1 /* $NetBSD: subr_autoconf.c,v 1.247 2016/07/19 07:44:03 msaitoh Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.247 2016/07/19 07:44:03 msaitoh Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/disklabel.h> 90 #include <sys/conf.h> 91 #include <sys/kauth.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 111 #include <sys/disk.h> 112 113 #include <sys/rndsource.h> 114 115 #include <machine/limits.h> 116 117 /* 118 * Autoconfiguration subroutines. 119 */ 120 121 /* 122 * Device autoconfiguration timings are mixed into the entropy pool. 123 */ 124 extern krndsource_t rnd_autoconf_source; 125 126 /* 127 * ioconf.c exports exactly two names: cfdata and cfroots. All system 128 * devices and drivers are found via these tables. 129 */ 130 extern struct cfdata cfdata[]; 131 extern const short cfroots[]; 132 133 /* 134 * List of all cfdriver structures. We use this to detect duplicates 135 * when other cfdrivers are loaded. 136 */ 137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 138 extern struct cfdriver * const cfdriver_list_initial[]; 139 140 /* 141 * Initial list of cfattach's. 142 */ 143 extern const struct cfattachinit cfattachinit[]; 144 145 /* 146 * List of cfdata tables. We always have one such list -- the one 147 * built statically when the kernel was configured. 148 */ 149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 150 static struct cftable initcftable; 151 152 #define ROOT ((device_t)NULL) 153 154 struct matchinfo { 155 cfsubmatch_t fn; 156 device_t parent; 157 const int *locs; 158 void *aux; 159 struct cfdata *match; 160 int pri; 161 }; 162 163 struct alldevs_foray { 164 int af_s; 165 struct devicelist af_garbage; 166 }; 167 168 static char *number(char *, int); 169 static void mapply(struct matchinfo *, cfdata_t); 170 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 171 static void config_devdelete(device_t); 172 static void config_devunlink(device_t, struct devicelist *); 173 static void config_makeroom(int, struct cfdriver *); 174 static void config_devlink(device_t); 175 static void config_alldevs_enter(struct alldevs_foray *); 176 static void config_alldevs_exit(struct alldevs_foray *); 177 static void config_add_attrib_dict(device_t); 178 179 static void config_collect_garbage(struct devicelist *); 180 static void config_dump_garbage(struct devicelist *); 181 182 static void pmflock_debug(device_t, const char *, int); 183 184 static device_t deviter_next1(deviter_t *); 185 static void deviter_reinit(deviter_t *); 186 187 struct deferred_config { 188 TAILQ_ENTRY(deferred_config) dc_queue; 189 device_t dc_dev; 190 void (*dc_func)(device_t); 191 }; 192 193 TAILQ_HEAD(deferred_config_head, deferred_config); 194 195 struct deferred_config_head deferred_config_queue = 196 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 197 struct deferred_config_head interrupt_config_queue = 198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 199 int interrupt_config_threads = 8; 200 struct deferred_config_head mountroot_config_queue = 201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 202 int mountroot_config_threads = 2; 203 static lwp_t **mountroot_config_lwpids; 204 static size_t mountroot_config_lwpids_size; 205 static bool root_is_mounted = false; 206 207 static void config_process_deferred(struct deferred_config_head *, device_t); 208 209 /* Hooks to finalize configuration once all real devices have been found. */ 210 struct finalize_hook { 211 TAILQ_ENTRY(finalize_hook) f_list; 212 int (*f_func)(device_t); 213 device_t f_dev; 214 }; 215 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 216 TAILQ_HEAD_INITIALIZER(config_finalize_list); 217 static int config_finalize_done; 218 219 /* list of all devices */ 220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 221 static kmutex_t alldevs_mtx; 222 static volatile bool alldevs_garbage = false; 223 static volatile devgen_t alldevs_gen = 1; 224 static volatile int alldevs_nread = 0; 225 static volatile int alldevs_nwrite = 0; 226 227 static int config_pending; /* semaphore for mountroot */ 228 static kmutex_t config_misc_lock; 229 static kcondvar_t config_misc_cv; 230 231 static bool detachall = false; 232 233 #define STREQ(s1, s2) \ 234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 235 236 static bool config_initialized = false; /* config_init() has been called. */ 237 238 static int config_do_twiddle; 239 static callout_t config_twiddle_ch; 240 241 static void sysctl_detach_setup(struct sysctllog **); 242 243 int no_devmon_insert(const char *, prop_dictionary_t); 244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; 245 246 typedef int (*cfdriver_fn)(struct cfdriver *); 247 static int 248 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 249 cfdriver_fn drv_do, cfdriver_fn drv_undo, 250 const char *style, bool dopanic) 251 { 252 void (*pr)(const char *, ...) __printflike(1, 2) = 253 dopanic ? panic : printf; 254 int i, error = 0, e2 __diagused; 255 256 for (i = 0; cfdriverv[i] != NULL; i++) { 257 if ((error = drv_do(cfdriverv[i])) != 0) { 258 pr("configure: `%s' driver %s failed: %d", 259 cfdriverv[i]->cd_name, style, error); 260 goto bad; 261 } 262 } 263 264 KASSERT(error == 0); 265 return 0; 266 267 bad: 268 printf("\n"); 269 for (i--; i >= 0; i--) { 270 e2 = drv_undo(cfdriverv[i]); 271 KASSERT(e2 == 0); 272 } 273 274 return error; 275 } 276 277 typedef int (*cfattach_fn)(const char *, struct cfattach *); 278 static int 279 frob_cfattachvec(const struct cfattachinit *cfattachv, 280 cfattach_fn att_do, cfattach_fn att_undo, 281 const char *style, bool dopanic) 282 { 283 const struct cfattachinit *cfai = NULL; 284 void (*pr)(const char *, ...) __printflike(1, 2) = 285 dopanic ? panic : printf; 286 int j = 0, error = 0, e2 __diagused; 287 288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 289 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 290 if ((error = att_do(cfai->cfai_name, 291 cfai->cfai_list[j])) != 0) { 292 pr("configure: attachment `%s' " 293 "of `%s' driver %s failed: %d", 294 cfai->cfai_list[j]->ca_name, 295 cfai->cfai_name, style, error); 296 goto bad; 297 } 298 } 299 } 300 301 KASSERT(error == 0); 302 return 0; 303 304 bad: 305 /* 306 * Rollback in reverse order. dunno if super-important, but 307 * do that anyway. Although the code looks a little like 308 * someone did a little integration (in the math sense). 309 */ 310 printf("\n"); 311 if (cfai) { 312 bool last; 313 314 for (last = false; last == false; ) { 315 if (cfai == &cfattachv[0]) 316 last = true; 317 for (j--; j >= 0; j--) { 318 e2 = att_undo(cfai->cfai_name, 319 cfai->cfai_list[j]); 320 KASSERT(e2 == 0); 321 } 322 if (!last) { 323 cfai--; 324 for (j = 0; cfai->cfai_list[j] != NULL; j++) 325 ; 326 } 327 } 328 } 329 330 return error; 331 } 332 333 /* 334 * Initialize the autoconfiguration data structures. Normally this 335 * is done by configure(), but some platforms need to do this very 336 * early (to e.g. initialize the console). 337 */ 338 void 339 config_init(void) 340 { 341 342 KASSERT(config_initialized == false); 343 344 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM); 345 346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 347 cv_init(&config_misc_cv, "cfgmisc"); 348 349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 350 351 frob_cfdrivervec(cfdriver_list_initial, 352 config_cfdriver_attach, NULL, "bootstrap", true); 353 frob_cfattachvec(cfattachinit, 354 config_cfattach_attach, NULL, "bootstrap", true); 355 356 initcftable.ct_cfdata = cfdata; 357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 358 359 config_initialized = true; 360 } 361 362 /* 363 * Init or fini drivers and attachments. Either all or none 364 * are processed (via rollback). It would be nice if this were 365 * atomic to outside consumers, but with the current state of 366 * locking ... 367 */ 368 int 369 config_init_component(struct cfdriver * const *cfdriverv, 370 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 371 { 372 int error; 373 374 if ((error = frob_cfdrivervec(cfdriverv, 375 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 376 return error; 377 if ((error = frob_cfattachvec(cfattachv, 378 config_cfattach_attach, config_cfattach_detach, 379 "init", false)) != 0) { 380 frob_cfdrivervec(cfdriverv, 381 config_cfdriver_detach, NULL, "init rollback", true); 382 return error; 383 } 384 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 385 frob_cfattachvec(cfattachv, 386 config_cfattach_detach, NULL, "init rollback", true); 387 frob_cfdrivervec(cfdriverv, 388 config_cfdriver_detach, NULL, "init rollback", true); 389 return error; 390 } 391 392 return 0; 393 } 394 395 int 396 config_fini_component(struct cfdriver * const *cfdriverv, 397 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 398 { 399 int error; 400 401 if ((error = config_cfdata_detach(cfdatav)) != 0) 402 return error; 403 if ((error = frob_cfattachvec(cfattachv, 404 config_cfattach_detach, config_cfattach_attach, 405 "fini", false)) != 0) { 406 if (config_cfdata_attach(cfdatav, 0) != 0) 407 panic("config_cfdata fini rollback failed"); 408 return error; 409 } 410 if ((error = frob_cfdrivervec(cfdriverv, 411 config_cfdriver_detach, config_cfdriver_attach, 412 "fini", false)) != 0) { 413 frob_cfattachvec(cfattachv, 414 config_cfattach_attach, NULL, "fini rollback", true); 415 if (config_cfdata_attach(cfdatav, 0) != 0) 416 panic("config_cfdata fini rollback failed"); 417 return error; 418 } 419 420 return 0; 421 } 422 423 void 424 config_init_mi(void) 425 { 426 427 if (!config_initialized) 428 config_init(); 429 430 sysctl_detach_setup(NULL); 431 } 432 433 void 434 config_deferred(device_t dev) 435 { 436 config_process_deferred(&deferred_config_queue, dev); 437 config_process_deferred(&interrupt_config_queue, dev); 438 config_process_deferred(&mountroot_config_queue, dev); 439 } 440 441 static void 442 config_interrupts_thread(void *cookie) 443 { 444 struct deferred_config *dc; 445 446 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 447 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 448 (*dc->dc_func)(dc->dc_dev); 449 config_pending_decr(dc->dc_dev); 450 kmem_free(dc, sizeof(*dc)); 451 } 452 kthread_exit(0); 453 } 454 455 void 456 config_create_interruptthreads(void) 457 { 458 int i; 459 460 for (i = 0; i < interrupt_config_threads; i++) { 461 (void)kthread_create(PRI_NONE, 0, NULL, 462 config_interrupts_thread, NULL, NULL, "configintr"); 463 } 464 } 465 466 static void 467 config_mountroot_thread(void *cookie) 468 { 469 struct deferred_config *dc; 470 471 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 472 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 473 (*dc->dc_func)(dc->dc_dev); 474 kmem_free(dc, sizeof(*dc)); 475 } 476 kthread_exit(0); 477 } 478 479 void 480 config_create_mountrootthreads(void) 481 { 482 int i; 483 484 if (!root_is_mounted) 485 root_is_mounted = true; 486 487 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * 488 mountroot_config_threads; 489 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, 490 KM_NOSLEEP); 491 KASSERT(mountroot_config_lwpids); 492 for (i = 0; i < mountroot_config_threads; i++) { 493 mountroot_config_lwpids[i] = 0; 494 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL, 495 config_mountroot_thread, NULL, 496 &mountroot_config_lwpids[i], 497 "configroot"); 498 } 499 } 500 501 void 502 config_finalize_mountroot(void) 503 { 504 int i, error; 505 506 for (i = 0; i < mountroot_config_threads; i++) { 507 if (mountroot_config_lwpids[i] == 0) 508 continue; 509 510 error = kthread_join(mountroot_config_lwpids[i]); 511 if (error) 512 printf("%s: thread %x joined with error %d\n", 513 __func__, i, error); 514 } 515 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); 516 } 517 518 /* 519 * Announce device attach/detach to userland listeners. 520 */ 521 522 int 523 no_devmon_insert(const char *name, prop_dictionary_t p) 524 { 525 526 return ENODEV; 527 } 528 529 static void 530 devmon_report_device(device_t dev, bool isattach) 531 { 532 prop_dictionary_t ev; 533 const char *parent; 534 const char *what; 535 device_t pdev = device_parent(dev); 536 537 /* If currently no drvctl device, just return */ 538 if (devmon_insert_vec == no_devmon_insert) 539 return; 540 541 ev = prop_dictionary_create(); 542 if (ev == NULL) 543 return; 544 545 what = (isattach ? "device-attach" : "device-detach"); 546 parent = (pdev == NULL ? "root" : device_xname(pdev)); 547 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 548 !prop_dictionary_set_cstring(ev, "parent", parent)) { 549 prop_object_release(ev); 550 return; 551 } 552 553 if ((*devmon_insert_vec)(what, ev) != 0) 554 prop_object_release(ev); 555 } 556 557 /* 558 * Add a cfdriver to the system. 559 */ 560 int 561 config_cfdriver_attach(struct cfdriver *cd) 562 { 563 struct cfdriver *lcd; 564 565 /* Make sure this driver isn't already in the system. */ 566 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 567 if (STREQ(lcd->cd_name, cd->cd_name)) 568 return EEXIST; 569 } 570 571 LIST_INIT(&cd->cd_attach); 572 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 573 574 return 0; 575 } 576 577 /* 578 * Remove a cfdriver from the system. 579 */ 580 int 581 config_cfdriver_detach(struct cfdriver *cd) 582 { 583 struct alldevs_foray af; 584 int i, rc = 0; 585 586 config_alldevs_enter(&af); 587 /* Make sure there are no active instances. */ 588 for (i = 0; i < cd->cd_ndevs; i++) { 589 if (cd->cd_devs[i] != NULL) { 590 rc = EBUSY; 591 break; 592 } 593 } 594 config_alldevs_exit(&af); 595 596 if (rc != 0) 597 return rc; 598 599 /* ...and no attachments loaded. */ 600 if (LIST_EMPTY(&cd->cd_attach) == 0) 601 return EBUSY; 602 603 LIST_REMOVE(cd, cd_list); 604 605 KASSERT(cd->cd_devs == NULL); 606 607 return 0; 608 } 609 610 /* 611 * Look up a cfdriver by name. 612 */ 613 struct cfdriver * 614 config_cfdriver_lookup(const char *name) 615 { 616 struct cfdriver *cd; 617 618 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 619 if (STREQ(cd->cd_name, name)) 620 return cd; 621 } 622 623 return NULL; 624 } 625 626 /* 627 * Add a cfattach to the specified driver. 628 */ 629 int 630 config_cfattach_attach(const char *driver, struct cfattach *ca) 631 { 632 struct cfattach *lca; 633 struct cfdriver *cd; 634 635 cd = config_cfdriver_lookup(driver); 636 if (cd == NULL) 637 return ESRCH; 638 639 /* Make sure this attachment isn't already on this driver. */ 640 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 641 if (STREQ(lca->ca_name, ca->ca_name)) 642 return EEXIST; 643 } 644 645 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 646 647 return 0; 648 } 649 650 /* 651 * Remove a cfattach from the specified driver. 652 */ 653 int 654 config_cfattach_detach(const char *driver, struct cfattach *ca) 655 { 656 struct alldevs_foray af; 657 struct cfdriver *cd; 658 device_t dev; 659 int i, rc = 0; 660 661 cd = config_cfdriver_lookup(driver); 662 if (cd == NULL) 663 return ESRCH; 664 665 config_alldevs_enter(&af); 666 /* Make sure there are no active instances. */ 667 for (i = 0; i < cd->cd_ndevs; i++) { 668 if ((dev = cd->cd_devs[i]) == NULL) 669 continue; 670 if (dev->dv_cfattach == ca) { 671 rc = EBUSY; 672 break; 673 } 674 } 675 config_alldevs_exit(&af); 676 677 if (rc != 0) 678 return rc; 679 680 LIST_REMOVE(ca, ca_list); 681 682 return 0; 683 } 684 685 /* 686 * Look up a cfattach by name. 687 */ 688 static struct cfattach * 689 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 690 { 691 struct cfattach *ca; 692 693 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 694 if (STREQ(ca->ca_name, atname)) 695 return ca; 696 } 697 698 return NULL; 699 } 700 701 /* 702 * Look up a cfattach by driver/attachment name. 703 */ 704 struct cfattach * 705 config_cfattach_lookup(const char *name, const char *atname) 706 { 707 struct cfdriver *cd; 708 709 cd = config_cfdriver_lookup(name); 710 if (cd == NULL) 711 return NULL; 712 713 return config_cfattach_lookup_cd(cd, atname); 714 } 715 716 /* 717 * Apply the matching function and choose the best. This is used 718 * a few times and we want to keep the code small. 719 */ 720 static void 721 mapply(struct matchinfo *m, cfdata_t cf) 722 { 723 int pri; 724 725 if (m->fn != NULL) { 726 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 727 } else { 728 pri = config_match(m->parent, cf, m->aux); 729 } 730 if (pri > m->pri) { 731 m->match = cf; 732 m->pri = pri; 733 } 734 } 735 736 int 737 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 738 { 739 const struct cfiattrdata *ci; 740 const struct cflocdesc *cl; 741 int nlocs, i; 742 743 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 744 KASSERT(ci); 745 nlocs = ci->ci_loclen; 746 KASSERT(!nlocs || locs); 747 for (i = 0; i < nlocs; i++) { 748 cl = &ci->ci_locdesc[i]; 749 if (cl->cld_defaultstr != NULL && 750 cf->cf_loc[i] == cl->cld_default) 751 continue; 752 if (cf->cf_loc[i] == locs[i]) 753 continue; 754 return 0; 755 } 756 757 return config_match(parent, cf, aux); 758 } 759 760 /* 761 * Helper function: check whether the driver supports the interface attribute 762 * and return its descriptor structure. 763 */ 764 static const struct cfiattrdata * 765 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 766 { 767 const struct cfiattrdata * const *cpp; 768 769 if (cd->cd_attrs == NULL) 770 return 0; 771 772 for (cpp = cd->cd_attrs; *cpp; cpp++) { 773 if (STREQ((*cpp)->ci_name, ia)) { 774 /* Match. */ 775 return *cpp; 776 } 777 } 778 return 0; 779 } 780 781 /* 782 * Lookup an interface attribute description by name. 783 * If the driver is given, consider only its supported attributes. 784 */ 785 const struct cfiattrdata * 786 cfiattr_lookup(const char *name, const struct cfdriver *cd) 787 { 788 const struct cfdriver *d; 789 const struct cfiattrdata *ia; 790 791 if (cd) 792 return cfdriver_get_iattr(cd, name); 793 794 LIST_FOREACH(d, &allcfdrivers, cd_list) { 795 ia = cfdriver_get_iattr(d, name); 796 if (ia) 797 return ia; 798 } 799 return 0; 800 } 801 802 /* 803 * Determine if `parent' is a potential parent for a device spec based 804 * on `cfp'. 805 */ 806 static int 807 cfparent_match(const device_t parent, const struct cfparent *cfp) 808 { 809 struct cfdriver *pcd; 810 811 /* We don't match root nodes here. */ 812 if (cfp == NULL) 813 return 0; 814 815 pcd = parent->dv_cfdriver; 816 KASSERT(pcd != NULL); 817 818 /* 819 * First, ensure this parent has the correct interface 820 * attribute. 821 */ 822 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 823 return 0; 824 825 /* 826 * If no specific parent device instance was specified (i.e. 827 * we're attaching to the attribute only), we're done! 828 */ 829 if (cfp->cfp_parent == NULL) 830 return 1; 831 832 /* 833 * Check the parent device's name. 834 */ 835 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 836 return 0; /* not the same parent */ 837 838 /* 839 * Make sure the unit number matches. 840 */ 841 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 842 cfp->cfp_unit == parent->dv_unit) 843 return 1; 844 845 /* Unit numbers don't match. */ 846 return 0; 847 } 848 849 /* 850 * Helper for config_cfdata_attach(): check all devices whether it could be 851 * parent any attachment in the config data table passed, and rescan. 852 */ 853 static void 854 rescan_with_cfdata(const struct cfdata *cf) 855 { 856 device_t d; 857 const struct cfdata *cf1; 858 deviter_t di; 859 860 861 /* 862 * "alldevs" is likely longer than a modules's cfdata, so make it 863 * the outer loop. 864 */ 865 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 866 867 if (!(d->dv_cfattach->ca_rescan)) 868 continue; 869 870 for (cf1 = cf; cf1->cf_name; cf1++) { 871 872 if (!cfparent_match(d, cf1->cf_pspec)) 873 continue; 874 875 (*d->dv_cfattach->ca_rescan)(d, 876 cfdata_ifattr(cf1), cf1->cf_loc); 877 878 config_deferred(d); 879 } 880 } 881 deviter_release(&di); 882 } 883 884 /* 885 * Attach a supplemental config data table and rescan potential 886 * parent devices if required. 887 */ 888 int 889 config_cfdata_attach(cfdata_t cf, int scannow) 890 { 891 struct cftable *ct; 892 893 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 894 ct->ct_cfdata = cf; 895 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 896 897 if (scannow) 898 rescan_with_cfdata(cf); 899 900 return 0; 901 } 902 903 /* 904 * Helper for config_cfdata_detach: check whether a device is 905 * found through any attachment in the config data table. 906 */ 907 static int 908 dev_in_cfdata(device_t d, cfdata_t cf) 909 { 910 const struct cfdata *cf1; 911 912 for (cf1 = cf; cf1->cf_name; cf1++) 913 if (d->dv_cfdata == cf1) 914 return 1; 915 916 return 0; 917 } 918 919 /* 920 * Detach a supplemental config data table. Detach all devices found 921 * through that table (and thus keeping references to it) before. 922 */ 923 int 924 config_cfdata_detach(cfdata_t cf) 925 { 926 device_t d; 927 int error = 0; 928 struct cftable *ct; 929 deviter_t di; 930 931 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 932 d = deviter_next(&di)) { 933 if (!dev_in_cfdata(d, cf)) 934 continue; 935 if ((error = config_detach(d, 0)) != 0) 936 break; 937 } 938 deviter_release(&di); 939 if (error) { 940 aprint_error_dev(d, "unable to detach instance\n"); 941 return error; 942 } 943 944 TAILQ_FOREACH(ct, &allcftables, ct_list) { 945 if (ct->ct_cfdata == cf) { 946 TAILQ_REMOVE(&allcftables, ct, ct_list); 947 kmem_free(ct, sizeof(*ct)); 948 return 0; 949 } 950 } 951 952 /* not found -- shouldn't happen */ 953 return EINVAL; 954 } 955 956 /* 957 * Invoke the "match" routine for a cfdata entry on behalf of 958 * an external caller, usually a "submatch" routine. 959 */ 960 int 961 config_match(device_t parent, cfdata_t cf, void *aux) 962 { 963 struct cfattach *ca; 964 965 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 966 if (ca == NULL) { 967 /* No attachment for this entry, oh well. */ 968 return 0; 969 } 970 971 return (*ca->ca_match)(parent, cf, aux); 972 } 973 974 /* 975 * Iterate over all potential children of some device, calling the given 976 * function (default being the child's match function) for each one. 977 * Nonzero returns are matches; the highest value returned is considered 978 * the best match. Return the `found child' if we got a match, or NULL 979 * otherwise. The `aux' pointer is simply passed on through. 980 * 981 * Note that this function is designed so that it can be used to apply 982 * an arbitrary function to all potential children (its return value 983 * can be ignored). 984 */ 985 cfdata_t 986 config_search_loc(cfsubmatch_t fn, device_t parent, 987 const char *ifattr, const int *locs, void *aux) 988 { 989 struct cftable *ct; 990 cfdata_t cf; 991 struct matchinfo m; 992 993 KASSERT(config_initialized); 994 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 995 996 m.fn = fn; 997 m.parent = parent; 998 m.locs = locs; 999 m.aux = aux; 1000 m.match = NULL; 1001 m.pri = 0; 1002 1003 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1004 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1005 1006 /* We don't match root nodes here. */ 1007 if (!cf->cf_pspec) 1008 continue; 1009 1010 /* 1011 * Skip cf if no longer eligible, otherwise scan 1012 * through parents for one matching `parent', and 1013 * try match function. 1014 */ 1015 if (cf->cf_fstate == FSTATE_FOUND) 1016 continue; 1017 if (cf->cf_fstate == FSTATE_DNOTFOUND || 1018 cf->cf_fstate == FSTATE_DSTAR) 1019 continue; 1020 1021 /* 1022 * If an interface attribute was specified, 1023 * consider only children which attach to 1024 * that attribute. 1025 */ 1026 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 1027 continue; 1028 1029 if (cfparent_match(parent, cf->cf_pspec)) 1030 mapply(&m, cf); 1031 } 1032 } 1033 return m.match; 1034 } 1035 1036 cfdata_t 1037 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 1038 void *aux) 1039 { 1040 1041 return config_search_loc(fn, parent, ifattr, NULL, aux); 1042 } 1043 1044 /* 1045 * Find the given root device. 1046 * This is much like config_search, but there is no parent. 1047 * Don't bother with multiple cfdata tables; the root node 1048 * must always be in the initial table. 1049 */ 1050 cfdata_t 1051 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1052 { 1053 cfdata_t cf; 1054 const short *p; 1055 struct matchinfo m; 1056 1057 m.fn = fn; 1058 m.parent = ROOT; 1059 m.aux = aux; 1060 m.match = NULL; 1061 m.pri = 0; 1062 m.locs = 0; 1063 /* 1064 * Look at root entries for matching name. We do not bother 1065 * with found-state here since only one root should ever be 1066 * searched (and it must be done first). 1067 */ 1068 for (p = cfroots; *p >= 0; p++) { 1069 cf = &cfdata[*p]; 1070 if (strcmp(cf->cf_name, rootname) == 0) 1071 mapply(&m, cf); 1072 } 1073 return m.match; 1074 } 1075 1076 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1077 1078 /* 1079 * The given `aux' argument describes a device that has been found 1080 * on the given parent, but not necessarily configured. Locate the 1081 * configuration data for that device (using the submatch function 1082 * provided, or using candidates' cd_match configuration driver 1083 * functions) and attach it, and return its device_t. If the device was 1084 * not configured, call the given `print' function and return NULL. 1085 */ 1086 device_t 1087 config_found_sm_loc(device_t parent, 1088 const char *ifattr, const int *locs, void *aux, 1089 cfprint_t print, cfsubmatch_t submatch) 1090 { 1091 cfdata_t cf; 1092 1093 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1094 return(config_attach_loc(parent, cf, locs, aux, print)); 1095 if (print) { 1096 if (config_do_twiddle && cold) 1097 twiddle(); 1098 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1099 } 1100 1101 /* 1102 * This has the effect of mixing in a single timestamp to the 1103 * entropy pool. Experiments indicate the estimator will almost 1104 * always attribute one bit of entropy to this sample; analysis 1105 * of device attach/detach timestamps on FreeBSD indicates 4 1106 * bits of entropy/sample so this seems appropriately conservative. 1107 */ 1108 rnd_add_uint32(&rnd_autoconf_source, 0); 1109 return NULL; 1110 } 1111 1112 device_t 1113 config_found_ia(device_t parent, const char *ifattr, void *aux, 1114 cfprint_t print) 1115 { 1116 1117 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1118 } 1119 1120 device_t 1121 config_found(device_t parent, void *aux, cfprint_t print) 1122 { 1123 1124 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1125 } 1126 1127 /* 1128 * As above, but for root devices. 1129 */ 1130 device_t 1131 config_rootfound(const char *rootname, void *aux) 1132 { 1133 cfdata_t cf; 1134 1135 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1136 return config_attach(ROOT, cf, aux, NULL); 1137 aprint_error("root device %s not configured\n", rootname); 1138 return NULL; 1139 } 1140 1141 /* just like sprintf(buf, "%d") except that it works from the end */ 1142 static char * 1143 number(char *ep, int n) 1144 { 1145 1146 *--ep = 0; 1147 while (n >= 10) { 1148 *--ep = (n % 10) + '0'; 1149 n /= 10; 1150 } 1151 *--ep = n + '0'; 1152 return ep; 1153 } 1154 1155 /* 1156 * Expand the size of the cd_devs array if necessary. 1157 * 1158 * The caller must hold alldevs_mtx. config_makeroom() may release and 1159 * re-acquire alldevs_mtx, so callers should re-check conditions such 1160 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1161 * returns. 1162 */ 1163 static void 1164 config_makeroom(int n, struct cfdriver *cd) 1165 { 1166 int ondevs, nndevs; 1167 device_t *osp, *nsp; 1168 1169 alldevs_nwrite++; 1170 1171 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1172 ; 1173 1174 while (n >= cd->cd_ndevs) { 1175 /* 1176 * Need to expand the array. 1177 */ 1178 ondevs = cd->cd_ndevs; 1179 osp = cd->cd_devs; 1180 1181 /* Release alldevs_mtx around allocation, which may 1182 * sleep. 1183 */ 1184 mutex_exit(&alldevs_mtx); 1185 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP); 1186 if (nsp == NULL) 1187 panic("%s: could not expand cd_devs", __func__); 1188 mutex_enter(&alldevs_mtx); 1189 1190 /* If another thread moved the array while we did 1191 * not hold alldevs_mtx, try again. 1192 */ 1193 if (cd->cd_devs != osp) { 1194 mutex_exit(&alldevs_mtx); 1195 kmem_free(nsp, sizeof(device_t[nndevs])); 1196 mutex_enter(&alldevs_mtx); 1197 continue; 1198 } 1199 1200 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs])); 1201 if (ondevs != 0) 1202 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs])); 1203 1204 cd->cd_ndevs = nndevs; 1205 cd->cd_devs = nsp; 1206 if (ondevs != 0) { 1207 mutex_exit(&alldevs_mtx); 1208 kmem_free(osp, sizeof(device_t[ondevs])); 1209 mutex_enter(&alldevs_mtx); 1210 } 1211 } 1212 alldevs_nwrite--; 1213 } 1214 1215 /* 1216 * Put dev into the devices list. 1217 */ 1218 static void 1219 config_devlink(device_t dev) 1220 { 1221 1222 mutex_enter(&alldevs_mtx); 1223 1224 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1225 1226 dev->dv_add_gen = alldevs_gen; 1227 /* It is safe to add a device to the tail of the list while 1228 * readers and writers are in the list. 1229 */ 1230 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1231 mutex_exit(&alldevs_mtx); 1232 } 1233 1234 static void 1235 config_devfree(device_t dev) 1236 { 1237 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1238 1239 if (dev->dv_cfattach->ca_devsize > 0) 1240 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1241 if (priv) 1242 kmem_free(dev, sizeof(*dev)); 1243 } 1244 1245 /* 1246 * Caller must hold alldevs_mtx. 1247 */ 1248 static void 1249 config_devunlink(device_t dev, struct devicelist *garbage) 1250 { 1251 struct device_garbage *dg = &dev->dv_garbage; 1252 cfdriver_t cd = device_cfdriver(dev); 1253 int i; 1254 1255 KASSERT(mutex_owned(&alldevs_mtx)); 1256 1257 /* Unlink from device list. Link to garbage list. */ 1258 TAILQ_REMOVE(&alldevs, dev, dv_list); 1259 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1260 1261 /* Remove from cfdriver's array. */ 1262 cd->cd_devs[dev->dv_unit] = NULL; 1263 1264 /* 1265 * If the device now has no units in use, unlink its softc array. 1266 */ 1267 for (i = 0; i < cd->cd_ndevs; i++) { 1268 if (cd->cd_devs[i] != NULL) 1269 break; 1270 } 1271 /* Nothing found. Unlink, now. Deallocate, later. */ 1272 if (i == cd->cd_ndevs) { 1273 dg->dg_ndevs = cd->cd_ndevs; 1274 dg->dg_devs = cd->cd_devs; 1275 cd->cd_devs = NULL; 1276 cd->cd_ndevs = 0; 1277 } 1278 } 1279 1280 static void 1281 config_devdelete(device_t dev) 1282 { 1283 struct device_garbage *dg = &dev->dv_garbage; 1284 device_lock_t dvl = device_getlock(dev); 1285 1286 if (dg->dg_devs != NULL) 1287 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1288 1289 cv_destroy(&dvl->dvl_cv); 1290 mutex_destroy(&dvl->dvl_mtx); 1291 1292 KASSERT(dev->dv_properties != NULL); 1293 prop_object_release(dev->dv_properties); 1294 1295 if (dev->dv_activity_handlers) 1296 panic("%s with registered handlers", __func__); 1297 1298 if (dev->dv_locators) { 1299 size_t amount = *--dev->dv_locators; 1300 kmem_free(dev->dv_locators, amount); 1301 } 1302 1303 config_devfree(dev); 1304 } 1305 1306 static int 1307 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1308 { 1309 int unit; 1310 1311 if (cf->cf_fstate == FSTATE_STAR) { 1312 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1313 if (cd->cd_devs[unit] == NULL) 1314 break; 1315 /* 1316 * unit is now the unit of the first NULL device pointer, 1317 * or max(cd->cd_ndevs,cf->cf_unit). 1318 */ 1319 } else { 1320 unit = cf->cf_unit; 1321 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1322 unit = -1; 1323 } 1324 return unit; 1325 } 1326 1327 static int 1328 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1329 { 1330 struct alldevs_foray af; 1331 int unit; 1332 1333 config_alldevs_enter(&af); 1334 for (;;) { 1335 unit = config_unit_nextfree(cd, cf); 1336 if (unit == -1) 1337 break; 1338 if (unit < cd->cd_ndevs) { 1339 cd->cd_devs[unit] = dev; 1340 dev->dv_unit = unit; 1341 break; 1342 } 1343 config_makeroom(unit, cd); 1344 } 1345 config_alldevs_exit(&af); 1346 1347 return unit; 1348 } 1349 1350 static device_t 1351 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1352 { 1353 cfdriver_t cd; 1354 cfattach_t ca; 1355 size_t lname, lunit; 1356 const char *xunit; 1357 int myunit; 1358 char num[10]; 1359 device_t dev; 1360 void *dev_private; 1361 const struct cfiattrdata *ia; 1362 device_lock_t dvl; 1363 1364 cd = config_cfdriver_lookup(cf->cf_name); 1365 if (cd == NULL) 1366 return NULL; 1367 1368 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1369 if (ca == NULL) 1370 return NULL; 1371 1372 /* get memory for all device vars */ 1373 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC) 1374 || ca->ca_devsize >= sizeof(struct device), 1375 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize, 1376 sizeof(struct device)); 1377 if (ca->ca_devsize > 0) { 1378 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1379 if (dev_private == NULL) 1380 panic("config_devalloc: memory allocation for device " 1381 "softc failed"); 1382 } else { 1383 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1384 dev_private = NULL; 1385 } 1386 1387 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1388 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1389 } else { 1390 dev = dev_private; 1391 #ifdef DIAGNOSTIC 1392 printf("%s has not been converted to device_t\n", cd->cd_name); 1393 #endif 1394 } 1395 if (dev == NULL) 1396 panic("config_devalloc: memory allocation for device_t failed"); 1397 1398 dev->dv_class = cd->cd_class; 1399 dev->dv_cfdata = cf; 1400 dev->dv_cfdriver = cd; 1401 dev->dv_cfattach = ca; 1402 dev->dv_activity_count = 0; 1403 dev->dv_activity_handlers = NULL; 1404 dev->dv_private = dev_private; 1405 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1406 1407 myunit = config_unit_alloc(dev, cd, cf); 1408 if (myunit == -1) { 1409 config_devfree(dev); 1410 return NULL; 1411 } 1412 1413 /* compute length of name and decimal expansion of unit number */ 1414 lname = strlen(cd->cd_name); 1415 xunit = number(&num[sizeof(num)], myunit); 1416 lunit = &num[sizeof(num)] - xunit; 1417 if (lname + lunit > sizeof(dev->dv_xname)) 1418 panic("config_devalloc: device name too long"); 1419 1420 dvl = device_getlock(dev); 1421 1422 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1423 cv_init(&dvl->dvl_cv, "pmfsusp"); 1424 1425 memcpy(dev->dv_xname, cd->cd_name, lname); 1426 memcpy(dev->dv_xname + lname, xunit, lunit); 1427 dev->dv_parent = parent; 1428 if (parent != NULL) 1429 dev->dv_depth = parent->dv_depth + 1; 1430 else 1431 dev->dv_depth = 0; 1432 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1433 if (locs) { 1434 KASSERT(parent); /* no locators at root */ 1435 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1436 dev->dv_locators = 1437 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1438 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1439 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1440 } 1441 dev->dv_properties = prop_dictionary_create(); 1442 KASSERT(dev->dv_properties != NULL); 1443 1444 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1445 "device-driver", dev->dv_cfdriver->cd_name); 1446 prop_dictionary_set_uint16(dev->dv_properties, 1447 "device-unit", dev->dv_unit); 1448 if (parent != NULL) { 1449 prop_dictionary_set_cstring(dev->dv_properties, 1450 "device-parent", device_xname(parent)); 1451 } 1452 1453 if (dev->dv_cfdriver->cd_attrs != NULL) 1454 config_add_attrib_dict(dev); 1455 1456 return dev; 1457 } 1458 1459 /* 1460 * Create an array of device attach attributes and add it 1461 * to the device's dv_properties dictionary. 1462 * 1463 * <key>interface-attributes</key> 1464 * <array> 1465 * <dict> 1466 * <key>attribute-name</key> 1467 * <string>foo</string> 1468 * <key>locators</key> 1469 * <array> 1470 * <dict> 1471 * <key>loc-name</key> 1472 * <string>foo-loc1</string> 1473 * </dict> 1474 * <dict> 1475 * <key>loc-name</key> 1476 * <string>foo-loc2</string> 1477 * <key>default</key> 1478 * <string>foo-loc2-default</string> 1479 * </dict> 1480 * ... 1481 * </array> 1482 * </dict> 1483 * ... 1484 * </array> 1485 */ 1486 1487 static void 1488 config_add_attrib_dict(device_t dev) 1489 { 1490 int i, j; 1491 const struct cfiattrdata *ci; 1492 prop_dictionary_t attr_dict, loc_dict; 1493 prop_array_t attr_array, loc_array; 1494 1495 if ((attr_array = prop_array_create()) == NULL) 1496 return; 1497 1498 for (i = 0; ; i++) { 1499 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1500 break; 1501 if ((attr_dict = prop_dictionary_create()) == NULL) 1502 break; 1503 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name", 1504 ci->ci_name); 1505 1506 /* Create an array of the locator names and defaults */ 1507 1508 if (ci->ci_loclen != 0 && 1509 (loc_array = prop_array_create()) != NULL) { 1510 for (j = 0; j < ci->ci_loclen; j++) { 1511 loc_dict = prop_dictionary_create(); 1512 if (loc_dict == NULL) 1513 continue; 1514 prop_dictionary_set_cstring_nocopy(loc_dict, 1515 "loc-name", ci->ci_locdesc[j].cld_name); 1516 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1517 prop_dictionary_set_cstring_nocopy( 1518 loc_dict, "default", 1519 ci->ci_locdesc[j].cld_defaultstr); 1520 prop_array_set(loc_array, j, loc_dict); 1521 prop_object_release(loc_dict); 1522 } 1523 prop_dictionary_set_and_rel(attr_dict, "locators", 1524 loc_array); 1525 } 1526 prop_array_add(attr_array, attr_dict); 1527 prop_object_release(attr_dict); 1528 } 1529 if (i == 0) 1530 prop_object_release(attr_array); 1531 else 1532 prop_dictionary_set_and_rel(dev->dv_properties, 1533 "interface-attributes", attr_array); 1534 1535 return; 1536 } 1537 1538 /* 1539 * Attach a found device. 1540 */ 1541 device_t 1542 config_attach_loc(device_t parent, cfdata_t cf, 1543 const int *locs, void *aux, cfprint_t print) 1544 { 1545 device_t dev; 1546 struct cftable *ct; 1547 const char *drvname; 1548 1549 dev = config_devalloc(parent, cf, locs); 1550 if (!dev) 1551 panic("config_attach: allocation of device softc failed"); 1552 1553 /* XXX redundant - see below? */ 1554 if (cf->cf_fstate != FSTATE_STAR) { 1555 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1556 cf->cf_fstate = FSTATE_FOUND; 1557 } 1558 1559 config_devlink(dev); 1560 1561 if (config_do_twiddle && cold) 1562 twiddle(); 1563 else 1564 aprint_naive("Found "); 1565 /* 1566 * We want the next two printfs for normal, verbose, and quiet, 1567 * but not silent (in which case, we're twiddling, instead). 1568 */ 1569 if (parent == ROOT) { 1570 aprint_naive("%s (root)", device_xname(dev)); 1571 aprint_normal("%s (root)", device_xname(dev)); 1572 } else { 1573 aprint_naive("%s at %s", device_xname(dev), 1574 device_xname(parent)); 1575 aprint_normal("%s at %s", device_xname(dev), 1576 device_xname(parent)); 1577 if (print) 1578 (void) (*print)(aux, NULL); 1579 } 1580 1581 /* 1582 * Before attaching, clobber any unfound devices that are 1583 * otherwise identical. 1584 * XXX code above is redundant? 1585 */ 1586 drvname = dev->dv_cfdriver->cd_name; 1587 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1588 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1589 if (STREQ(cf->cf_name, drvname) && 1590 cf->cf_unit == dev->dv_unit) { 1591 if (cf->cf_fstate == FSTATE_NOTFOUND) 1592 cf->cf_fstate = FSTATE_FOUND; 1593 } 1594 } 1595 } 1596 device_register(dev, aux); 1597 1598 /* Let userland know */ 1599 devmon_report_device(dev, true); 1600 1601 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1602 1603 if (!device_pmf_is_registered(dev)) 1604 aprint_debug_dev(dev, "WARNING: power management not " 1605 "supported\n"); 1606 1607 config_process_deferred(&deferred_config_queue, dev); 1608 1609 device_register_post_config(dev, aux); 1610 return dev; 1611 } 1612 1613 device_t 1614 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1615 { 1616 1617 return config_attach_loc(parent, cf, NULL, aux, print); 1618 } 1619 1620 /* 1621 * As above, but for pseudo-devices. Pseudo-devices attached in this 1622 * way are silently inserted into the device tree, and their children 1623 * attached. 1624 * 1625 * Note that because pseudo-devices are attached silently, any information 1626 * the attach routine wishes to print should be prefixed with the device 1627 * name by the attach routine. 1628 */ 1629 device_t 1630 config_attach_pseudo(cfdata_t cf) 1631 { 1632 device_t dev; 1633 1634 dev = config_devalloc(ROOT, cf, NULL); 1635 if (!dev) 1636 return NULL; 1637 1638 /* XXX mark busy in cfdata */ 1639 1640 if (cf->cf_fstate != FSTATE_STAR) { 1641 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1642 cf->cf_fstate = FSTATE_FOUND; 1643 } 1644 1645 config_devlink(dev); 1646 1647 #if 0 /* XXXJRT not yet */ 1648 device_register(dev, NULL); /* like a root node */ 1649 #endif 1650 1651 /* Let userland know */ 1652 devmon_report_device(dev, true); 1653 1654 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1655 1656 config_process_deferred(&deferred_config_queue, dev); 1657 return dev; 1658 } 1659 1660 /* 1661 * Caller must hold alldevs_mtx. 1662 */ 1663 static void 1664 config_collect_garbage(struct devicelist *garbage) 1665 { 1666 device_t dv; 1667 1668 KASSERT(!cpu_intr_p()); 1669 KASSERT(!cpu_softintr_p()); 1670 KASSERT(mutex_owned(&alldevs_mtx)); 1671 1672 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1673 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1674 if (dv->dv_del_gen != 0) 1675 break; 1676 } 1677 if (dv == NULL) { 1678 alldevs_garbage = false; 1679 break; 1680 } 1681 config_devunlink(dv, garbage); 1682 } 1683 KASSERT(mutex_owned(&alldevs_mtx)); 1684 } 1685 1686 static void 1687 config_dump_garbage(struct devicelist *garbage) 1688 { 1689 device_t dv; 1690 1691 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1692 TAILQ_REMOVE(garbage, dv, dv_list); 1693 config_devdelete(dv); 1694 } 1695 } 1696 1697 /* 1698 * Detach a device. Optionally forced (e.g. because of hardware 1699 * removal) and quiet. Returns zero if successful, non-zero 1700 * (an error code) otherwise. 1701 * 1702 * Note that this code wants to be run from a process context, so 1703 * that the detach can sleep to allow processes which have a device 1704 * open to run and unwind their stacks. 1705 */ 1706 int 1707 config_detach(device_t dev, int flags) 1708 { 1709 struct alldevs_foray af; 1710 struct cftable *ct; 1711 cfdata_t cf; 1712 const struct cfattach *ca; 1713 struct cfdriver *cd; 1714 #ifdef DIAGNOSTIC 1715 device_t d; 1716 #endif 1717 int rv = 0; 1718 1719 #ifdef DIAGNOSTIC 1720 cf = dev->dv_cfdata; 1721 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1722 cf->cf_fstate != FSTATE_STAR) 1723 panic("config_detach: %s: bad device fstate %d", 1724 device_xname(dev), cf ? cf->cf_fstate : -1); 1725 #endif 1726 cd = dev->dv_cfdriver; 1727 KASSERT(cd != NULL); 1728 1729 ca = dev->dv_cfattach; 1730 KASSERT(ca != NULL); 1731 1732 mutex_enter(&alldevs_mtx); 1733 if (dev->dv_del_gen != 0) { 1734 mutex_exit(&alldevs_mtx); 1735 #ifdef DIAGNOSTIC 1736 printf("%s: %s is already detached\n", __func__, 1737 device_xname(dev)); 1738 #endif /* DIAGNOSTIC */ 1739 return ENOENT; 1740 } 1741 alldevs_nwrite++; 1742 mutex_exit(&alldevs_mtx); 1743 1744 if (!detachall && 1745 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1746 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1747 rv = EOPNOTSUPP; 1748 } else if (ca->ca_detach != NULL) { 1749 rv = (*ca->ca_detach)(dev, flags); 1750 } else 1751 rv = EOPNOTSUPP; 1752 1753 /* 1754 * If it was not possible to detach the device, then we either 1755 * panic() (for the forced but failed case), or return an error. 1756 * 1757 * If it was possible to detach the device, ensure that the 1758 * device is deactivated. 1759 */ 1760 if (rv == 0) 1761 dev->dv_flags &= ~DVF_ACTIVE; 1762 else if ((flags & DETACH_FORCE) == 0) 1763 goto out; 1764 else { 1765 panic("config_detach: forced detach of %s failed (%d)", 1766 device_xname(dev), rv); 1767 } 1768 1769 /* 1770 * The device has now been successfully detached. 1771 */ 1772 1773 /* Let userland know */ 1774 devmon_report_device(dev, false); 1775 1776 #ifdef DIAGNOSTIC 1777 /* 1778 * Sanity: If you're successfully detached, you should have no 1779 * children. (Note that because children must be attached 1780 * after parents, we only need to search the latter part of 1781 * the list.) 1782 */ 1783 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1784 d = TAILQ_NEXT(d, dv_list)) { 1785 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1786 printf("config_detach: detached device %s" 1787 " has children %s\n", device_xname(dev), 1788 device_xname(d)); 1789 panic("config_detach"); 1790 } 1791 } 1792 #endif 1793 1794 /* notify the parent that the child is gone */ 1795 if (dev->dv_parent) { 1796 device_t p = dev->dv_parent; 1797 if (p->dv_cfattach->ca_childdetached) 1798 (*p->dv_cfattach->ca_childdetached)(p, dev); 1799 } 1800 1801 /* 1802 * Mark cfdata to show that the unit can be reused, if possible. 1803 */ 1804 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1805 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1806 if (STREQ(cf->cf_name, cd->cd_name)) { 1807 if (cf->cf_fstate == FSTATE_FOUND && 1808 cf->cf_unit == dev->dv_unit) 1809 cf->cf_fstate = FSTATE_NOTFOUND; 1810 } 1811 } 1812 } 1813 1814 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1815 aprint_normal_dev(dev, "detached\n"); 1816 1817 out: 1818 config_alldevs_enter(&af); 1819 KASSERT(alldevs_nwrite != 0); 1820 --alldevs_nwrite; 1821 if (rv == 0 && dev->dv_del_gen == 0) { 1822 if (alldevs_nwrite == 0 && alldevs_nread == 0) 1823 config_devunlink(dev, &af.af_garbage); 1824 else { 1825 dev->dv_del_gen = alldevs_gen; 1826 alldevs_garbage = true; 1827 } 1828 } 1829 config_alldevs_exit(&af); 1830 1831 return rv; 1832 } 1833 1834 int 1835 config_detach_children(device_t parent, int flags) 1836 { 1837 device_t dv; 1838 deviter_t di; 1839 int error = 0; 1840 1841 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1842 dv = deviter_next(&di)) { 1843 if (device_parent(dv) != parent) 1844 continue; 1845 if ((error = config_detach(dv, flags)) != 0) 1846 break; 1847 } 1848 deviter_release(&di); 1849 return error; 1850 } 1851 1852 device_t 1853 shutdown_first(struct shutdown_state *s) 1854 { 1855 if (!s->initialized) { 1856 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1857 s->initialized = true; 1858 } 1859 return shutdown_next(s); 1860 } 1861 1862 device_t 1863 shutdown_next(struct shutdown_state *s) 1864 { 1865 device_t dv; 1866 1867 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1868 ; 1869 1870 if (dv == NULL) 1871 s->initialized = false; 1872 1873 return dv; 1874 } 1875 1876 bool 1877 config_detach_all(int how) 1878 { 1879 static struct shutdown_state s; 1880 device_t curdev; 1881 bool progress = false; 1882 int flags; 1883 1884 if ((how & (RB_NOSYNC|RB_DUMP)) != 0) 1885 return false; 1886 1887 if ((how & RB_POWERDOWN) == RB_POWERDOWN) 1888 flags = DETACH_SHUTDOWN | DETACH_POWEROFF; 1889 else 1890 flags = DETACH_SHUTDOWN; 1891 1892 for (curdev = shutdown_first(&s); curdev != NULL; 1893 curdev = shutdown_next(&s)) { 1894 aprint_debug(" detaching %s, ", device_xname(curdev)); 1895 if (config_detach(curdev, flags) == 0) { 1896 progress = true; 1897 aprint_debug("success."); 1898 } else 1899 aprint_debug("failed."); 1900 } 1901 return progress; 1902 } 1903 1904 static bool 1905 device_is_ancestor_of(device_t ancestor, device_t descendant) 1906 { 1907 device_t dv; 1908 1909 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1910 if (device_parent(dv) == ancestor) 1911 return true; 1912 } 1913 return false; 1914 } 1915 1916 int 1917 config_deactivate(device_t dev) 1918 { 1919 deviter_t di; 1920 const struct cfattach *ca; 1921 device_t descendant; 1922 int s, rv = 0, oflags; 1923 1924 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1925 descendant != NULL; 1926 descendant = deviter_next(&di)) { 1927 if (dev != descendant && 1928 !device_is_ancestor_of(dev, descendant)) 1929 continue; 1930 1931 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1932 continue; 1933 1934 ca = descendant->dv_cfattach; 1935 oflags = descendant->dv_flags; 1936 1937 descendant->dv_flags &= ~DVF_ACTIVE; 1938 if (ca->ca_activate == NULL) 1939 continue; 1940 s = splhigh(); 1941 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1942 splx(s); 1943 if (rv != 0) 1944 descendant->dv_flags = oflags; 1945 } 1946 deviter_release(&di); 1947 return rv; 1948 } 1949 1950 /* 1951 * Defer the configuration of the specified device until all 1952 * of its parent's devices have been attached. 1953 */ 1954 void 1955 config_defer(device_t dev, void (*func)(device_t)) 1956 { 1957 struct deferred_config *dc; 1958 1959 if (dev->dv_parent == NULL) 1960 panic("config_defer: can't defer config of a root device"); 1961 1962 #ifdef DIAGNOSTIC 1963 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1964 if (dc->dc_dev == dev) 1965 panic("config_defer: deferred twice"); 1966 } 1967 #endif 1968 1969 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1970 if (dc == NULL) 1971 panic("config_defer: unable to allocate callback"); 1972 1973 dc->dc_dev = dev; 1974 dc->dc_func = func; 1975 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1976 config_pending_incr(dev); 1977 } 1978 1979 /* 1980 * Defer some autoconfiguration for a device until after interrupts 1981 * are enabled. 1982 */ 1983 void 1984 config_interrupts(device_t dev, void (*func)(device_t)) 1985 { 1986 struct deferred_config *dc; 1987 1988 /* 1989 * If interrupts are enabled, callback now. 1990 */ 1991 if (cold == 0) { 1992 (*func)(dev); 1993 return; 1994 } 1995 1996 #ifdef DIAGNOSTIC 1997 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1998 if (dc->dc_dev == dev) 1999 panic("config_interrupts: deferred twice"); 2000 } 2001 #endif 2002 2003 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2004 if (dc == NULL) 2005 panic("config_interrupts: unable to allocate callback"); 2006 2007 dc->dc_dev = dev; 2008 dc->dc_func = func; 2009 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 2010 config_pending_incr(dev); 2011 } 2012 2013 /* 2014 * Defer some autoconfiguration for a device until after root file system 2015 * is mounted (to load firmware etc). 2016 */ 2017 void 2018 config_mountroot(device_t dev, void (*func)(device_t)) 2019 { 2020 struct deferred_config *dc; 2021 2022 /* 2023 * If root file system is mounted, callback now. 2024 */ 2025 if (root_is_mounted) { 2026 (*func)(dev); 2027 return; 2028 } 2029 2030 #ifdef DIAGNOSTIC 2031 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) { 2032 if (dc->dc_dev == dev) 2033 panic("%s: deferred twice", __func__); 2034 } 2035 #endif 2036 2037 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2038 if (dc == NULL) 2039 panic("%s: unable to allocate callback", __func__); 2040 2041 dc->dc_dev = dev; 2042 dc->dc_func = func; 2043 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 2044 } 2045 2046 /* 2047 * Process a deferred configuration queue. 2048 */ 2049 static void 2050 config_process_deferred(struct deferred_config_head *queue, device_t parent) 2051 { 2052 struct deferred_config *dc, *ndc; 2053 2054 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 2055 ndc = TAILQ_NEXT(dc, dc_queue); 2056 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2057 TAILQ_REMOVE(queue, dc, dc_queue); 2058 (*dc->dc_func)(dc->dc_dev); 2059 config_pending_decr(dc->dc_dev); 2060 kmem_free(dc, sizeof(*dc)); 2061 } 2062 } 2063 } 2064 2065 /* 2066 * Manipulate the config_pending semaphore. 2067 */ 2068 void 2069 config_pending_incr(device_t dev) 2070 { 2071 2072 mutex_enter(&config_misc_lock); 2073 config_pending++; 2074 #ifdef DEBUG_AUTOCONF 2075 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2076 #endif 2077 mutex_exit(&config_misc_lock); 2078 } 2079 2080 void 2081 config_pending_decr(device_t dev) 2082 { 2083 2084 #ifdef DIAGNOSTIC 2085 if (config_pending == 0) 2086 panic("config_pending_decr: config_pending == 0"); 2087 #endif 2088 mutex_enter(&config_misc_lock); 2089 config_pending--; 2090 #ifdef DEBUG_AUTOCONF 2091 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2092 #endif 2093 if (config_pending == 0) 2094 cv_broadcast(&config_misc_cv); 2095 mutex_exit(&config_misc_lock); 2096 } 2097 2098 /* 2099 * Register a "finalization" routine. Finalization routines are 2100 * called iteratively once all real devices have been found during 2101 * autoconfiguration, for as long as any one finalizer has done 2102 * any work. 2103 */ 2104 int 2105 config_finalize_register(device_t dev, int (*fn)(device_t)) 2106 { 2107 struct finalize_hook *f; 2108 2109 /* 2110 * If finalization has already been done, invoke the 2111 * callback function now. 2112 */ 2113 if (config_finalize_done) { 2114 while ((*fn)(dev) != 0) 2115 /* loop */ ; 2116 return 0; 2117 } 2118 2119 /* Ensure this isn't already on the list. */ 2120 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2121 if (f->f_func == fn && f->f_dev == dev) 2122 return EEXIST; 2123 } 2124 2125 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2126 f->f_func = fn; 2127 f->f_dev = dev; 2128 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2129 2130 return 0; 2131 } 2132 2133 void 2134 config_finalize(void) 2135 { 2136 struct finalize_hook *f; 2137 struct pdevinit *pdev; 2138 extern struct pdevinit pdevinit[]; 2139 int errcnt, rv; 2140 2141 /* 2142 * Now that device driver threads have been created, wait for 2143 * them to finish any deferred autoconfiguration. 2144 */ 2145 mutex_enter(&config_misc_lock); 2146 while (config_pending != 0) 2147 cv_wait(&config_misc_cv, &config_misc_lock); 2148 mutex_exit(&config_misc_lock); 2149 2150 KERNEL_LOCK(1, NULL); 2151 2152 /* Attach pseudo-devices. */ 2153 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2154 (*pdev->pdev_attach)(pdev->pdev_count); 2155 2156 /* Run the hooks until none of them does any work. */ 2157 do { 2158 rv = 0; 2159 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2160 rv |= (*f->f_func)(f->f_dev); 2161 } while (rv != 0); 2162 2163 config_finalize_done = 1; 2164 2165 /* Now free all the hooks. */ 2166 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2167 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2168 kmem_free(f, sizeof(*f)); 2169 } 2170 2171 KERNEL_UNLOCK_ONE(NULL); 2172 2173 errcnt = aprint_get_error_count(); 2174 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2175 (boothowto & AB_VERBOSE) == 0) { 2176 mutex_enter(&config_misc_lock); 2177 if (config_do_twiddle) { 2178 config_do_twiddle = 0; 2179 printf_nolog(" done.\n"); 2180 } 2181 mutex_exit(&config_misc_lock); 2182 } 2183 if (errcnt != 0) { 2184 printf("WARNING: %d error%s while detecting hardware; " 2185 "check system log.\n", errcnt, 2186 errcnt == 1 ? "" : "s"); 2187 } 2188 } 2189 2190 void 2191 config_twiddle_init(void) 2192 { 2193 2194 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2195 config_do_twiddle = 1; 2196 } 2197 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2198 } 2199 2200 void 2201 config_twiddle_fn(void *cookie) 2202 { 2203 2204 mutex_enter(&config_misc_lock); 2205 if (config_do_twiddle) { 2206 twiddle(); 2207 callout_schedule(&config_twiddle_ch, mstohz(100)); 2208 } 2209 mutex_exit(&config_misc_lock); 2210 } 2211 2212 static void 2213 config_alldevs_enter(struct alldevs_foray *af) 2214 { 2215 TAILQ_INIT(&af->af_garbage); 2216 mutex_enter(&alldevs_mtx); 2217 config_collect_garbage(&af->af_garbage); 2218 } 2219 2220 static void 2221 config_alldevs_exit(struct alldevs_foray *af) 2222 { 2223 mutex_exit(&alldevs_mtx); 2224 config_dump_garbage(&af->af_garbage); 2225 } 2226 2227 /* 2228 * device_lookup: 2229 * 2230 * Look up a device instance for a given driver. 2231 */ 2232 device_t 2233 device_lookup(cfdriver_t cd, int unit) 2234 { 2235 device_t dv; 2236 2237 mutex_enter(&alldevs_mtx); 2238 if (unit < 0 || unit >= cd->cd_ndevs) 2239 dv = NULL; 2240 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2241 dv = NULL; 2242 mutex_exit(&alldevs_mtx); 2243 2244 return dv; 2245 } 2246 2247 /* 2248 * device_lookup_private: 2249 * 2250 * Look up a softc instance for a given driver. 2251 */ 2252 void * 2253 device_lookup_private(cfdriver_t cd, int unit) 2254 { 2255 2256 return device_private(device_lookup(cd, unit)); 2257 } 2258 2259 /* 2260 * device_find_by_xname: 2261 * 2262 * Returns the device of the given name or NULL if it doesn't exist. 2263 */ 2264 device_t 2265 device_find_by_xname(const char *name) 2266 { 2267 device_t dv; 2268 deviter_t di; 2269 2270 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2271 if (strcmp(device_xname(dv), name) == 0) 2272 break; 2273 } 2274 deviter_release(&di); 2275 2276 return dv; 2277 } 2278 2279 /* 2280 * device_find_by_driver_unit: 2281 * 2282 * Returns the device of the given driver name and unit or 2283 * NULL if it doesn't exist. 2284 */ 2285 device_t 2286 device_find_by_driver_unit(const char *name, int unit) 2287 { 2288 struct cfdriver *cd; 2289 2290 if ((cd = config_cfdriver_lookup(name)) == NULL) 2291 return NULL; 2292 return device_lookup(cd, unit); 2293 } 2294 2295 /* 2296 * Power management related functions. 2297 */ 2298 2299 bool 2300 device_pmf_is_registered(device_t dev) 2301 { 2302 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2303 } 2304 2305 bool 2306 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2307 { 2308 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2309 return true; 2310 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2311 return false; 2312 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2313 dev->dv_driver_suspend != NULL && 2314 !(*dev->dv_driver_suspend)(dev, qual)) 2315 return false; 2316 2317 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2318 return true; 2319 } 2320 2321 bool 2322 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2323 { 2324 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2325 return true; 2326 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2327 return false; 2328 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2329 dev->dv_driver_resume != NULL && 2330 !(*dev->dv_driver_resume)(dev, qual)) 2331 return false; 2332 2333 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2334 return true; 2335 } 2336 2337 bool 2338 device_pmf_driver_shutdown(device_t dev, int how) 2339 { 2340 2341 if (*dev->dv_driver_shutdown != NULL && 2342 !(*dev->dv_driver_shutdown)(dev, how)) 2343 return false; 2344 return true; 2345 } 2346 2347 bool 2348 device_pmf_driver_register(device_t dev, 2349 bool (*suspend)(device_t, const pmf_qual_t *), 2350 bool (*resume)(device_t, const pmf_qual_t *), 2351 bool (*shutdown)(device_t, int)) 2352 { 2353 dev->dv_driver_suspend = suspend; 2354 dev->dv_driver_resume = resume; 2355 dev->dv_driver_shutdown = shutdown; 2356 dev->dv_flags |= DVF_POWER_HANDLERS; 2357 return true; 2358 } 2359 2360 static const char * 2361 curlwp_name(void) 2362 { 2363 if (curlwp->l_name != NULL) 2364 return curlwp->l_name; 2365 else 2366 return curlwp->l_proc->p_comm; 2367 } 2368 2369 void 2370 device_pmf_driver_deregister(device_t dev) 2371 { 2372 device_lock_t dvl = device_getlock(dev); 2373 2374 dev->dv_driver_suspend = NULL; 2375 dev->dv_driver_resume = NULL; 2376 2377 mutex_enter(&dvl->dvl_mtx); 2378 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2379 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2380 /* Wake a thread that waits for the lock. That 2381 * thread will fail to acquire the lock, and then 2382 * it will wake the next thread that waits for the 2383 * lock, or else it will wake us. 2384 */ 2385 cv_signal(&dvl->dvl_cv); 2386 pmflock_debug(dev, __func__, __LINE__); 2387 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2388 pmflock_debug(dev, __func__, __LINE__); 2389 } 2390 mutex_exit(&dvl->dvl_mtx); 2391 } 2392 2393 bool 2394 device_pmf_driver_child_register(device_t dev) 2395 { 2396 device_t parent = device_parent(dev); 2397 2398 if (parent == NULL || parent->dv_driver_child_register == NULL) 2399 return true; 2400 return (*parent->dv_driver_child_register)(dev); 2401 } 2402 2403 void 2404 device_pmf_driver_set_child_register(device_t dev, 2405 bool (*child_register)(device_t)) 2406 { 2407 dev->dv_driver_child_register = child_register; 2408 } 2409 2410 static void 2411 pmflock_debug(device_t dev, const char *func, int line) 2412 { 2413 device_lock_t dvl = device_getlock(dev); 2414 2415 aprint_debug_dev(dev, 2416 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line, 2417 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags); 2418 } 2419 2420 static bool 2421 device_pmf_lock1(device_t dev) 2422 { 2423 device_lock_t dvl = device_getlock(dev); 2424 2425 while (device_pmf_is_registered(dev) && 2426 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2427 dvl->dvl_nwait++; 2428 pmflock_debug(dev, __func__, __LINE__); 2429 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2430 pmflock_debug(dev, __func__, __LINE__); 2431 dvl->dvl_nwait--; 2432 } 2433 if (!device_pmf_is_registered(dev)) { 2434 pmflock_debug(dev, __func__, __LINE__); 2435 /* We could not acquire the lock, but some other thread may 2436 * wait for it, also. Wake that thread. 2437 */ 2438 cv_signal(&dvl->dvl_cv); 2439 return false; 2440 } 2441 dvl->dvl_nlock++; 2442 dvl->dvl_holder = curlwp; 2443 pmflock_debug(dev, __func__, __LINE__); 2444 return true; 2445 } 2446 2447 bool 2448 device_pmf_lock(device_t dev) 2449 { 2450 bool rc; 2451 device_lock_t dvl = device_getlock(dev); 2452 2453 mutex_enter(&dvl->dvl_mtx); 2454 rc = device_pmf_lock1(dev); 2455 mutex_exit(&dvl->dvl_mtx); 2456 2457 return rc; 2458 } 2459 2460 void 2461 device_pmf_unlock(device_t dev) 2462 { 2463 device_lock_t dvl = device_getlock(dev); 2464 2465 KASSERT(dvl->dvl_nlock > 0); 2466 mutex_enter(&dvl->dvl_mtx); 2467 if (--dvl->dvl_nlock == 0) 2468 dvl->dvl_holder = NULL; 2469 cv_signal(&dvl->dvl_cv); 2470 pmflock_debug(dev, __func__, __LINE__); 2471 mutex_exit(&dvl->dvl_mtx); 2472 } 2473 2474 device_lock_t 2475 device_getlock(device_t dev) 2476 { 2477 return &dev->dv_lock; 2478 } 2479 2480 void * 2481 device_pmf_bus_private(device_t dev) 2482 { 2483 return dev->dv_bus_private; 2484 } 2485 2486 bool 2487 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2488 { 2489 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2490 return true; 2491 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2492 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2493 return false; 2494 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2495 dev->dv_bus_suspend != NULL && 2496 !(*dev->dv_bus_suspend)(dev, qual)) 2497 return false; 2498 2499 dev->dv_flags |= DVF_BUS_SUSPENDED; 2500 return true; 2501 } 2502 2503 bool 2504 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2505 { 2506 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2507 return true; 2508 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2509 dev->dv_bus_resume != NULL && 2510 !(*dev->dv_bus_resume)(dev, qual)) 2511 return false; 2512 2513 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2514 return true; 2515 } 2516 2517 bool 2518 device_pmf_bus_shutdown(device_t dev, int how) 2519 { 2520 2521 if (*dev->dv_bus_shutdown != NULL && 2522 !(*dev->dv_bus_shutdown)(dev, how)) 2523 return false; 2524 return true; 2525 } 2526 2527 void 2528 device_pmf_bus_register(device_t dev, void *priv, 2529 bool (*suspend)(device_t, const pmf_qual_t *), 2530 bool (*resume)(device_t, const pmf_qual_t *), 2531 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2532 { 2533 dev->dv_bus_private = priv; 2534 dev->dv_bus_resume = resume; 2535 dev->dv_bus_suspend = suspend; 2536 dev->dv_bus_shutdown = shutdown; 2537 dev->dv_bus_deregister = deregister; 2538 } 2539 2540 void 2541 device_pmf_bus_deregister(device_t dev) 2542 { 2543 if (dev->dv_bus_deregister == NULL) 2544 return; 2545 (*dev->dv_bus_deregister)(dev); 2546 dev->dv_bus_private = NULL; 2547 dev->dv_bus_suspend = NULL; 2548 dev->dv_bus_resume = NULL; 2549 dev->dv_bus_deregister = NULL; 2550 } 2551 2552 void * 2553 device_pmf_class_private(device_t dev) 2554 { 2555 return dev->dv_class_private; 2556 } 2557 2558 bool 2559 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2560 { 2561 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2562 return true; 2563 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2564 dev->dv_class_suspend != NULL && 2565 !(*dev->dv_class_suspend)(dev, qual)) 2566 return false; 2567 2568 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2569 return true; 2570 } 2571 2572 bool 2573 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2574 { 2575 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2576 return true; 2577 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2578 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2579 return false; 2580 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2581 dev->dv_class_resume != NULL && 2582 !(*dev->dv_class_resume)(dev, qual)) 2583 return false; 2584 2585 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2586 return true; 2587 } 2588 2589 void 2590 device_pmf_class_register(device_t dev, void *priv, 2591 bool (*suspend)(device_t, const pmf_qual_t *), 2592 bool (*resume)(device_t, const pmf_qual_t *), 2593 void (*deregister)(device_t)) 2594 { 2595 dev->dv_class_private = priv; 2596 dev->dv_class_suspend = suspend; 2597 dev->dv_class_resume = resume; 2598 dev->dv_class_deregister = deregister; 2599 } 2600 2601 void 2602 device_pmf_class_deregister(device_t dev) 2603 { 2604 if (dev->dv_class_deregister == NULL) 2605 return; 2606 (*dev->dv_class_deregister)(dev); 2607 dev->dv_class_private = NULL; 2608 dev->dv_class_suspend = NULL; 2609 dev->dv_class_resume = NULL; 2610 dev->dv_class_deregister = NULL; 2611 } 2612 2613 bool 2614 device_active(device_t dev, devactive_t type) 2615 { 2616 size_t i; 2617 2618 if (dev->dv_activity_count == 0) 2619 return false; 2620 2621 for (i = 0; i < dev->dv_activity_count; ++i) { 2622 if (dev->dv_activity_handlers[i] == NULL) 2623 break; 2624 (*dev->dv_activity_handlers[i])(dev, type); 2625 } 2626 2627 return true; 2628 } 2629 2630 bool 2631 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2632 { 2633 void (**new_handlers)(device_t, devactive_t); 2634 void (**old_handlers)(device_t, devactive_t); 2635 size_t i, old_size, new_size; 2636 int s; 2637 2638 old_handlers = dev->dv_activity_handlers; 2639 old_size = dev->dv_activity_count; 2640 2641 KASSERT(old_size == 0 || old_handlers != NULL); 2642 2643 for (i = 0; i < old_size; ++i) { 2644 KASSERT(old_handlers[i] != handler); 2645 if (old_handlers[i] == NULL) { 2646 old_handlers[i] = handler; 2647 return true; 2648 } 2649 } 2650 2651 new_size = old_size + 4; 2652 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2653 2654 for (i = 0; i < old_size; ++i) 2655 new_handlers[i] = old_handlers[i]; 2656 new_handlers[old_size] = handler; 2657 for (i = old_size+1; i < new_size; ++i) 2658 new_handlers[i] = NULL; 2659 2660 s = splhigh(); 2661 dev->dv_activity_count = new_size; 2662 dev->dv_activity_handlers = new_handlers; 2663 splx(s); 2664 2665 if (old_size > 0) 2666 kmem_free(old_handlers, sizeof(void * [old_size])); 2667 2668 return true; 2669 } 2670 2671 void 2672 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2673 { 2674 void (**old_handlers)(device_t, devactive_t); 2675 size_t i, old_size; 2676 int s; 2677 2678 old_handlers = dev->dv_activity_handlers; 2679 old_size = dev->dv_activity_count; 2680 2681 for (i = 0; i < old_size; ++i) { 2682 if (old_handlers[i] == handler) 2683 break; 2684 if (old_handlers[i] == NULL) 2685 return; /* XXX panic? */ 2686 } 2687 2688 if (i == old_size) 2689 return; /* XXX panic? */ 2690 2691 for (; i < old_size - 1; ++i) { 2692 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2693 continue; 2694 2695 if (i == 0) { 2696 s = splhigh(); 2697 dev->dv_activity_count = 0; 2698 dev->dv_activity_handlers = NULL; 2699 splx(s); 2700 kmem_free(old_handlers, sizeof(void *[old_size])); 2701 } 2702 return; 2703 } 2704 old_handlers[i] = NULL; 2705 } 2706 2707 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2708 static bool 2709 device_exists_at(device_t dv, devgen_t gen) 2710 { 2711 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2712 dv->dv_add_gen <= gen; 2713 } 2714 2715 static bool 2716 deviter_visits(const deviter_t *di, device_t dv) 2717 { 2718 return device_exists_at(dv, di->di_gen); 2719 } 2720 2721 /* 2722 * Device Iteration 2723 * 2724 * deviter_t: a device iterator. Holds state for a "walk" visiting 2725 * each device_t's in the device tree. 2726 * 2727 * deviter_init(di, flags): initialize the device iterator `di' 2728 * to "walk" the device tree. deviter_next(di) will return 2729 * the first device_t in the device tree, or NULL if there are 2730 * no devices. 2731 * 2732 * `flags' is one or more of DEVITER_F_RW, indicating that the 2733 * caller intends to modify the device tree by calling 2734 * config_detach(9) on devices in the order that the iterator 2735 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2736 * nearest the "root" of the device tree to be returned, first; 2737 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2738 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2739 * indicating both that deviter_init() should not respect any 2740 * locks on the device tree, and that deviter_next(di) may run 2741 * in more than one LWP before the walk has finished. 2742 * 2743 * Only one DEVITER_F_RW iterator may be in the device tree at 2744 * once. 2745 * 2746 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2747 * 2748 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2749 * DEVITER_F_LEAVES_FIRST are used in combination. 2750 * 2751 * deviter_first(di, flags): initialize the device iterator `di' 2752 * and return the first device_t in the device tree, or NULL 2753 * if there are no devices. The statement 2754 * 2755 * dv = deviter_first(di); 2756 * 2757 * is shorthand for 2758 * 2759 * deviter_init(di); 2760 * dv = deviter_next(di); 2761 * 2762 * deviter_next(di): return the next device_t in the device tree, 2763 * or NULL if there are no more devices. deviter_next(di) 2764 * is undefined if `di' was not initialized with deviter_init() or 2765 * deviter_first(). 2766 * 2767 * deviter_release(di): stops iteration (subsequent calls to 2768 * deviter_next() will return NULL), releases any locks and 2769 * resources held by the device iterator. 2770 * 2771 * Device iteration does not return device_t's in any particular 2772 * order. An iterator will never return the same device_t twice. 2773 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2774 * is called repeatedly on the same `di', it will eventually return 2775 * NULL. It is ok to attach/detach devices during device iteration. 2776 */ 2777 void 2778 deviter_init(deviter_t *di, deviter_flags_t flags) 2779 { 2780 device_t dv; 2781 2782 memset(di, 0, sizeof(*di)); 2783 2784 mutex_enter(&alldevs_mtx); 2785 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2786 flags |= DEVITER_F_RW; 2787 2788 if ((flags & DEVITER_F_RW) != 0) 2789 alldevs_nwrite++; 2790 else 2791 alldevs_nread++; 2792 di->di_gen = alldevs_gen++; 2793 mutex_exit(&alldevs_mtx); 2794 2795 di->di_flags = flags; 2796 2797 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2798 case DEVITER_F_LEAVES_FIRST: 2799 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2800 if (!deviter_visits(di, dv)) 2801 continue; 2802 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2803 } 2804 break; 2805 case DEVITER_F_ROOT_FIRST: 2806 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2807 if (!deviter_visits(di, dv)) 2808 continue; 2809 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2810 } 2811 break; 2812 default: 2813 break; 2814 } 2815 2816 deviter_reinit(di); 2817 } 2818 2819 static void 2820 deviter_reinit(deviter_t *di) 2821 { 2822 if ((di->di_flags & DEVITER_F_RW) != 0) 2823 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2824 else 2825 di->di_prev = TAILQ_FIRST(&alldevs); 2826 } 2827 2828 device_t 2829 deviter_first(deviter_t *di, deviter_flags_t flags) 2830 { 2831 deviter_init(di, flags); 2832 return deviter_next(di); 2833 } 2834 2835 static device_t 2836 deviter_next2(deviter_t *di) 2837 { 2838 device_t dv; 2839 2840 dv = di->di_prev; 2841 2842 if (dv == NULL) 2843 return NULL; 2844 2845 if ((di->di_flags & DEVITER_F_RW) != 0) 2846 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2847 else 2848 di->di_prev = TAILQ_NEXT(dv, dv_list); 2849 2850 return dv; 2851 } 2852 2853 static device_t 2854 deviter_next1(deviter_t *di) 2855 { 2856 device_t dv; 2857 2858 do { 2859 dv = deviter_next2(di); 2860 } while (dv != NULL && !deviter_visits(di, dv)); 2861 2862 return dv; 2863 } 2864 2865 device_t 2866 deviter_next(deviter_t *di) 2867 { 2868 device_t dv = NULL; 2869 2870 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2871 case 0: 2872 return deviter_next1(di); 2873 case DEVITER_F_LEAVES_FIRST: 2874 while (di->di_curdepth >= 0) { 2875 if ((dv = deviter_next1(di)) == NULL) { 2876 di->di_curdepth--; 2877 deviter_reinit(di); 2878 } else if (dv->dv_depth == di->di_curdepth) 2879 break; 2880 } 2881 return dv; 2882 case DEVITER_F_ROOT_FIRST: 2883 while (di->di_curdepth <= di->di_maxdepth) { 2884 if ((dv = deviter_next1(di)) == NULL) { 2885 di->di_curdepth++; 2886 deviter_reinit(di); 2887 } else if (dv->dv_depth == di->di_curdepth) 2888 break; 2889 } 2890 return dv; 2891 default: 2892 return NULL; 2893 } 2894 } 2895 2896 void 2897 deviter_release(deviter_t *di) 2898 { 2899 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2900 2901 mutex_enter(&alldevs_mtx); 2902 if (rw) 2903 --alldevs_nwrite; 2904 else 2905 --alldevs_nread; 2906 /* XXX wake a garbage-collection thread */ 2907 mutex_exit(&alldevs_mtx); 2908 } 2909 2910 const char * 2911 cfdata_ifattr(const struct cfdata *cf) 2912 { 2913 return cf->cf_pspec->cfp_iattr; 2914 } 2915 2916 bool 2917 ifattr_match(const char *snull, const char *t) 2918 { 2919 return (snull == NULL) || strcmp(snull, t) == 0; 2920 } 2921 2922 void 2923 null_childdetached(device_t self, device_t child) 2924 { 2925 /* do nothing */ 2926 } 2927 2928 static void 2929 sysctl_detach_setup(struct sysctllog **clog) 2930 { 2931 2932 sysctl_createv(clog, 0, NULL, NULL, 2933 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2934 CTLTYPE_BOOL, "detachall", 2935 SYSCTL_DESCR("Detach all devices at shutdown"), 2936 NULL, 0, &detachall, 0, 2937 CTL_KERN, CTL_CREATE, CTL_EOL); 2938 } 2939