1 /* $NetBSD: subr_autoconf.c,v 1.147 2008/04/29 14:35:21 rmind Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.147 2008/04/29 14:35:21 rmind Exp $"); 81 82 #include "opt_multiprocessor.h" 83 #include "opt_ddb.h" 84 85 #include <sys/param.h> 86 #include <sys/device.h> 87 #include <sys/disklabel.h> 88 #include <sys/conf.h> 89 #include <sys/kauth.h> 90 #include <sys/malloc.h> 91 #include <sys/systm.h> 92 #include <sys/kernel.h> 93 #include <sys/errno.h> 94 #include <sys/proc.h> 95 #include <sys/reboot.h> 96 #include <sys/kthread.h> 97 #include <sys/buf.h> 98 #include <sys/dirent.h> 99 #include <sys/vnode.h> 100 #include <sys/mount.h> 101 #include <sys/namei.h> 102 #include <sys/unistd.h> 103 #include <sys/fcntl.h> 104 #include <sys/lockf.h> 105 #include <sys/callout.h> 106 #include <sys/mutex.h> 107 #include <sys/condvar.h> 108 109 #include <sys/disk.h> 110 111 #include <machine/limits.h> 112 113 #include "opt_userconf.h" 114 #ifdef USERCONF 115 #include <sys/userconf.h> 116 #endif 117 118 #ifdef __i386__ 119 #include "opt_splash.h" 120 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 121 #include <dev/splash/splash.h> 122 extern struct splash_progress *splash_progress_state; 123 #endif 124 #endif 125 126 /* 127 * Autoconfiguration subroutines. 128 */ 129 130 typedef struct pmf_private { 131 int pp_nwait; 132 int pp_nlock; 133 lwp_t *pp_holder; 134 kmutex_t pp_mtx; 135 kcondvar_t pp_cv; 136 } pmf_private_t; 137 138 /* 139 * ioconf.c exports exactly two names: cfdata and cfroots. All system 140 * devices and drivers are found via these tables. 141 */ 142 extern struct cfdata cfdata[]; 143 extern const short cfroots[]; 144 145 /* 146 * List of all cfdriver structures. We use this to detect duplicates 147 * when other cfdrivers are loaded. 148 */ 149 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 150 extern struct cfdriver * const cfdriver_list_initial[]; 151 152 /* 153 * Initial list of cfattach's. 154 */ 155 extern const struct cfattachinit cfattachinit[]; 156 157 /* 158 * List of cfdata tables. We always have one such list -- the one 159 * built statically when the kernel was configured. 160 */ 161 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 162 static struct cftable initcftable; 163 164 #define ROOT ((device_t)NULL) 165 166 struct matchinfo { 167 cfsubmatch_t fn; 168 struct device *parent; 169 const int *locs; 170 void *aux; 171 struct cfdata *match; 172 int pri; 173 }; 174 175 static char *number(char *, int); 176 static void mapply(struct matchinfo *, cfdata_t); 177 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 178 static void config_devdealloc(device_t); 179 static void config_makeroom(int, struct cfdriver *); 180 static void config_devlink(device_t); 181 static void config_devunlink(device_t); 182 183 static void pmflock_debug(device_t, const char *, int); 184 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO); 185 186 static device_t deviter_next1(deviter_t *); 187 static void deviter_reinit(deviter_t *); 188 189 struct deferred_config { 190 TAILQ_ENTRY(deferred_config) dc_queue; 191 device_t dc_dev; 192 void (*dc_func)(device_t); 193 }; 194 195 TAILQ_HEAD(deferred_config_head, deferred_config); 196 197 struct deferred_config_head deferred_config_queue = 198 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 199 struct deferred_config_head interrupt_config_queue = 200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 201 int interrupt_config_threads = 8; 202 203 static void config_process_deferred(struct deferred_config_head *, device_t); 204 205 /* Hooks to finalize configuration once all real devices have been found. */ 206 struct finalize_hook { 207 TAILQ_ENTRY(finalize_hook) f_list; 208 int (*f_func)(device_t); 209 device_t f_dev; 210 }; 211 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 212 TAILQ_HEAD_INITIALIZER(config_finalize_list); 213 static int config_finalize_done; 214 215 /* list of all devices */ 216 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 217 kcondvar_t alldevs_cv; 218 kmutex_t alldevs_mtx; 219 static int alldevs_nread = 0; 220 static int alldevs_nwrite = 0; 221 static lwp_t *alldevs_writer = NULL; 222 223 volatile int config_pending; /* semaphore for mountroot */ 224 225 #define STREQ(s1, s2) \ 226 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 227 228 static int config_initialized; /* config_init() has been called. */ 229 230 static int config_do_twiddle; 231 232 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage"); 233 234 struct vnode * 235 opendisk(struct device *dv) 236 { 237 int bmajor, bminor; 238 struct vnode *tmpvn; 239 int error; 240 dev_t dev; 241 242 /* 243 * Lookup major number for disk block device. 244 */ 245 bmajor = devsw_name2blk(device_xname(dv), NULL, 0); 246 if (bmajor == -1) 247 return NULL; 248 249 bminor = minor(device_unit(dv)); 250 /* 251 * Fake a temporary vnode for the disk, open it, and read 252 * and hash the sectors. 253 */ 254 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) : 255 MAKEDISKDEV(bmajor, bminor, RAW_PART); 256 if (bdevvp(dev, &tmpvn)) 257 panic("%s: can't alloc vnode for %s", __func__, 258 device_xname(dv)); 259 error = VOP_OPEN(tmpvn, FREAD, NOCRED); 260 if (error) { 261 #ifndef DEBUG 262 /* 263 * Ignore errors caused by missing device, partition, 264 * or medium. 265 */ 266 if (error != ENXIO && error != ENODEV) 267 #endif 268 printf("%s: can't open dev %s (%d)\n", 269 __func__, device_xname(dv), error); 270 vput(tmpvn); 271 return NULL; 272 } 273 274 return tmpvn; 275 } 276 277 int 278 config_handle_wedges(struct device *dv, int par) 279 { 280 struct dkwedge_list wl; 281 struct dkwedge_info *wi; 282 struct vnode *vn; 283 char diskname[16]; 284 int i, error; 285 286 if ((vn = opendisk(dv)) == NULL) 287 return -1; 288 289 wl.dkwl_bufsize = sizeof(*wi) * 16; 290 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK); 291 292 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED); 293 VOP_CLOSE(vn, FREAD, NOCRED); 294 vput(vn); 295 if (error) { 296 #ifdef DEBUG_WEDGE 297 printf("%s: List wedges returned %d\n", 298 device_xname(dv), error); 299 #endif 300 free(wi, M_TEMP); 301 return -1; 302 } 303 304 #ifdef DEBUG_WEDGE 305 printf("%s: Returned %u(%u) wedges\n", device_xname(dv), 306 wl.dkwl_nwedges, wl.dkwl_ncopied); 307 #endif 308 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv), 309 par + 'a'); 310 311 for (i = 0; i < wl.dkwl_ncopied; i++) { 312 #ifdef DEBUG_WEDGE 313 printf("%s: Looking for %s in %s\n", 314 device_xname(dv), diskname, wi[i].dkw_wname); 315 #endif 316 if (strcmp(wi[i].dkw_wname, diskname) == 0) 317 break; 318 } 319 320 if (i == wl.dkwl_ncopied) { 321 #ifdef DEBUG_WEDGE 322 printf("%s: Cannot find wedge with parent %s\n", 323 device_xname(dv), diskname); 324 #endif 325 free(wi, M_TEMP); 326 return -1; 327 } 328 329 #ifdef DEBUG_WEDGE 330 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n", 331 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname, 332 (unsigned long long)wi[i].dkw_offset, 333 (unsigned long long)wi[i].dkw_size); 334 #endif 335 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size); 336 free(wi, M_TEMP); 337 return 0; 338 } 339 340 /* 341 * Initialize the autoconfiguration data structures. Normally this 342 * is done by configure(), but some platforms need to do this very 343 * early (to e.g. initialize the console). 344 */ 345 void 346 config_init(void) 347 { 348 const struct cfattachinit *cfai; 349 int i, j; 350 351 if (config_initialized) 352 return; 353 354 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE); 355 cv_init(&alldevs_cv, "alldevs"); 356 357 /* allcfdrivers is statically initialized. */ 358 for (i = 0; cfdriver_list_initial[i] != NULL; i++) { 359 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) 360 panic("configure: duplicate `%s' drivers", 361 cfdriver_list_initial[i]->cd_name); 362 } 363 364 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { 365 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 366 if (config_cfattach_attach(cfai->cfai_name, 367 cfai->cfai_list[j]) != 0) 368 panic("configure: duplicate `%s' attachment " 369 "of `%s' driver", 370 cfai->cfai_list[j]->ca_name, 371 cfai->cfai_name); 372 } 373 } 374 375 initcftable.ct_cfdata = cfdata; 376 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 377 378 config_initialized = 1; 379 } 380 381 void 382 config_deferred(device_t dev) 383 { 384 config_process_deferred(&deferred_config_queue, dev); 385 config_process_deferred(&interrupt_config_queue, dev); 386 } 387 388 static void 389 config_interrupts_thread(void *cookie) 390 { 391 struct deferred_config *dc; 392 393 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 394 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 395 (*dc->dc_func)(dc->dc_dev); 396 free(dc, M_DEVBUF); 397 config_pending_decr(); 398 } 399 kthread_exit(0); 400 } 401 402 /* 403 * Configure the system's hardware. 404 */ 405 void 406 configure(void) 407 { 408 extern void ssp_init(void); 409 int i, s; 410 411 /* Initialize data structures. */ 412 config_init(); 413 pmf_init(); 414 415 #ifdef USERCONF 416 if (boothowto & RB_USERCONF) 417 user_config(); 418 #endif 419 420 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 421 config_do_twiddle = 1; 422 printf_nolog("Detecting hardware..."); 423 } 424 425 /* 426 * Do the machine-dependent portion of autoconfiguration. This 427 * sets the configuration machinery here in motion by "finding" 428 * the root bus. When this function returns, we expect interrupts 429 * to be enabled. 430 */ 431 cpu_configure(); 432 433 /* Initialize SSP. */ 434 ssp_init(); 435 436 /* 437 * Now that we've found all the hardware, start the real time 438 * and statistics clocks. 439 */ 440 initclocks(); 441 442 cold = 0; /* clocks are running, we're warm now! */ 443 s = splsched(); 444 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING; 445 splx(s); 446 447 /* Boot the secondary processors. */ 448 mp_online = true; 449 #if defined(MULTIPROCESSOR) 450 cpu_boot_secondary_processors(); 451 #endif 452 453 /* Setup the runqueues and scheduler. */ 454 runq_init(); 455 sched_init(); 456 457 /* 458 * Create threads to call back and finish configuration for 459 * devices that want interrupts enabled. 460 */ 461 for (i = 0; i < interrupt_config_threads; i++) { 462 (void)kthread_create(PRI_NONE, 0, NULL, 463 config_interrupts_thread, NULL, NULL, "config"); 464 } 465 466 /* Get the threads going and into any sleeps before continuing. */ 467 yield(); 468 469 /* Lock the kernel on behalf of lwp0. */ 470 KERNEL_LOCK(1, NULL); 471 } 472 473 /* 474 * Add a cfdriver to the system. 475 */ 476 int 477 config_cfdriver_attach(struct cfdriver *cd) 478 { 479 struct cfdriver *lcd; 480 481 /* Make sure this driver isn't already in the system. */ 482 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 483 if (STREQ(lcd->cd_name, cd->cd_name)) 484 return (EEXIST); 485 } 486 487 LIST_INIT(&cd->cd_attach); 488 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 489 490 return (0); 491 } 492 493 /* 494 * Remove a cfdriver from the system. 495 */ 496 int 497 config_cfdriver_detach(struct cfdriver *cd) 498 { 499 int i; 500 501 /* Make sure there are no active instances. */ 502 for (i = 0; i < cd->cd_ndevs; i++) { 503 if (cd->cd_devs[i] != NULL) 504 return (EBUSY); 505 } 506 507 /* ...and no attachments loaded. */ 508 if (LIST_EMPTY(&cd->cd_attach) == 0) 509 return (EBUSY); 510 511 LIST_REMOVE(cd, cd_list); 512 513 KASSERT(cd->cd_devs == NULL); 514 515 return (0); 516 } 517 518 /* 519 * Look up a cfdriver by name. 520 */ 521 struct cfdriver * 522 config_cfdriver_lookup(const char *name) 523 { 524 struct cfdriver *cd; 525 526 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 527 if (STREQ(cd->cd_name, name)) 528 return (cd); 529 } 530 531 return (NULL); 532 } 533 534 /* 535 * Add a cfattach to the specified driver. 536 */ 537 int 538 config_cfattach_attach(const char *driver, struct cfattach *ca) 539 { 540 struct cfattach *lca; 541 struct cfdriver *cd; 542 543 cd = config_cfdriver_lookup(driver); 544 if (cd == NULL) 545 return (ESRCH); 546 547 /* Make sure this attachment isn't already on this driver. */ 548 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 549 if (STREQ(lca->ca_name, ca->ca_name)) 550 return (EEXIST); 551 } 552 553 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 554 555 return (0); 556 } 557 558 /* 559 * Remove a cfattach from the specified driver. 560 */ 561 int 562 config_cfattach_detach(const char *driver, struct cfattach *ca) 563 { 564 struct cfdriver *cd; 565 device_t dev; 566 int i; 567 568 cd = config_cfdriver_lookup(driver); 569 if (cd == NULL) 570 return (ESRCH); 571 572 /* Make sure there are no active instances. */ 573 for (i = 0; i < cd->cd_ndevs; i++) { 574 if ((dev = cd->cd_devs[i]) == NULL) 575 continue; 576 if (dev->dv_cfattach == ca) 577 return (EBUSY); 578 } 579 580 LIST_REMOVE(ca, ca_list); 581 582 return (0); 583 } 584 585 /* 586 * Look up a cfattach by name. 587 */ 588 static struct cfattach * 589 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 590 { 591 struct cfattach *ca; 592 593 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 594 if (STREQ(ca->ca_name, atname)) 595 return (ca); 596 } 597 598 return (NULL); 599 } 600 601 /* 602 * Look up a cfattach by driver/attachment name. 603 */ 604 struct cfattach * 605 config_cfattach_lookup(const char *name, const char *atname) 606 { 607 struct cfdriver *cd; 608 609 cd = config_cfdriver_lookup(name); 610 if (cd == NULL) 611 return (NULL); 612 613 return (config_cfattach_lookup_cd(cd, atname)); 614 } 615 616 /* 617 * Apply the matching function and choose the best. This is used 618 * a few times and we want to keep the code small. 619 */ 620 static void 621 mapply(struct matchinfo *m, cfdata_t cf) 622 { 623 int pri; 624 625 if (m->fn != NULL) { 626 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 627 } else { 628 pri = config_match(m->parent, cf, m->aux); 629 } 630 if (pri > m->pri) { 631 m->match = cf; 632 m->pri = pri; 633 } 634 } 635 636 int 637 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 638 { 639 const struct cfiattrdata *ci; 640 const struct cflocdesc *cl; 641 int nlocs, i; 642 643 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver); 644 KASSERT(ci); 645 nlocs = ci->ci_loclen; 646 for (i = 0; i < nlocs; i++) { 647 cl = &ci->ci_locdesc[i]; 648 /* !cld_defaultstr means no default value */ 649 if ((!(cl->cld_defaultstr) 650 || (cf->cf_loc[i] != cl->cld_default)) 651 && cf->cf_loc[i] != locs[i]) 652 return (0); 653 } 654 655 return (config_match(parent, cf, aux)); 656 } 657 658 /* 659 * Helper function: check whether the driver supports the interface attribute 660 * and return its descriptor structure. 661 */ 662 static const struct cfiattrdata * 663 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 664 { 665 const struct cfiattrdata * const *cpp; 666 667 if (cd->cd_attrs == NULL) 668 return (0); 669 670 for (cpp = cd->cd_attrs; *cpp; cpp++) { 671 if (STREQ((*cpp)->ci_name, ia)) { 672 /* Match. */ 673 return (*cpp); 674 } 675 } 676 return (0); 677 } 678 679 /* 680 * Lookup an interface attribute description by name. 681 * If the driver is given, consider only its supported attributes. 682 */ 683 const struct cfiattrdata * 684 cfiattr_lookup(const char *name, const struct cfdriver *cd) 685 { 686 const struct cfdriver *d; 687 const struct cfiattrdata *ia; 688 689 if (cd) 690 return (cfdriver_get_iattr(cd, name)); 691 692 LIST_FOREACH(d, &allcfdrivers, cd_list) { 693 ia = cfdriver_get_iattr(d, name); 694 if (ia) 695 return (ia); 696 } 697 return (0); 698 } 699 700 /* 701 * Determine if `parent' is a potential parent for a device spec based 702 * on `cfp'. 703 */ 704 static int 705 cfparent_match(const device_t parent, const struct cfparent *cfp) 706 { 707 struct cfdriver *pcd; 708 709 /* We don't match root nodes here. */ 710 if (cfp == NULL) 711 return (0); 712 713 pcd = parent->dv_cfdriver; 714 KASSERT(pcd != NULL); 715 716 /* 717 * First, ensure this parent has the correct interface 718 * attribute. 719 */ 720 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 721 return (0); 722 723 /* 724 * If no specific parent device instance was specified (i.e. 725 * we're attaching to the attribute only), we're done! 726 */ 727 if (cfp->cfp_parent == NULL) 728 return (1); 729 730 /* 731 * Check the parent device's name. 732 */ 733 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 734 return (0); /* not the same parent */ 735 736 /* 737 * Make sure the unit number matches. 738 */ 739 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 740 cfp->cfp_unit == parent->dv_unit) 741 return (1); 742 743 /* Unit numbers don't match. */ 744 return (0); 745 } 746 747 /* 748 * Helper for config_cfdata_attach(): check all devices whether it could be 749 * parent any attachment in the config data table passed, and rescan. 750 */ 751 static void 752 rescan_with_cfdata(const struct cfdata *cf) 753 { 754 device_t d; 755 const struct cfdata *cf1; 756 deviter_t di; 757 758 759 /* 760 * "alldevs" is likely longer than an LKM's cfdata, so make it 761 * the outer loop. 762 */ 763 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 764 765 if (!(d->dv_cfattach->ca_rescan)) 766 continue; 767 768 for (cf1 = cf; cf1->cf_name; cf1++) { 769 770 if (!cfparent_match(d, cf1->cf_pspec)) 771 continue; 772 773 (*d->dv_cfattach->ca_rescan)(d, 774 cf1->cf_pspec->cfp_iattr, cf1->cf_loc); 775 } 776 } 777 deviter_release(&di); 778 } 779 780 /* 781 * Attach a supplemental config data table and rescan potential 782 * parent devices if required. 783 */ 784 int 785 config_cfdata_attach(cfdata_t cf, int scannow) 786 { 787 struct cftable *ct; 788 789 ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK); 790 ct->ct_cfdata = cf; 791 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 792 793 if (scannow) 794 rescan_with_cfdata(cf); 795 796 return (0); 797 } 798 799 /* 800 * Helper for config_cfdata_detach: check whether a device is 801 * found through any attachment in the config data table. 802 */ 803 static int 804 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 805 { 806 const struct cfdata *cf1; 807 808 for (cf1 = cf; cf1->cf_name; cf1++) 809 if (d->dv_cfdata == cf1) 810 return (1); 811 812 return (0); 813 } 814 815 /* 816 * Detach a supplemental config data table. Detach all devices found 817 * through that table (and thus keeping references to it) before. 818 */ 819 int 820 config_cfdata_detach(cfdata_t cf) 821 { 822 device_t d; 823 int error = 0; 824 struct cftable *ct; 825 deviter_t di; 826 827 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 828 d = deviter_next(&di)) { 829 if (!dev_in_cfdata(d, cf)) 830 continue; 831 if ((error = config_detach(d, 0)) != 0) 832 break; 833 } 834 deviter_release(&di); 835 if (error) { 836 aprint_error_dev(d, "unable to detach instance\n"); 837 return error; 838 } 839 840 TAILQ_FOREACH(ct, &allcftables, ct_list) { 841 if (ct->ct_cfdata == cf) { 842 TAILQ_REMOVE(&allcftables, ct, ct_list); 843 free(ct, M_DEVBUF); 844 return (0); 845 } 846 } 847 848 /* not found -- shouldn't happen */ 849 return (EINVAL); 850 } 851 852 /* 853 * Invoke the "match" routine for a cfdata entry on behalf of 854 * an external caller, usually a "submatch" routine. 855 */ 856 int 857 config_match(device_t parent, cfdata_t cf, void *aux) 858 { 859 struct cfattach *ca; 860 861 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 862 if (ca == NULL) { 863 /* No attachment for this entry, oh well. */ 864 return (0); 865 } 866 867 return ((*ca->ca_match)(parent, cf, aux)); 868 } 869 870 /* 871 * Iterate over all potential children of some device, calling the given 872 * function (default being the child's match function) for each one. 873 * Nonzero returns are matches; the highest value returned is considered 874 * the best match. Return the `found child' if we got a match, or NULL 875 * otherwise. The `aux' pointer is simply passed on through. 876 * 877 * Note that this function is designed so that it can be used to apply 878 * an arbitrary function to all potential children (its return value 879 * can be ignored). 880 */ 881 cfdata_t 882 config_search_loc(cfsubmatch_t fn, device_t parent, 883 const char *ifattr, const int *locs, void *aux) 884 { 885 struct cftable *ct; 886 cfdata_t cf; 887 struct matchinfo m; 888 889 KASSERT(config_initialized); 890 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 891 892 m.fn = fn; 893 m.parent = parent; 894 m.locs = locs; 895 m.aux = aux; 896 m.match = NULL; 897 m.pri = 0; 898 899 TAILQ_FOREACH(ct, &allcftables, ct_list) { 900 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 901 902 /* We don't match root nodes here. */ 903 if (!cf->cf_pspec) 904 continue; 905 906 /* 907 * Skip cf if no longer eligible, otherwise scan 908 * through parents for one matching `parent', and 909 * try match function. 910 */ 911 if (cf->cf_fstate == FSTATE_FOUND) 912 continue; 913 if (cf->cf_fstate == FSTATE_DNOTFOUND || 914 cf->cf_fstate == FSTATE_DSTAR) 915 continue; 916 917 /* 918 * If an interface attribute was specified, 919 * consider only children which attach to 920 * that attribute. 921 */ 922 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr)) 923 continue; 924 925 if (cfparent_match(parent, cf->cf_pspec)) 926 mapply(&m, cf); 927 } 928 } 929 return (m.match); 930 } 931 932 cfdata_t 933 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 934 void *aux) 935 { 936 937 return (config_search_loc(fn, parent, ifattr, NULL, aux)); 938 } 939 940 /* 941 * Find the given root device. 942 * This is much like config_search, but there is no parent. 943 * Don't bother with multiple cfdata tables; the root node 944 * must always be in the initial table. 945 */ 946 cfdata_t 947 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 948 { 949 cfdata_t cf; 950 const short *p; 951 struct matchinfo m; 952 953 m.fn = fn; 954 m.parent = ROOT; 955 m.aux = aux; 956 m.match = NULL; 957 m.pri = 0; 958 m.locs = 0; 959 /* 960 * Look at root entries for matching name. We do not bother 961 * with found-state here since only one root should ever be 962 * searched (and it must be done first). 963 */ 964 for (p = cfroots; *p >= 0; p++) { 965 cf = &cfdata[*p]; 966 if (strcmp(cf->cf_name, rootname) == 0) 967 mapply(&m, cf); 968 } 969 return (m.match); 970 } 971 972 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 973 974 /* 975 * The given `aux' argument describes a device that has been found 976 * on the given parent, but not necessarily configured. Locate the 977 * configuration data for that device (using the submatch function 978 * provided, or using candidates' cd_match configuration driver 979 * functions) and attach it, and return true. If the device was 980 * not configured, call the given `print' function and return 0. 981 */ 982 device_t 983 config_found_sm_loc(device_t parent, 984 const char *ifattr, const int *locs, void *aux, 985 cfprint_t print, cfsubmatch_t submatch) 986 { 987 cfdata_t cf; 988 989 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 990 if (splash_progress_state) 991 splash_progress_update(splash_progress_state); 992 #endif 993 994 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 995 return(config_attach_loc(parent, cf, locs, aux, print)); 996 if (print) { 997 if (config_do_twiddle) 998 twiddle(); 999 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1000 } 1001 1002 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1003 if (splash_progress_state) 1004 splash_progress_update(splash_progress_state); 1005 #endif 1006 1007 return (NULL); 1008 } 1009 1010 device_t 1011 config_found_ia(device_t parent, const char *ifattr, void *aux, 1012 cfprint_t print) 1013 { 1014 1015 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL)); 1016 } 1017 1018 device_t 1019 config_found(device_t parent, void *aux, cfprint_t print) 1020 { 1021 1022 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL)); 1023 } 1024 1025 /* 1026 * As above, but for root devices. 1027 */ 1028 device_t 1029 config_rootfound(const char *rootname, void *aux) 1030 { 1031 cfdata_t cf; 1032 1033 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 1034 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL)); 1035 aprint_error("root device %s not configured\n", rootname); 1036 return (NULL); 1037 } 1038 1039 /* just like sprintf(buf, "%d") except that it works from the end */ 1040 static char * 1041 number(char *ep, int n) 1042 { 1043 1044 *--ep = 0; 1045 while (n >= 10) { 1046 *--ep = (n % 10) + '0'; 1047 n /= 10; 1048 } 1049 *--ep = n + '0'; 1050 return (ep); 1051 } 1052 1053 /* 1054 * Expand the size of the cd_devs array if necessary. 1055 */ 1056 static void 1057 config_makeroom(int n, struct cfdriver *cd) 1058 { 1059 int old, new; 1060 void **nsp; 1061 1062 if (n < cd->cd_ndevs) 1063 return; 1064 1065 /* 1066 * Need to expand the array. 1067 */ 1068 old = cd->cd_ndevs; 1069 if (old == 0) 1070 new = 4; 1071 else 1072 new = old * 2; 1073 while (new <= n) 1074 new *= 2; 1075 cd->cd_ndevs = new; 1076 nsp = malloc(new * sizeof(void *), M_DEVBUF, 1077 cold ? M_NOWAIT : M_WAITOK); 1078 if (nsp == NULL) 1079 panic("config_attach: %sing dev array", 1080 old != 0 ? "expand" : "creat"); 1081 memset(nsp + old, 0, (new - old) * sizeof(void *)); 1082 if (old != 0) { 1083 memcpy(nsp, cd->cd_devs, old * sizeof(void *)); 1084 free(cd->cd_devs, M_DEVBUF); 1085 } 1086 cd->cd_devs = nsp; 1087 } 1088 1089 static void 1090 config_devlink(device_t dev) 1091 { 1092 struct cfdriver *cd = dev->dv_cfdriver; 1093 1094 /* put this device in the devices array */ 1095 config_makeroom(dev->dv_unit, cd); 1096 if (cd->cd_devs[dev->dv_unit]) 1097 panic("config_attach: duplicate %s", device_xname(dev)); 1098 cd->cd_devs[dev->dv_unit] = dev; 1099 1100 /* It is safe to add a device to the tail of the list while 1101 * readers are in the list, but not while a writer is in 1102 * the list. Wait for any writer to complete. 1103 */ 1104 mutex_enter(&alldevs_mtx); 1105 while (alldevs_nwrite != 0 && alldevs_writer != curlwp) 1106 cv_wait(&alldevs_cv, &alldevs_mtx); 1107 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */ 1108 cv_signal(&alldevs_cv); 1109 mutex_exit(&alldevs_mtx); 1110 } 1111 1112 static void 1113 config_devunlink(device_t dev) 1114 { 1115 struct cfdriver *cd = dev->dv_cfdriver; 1116 int i; 1117 1118 /* Unlink from device list. */ 1119 TAILQ_REMOVE(&alldevs, dev, dv_list); 1120 1121 /* Remove from cfdriver's array. */ 1122 cd->cd_devs[dev->dv_unit] = NULL; 1123 1124 /* 1125 * If the device now has no units in use, deallocate its softc array. 1126 */ 1127 for (i = 0; i < cd->cd_ndevs; i++) 1128 if (cd->cd_devs[i] != NULL) 1129 break; 1130 if (i == cd->cd_ndevs) { /* nothing found; deallocate */ 1131 free(cd->cd_devs, M_DEVBUF); 1132 cd->cd_devs = NULL; 1133 cd->cd_ndevs = 0; 1134 } 1135 } 1136 1137 static device_t 1138 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1139 { 1140 struct cfdriver *cd; 1141 struct cfattach *ca; 1142 size_t lname, lunit; 1143 const char *xunit; 1144 int myunit; 1145 char num[10]; 1146 device_t dev; 1147 void *dev_private; 1148 const struct cfiattrdata *ia; 1149 1150 cd = config_cfdriver_lookup(cf->cf_name); 1151 if (cd == NULL) 1152 return (NULL); 1153 1154 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1155 if (ca == NULL) 1156 return (NULL); 1157 1158 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1159 ca->ca_devsize < sizeof(struct device)) 1160 panic("config_devalloc: %s", cf->cf_atname); 1161 1162 #ifndef __BROKEN_CONFIG_UNIT_USAGE 1163 if (cf->cf_fstate == FSTATE_STAR) { 1164 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++) 1165 if (cd->cd_devs[myunit] == NULL) 1166 break; 1167 /* 1168 * myunit is now the unit of the first NULL device pointer, 1169 * or max(cd->cd_ndevs,cf->cf_unit). 1170 */ 1171 } else { 1172 myunit = cf->cf_unit; 1173 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL) 1174 return (NULL); 1175 } 1176 #else 1177 myunit = cf->cf_unit; 1178 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */ 1179 1180 /* compute length of name and decimal expansion of unit number */ 1181 lname = strlen(cd->cd_name); 1182 xunit = number(&num[sizeof(num)], myunit); 1183 lunit = &num[sizeof(num)] - xunit; 1184 if (lname + lunit > sizeof(dev->dv_xname)) 1185 panic("config_devalloc: device name too long"); 1186 1187 /* get memory for all device vars */ 1188 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1189 if (ca->ca_devsize > 0) { 1190 dev_private = malloc(ca->ca_devsize, M_DEVBUF, 1191 M_ZERO | (cold ? M_NOWAIT : M_WAITOK)); 1192 if (dev_private == NULL) 1193 panic("config_devalloc: memory allocation for device softc failed"); 1194 } else { 1195 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1196 dev_private = NULL; 1197 } 1198 1199 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1200 dev = malloc(sizeof(struct device), M_DEVBUF, 1201 M_ZERO | (cold ? M_NOWAIT : M_WAITOK)); 1202 } else { 1203 dev = dev_private; 1204 } 1205 if (dev == NULL) 1206 panic("config_devalloc: memory allocation for device_t failed"); 1207 1208 dev->dv_class = cd->cd_class; 1209 dev->dv_cfdata = cf; 1210 dev->dv_cfdriver = cd; 1211 dev->dv_cfattach = ca; 1212 dev->dv_unit = myunit; 1213 dev->dv_activity_count = 0; 1214 dev->dv_activity_handlers = NULL; 1215 dev->dv_private = dev_private; 1216 memcpy(dev->dv_xname, cd->cd_name, lname); 1217 memcpy(dev->dv_xname + lname, xunit, lunit); 1218 dev->dv_parent = parent; 1219 if (parent != NULL) 1220 dev->dv_depth = parent->dv_depth + 1; 1221 else 1222 dev->dv_depth = 0; 1223 dev->dv_flags = DVF_ACTIVE; /* always initially active */ 1224 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */ 1225 if (locs) { 1226 KASSERT(parent); /* no locators at root */ 1227 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr, 1228 parent->dv_cfdriver); 1229 dev->dv_locators = malloc(ia->ci_loclen * sizeof(int), 1230 M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); 1231 memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int)); 1232 } 1233 dev->dv_properties = prop_dictionary_create(); 1234 KASSERT(dev->dv_properties != NULL); 1235 1236 return (dev); 1237 } 1238 1239 static void 1240 config_devdealloc(device_t dev) 1241 { 1242 1243 KASSERT(dev->dv_properties != NULL); 1244 prop_object_release(dev->dv_properties); 1245 1246 if (dev->dv_activity_handlers) 1247 panic("config_devdealloc with registered handlers"); 1248 1249 if (dev->dv_locators) 1250 free(dev->dv_locators, M_DEVBUF); 1251 1252 if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL) 1253 free(dev->dv_private, M_DEVBUF); 1254 1255 free(dev, M_DEVBUF); 1256 } 1257 1258 /* 1259 * Attach a found device. 1260 */ 1261 device_t 1262 config_attach_loc(device_t parent, cfdata_t cf, 1263 const int *locs, void *aux, cfprint_t print) 1264 { 1265 device_t dev; 1266 struct cftable *ct; 1267 const char *drvname; 1268 1269 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1270 if (splash_progress_state) 1271 splash_progress_update(splash_progress_state); 1272 #endif 1273 1274 dev = config_devalloc(parent, cf, locs); 1275 if (!dev) 1276 panic("config_attach: allocation of device softc failed"); 1277 1278 /* XXX redundant - see below? */ 1279 if (cf->cf_fstate != FSTATE_STAR) { 1280 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1281 cf->cf_fstate = FSTATE_FOUND; 1282 } 1283 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1284 else 1285 cf->cf_unit++; 1286 #endif 1287 1288 config_devlink(dev); 1289 1290 if (config_do_twiddle) 1291 twiddle(); 1292 else 1293 aprint_naive("Found "); 1294 /* 1295 * We want the next two printfs for normal, verbose, and quiet, 1296 * but not silent (in which case, we're twiddling, instead). 1297 */ 1298 if (parent == ROOT) { 1299 aprint_naive("%s (root)", device_xname(dev)); 1300 aprint_normal("%s (root)", device_xname(dev)); 1301 } else { 1302 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1303 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1304 if (print) 1305 (void) (*print)(aux, NULL); 1306 } 1307 1308 /* 1309 * Before attaching, clobber any unfound devices that are 1310 * otherwise identical. 1311 * XXX code above is redundant? 1312 */ 1313 drvname = dev->dv_cfdriver->cd_name; 1314 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1315 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1316 if (STREQ(cf->cf_name, drvname) && 1317 cf->cf_unit == dev->dv_unit) { 1318 if (cf->cf_fstate == FSTATE_NOTFOUND) 1319 cf->cf_fstate = FSTATE_FOUND; 1320 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1321 /* 1322 * Bump the unit number on all starred cfdata 1323 * entries for this device. 1324 */ 1325 if (cf->cf_fstate == FSTATE_STAR) 1326 cf->cf_unit++; 1327 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1328 } 1329 } 1330 } 1331 #ifdef __HAVE_DEVICE_REGISTER 1332 device_register(dev, aux); 1333 #endif 1334 1335 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1336 if (splash_progress_state) 1337 splash_progress_update(splash_progress_state); 1338 #endif 1339 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1340 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1341 if (splash_progress_state) 1342 splash_progress_update(splash_progress_state); 1343 #endif 1344 1345 if (!device_pmf_is_registered(dev)) 1346 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1347 1348 config_process_deferred(&deferred_config_queue, dev); 1349 return (dev); 1350 } 1351 1352 device_t 1353 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1354 { 1355 1356 return (config_attach_loc(parent, cf, NULL, aux, print)); 1357 } 1358 1359 /* 1360 * As above, but for pseudo-devices. Pseudo-devices attached in this 1361 * way are silently inserted into the device tree, and their children 1362 * attached. 1363 * 1364 * Note that because pseudo-devices are attached silently, any information 1365 * the attach routine wishes to print should be prefixed with the device 1366 * name by the attach routine. 1367 */ 1368 device_t 1369 config_attach_pseudo(cfdata_t cf) 1370 { 1371 device_t dev; 1372 1373 dev = config_devalloc(ROOT, cf, NULL); 1374 if (!dev) 1375 return (NULL); 1376 1377 /* XXX mark busy in cfdata */ 1378 1379 config_devlink(dev); 1380 1381 #if 0 /* XXXJRT not yet */ 1382 #ifdef __HAVE_DEVICE_REGISTER 1383 device_register(dev, NULL); /* like a root node */ 1384 #endif 1385 #endif 1386 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1387 config_process_deferred(&deferred_config_queue, dev); 1388 return (dev); 1389 } 1390 1391 /* 1392 * Detach a device. Optionally forced (e.g. because of hardware 1393 * removal) and quiet. Returns zero if successful, non-zero 1394 * (an error code) otherwise. 1395 * 1396 * Note that this code wants to be run from a process context, so 1397 * that the detach can sleep to allow processes which have a device 1398 * open to run and unwind their stacks. 1399 */ 1400 int 1401 config_detach(device_t dev, int flags) 1402 { 1403 struct cftable *ct; 1404 cfdata_t cf; 1405 const struct cfattach *ca; 1406 struct cfdriver *cd; 1407 #ifdef DIAGNOSTIC 1408 device_t d; 1409 #endif 1410 int rv = 0; 1411 1412 #ifdef DIAGNOSTIC 1413 if (dev->dv_cfdata != NULL && 1414 dev->dv_cfdata->cf_fstate != FSTATE_FOUND && 1415 dev->dv_cfdata->cf_fstate != FSTATE_STAR) 1416 panic("config_detach: bad device fstate"); 1417 #endif 1418 cd = dev->dv_cfdriver; 1419 KASSERT(cd != NULL); 1420 1421 ca = dev->dv_cfattach; 1422 KASSERT(ca != NULL); 1423 1424 KASSERT(curlwp != NULL); 1425 mutex_enter(&alldevs_mtx); 1426 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 1427 ; 1428 else while (alldevs_nread != 0 || 1429 (alldevs_nwrite != 0 && alldevs_writer != curlwp)) 1430 cv_wait(&alldevs_cv, &alldevs_mtx); 1431 if (alldevs_nwrite++ == 0) 1432 alldevs_writer = curlwp; 1433 mutex_exit(&alldevs_mtx); 1434 1435 /* 1436 * Ensure the device is deactivated. If the device doesn't 1437 * have an activation entry point, we allow DVF_ACTIVE to 1438 * remain set. Otherwise, if DVF_ACTIVE is still set, the 1439 * device is busy, and the detach fails. 1440 */ 1441 if (ca->ca_activate != NULL) 1442 rv = config_deactivate(dev); 1443 1444 /* 1445 * Try to detach the device. If that's not possible, then 1446 * we either panic() (for the forced but failed case), or 1447 * return an error. 1448 */ 1449 if (rv == 0) { 1450 if (ca->ca_detach != NULL) 1451 rv = (*ca->ca_detach)(dev, flags); 1452 else 1453 rv = EOPNOTSUPP; 1454 } 1455 if (rv != 0) { 1456 if ((flags & DETACH_FORCE) == 0) 1457 goto out; 1458 else 1459 panic("config_detach: forced detach of %s failed (%d)", 1460 device_xname(dev), rv); 1461 } 1462 1463 /* 1464 * The device has now been successfully detached. 1465 */ 1466 1467 #ifdef DIAGNOSTIC 1468 /* 1469 * Sanity: If you're successfully detached, you should have no 1470 * children. (Note that because children must be attached 1471 * after parents, we only need to search the latter part of 1472 * the list.) 1473 */ 1474 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1475 d = TAILQ_NEXT(d, dv_list)) { 1476 if (d->dv_parent == dev) { 1477 printf("config_detach: detached device %s" 1478 " has children %s\n", device_xname(dev), device_xname(d)); 1479 panic("config_detach"); 1480 } 1481 } 1482 #endif 1483 1484 /* notify the parent that the child is gone */ 1485 if (dev->dv_parent) { 1486 device_t p = dev->dv_parent; 1487 if (p->dv_cfattach->ca_childdetached) 1488 (*p->dv_cfattach->ca_childdetached)(p, dev); 1489 } 1490 1491 /* 1492 * Mark cfdata to show that the unit can be reused, if possible. 1493 */ 1494 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1495 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1496 if (STREQ(cf->cf_name, cd->cd_name)) { 1497 if (cf->cf_fstate == FSTATE_FOUND && 1498 cf->cf_unit == dev->dv_unit) 1499 cf->cf_fstate = FSTATE_NOTFOUND; 1500 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1501 /* 1502 * Note that we can only re-use a starred 1503 * unit number if the unit being detached 1504 * had the last assigned unit number. 1505 */ 1506 if (cf->cf_fstate == FSTATE_STAR && 1507 cf->cf_unit == dev->dv_unit + 1) 1508 cf->cf_unit--; 1509 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1510 } 1511 } 1512 } 1513 1514 config_devunlink(dev); 1515 1516 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1517 aprint_normal_dev(dev, "detached\n"); 1518 1519 config_devdealloc(dev); 1520 1521 out: 1522 mutex_enter(&alldevs_mtx); 1523 if (--alldevs_nwrite == 0) 1524 alldevs_writer = NULL; 1525 cv_signal(&alldevs_cv); 1526 mutex_exit(&alldevs_mtx); 1527 return rv; 1528 } 1529 1530 int 1531 config_detach_children(device_t parent, int flags) 1532 { 1533 device_t dv; 1534 deviter_t di; 1535 int error = 0; 1536 1537 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1538 dv = deviter_next(&di)) { 1539 if (device_parent(dv) != parent) 1540 continue; 1541 if ((error = config_detach(dv, flags)) != 0) 1542 break; 1543 } 1544 deviter_release(&di); 1545 return error; 1546 } 1547 1548 int 1549 config_activate(device_t dev) 1550 { 1551 const struct cfattach *ca = dev->dv_cfattach; 1552 int rv = 0, oflags = dev->dv_flags; 1553 1554 if (ca->ca_activate == NULL) 1555 return (EOPNOTSUPP); 1556 1557 if ((dev->dv_flags & DVF_ACTIVE) == 0) { 1558 dev->dv_flags |= DVF_ACTIVE; 1559 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE); 1560 if (rv) 1561 dev->dv_flags = oflags; 1562 } 1563 return (rv); 1564 } 1565 1566 int 1567 config_deactivate(device_t dev) 1568 { 1569 const struct cfattach *ca = dev->dv_cfattach; 1570 int rv = 0, oflags = dev->dv_flags; 1571 1572 if (ca->ca_activate == NULL) 1573 return (EOPNOTSUPP); 1574 1575 if (dev->dv_flags & DVF_ACTIVE) { 1576 dev->dv_flags &= ~DVF_ACTIVE; 1577 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE); 1578 if (rv) 1579 dev->dv_flags = oflags; 1580 } 1581 return (rv); 1582 } 1583 1584 /* 1585 * Defer the configuration of the specified device until all 1586 * of its parent's devices have been attached. 1587 */ 1588 void 1589 config_defer(device_t dev, void (*func)(device_t)) 1590 { 1591 struct deferred_config *dc; 1592 1593 if (dev->dv_parent == NULL) 1594 panic("config_defer: can't defer config of a root device"); 1595 1596 #ifdef DIAGNOSTIC 1597 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL; 1598 dc = TAILQ_NEXT(dc, dc_queue)) { 1599 if (dc->dc_dev == dev) 1600 panic("config_defer: deferred twice"); 1601 } 1602 #endif 1603 1604 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); 1605 if (dc == NULL) 1606 panic("config_defer: unable to allocate callback"); 1607 1608 dc->dc_dev = dev; 1609 dc->dc_func = func; 1610 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1611 config_pending_incr(); 1612 } 1613 1614 /* 1615 * Defer some autoconfiguration for a device until after interrupts 1616 * are enabled. 1617 */ 1618 void 1619 config_interrupts(device_t dev, void (*func)(device_t)) 1620 { 1621 struct deferred_config *dc; 1622 1623 /* 1624 * If interrupts are enabled, callback now. 1625 */ 1626 if (cold == 0) { 1627 (*func)(dev); 1628 return; 1629 } 1630 1631 #ifdef DIAGNOSTIC 1632 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL; 1633 dc = TAILQ_NEXT(dc, dc_queue)) { 1634 if (dc->dc_dev == dev) 1635 panic("config_interrupts: deferred twice"); 1636 } 1637 #endif 1638 1639 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); 1640 if (dc == NULL) 1641 panic("config_interrupts: unable to allocate callback"); 1642 1643 dc->dc_dev = dev; 1644 dc->dc_func = func; 1645 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1646 config_pending_incr(); 1647 } 1648 1649 /* 1650 * Process a deferred configuration queue. 1651 */ 1652 static void 1653 config_process_deferred(struct deferred_config_head *queue, 1654 device_t parent) 1655 { 1656 struct deferred_config *dc, *ndc; 1657 1658 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1659 ndc = TAILQ_NEXT(dc, dc_queue); 1660 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1661 TAILQ_REMOVE(queue, dc, dc_queue); 1662 (*dc->dc_func)(dc->dc_dev); 1663 free(dc, M_DEVBUF); 1664 config_pending_decr(); 1665 } 1666 } 1667 } 1668 1669 /* 1670 * Manipulate the config_pending semaphore. 1671 */ 1672 void 1673 config_pending_incr(void) 1674 { 1675 1676 config_pending++; 1677 } 1678 1679 void 1680 config_pending_decr(void) 1681 { 1682 1683 #ifdef DIAGNOSTIC 1684 if (config_pending == 0) 1685 panic("config_pending_decr: config_pending == 0"); 1686 #endif 1687 config_pending--; 1688 if (config_pending == 0) 1689 wakeup(&config_pending); 1690 } 1691 1692 /* 1693 * Register a "finalization" routine. Finalization routines are 1694 * called iteratively once all real devices have been found during 1695 * autoconfiguration, for as long as any one finalizer has done 1696 * any work. 1697 */ 1698 int 1699 config_finalize_register(device_t dev, int (*fn)(device_t)) 1700 { 1701 struct finalize_hook *f; 1702 1703 /* 1704 * If finalization has already been done, invoke the 1705 * callback function now. 1706 */ 1707 if (config_finalize_done) { 1708 while ((*fn)(dev) != 0) 1709 /* loop */ ; 1710 } 1711 1712 /* Ensure this isn't already on the list. */ 1713 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1714 if (f->f_func == fn && f->f_dev == dev) 1715 return (EEXIST); 1716 } 1717 1718 f = malloc(sizeof(*f), M_TEMP, M_WAITOK); 1719 f->f_func = fn; 1720 f->f_dev = dev; 1721 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1722 1723 return (0); 1724 } 1725 1726 void 1727 config_finalize(void) 1728 { 1729 struct finalize_hook *f; 1730 struct pdevinit *pdev; 1731 extern struct pdevinit pdevinit[]; 1732 int errcnt, rv; 1733 1734 /* 1735 * Now that device driver threads have been created, wait for 1736 * them to finish any deferred autoconfiguration. 1737 */ 1738 while (config_pending) 1739 (void) tsleep(&config_pending, PWAIT, "cfpend", hz); 1740 1741 /* Attach pseudo-devices. */ 1742 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 1743 (*pdev->pdev_attach)(pdev->pdev_count); 1744 1745 /* Run the hooks until none of them does any work. */ 1746 do { 1747 rv = 0; 1748 TAILQ_FOREACH(f, &config_finalize_list, f_list) 1749 rv |= (*f->f_func)(f->f_dev); 1750 } while (rv != 0); 1751 1752 config_finalize_done = 1; 1753 1754 /* Now free all the hooks. */ 1755 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 1756 TAILQ_REMOVE(&config_finalize_list, f, f_list); 1757 free(f, M_TEMP); 1758 } 1759 1760 errcnt = aprint_get_error_count(); 1761 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 1762 (boothowto & AB_VERBOSE) == 0) { 1763 if (config_do_twiddle) { 1764 config_do_twiddle = 0; 1765 printf_nolog("done.\n"); 1766 } 1767 if (errcnt != 0) { 1768 printf("WARNING: %d error%s while detecting hardware; " 1769 "check system log.\n", errcnt, 1770 errcnt == 1 ? "" : "s"); 1771 } 1772 } 1773 } 1774 1775 /* 1776 * device_lookup: 1777 * 1778 * Look up a device instance for a given driver. 1779 */ 1780 void * 1781 device_lookup(cfdriver_t cd, int unit) 1782 { 1783 1784 if (unit < 0 || unit >= cd->cd_ndevs) 1785 return (NULL); 1786 1787 return (cd->cd_devs[unit]); 1788 } 1789 1790 /* 1791 * device_lookup: 1792 * 1793 * Look up a device instance for a given driver. 1794 */ 1795 void * 1796 device_lookup_private(cfdriver_t cd, int unit) 1797 { 1798 device_t dv; 1799 1800 if (unit < 0 || unit >= cd->cd_ndevs) 1801 return NULL; 1802 1803 if ((dv = cd->cd_devs[unit]) == NULL) 1804 return NULL; 1805 1806 return dv->dv_private; 1807 } 1808 1809 /* 1810 * Accessor functions for the device_t type. 1811 */ 1812 devclass_t 1813 device_class(device_t dev) 1814 { 1815 1816 return (dev->dv_class); 1817 } 1818 1819 cfdata_t 1820 device_cfdata(device_t dev) 1821 { 1822 1823 return (dev->dv_cfdata); 1824 } 1825 1826 cfdriver_t 1827 device_cfdriver(device_t dev) 1828 { 1829 1830 return (dev->dv_cfdriver); 1831 } 1832 1833 cfattach_t 1834 device_cfattach(device_t dev) 1835 { 1836 1837 return (dev->dv_cfattach); 1838 } 1839 1840 int 1841 device_unit(device_t dev) 1842 { 1843 1844 return (dev->dv_unit); 1845 } 1846 1847 const char * 1848 device_xname(device_t dev) 1849 { 1850 1851 return (dev->dv_xname); 1852 } 1853 1854 device_t 1855 device_parent(device_t dev) 1856 { 1857 1858 return (dev->dv_parent); 1859 } 1860 1861 bool 1862 device_is_active(device_t dev) 1863 { 1864 int active_flags; 1865 1866 active_flags = DVF_ACTIVE; 1867 active_flags |= DVF_CLASS_SUSPENDED; 1868 active_flags |= DVF_DRIVER_SUSPENDED; 1869 active_flags |= DVF_BUS_SUSPENDED; 1870 1871 return ((dev->dv_flags & active_flags) == DVF_ACTIVE); 1872 } 1873 1874 bool 1875 device_is_enabled(device_t dev) 1876 { 1877 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE; 1878 } 1879 1880 bool 1881 device_has_power(device_t dev) 1882 { 1883 int active_flags; 1884 1885 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED; 1886 1887 return ((dev->dv_flags & active_flags) == DVF_ACTIVE); 1888 } 1889 1890 int 1891 device_locator(device_t dev, u_int locnum) 1892 { 1893 1894 KASSERT(dev->dv_locators != NULL); 1895 return (dev->dv_locators[locnum]); 1896 } 1897 1898 void * 1899 device_private(device_t dev) 1900 { 1901 1902 /* 1903 * The reason why device_private(NULL) is allowed is to simplify the 1904 * work of a lot of userspace request handlers (i.e., c/bdev 1905 * handlers) which grab cfdriver_t->cd_units[n]. 1906 * It avoids having them test for it to be NULL and only then calling 1907 * device_private. 1908 */ 1909 return dev == NULL ? NULL : dev->dv_private; 1910 } 1911 1912 prop_dictionary_t 1913 device_properties(device_t dev) 1914 { 1915 1916 return (dev->dv_properties); 1917 } 1918 1919 /* 1920 * device_is_a: 1921 * 1922 * Returns true if the device is an instance of the specified 1923 * driver. 1924 */ 1925 bool 1926 device_is_a(device_t dev, const char *dname) 1927 { 1928 1929 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0); 1930 } 1931 1932 /* 1933 * device_find_by_xname: 1934 * 1935 * Returns the device of the given name or NULL if it doesn't exist. 1936 */ 1937 device_t 1938 device_find_by_xname(const char *name) 1939 { 1940 device_t dv; 1941 deviter_t di; 1942 1943 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 1944 if (strcmp(device_xname(dv), name) == 0) 1945 break; 1946 } 1947 deviter_release(&di); 1948 1949 return dv; 1950 } 1951 1952 /* 1953 * device_find_by_driver_unit: 1954 * 1955 * Returns the device of the given driver name and unit or 1956 * NULL if it doesn't exist. 1957 */ 1958 device_t 1959 device_find_by_driver_unit(const char *name, int unit) 1960 { 1961 struct cfdriver *cd; 1962 1963 if ((cd = config_cfdriver_lookup(name)) == NULL) 1964 return NULL; 1965 return device_lookup(cd, unit); 1966 } 1967 1968 /* 1969 * Power management related functions. 1970 */ 1971 1972 bool 1973 device_pmf_is_registered(device_t dev) 1974 { 1975 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 1976 } 1977 1978 bool 1979 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS) 1980 { 1981 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 1982 return true; 1983 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 1984 return false; 1985 if (*dev->dv_driver_suspend != NULL && 1986 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL)) 1987 return false; 1988 1989 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 1990 return true; 1991 } 1992 1993 bool 1994 device_pmf_driver_resume(device_t dev PMF_FN_ARGS) 1995 { 1996 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 1997 return true; 1998 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 1999 return false; 2000 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) 2001 return false; 2002 if (*dev->dv_driver_resume != NULL && 2003 !(*dev->dv_driver_resume)(dev PMF_FN_CALL)) 2004 return false; 2005 2006 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2007 return true; 2008 } 2009 2010 bool 2011 device_pmf_driver_shutdown(device_t dev, int how) 2012 { 2013 2014 if (*dev->dv_driver_shutdown != NULL && 2015 !(*dev->dv_driver_shutdown)(dev, how)) 2016 return false; 2017 return true; 2018 } 2019 2020 bool 2021 device_pmf_driver_register(device_t dev, 2022 bool (*suspend)(device_t PMF_FN_PROTO), 2023 bool (*resume)(device_t PMF_FN_PROTO), 2024 bool (*shutdown)(device_t, int)) 2025 { 2026 pmf_private_t *pp; 2027 2028 if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL) 2029 return false; 2030 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE); 2031 cv_init(&pp->pp_cv, "pmfsusp"); 2032 dev->dv_pmf_private = pp; 2033 2034 dev->dv_driver_suspend = suspend; 2035 dev->dv_driver_resume = resume; 2036 dev->dv_driver_shutdown = shutdown; 2037 dev->dv_flags |= DVF_POWER_HANDLERS; 2038 return true; 2039 } 2040 2041 static const char * 2042 curlwp_name(void) 2043 { 2044 if (curlwp->l_name != NULL) 2045 return curlwp->l_name; 2046 else 2047 return curlwp->l_proc->p_comm; 2048 } 2049 2050 void 2051 device_pmf_driver_deregister(device_t dev) 2052 { 2053 pmf_private_t *pp = dev->dv_pmf_private; 2054 2055 dev->dv_driver_suspend = NULL; 2056 dev->dv_driver_resume = NULL; 2057 2058 dev->dv_pmf_private = NULL; 2059 2060 mutex_enter(&pp->pp_mtx); 2061 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2062 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) { 2063 /* Wake a thread that waits for the lock. That 2064 * thread will fail to acquire the lock, and then 2065 * it will wake the next thread that waits for the 2066 * lock, or else it will wake us. 2067 */ 2068 cv_signal(&pp->pp_cv); 2069 pmflock_debug(dev, __func__, __LINE__); 2070 cv_wait(&pp->pp_cv, &pp->pp_mtx); 2071 pmflock_debug(dev, __func__, __LINE__); 2072 } 2073 mutex_exit(&pp->pp_mtx); 2074 2075 cv_destroy(&pp->pp_cv); 2076 mutex_destroy(&pp->pp_mtx); 2077 free(pp, M_PMFPRIV); 2078 } 2079 2080 bool 2081 device_pmf_driver_child_register(device_t dev) 2082 { 2083 device_t parent = device_parent(dev); 2084 2085 if (parent == NULL || parent->dv_driver_child_register == NULL) 2086 return true; 2087 return (*parent->dv_driver_child_register)(dev); 2088 } 2089 2090 void 2091 device_pmf_driver_set_child_register(device_t dev, 2092 bool (*child_register)(device_t)) 2093 { 2094 dev->dv_driver_child_register = child_register; 2095 } 2096 2097 void 2098 device_pmf_self_resume(device_t dev PMF_FN_ARGS) 2099 { 2100 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2101 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0) 2102 dev->dv_flags &= ~DVF_SELF_SUSPENDED; 2103 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2104 } 2105 2106 bool 2107 device_is_self_suspended(device_t dev) 2108 { 2109 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0; 2110 } 2111 2112 void 2113 device_pmf_self_suspend(device_t dev PMF_FN_ARGS) 2114 { 2115 bool self = (flags & PMF_F_SELF) != 0; 2116 2117 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2118 2119 if (!self) 2120 dev->dv_flags &= ~DVF_SELF_SUSPENDED; 2121 else if (device_is_active(dev)) 2122 dev->dv_flags |= DVF_SELF_SUSPENDED; 2123 2124 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2125 } 2126 2127 static void 2128 pmflock_debug(device_t dev, const char *func, int line) 2129 { 2130 pmf_private_t *pp = device_pmf_private(dev); 2131 2132 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n", 2133 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait, 2134 dev->dv_flags); 2135 } 2136 2137 static void 2138 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS) 2139 { 2140 pmf_private_t *pp = device_pmf_private(dev); 2141 2142 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x " 2143 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(), 2144 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL); 2145 } 2146 2147 static bool 2148 device_pmf_lock1(device_t dev PMF_FN_ARGS) 2149 { 2150 pmf_private_t *pp = device_pmf_private(dev); 2151 2152 while (pp->pp_nlock > 0 && pp->pp_holder != curlwp && 2153 device_pmf_is_registered(dev)) { 2154 pp->pp_nwait++; 2155 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2156 cv_wait(&pp->pp_cv, &pp->pp_mtx); 2157 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2158 pp->pp_nwait--; 2159 } 2160 if (!device_pmf_is_registered(dev)) { 2161 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2162 /* We could not acquire the lock, but some other thread may 2163 * wait for it, also. Wake that thread. 2164 */ 2165 cv_signal(&pp->pp_cv); 2166 return false; 2167 } 2168 pp->pp_nlock++; 2169 pp->pp_holder = curlwp; 2170 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2171 return true; 2172 } 2173 2174 bool 2175 device_pmf_lock(device_t dev PMF_FN_ARGS) 2176 { 2177 bool rc; 2178 pmf_private_t *pp = device_pmf_private(dev); 2179 2180 mutex_enter(&pp->pp_mtx); 2181 rc = device_pmf_lock1(dev PMF_FN_CALL); 2182 mutex_exit(&pp->pp_mtx); 2183 2184 return rc; 2185 } 2186 2187 void 2188 device_pmf_unlock(device_t dev PMF_FN_ARGS) 2189 { 2190 pmf_private_t *pp = device_pmf_private(dev); 2191 2192 KASSERT(pp->pp_nlock > 0); 2193 mutex_enter(&pp->pp_mtx); 2194 if (--pp->pp_nlock == 0) 2195 pp->pp_holder = NULL; 2196 cv_signal(&pp->pp_cv); 2197 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2198 mutex_exit(&pp->pp_mtx); 2199 } 2200 2201 void * 2202 device_pmf_private(device_t dev) 2203 { 2204 return dev->dv_pmf_private; 2205 } 2206 2207 void * 2208 device_pmf_bus_private(device_t dev) 2209 { 2210 return dev->dv_bus_private; 2211 } 2212 2213 bool 2214 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS) 2215 { 2216 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2217 return true; 2218 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2219 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2220 return false; 2221 if (*dev->dv_bus_suspend != NULL && 2222 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL)) 2223 return false; 2224 2225 dev->dv_flags |= DVF_BUS_SUSPENDED; 2226 return true; 2227 } 2228 2229 bool 2230 device_pmf_bus_resume(device_t dev PMF_FN_ARGS) 2231 { 2232 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2233 return true; 2234 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) 2235 return false; 2236 if (*dev->dv_bus_resume != NULL && 2237 !(*dev->dv_bus_resume)(dev PMF_FN_CALL)) 2238 return false; 2239 2240 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2241 return true; 2242 } 2243 2244 bool 2245 device_pmf_bus_shutdown(device_t dev, int how) 2246 { 2247 2248 if (*dev->dv_bus_shutdown != NULL && 2249 !(*dev->dv_bus_shutdown)(dev, how)) 2250 return false; 2251 return true; 2252 } 2253 2254 void 2255 device_pmf_bus_register(device_t dev, void *priv, 2256 bool (*suspend)(device_t PMF_FN_PROTO), 2257 bool (*resume)(device_t PMF_FN_PROTO), 2258 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2259 { 2260 dev->dv_bus_private = priv; 2261 dev->dv_bus_resume = resume; 2262 dev->dv_bus_suspend = suspend; 2263 dev->dv_bus_shutdown = shutdown; 2264 dev->dv_bus_deregister = deregister; 2265 } 2266 2267 void 2268 device_pmf_bus_deregister(device_t dev) 2269 { 2270 if (dev->dv_bus_deregister == NULL) 2271 return; 2272 (*dev->dv_bus_deregister)(dev); 2273 dev->dv_bus_private = NULL; 2274 dev->dv_bus_suspend = NULL; 2275 dev->dv_bus_resume = NULL; 2276 dev->dv_bus_deregister = NULL; 2277 } 2278 2279 void * 2280 device_pmf_class_private(device_t dev) 2281 { 2282 return dev->dv_class_private; 2283 } 2284 2285 bool 2286 device_pmf_class_suspend(device_t dev PMF_FN_ARGS) 2287 { 2288 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2289 return true; 2290 if (*dev->dv_class_suspend != NULL && 2291 !(*dev->dv_class_suspend)(dev PMF_FN_CALL)) 2292 return false; 2293 2294 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2295 return true; 2296 } 2297 2298 bool 2299 device_pmf_class_resume(device_t dev PMF_FN_ARGS) 2300 { 2301 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2302 return true; 2303 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2304 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2305 return false; 2306 if (*dev->dv_class_resume != NULL && 2307 !(*dev->dv_class_resume)(dev PMF_FN_CALL)) 2308 return false; 2309 2310 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2311 return true; 2312 } 2313 2314 void 2315 device_pmf_class_register(device_t dev, void *priv, 2316 bool (*suspend)(device_t PMF_FN_PROTO), 2317 bool (*resume)(device_t PMF_FN_PROTO), 2318 void (*deregister)(device_t)) 2319 { 2320 dev->dv_class_private = priv; 2321 dev->dv_class_suspend = suspend; 2322 dev->dv_class_resume = resume; 2323 dev->dv_class_deregister = deregister; 2324 } 2325 2326 void 2327 device_pmf_class_deregister(device_t dev) 2328 { 2329 if (dev->dv_class_deregister == NULL) 2330 return; 2331 (*dev->dv_class_deregister)(dev); 2332 dev->dv_class_private = NULL; 2333 dev->dv_class_suspend = NULL; 2334 dev->dv_class_resume = NULL; 2335 dev->dv_class_deregister = NULL; 2336 } 2337 2338 bool 2339 device_active(device_t dev, devactive_t type) 2340 { 2341 size_t i; 2342 2343 if (dev->dv_activity_count == 0) 2344 return false; 2345 2346 for (i = 0; i < dev->dv_activity_count; ++i) 2347 (*dev->dv_activity_handlers[i])(dev, type); 2348 2349 return true; 2350 } 2351 2352 bool 2353 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2354 { 2355 void (**new_handlers)(device_t, devactive_t); 2356 void (**old_handlers)(device_t, devactive_t); 2357 size_t i, new_size; 2358 int s; 2359 2360 old_handlers = dev->dv_activity_handlers; 2361 2362 for (i = 0; i < dev->dv_activity_count; ++i) { 2363 if (old_handlers[i] == handler) 2364 panic("Double registering of idle handlers"); 2365 } 2366 2367 new_size = dev->dv_activity_count + 1; 2368 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK); 2369 2370 memcpy(new_handlers, old_handlers, 2371 sizeof(void *) * dev->dv_activity_count); 2372 new_handlers[new_size - 1] = handler; 2373 2374 s = splhigh(); 2375 dev->dv_activity_count = new_size; 2376 dev->dv_activity_handlers = new_handlers; 2377 splx(s); 2378 2379 if (old_handlers != NULL) 2380 free(old_handlers, M_DEVBUF); 2381 2382 return true; 2383 } 2384 2385 void 2386 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2387 { 2388 void (**new_handlers)(device_t, devactive_t); 2389 void (**old_handlers)(device_t, devactive_t); 2390 size_t i, new_size; 2391 int s; 2392 2393 old_handlers = dev->dv_activity_handlers; 2394 2395 for (i = 0; i < dev->dv_activity_count; ++i) { 2396 if (old_handlers[i] == handler) 2397 break; 2398 } 2399 2400 if (i == dev->dv_activity_count) 2401 return; /* XXX panic? */ 2402 2403 new_size = dev->dv_activity_count - 1; 2404 2405 if (new_size == 0) { 2406 new_handlers = NULL; 2407 } else { 2408 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, 2409 M_WAITOK); 2410 memcpy(new_handlers, old_handlers, sizeof(void *) * i); 2411 memcpy(new_handlers + i, old_handlers + i + 1, 2412 sizeof(void *) * (new_size - i)); 2413 } 2414 2415 s = splhigh(); 2416 dev->dv_activity_count = new_size; 2417 dev->dv_activity_handlers = new_handlers; 2418 splx(s); 2419 2420 free(old_handlers, M_DEVBUF); 2421 } 2422 2423 /* 2424 * Device Iteration 2425 * 2426 * deviter_t: a device iterator. Holds state for a "walk" visiting 2427 * each device_t's in the device tree. 2428 * 2429 * deviter_init(di, flags): initialize the device iterator `di' 2430 * to "walk" the device tree. deviter_next(di) will return 2431 * the first device_t in the device tree, or NULL if there are 2432 * no devices. 2433 * 2434 * `flags' is one or more of DEVITER_F_RW, indicating that the 2435 * caller intends to modify the device tree by calling 2436 * config_detach(9) on devices in the order that the iterator 2437 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2438 * nearest the "root" of the device tree to be returned, first; 2439 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2440 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2441 * indicating both that deviter_init() should not respect any 2442 * locks on the device tree, and that deviter_next(di) may run 2443 * in more than one LWP before the walk has finished. 2444 * 2445 * Only one DEVITER_F_RW iterator may be in the device tree at 2446 * once. 2447 * 2448 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2449 * 2450 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2451 * DEVITER_F_LEAVES_FIRST are used in combination. 2452 * 2453 * deviter_first(di, flags): initialize the device iterator `di' 2454 * and return the first device_t in the device tree, or NULL 2455 * if there are no devices. The statement 2456 * 2457 * dv = deviter_first(di); 2458 * 2459 * is shorthand for 2460 * 2461 * deviter_init(di); 2462 * dv = deviter_next(di); 2463 * 2464 * deviter_next(di): return the next device_t in the device tree, 2465 * or NULL if there are no more devices. deviter_next(di) 2466 * is undefined if `di' was not initialized with deviter_init() or 2467 * deviter_first(). 2468 * 2469 * deviter_release(di): stops iteration (subsequent calls to 2470 * deviter_next() will return NULL), releases any locks and 2471 * resources held by the device iterator. 2472 * 2473 * Device iteration does not return device_t's in any particular 2474 * order. An iterator will never return the same device_t twice. 2475 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2476 * is called repeatedly on the same `di', it will eventually return 2477 * NULL. It is ok to attach/detach devices during device iteration. 2478 */ 2479 void 2480 deviter_init(deviter_t *di, deviter_flags_t flags) 2481 { 2482 device_t dv; 2483 bool rw; 2484 2485 mutex_enter(&alldevs_mtx); 2486 if ((flags & DEVITER_F_SHUTDOWN) != 0) { 2487 flags |= DEVITER_F_RW; 2488 alldevs_nwrite++; 2489 alldevs_writer = NULL; 2490 alldevs_nread = 0; 2491 } else { 2492 rw = (flags & DEVITER_F_RW) != 0; 2493 2494 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 2495 ; 2496 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) || 2497 (rw && alldevs_nread != 0)) 2498 cv_wait(&alldevs_cv, &alldevs_mtx); 2499 2500 if (rw) { 2501 if (alldevs_nwrite++ == 0) 2502 alldevs_writer = curlwp; 2503 } else 2504 alldevs_nread++; 2505 } 2506 mutex_exit(&alldevs_mtx); 2507 2508 memset(di, 0, sizeof(*di)); 2509 2510 di->di_flags = flags; 2511 2512 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2513 case DEVITER_F_LEAVES_FIRST: 2514 TAILQ_FOREACH(dv, &alldevs, dv_list) 2515 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2516 break; 2517 case DEVITER_F_ROOT_FIRST: 2518 TAILQ_FOREACH(dv, &alldevs, dv_list) 2519 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2520 break; 2521 default: 2522 break; 2523 } 2524 2525 deviter_reinit(di); 2526 } 2527 2528 static void 2529 deviter_reinit(deviter_t *di) 2530 { 2531 if ((di->di_flags & DEVITER_F_RW) != 0) 2532 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2533 else 2534 di->di_prev = TAILQ_FIRST(&alldevs); 2535 } 2536 2537 device_t 2538 deviter_first(deviter_t *di, deviter_flags_t flags) 2539 { 2540 deviter_init(di, flags); 2541 return deviter_next(di); 2542 } 2543 2544 static device_t 2545 deviter_next1(deviter_t *di) 2546 { 2547 device_t dv; 2548 2549 dv = di->di_prev; 2550 2551 if (dv == NULL) 2552 ; 2553 else if ((di->di_flags & DEVITER_F_RW) != 0) 2554 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2555 else 2556 di->di_prev = TAILQ_NEXT(dv, dv_list); 2557 2558 return dv; 2559 } 2560 2561 device_t 2562 deviter_next(deviter_t *di) 2563 { 2564 device_t dv = NULL; 2565 2566 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2567 case 0: 2568 return deviter_next1(di); 2569 case DEVITER_F_LEAVES_FIRST: 2570 while (di->di_curdepth >= 0) { 2571 if ((dv = deviter_next1(di)) == NULL) { 2572 di->di_curdepth--; 2573 deviter_reinit(di); 2574 } else if (dv->dv_depth == di->di_curdepth) 2575 break; 2576 } 2577 return dv; 2578 case DEVITER_F_ROOT_FIRST: 2579 while (di->di_curdepth <= di->di_maxdepth) { 2580 if ((dv = deviter_next1(di)) == NULL) { 2581 di->di_curdepth++; 2582 deviter_reinit(di); 2583 } else if (dv->dv_depth == di->di_curdepth) 2584 break; 2585 } 2586 return dv; 2587 default: 2588 return NULL; 2589 } 2590 } 2591 2592 void 2593 deviter_release(deviter_t *di) 2594 { 2595 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2596 2597 mutex_enter(&alldevs_mtx); 2598 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 2599 --alldevs_nwrite; 2600 else { 2601 2602 if (rw) { 2603 if (--alldevs_nwrite == 0) 2604 alldevs_writer = NULL; 2605 } else 2606 --alldevs_nread; 2607 2608 cv_signal(&alldevs_cv); 2609 } 2610 mutex_exit(&alldevs_mtx); 2611 } 2612