab cfdriver_t->cd_units[n].
2008 	 * It avoids having them test for it to be NULL and only then calling
2009 	 * device_private.
2010 	 */
2011 	return dev == NULL ? NULL : dev->dv_private;
2012 }
2013 
2014 prop_dictionary_t
2015 device_properties(device_t dev)
2016 {
2017 
2018 	return dev->dv_properties;
2019 }
2020 
2021 /*
2022  * device_is_a:
2023  *
2024  *	Returns true if the device is an instance of the specified
2025  *	driver.
2026  */
2027 bool
2028 device_is_a(device_t dev, const char *dname)
2029 {
2030 
2031 	return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
2032 }
2033 
2034 /*
2035  * device_find_by_xname:
2036  *
2037  *	Returns the device of the given name or NULL if it doesn't exist.
2038  */
2039 device_t
2040 device_find_by_xname(const char *name)
2041 {
2042 	device_t dv;
2043 	deviter_t di;
2044 
2045 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2046 		if (strcmp(device_xname(dv), name) == 0)
2047 			break;
2048 	}
2049 	deviter_release(&di);
2050 
2051 	return dv;
2052 }
2053 
2054 /*
2055  * device_find_by_driver_unit:
2056  *
2057  *	Returns the device of the given driver name and unit or
2058  *	NULL if it doesn't exist.
2059  */
2060 device_t
2061 device_find_by_driver_unit(const char *name, int unit)
2062 {
2063 	struct cfdriver *cd;
2064 
2065 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2066 		return NULL;
2067 	return device_lookup(cd, unit);
2068 }
2069 
2070 /*
2071  * Power management related functions.
2072  */
2073 
2074 bool
2075 device_pmf_is_registered(device_t dev)
2076 {
2077 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2078 }
2079 
2080 bool
2081 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2082 {
2083 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2084 		return true;
2085 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2086 		return false;
2087 	if (*dev->dv_driver_suspend != NULL &&
2088 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2089 		return false;
2090 
2091 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2092 	return true;
2093 }
2094 
2095 bool
2096 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2097 {
2098 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2099 		return true;
2100 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2101 		return false;
2102 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2103 		return false;
2104 	if (*dev->dv_driver_resume != NULL &&
2105 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2106 		return false;
2107 
2108 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2109 	return true;
2110 }
2111 
2112 bool
2113 device_pmf_driver_shutdown(device_t dev, int how)
2114 {
2115 
2116 	if (*dev->dv_driver_shutdown != NULL &&
2117 	    !(*dev->dv_driver_shutdown)(dev, how))
2118 		return false;
2119 	return true;
2120 }
2121 
2122 bool
2123 device_pmf_driver_register(device_t dev,
2124     bool (*suspend)(device_t PMF_FN_PROTO),
2125     bool (*resume)(device_t PMF_FN_PROTO),
2126     bool (*shutdown)(device_t, int))
2127 {
2128 	dev->dv_driver_suspend = suspend;
2129 	dev->dv_driver_resume = resume;
2130 	dev->dv_driver_shutdown = shutdown;
2131 	dev->dv_flags |= DVF_POWER_HANDLERS;
2132 	return true;
2133 }
2134 
2135 static const char *
2136 curlwp_name(void)
2137 {
2138 	if (curlwp->l_name != NULL)
2139 		return curlwp->l_name;
2140 	else
2141 		return curlwp->l_proc->p_comm;
2142 }
2143 
2144 void
2145 device_pmf_driver_deregister(device_t dev)
2146 {
2147 	device_lock_t dvl = device_getlock(dev);
2148 
2149 	dev->dv_driver_suspend = NULL;
2150 	dev->dv_driver_resume = NULL;
2151 
2152 	mutex_enter(&dvl->dvl_mtx);
2153 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2154 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2155 		/* Wake a thread that waits for the lock.  That
2156 		 * thread will fail to acquire the lock, and then
2157 		 * it will wake the next thread that waits for the
2158 		 * lock, or else it will wake us.
2159 		 */
2160 		cv_signal(&dvl->dvl_cv);
2161 		pmflock_debug(dev, __func__, __LINE__);
2162 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2163 		pmflock_debug(dev, __func__, __LINE__);
2164 	}
2165 	mutex_exit(&dvl->dvl_mtx);
2166 }
2167 
2168 bool
2169 device_pmf_driver_child_register(device_t dev)
2170 {
2171 	device_t parent = device_parent(dev);
2172 
2173 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2174 		return true;
2175 	return (*parent->dv_driver_child_register)(dev);
2176 }
2177 
2178 void
2179 device_pmf_driver_set_child_register(device_t dev,
2180     bool (*child_register)(device_t))
2181 {
2182 	dev->dv_driver_child_register = child_register;
2183 }
2184 
2185 void
2186 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2187 {
2188 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2189 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2190 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2191 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2192 }
2193 
2194 bool
2195 device_is_self_suspended(device_t dev)
2196 {
2197 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2198 }
2199 
2200 void
2201 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2202 {
2203 	bool self = (flags & PMF_F_SELF) != 0;
2204 
2205 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2206 
2207 	if (!self)
2208 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2209 	else if (device_is_active(dev))
2210 		dev->dv_flags |= DVF_SELF_SUSPENDED;
2211 
2212 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2213 }
2214 
2215 static void
2216 pmflock_debug(device_t dev, const char *func, int line)
2217 {
2218 	device_lock_t dvl = device_getlock(dev);
2219 
2220 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2221 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2222 	    dev->dv_flags);
2223 }
2224 
2225 static void
2226 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2227 {
2228 	device_lock_t dvl = device_getlock(dev);
2229 
2230 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x "
2231 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2232 	    dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL);
2233 }
2234 
2235 static bool
2236 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2237 {
2238 	device_lock_t dvl = device_getlock(dev);
2239 
2240 	while (device_pmf_is_registered(dev) &&
2241 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2242 		dvl->dvl_nwait++;
2243 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2244 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2245 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2246 		dvl->dvl_nwait--;
2247 	}
2248 	if (!device_pmf_is_registered(dev)) {
2249 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2250 		/* We could not acquire the lock, but some other thread may
2251 		 * wait for it, also.  Wake that thread.
2252 		 */
2253 		cv_signal(&dvl->dvl_cv);
2254 		return false;
2255 	}
2256 	dvl->dvl_nlock++;
2257 	dvl->dvl_holder = curlwp;
2258 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2259 	return true;
2260 }
2261 
2262 bool
2263 device_pmf_lock(device_t dev PMF_FN_ARGS)
2264 {
2265 	bool rc;
2266 	device_lock_t dvl = device_getlock(dev);
2267 
2268 	mutex_enter(&dvl->dvl_mtx);
2269 	rc = device_pmf_lock1(dev PMF_FN_CALL);
2270 	mutex_exit(&dvl->dvl_mtx);
2271 
2272 	return rc;
2273 }
2274 
2275 void
2276 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2277 {
2278 	device_lock_t dvl = device_getlock(dev);
2279 
2280 	KASSERT(dvl->dvl_nlock > 0);
2281 	mutex_enter(&dvl->dvl_mtx);
2282 	if (--dvl->dvl_nlock == 0)
2283 		dvl->dvl_holder = NULL;
2284 	cv_signal(&dvl->dvl_cv);
2285 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2286 	mutex_exit(&dvl->dvl_mtx);
2287 }
2288 
2289 device_lock_t
2290 device_getlock(device_t dev)
2291 {
2292 	return &dev->dv_lock;
2293 }
2294 
2295 void *
2296 device_pmf_bus_private(device_t dev)
2297 {
2298 	return dev->dv_bus_private;
2299 }
2300 
2301 bool
2302 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2303 {
2304 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2305 		return true;
2306 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2307 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2308 		return false;
2309 	if (*dev->dv_bus_suspend != NULL &&
2310 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2311 		return false;
2312 
2313 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2314 	return true;
2315 }
2316 
2317 bool
2318 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2319 {
2320 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2321 		return true;
2322 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2323 		return false;
2324 	if (*dev->dv_bus_resume != NULL &&
2325 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2326 		return false;
2327 
2328 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2329 	return true;
2330 }
2331 
2332 bool
2333 device_pmf_bus_shutdown(device_t dev, int how)
2334 {
2335 
2336 	if (*dev->dv_bus_shutdown != NULL &&
2337 	    !(*dev->dv_bus_shutdown)(dev, how))
2338 		return false;
2339 	return true;
2340 }
2341 
2342 void
2343 device_pmf_bus_register(device_t dev, void *priv,
2344     bool (*suspend)(device_t PMF_FN_PROTO),
2345     bool (*resume)(device_t PMF_FN_PROTO),
2346     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2347 {
2348 	dev->dv_bus_private = priv;
2349 	dev->dv_bus_resume = resume;
2350 	dev->dv_bus_suspend = suspend;
2351 	dev->dv_bus_shutdown = shutdown;
2352 	dev->dv_bus_deregister = deregister;
2353 }
2354 
2355 void
2356 device_pmf_bus_deregister(device_t dev)
2357 {
2358 	if (dev->dv_bus_deregister == NULL)
2359 		return;
2360 	(*dev->dv_bus_deregister)(dev);
2361 	dev->dv_bus_private = NULL;
2362 	dev->dv_bus_suspend = NULL;
2363 	dev->dv_bus_resume = NULL;
2364 	dev->dv_bus_deregister = NULL;
2365 }
2366 
2367 void *
2368 device_pmf_class_private(device_t dev)
2369 {
2370 	return dev->dv_class_private;
2371 }
2372 
2373 bool
2374 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2375 {
2376 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2377 		return true;
2378 	if (*dev->dv_class_suspend != NULL &&
2379 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2380 		return false;
2381 
2382 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2383 	return true;
2384 }
2385 
2386 bool
2387 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2388 {
2389 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2390 		return true;
2391 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2392 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2393 		return false;
2394 	if (*dev->dv_class_resume != NULL &&
2395 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2396 		return false;
2397 
2398 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2399 	return true;
2400 }
2401 
2402 void
2403 device_pmf_class_register(device_t dev, void *priv,
2404     bool (*suspend)(device_t PMF_FN_PROTO),
2405     bool (*resume)(device_t PMF_FN_PROTO),
2406     void (*deregister)(device_t))
2407 {
2408 	dev->dv_class_private = priv;
2409 	dev->dv_class_suspend = suspend;
2410 	dev->dv_class_resume = resume;
2411 	dev->dv_class_deregister = deregister;
2412 }
2413 
2414 void
2415 device_pmf_class_deregister(device_t dev)
2416 {
2417 	if (dev->dv_class_deregister == NULL)
2418 		return;
2419 	(*dev->dv_class_deregister)(dev);
2420 	dev->dv_class_private = NULL;
2421 	dev->dv_class_suspend = NULL;
2422 	dev->dv_class_resume = NULL;
2423 	dev->dv_class_deregister = NULL;
2424 }
2425 
2426 bool
2427 device_active(device_t dev, devactive_t type)
2428 {
2429 	size_t i;
2430 
2431 	if (dev->dv_activity_count == 0)
2432 		return false;
2433 
2434 	for (i = 0; i < dev->dv_activity_count; ++i) {
2435 		if (dev->dv_activity_handlers[i] == NULL)
2436 			break;
2437 		(*dev->dv_activity_handlers[i])(dev, type);
2438 	}
2439 
2440 	return true;
2441 }
2442 
2443 bool
2444 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2445 {
2446 	void (**new_handlers)(device_t, devactive_t);
2447 	void (**old_handlers)(device_t, devactive_t);
2448 	size_t i, old_size, new_size;
2449 	int s;
2450 
2451 	old_handlers = dev->dv_activity_handlers;
2452 	old_size = dev->dv_activity_count;
2453 
2454 	for (i = 0; i < old_size; ++i) {
2455 		KASSERT(old_handlers[i] != handler);
2456 		if (old_handlers[i] == NULL) {
2457 			old_handlers[i] = handler;
2458 			return true;
2459 		}
2460 	}
2461 
2462 	new_size = old_size + 4;
2463 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2464 
2465 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2466 	new_handlers[old_size] = handler;
2467 	memset(new_handlers + old_size + 1, 0,
2468 	    sizeof(int [new_size - (old_size+1)]));
2469 
2470 	s = splhigh();
2471 	dev->dv_activity_count = new_size;
2472 	dev->dv_activity_handlers = new_handlers;
2473 	splx(s);
2474 
2475 	if (old_handlers != NULL)
2476 		kmem_free(old_handlers, sizeof(void * [old_size]));
2477 
2478 	return true;
2479 }
2480 
2481 void
2482 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2483 {
2484 	void (**old_handlers)(device_t, devactive_t);
2485 	size_t i, old_size;
2486 	int s;
2487 
2488 	old_handlers = dev->dv_activity_handlers;
2489 	old_size = dev->dv_activity_count;
2490 
2491 	for (i = 0; i < old_size; ++i) {
2492 		if (old_handlers[i] == handler)
2493 			break;
2494 		if (old_handlers[i] == NULL)
2495 			return; /* XXX panic? */
2496 	}
2497 
2498 	if (i == old_size)
2499 		return; /* XXX panic? */
2500 
2501 	for (; i < old_size - 1; ++i) {
2502 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2503 			continue;
2504 
2505 		if (i == 0) {
2506 			s = splhigh();
2507 			dev->dv_activity_count = 0;
2508 			dev->dv_activity_handlers = NULL;
2509 			splx(s);
2510 			kmem_free(old_handlers, sizeof(void *[old_size]));
2511 		}
2512 		return;
2513 	}
2514 	old_handlers[i] = NULL;
2515 }
2516 
2517 /*
2518  * Device Iteration
2519  *
2520  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2521  *     each device_t's in the device tree.
2522  *
2523  * deviter_init(di, flags): initialize the device iterator `di'
2524  *     to "walk" the device tree.  deviter_next(di) will return
2525  *     the first device_t in the device tree, or NULL if there are
2526  *     no devices.
2527  *
2528  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2529  *     caller intends to modify the device tree by calling
2530  *     config_detach(9) on devices in the order that the iterator
2531  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2532  *     nearest the "root" of the device tree to be returned, first;
2533  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2534  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2535  *     indicating both that deviter_init() should not respect any
2536  *     locks on the device tree, and that deviter_next(di) may run
2537  *     in more than one LWP before the walk has finished.
2538  *
2539  *     Only one DEVITER_F_RW iterator may be in the device tree at
2540  *     once.
2541  *
2542  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2543  *
2544  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2545  *     DEVITER_F_LEAVES_FIRST are used in combination.
2546  *
2547  * deviter_first(di, flags): initialize the device iterator `di'
2548  *     and return the first device_t in the device tree, or NULL
2549  *     if there are no devices.  The statement
2550  *
2551  *         dv = deviter_first(di);
2552  *
2553  *     is shorthand for
2554  *
2555  *         deviter_init(di);
2556  *         dv = deviter_next(di);
2557  *
2558  * deviter_next(di): return the next device_t in the device tree,
2559  *     or NULL if there are no more devices.  deviter_next(di)
2560  *     is undefined if `di' was not initialized with deviter_init() or
2561  *     deviter_first().
2562  *
2563  * deviter_release(di): stops iteration (subsequent calls to
2564  *     deviter_next() will return NULL), releases any locks and
2565  *     resources held by the device iterator.
2566  *
2567  * Device iteration does not return device_t's in any particular
2568  * order.  An iterator will never return the same device_t twice.
2569  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2570  * is called repeatedly on the same `di', it will eventually return
2571  * NULL.  It is ok to attach/detach devices during device iteration.
2572  */
2573 void
2574 deviter_init(deviter_t *di, deviter_flags_t flags)
2575 {
2576 	device_t dv;
2577 	bool rw;
2578 
2579 	mutex_enter(&alldevs_mtx);
2580 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2581 		flags |= DEVITER_F_RW;
2582 		alldevs_nwrite++;
2583 		alldevs_writer = NULL;
2584 		alldevs_nread = 0;
2585 	} else {
2586 		rw = (flags & DEVITER_F_RW) != 0;
2587 
2588 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2589 			;
2590 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2591 		       (rw && alldevs_nread != 0))
2592 			cv_wait(&alldevs_cv, &alldevs_mtx);
2593 
2594 		if (rw) {
2595 			if (alldevs_nwrite++ == 0)
2596 				alldevs_writer = curlwp;
2597 		} else
2598 			alldevs_nread++;
2599 	}
2600 	mutex_exit(&alldevs_mtx);
2601 
2602 	memset(di, 0, sizeof(*di));
2603 
2604 	di->di_flags = flags;
2605 
2606 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2607 	case DEVITER_F_LEAVES_FIRST:
2608 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2609 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2610 		break;
2611 	case DEVITER_F_ROOT_FIRST:
2612 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2613 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2614 		break;
2615 	default:
2616 		break;
2617 	}
2618 
2619 	deviter_reinit(di);
2620 }
2621 
2622 static void
2623 deviter_reinit(deviter_t *di)
2624 {
2625 	if ((di->di_flags & DEVITER_F_RW) != 0)
2626 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2627 	else
2628 		di->di_prev = TAILQ_FIRST(&alldevs);
2629 }
2630 
2631 device_t
2632 deviter_first(deviter_t *di, deviter_flags_t flags)
2633 {
2634 	deviter_init(di, flags);
2635 	return deviter_next(di);
2636 }
2637 
2638 static device_t
2639 deviter_next1(deviter_t *di)
2640 {
2641 	device_t dv;
2642 
2643 	dv = di->di_prev;
2644 
2645 	if (dv == NULL)
2646 		;
2647 	else if ((di->di_flags & DEVITER_F_RW) != 0)
2648 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2649 	else
2650 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2651 
2652 	return dv;
2653 }
2654 
2655 device_t
2656 deviter_next(deviter_t *di)
2657 {
2658 	device_t dv = NULL;
2659 
2660 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2661 	case 0:
2662 		return deviter_next1(di);
2663 	case DEVITER_F_LEAVES_FIRST:
2664 		while (di->di_curdepth >= 0) {
2665 			if ((dv = deviter_next1(di)) == NULL) {
2666 				di->di_curdepth--;
2667 				deviter_reinit(di);
2668 			} else if (dv->dv_depth == di->di_curdepth)
2669 				break;
2670 		}
2671 		return dv;
2672 	case DEVITER_F_ROOT_FIRST:
2673 		while (di->di_curdepth <= di->di_maxdepth) {
2674 			if ((dv = deviter_next1(di)) == NULL) {
2675 				di->di_curdepth++;
2676 				deviter_reinit(di);
2677 			} else if (dv->dv_depth == di->di_curdepth)
2678 				break;
2679 		}
2680 		return dv;
2681 	default:
2682 		return NULL;
2683 	}
2684 }
2685 
2686 void
2687 deviter_release(deviter_t *di)
2688 {
2689 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2690 
2691 	mutex_enter(&alldevs_mtx);
2692 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2693 		--alldevs_nwrite;
2694 	else {
2695 
2696 		if (rw) {
2697 			if (--alldevs_nwrite == 0)
2698 				alldevs_writer = NULL;
2699 		} else
2700 			--alldevs_nread;
2701 
2702 		cv_signal(&alldevs_cv);
2703 	}
2704 	mutex_exit(&alldevs_mtx);
2705 }
2706 
2707 SYSCTL_SETUP(sysctl_detach_setup, "sysctl detach setup")
2708 {
2709 	const struct sysctlnode *node = NULL;
2710 
2711 	sysctl_createv(clog, 0, NULL, &node,
2712 		CTLFLAG_PERMANENT,
2713 		CTLTYPE_NODE, "kern", NULL,
2714 		NULL, 0, NULL, 0,
2715 		CTL_KERN, CTL_EOL);
2716 
2717 	if (node == NULL)
2718 		return;
2719 
2720 	sysctl_createv(clog, 0, &node, NULL,
2721 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2722 		CTLTYPE_INT, "detachall",
2723 		SYSCTL_DESCR("Detach all devices at shutdown"),
2724 		NULL, 0, &detachall, 0,
2725 		CTL_CREATE, CTL_EOL);
2726 }
2727