1 /* $NetBSD: subr_autoconf.c,v 1.215 2011/04/24 18:46:22 rmind Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.215 2011/04/24 18:46:22 rmind Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/device.h> 88 #include <sys/disklabel.h> 89 #include <sys/conf.h> 90 #include <sys/kauth.h> 91 #include <sys/kmem.h> 92 #include <sys/systm.h> 93 #include <sys/kernel.h> 94 #include <sys/errno.h> 95 #include <sys/proc.h> 96 #include <sys/reboot.h> 97 #include <sys/kthread.h> 98 #include <sys/buf.h> 99 #include <sys/dirent.h> 100 #include <sys/mount.h> 101 #include <sys/namei.h> 102 #include <sys/unistd.h> 103 #include <sys/fcntl.h> 104 #include <sys/lockf.h> 105 #include <sys/callout.h> 106 #include <sys/devmon.h> 107 #include <sys/cpu.h> 108 #include <sys/sysctl.h> 109 110 #include <sys/disk.h> 111 112 #include <machine/limits.h> 113 114 /* 115 * Autoconfiguration subroutines. 116 */ 117 118 /* 119 * ioconf.c exports exactly two names: cfdata and cfroots. All system 120 * devices and drivers are found via these tables. 121 */ 122 extern struct cfdata cfdata[]; 123 extern const short cfroots[]; 124 125 /* 126 * List of all cfdriver structures. We use this to detect duplicates 127 * when other cfdrivers are loaded. 128 */ 129 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 130 extern struct cfdriver * const cfdriver_list_initial[]; 131 132 /* 133 * Initial list of cfattach's. 134 */ 135 extern const struct cfattachinit cfattachinit[]; 136 137 /* 138 * List of cfdata tables. We always have one such list -- the one 139 * built statically when the kernel was configured. 140 */ 141 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 142 static struct cftable initcftable; 143 144 #define ROOT ((device_t)NULL) 145 146 struct matchinfo { 147 cfsubmatch_t fn; 148 struct device *parent; 149 const int *locs; 150 void *aux; 151 struct cfdata *match; 152 int pri; 153 }; 154 155 struct alldevs_foray { 156 int af_s; 157 struct devicelist af_garbage; 158 }; 159 160 static char *number(char *, int); 161 static void mapply(struct matchinfo *, cfdata_t); 162 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 163 static void config_devdelete(device_t); 164 static void config_devunlink(device_t, struct devicelist *); 165 static void config_makeroom(int, struct cfdriver *); 166 static void config_devlink(device_t); 167 static void config_alldevs_unlock(int); 168 static int config_alldevs_lock(void); 169 static void config_alldevs_enter(struct alldevs_foray *); 170 static void config_alldevs_exit(struct alldevs_foray *); 171 172 static void config_collect_garbage(struct devicelist *); 173 static void config_dump_garbage(struct devicelist *); 174 175 static void pmflock_debug(device_t, const char *, int); 176 177 static device_t deviter_next1(deviter_t *); 178 static void deviter_reinit(deviter_t *); 179 180 struct deferred_config { 181 TAILQ_ENTRY(deferred_config) dc_queue; 182 device_t dc_dev; 183 void (*dc_func)(device_t); 184 }; 185 186 TAILQ_HEAD(deferred_config_head, deferred_config); 187 188 struct deferred_config_head deferred_config_queue = 189 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 190 struct deferred_config_head interrupt_config_queue = 191 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 192 int interrupt_config_threads = 8; 193 struct deferred_config_head mountroot_config_queue = 194 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 195 int mountroot_config_threads = 2; 196 static bool root_is_mounted = false; 197 198 static void config_process_deferred(struct deferred_config_head *, device_t); 199 200 /* Hooks to finalize configuration once all real devices have been found. */ 201 struct finalize_hook { 202 TAILQ_ENTRY(finalize_hook) f_list; 203 int (*f_func)(device_t); 204 device_t f_dev; 205 }; 206 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 207 TAILQ_HEAD_INITIALIZER(config_finalize_list); 208 static int config_finalize_done; 209 210 /* list of all devices */ 211 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 212 static kmutex_t alldevs_mtx; 213 static volatile bool alldevs_garbage = false; 214 static volatile devgen_t alldevs_gen = 1; 215 static volatile int alldevs_nread = 0; 216 static volatile int alldevs_nwrite = 0; 217 218 static int config_pending; /* semaphore for mountroot */ 219 static kmutex_t config_misc_lock; 220 static kcondvar_t config_misc_cv; 221 222 static bool detachall = false; 223 224 #define STREQ(s1, s2) \ 225 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 226 227 static bool config_initialized = false; /* config_init() has been called. */ 228 229 static int config_do_twiddle; 230 static callout_t config_twiddle_ch; 231 232 static void sysctl_detach_setup(struct sysctllog **); 233 234 typedef int (*cfdriver_fn)(struct cfdriver *); 235 static int 236 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 237 cfdriver_fn drv_do, cfdriver_fn drv_undo, 238 const char *style, bool dopanic) 239 { 240 void (*pr)(const char *, ...) = dopanic ? panic : printf; 241 int i = 0, error = 0, e2; 242 243 for (i = 0; cfdriverv[i] != NULL; i++) { 244 if ((error = drv_do(cfdriverv[i])) != 0) { 245 pr("configure: `%s' driver %s failed: %d", 246 cfdriverv[i]->cd_name, style, error); 247 goto bad; 248 } 249 } 250 251 KASSERT(error == 0); 252 return 0; 253 254 bad: 255 printf("\n"); 256 for (i--; i >= 0; i--) { 257 e2 = drv_undo(cfdriverv[i]); 258 KASSERT(e2 == 0); 259 } 260 261 return error; 262 } 263 264 typedef int (*cfattach_fn)(const char *, struct cfattach *); 265 static int 266 frob_cfattachvec(const struct cfattachinit *cfattachv, 267 cfattach_fn att_do, cfattach_fn att_undo, 268 const char *style, bool dopanic) 269 { 270 const struct cfattachinit *cfai = NULL; 271 void (*pr)(const char *, ...) = dopanic ? panic : printf; 272 int j = 0, error = 0, e2; 273 274 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 275 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 276 if ((error = att_do(cfai->cfai_name, 277 cfai->cfai_list[j])) != 0) { 278 pr("configure: attachment `%s' " 279 "of `%s' driver %s failed: %d", 280 cfai->cfai_list[j]->ca_name, 281 cfai->cfai_name, style, error); 282 goto bad; 283 } 284 } 285 } 286 287 KASSERT(error == 0); 288 return 0; 289 290 bad: 291 /* 292 * Rollback in reverse order. dunno if super-important, but 293 * do that anyway. Although the code looks a little like 294 * someone did a little integration (in the math sense). 295 */ 296 printf("\n"); 297 if (cfai) { 298 bool last; 299 300 for (last = false; last == false; ) { 301 if (cfai == &cfattachv[0]) 302 last = true; 303 for (j--; j >= 0; j--) { 304 e2 = att_undo(cfai->cfai_name, 305 cfai->cfai_list[j]); 306 KASSERT(e2 == 0); 307 } 308 if (!last) { 309 cfai--; 310 for (j = 0; cfai->cfai_list[j] != NULL; j++) 311 ; 312 } 313 } 314 } 315 316 return error; 317 } 318 319 /* 320 * Initialize the autoconfiguration data structures. Normally this 321 * is done by configure(), but some platforms need to do this very 322 * early (to e.g. initialize the console). 323 */ 324 void 325 config_init(void) 326 { 327 328 KASSERT(config_initialized == false); 329 330 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM); 331 332 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 333 cv_init(&config_misc_cv, "cfgmisc"); 334 335 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 336 337 frob_cfdrivervec(cfdriver_list_initial, 338 config_cfdriver_attach, NULL, "bootstrap", true); 339 frob_cfattachvec(cfattachinit, 340 config_cfattach_attach, NULL, "bootstrap", true); 341 342 initcftable.ct_cfdata = cfdata; 343 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 344 345 config_initialized = true; 346 } 347 348 /* 349 * Init or fini drivers and attachments. Either all or none 350 * are processed (via rollback). It would be nice if this were 351 * atomic to outside consumers, but with the current state of 352 * locking ... 353 */ 354 int 355 config_init_component(struct cfdriver * const *cfdriverv, 356 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 357 { 358 int error; 359 360 if ((error = frob_cfdrivervec(cfdriverv, 361 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 362 return error; 363 if ((error = frob_cfattachvec(cfattachv, 364 config_cfattach_attach, config_cfattach_detach, 365 "init", false)) != 0) { 366 frob_cfdrivervec(cfdriverv, 367 config_cfdriver_detach, NULL, "init rollback", true); 368 return error; 369 } 370 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 371 frob_cfattachvec(cfattachv, 372 config_cfattach_detach, NULL, "init rollback", true); 373 frob_cfdrivervec(cfdriverv, 374 config_cfdriver_detach, NULL, "init rollback", true); 375 return error; 376 } 377 378 return 0; 379 } 380 381 int 382 config_fini_component(struct cfdriver * const *cfdriverv, 383 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 384 { 385 int error; 386 387 if ((error = config_cfdata_detach(cfdatav)) != 0) 388 return error; 389 if ((error = frob_cfattachvec(cfattachv, 390 config_cfattach_detach, config_cfattach_attach, 391 "fini", false)) != 0) { 392 if (config_cfdata_attach(cfdatav, 0) != 0) 393 panic("config_cfdata fini rollback failed"); 394 return error; 395 } 396 if ((error = frob_cfdrivervec(cfdriverv, 397 config_cfdriver_detach, config_cfdriver_attach, 398 "fini", false)) != 0) { 399 frob_cfattachvec(cfattachv, 400 config_cfattach_attach, NULL, "fini rollback", true); 401 if (config_cfdata_attach(cfdatav, 0) != 0) 402 panic("config_cfdata fini rollback failed"); 403 return error; 404 } 405 406 return 0; 407 } 408 409 void 410 config_init_mi(void) 411 { 412 413 if (!config_initialized) 414 config_init(); 415 416 sysctl_detach_setup(NULL); 417 } 418 419 void 420 config_deferred(device_t dev) 421 { 422 config_process_deferred(&deferred_config_queue, dev); 423 config_process_deferred(&interrupt_config_queue, dev); 424 config_process_deferred(&mountroot_config_queue, dev); 425 } 426 427 static void 428 config_interrupts_thread(void *cookie) 429 { 430 struct deferred_config *dc; 431 432 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 433 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 434 (*dc->dc_func)(dc->dc_dev); 435 kmem_free(dc, sizeof(*dc)); 436 config_pending_decr(); 437 } 438 kthread_exit(0); 439 } 440 441 void 442 config_create_interruptthreads() 443 { 444 int i; 445 446 for (i = 0; i < interrupt_config_threads; i++) { 447 (void)kthread_create(PRI_NONE, 0, NULL, 448 config_interrupts_thread, NULL, NULL, "config"); 449 } 450 } 451 452 static void 453 config_mountroot_thread(void *cookie) 454 { 455 struct deferred_config *dc; 456 457 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 458 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 459 (*dc->dc_func)(dc->dc_dev); 460 kmem_free(dc, sizeof(*dc)); 461 } 462 kthread_exit(0); 463 } 464 465 void 466 config_create_mountrootthreads() 467 { 468 int i; 469 470 if (!root_is_mounted) 471 root_is_mounted = true; 472 473 for (i = 0; i < mountroot_config_threads; i++) { 474 (void)kthread_create(PRI_NONE, 0, NULL, 475 config_mountroot_thread, NULL, NULL, "config"); 476 } 477 } 478 479 /* 480 * Announce device attach/detach to userland listeners. 481 */ 482 static void 483 devmon_report_device(device_t dev, bool isattach) 484 { 485 #if NDRVCTL > 0 486 prop_dictionary_t ev; 487 const char *parent; 488 const char *what; 489 device_t pdev = device_parent(dev); 490 491 ev = prop_dictionary_create(); 492 if (ev == NULL) 493 return; 494 495 what = (isattach ? "device-attach" : "device-detach"); 496 parent = (pdev == NULL ? "root" : device_xname(pdev)); 497 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 498 !prop_dictionary_set_cstring(ev, "parent", parent)) { 499 prop_object_release(ev); 500 return; 501 } 502 503 devmon_insert(what, ev); 504 #endif 505 } 506 507 /* 508 * Add a cfdriver to the system. 509 */ 510 int 511 config_cfdriver_attach(struct cfdriver *cd) 512 { 513 struct cfdriver *lcd; 514 515 /* Make sure this driver isn't already in the system. */ 516 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 517 if (STREQ(lcd->cd_name, cd->cd_name)) 518 return EEXIST; 519 } 520 521 LIST_INIT(&cd->cd_attach); 522 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 523 524 return 0; 525 } 526 527 /* 528 * Remove a cfdriver from the system. 529 */ 530 int 531 config_cfdriver_detach(struct cfdriver *cd) 532 { 533 struct alldevs_foray af; 534 int i, rc = 0; 535 536 config_alldevs_enter(&af); 537 /* Make sure there are no active instances. */ 538 for (i = 0; i < cd->cd_ndevs; i++) { 539 if (cd->cd_devs[i] != NULL) { 540 rc = EBUSY; 541 break; 542 } 543 } 544 config_alldevs_exit(&af); 545 546 if (rc != 0) 547 return rc; 548 549 /* ...and no attachments loaded. */ 550 if (LIST_EMPTY(&cd->cd_attach) == 0) 551 return EBUSY; 552 553 LIST_REMOVE(cd, cd_list); 554 555 KASSERT(cd->cd_devs == NULL); 556 557 return 0; 558 } 559 560 /* 561 * Look up a cfdriver by name. 562 */ 563 struct cfdriver * 564 config_cfdriver_lookup(const char *name) 565 { 566 struct cfdriver *cd; 567 568 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 569 if (STREQ(cd->cd_name, name)) 570 return cd; 571 } 572 573 return NULL; 574 } 575 576 /* 577 * Add a cfattach to the specified driver. 578 */ 579 int 580 config_cfattach_attach(const char *driver, struct cfattach *ca) 581 { 582 struct cfattach *lca; 583 struct cfdriver *cd; 584 585 cd = config_cfdriver_lookup(driver); 586 if (cd == NULL) 587 return ESRCH; 588 589 /* Make sure this attachment isn't already on this driver. */ 590 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 591 if (STREQ(lca->ca_name, ca->ca_name)) 592 return EEXIST; 593 } 594 595 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 596 597 return 0; 598 } 599 600 /* 601 * Remove a cfattach from the specified driver. 602 */ 603 int 604 config_cfattach_detach(const char *driver, struct cfattach *ca) 605 { 606 struct alldevs_foray af; 607 struct cfdriver *cd; 608 device_t dev; 609 int i, rc = 0; 610 611 cd = config_cfdriver_lookup(driver); 612 if (cd == NULL) 613 return ESRCH; 614 615 config_alldevs_enter(&af); 616 /* Make sure there are no active instances. */ 617 for (i = 0; i < cd->cd_ndevs; i++) { 618 if ((dev = cd->cd_devs[i]) == NULL) 619 continue; 620 if (dev->dv_cfattach == ca) { 621 rc = EBUSY; 622 break; 623 } 624 } 625 config_alldevs_exit(&af); 626 627 if (rc != 0) 628 return rc; 629 630 LIST_REMOVE(ca, ca_list); 631 632 return 0; 633 } 634 635 /* 636 * Look up a cfattach by name. 637 */ 638 static struct cfattach * 639 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 640 { 641 struct cfattach *ca; 642 643 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 644 if (STREQ(ca->ca_name, atname)) 645 return ca; 646 } 647 648 return NULL; 649 } 650 651 /* 652 * Look up a cfattach by driver/attachment name. 653 */ 654 struct cfattach * 655 config_cfattach_lookup(const char *name, const char *atname) 656 { 657 struct cfdriver *cd; 658 659 cd = config_cfdriver_lookup(name); 660 if (cd == NULL) 661 return NULL; 662 663 return config_cfattach_lookup_cd(cd, atname); 664 } 665 666 /* 667 * Apply the matching function and choose the best. This is used 668 * a few times and we want to keep the code small. 669 */ 670 static void 671 mapply(struct matchinfo *m, cfdata_t cf) 672 { 673 int pri; 674 675 if (m->fn != NULL) { 676 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 677 } else { 678 pri = config_match(m->parent, cf, m->aux); 679 } 680 if (pri > m->pri) { 681 m->match = cf; 682 m->pri = pri; 683 } 684 } 685 686 int 687 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 688 { 689 const struct cfiattrdata *ci; 690 const struct cflocdesc *cl; 691 int nlocs, i; 692 693 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 694 KASSERT(ci); 695 nlocs = ci->ci_loclen; 696 KASSERT(!nlocs || locs); 697 for (i = 0; i < nlocs; i++) { 698 cl = &ci->ci_locdesc[i]; 699 /* !cld_defaultstr means no default value */ 700 if ((!(cl->cld_defaultstr) 701 || (cf->cf_loc[i] != cl->cld_default)) 702 && cf->cf_loc[i] != locs[i]) 703 return 0; 704 } 705 706 return config_match(parent, cf, aux); 707 } 708 709 /* 710 * Helper function: check whether the driver supports the interface attribute 711 * and return its descriptor structure. 712 */ 713 static const struct cfiattrdata * 714 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 715 { 716 const struct cfiattrdata * const *cpp; 717 718 if (cd->cd_attrs == NULL) 719 return 0; 720 721 for (cpp = cd->cd_attrs; *cpp; cpp++) { 722 if (STREQ((*cpp)->ci_name, ia)) { 723 /* Match. */ 724 return *cpp; 725 } 726 } 727 return 0; 728 } 729 730 /* 731 * Lookup an interface attribute description by name. 732 * If the driver is given, consider only its supported attributes. 733 */ 734 const struct cfiattrdata * 735 cfiattr_lookup(const char *name, const struct cfdriver *cd) 736 { 737 const struct cfdriver *d; 738 const struct cfiattrdata *ia; 739 740 if (cd) 741 return cfdriver_get_iattr(cd, name); 742 743 LIST_FOREACH(d, &allcfdrivers, cd_list) { 744 ia = cfdriver_get_iattr(d, name); 745 if (ia) 746 return ia; 747 } 748 return 0; 749 } 750 751 /* 752 * Determine if `parent' is a potential parent for a device spec based 753 * on `cfp'. 754 */ 755 static int 756 cfparent_match(const device_t parent, const struct cfparent *cfp) 757 { 758 struct cfdriver *pcd; 759 760 /* We don't match root nodes here. */ 761 if (cfp == NULL) 762 return 0; 763 764 pcd = parent->dv_cfdriver; 765 KASSERT(pcd != NULL); 766 767 /* 768 * First, ensure this parent has the correct interface 769 * attribute. 770 */ 771 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 772 return 0; 773 774 /* 775 * If no specific parent device instance was specified (i.e. 776 * we're attaching to the attribute only), we're done! 777 */ 778 if (cfp->cfp_parent == NULL) 779 return 1; 780 781 /* 782 * Check the parent device's name. 783 */ 784 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 785 return 0; /* not the same parent */ 786 787 /* 788 * Make sure the unit number matches. 789 */ 790 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 791 cfp->cfp_unit == parent->dv_unit) 792 return 1; 793 794 /* Unit numbers don't match. */ 795 return 0; 796 } 797 798 /* 799 * Helper for config_cfdata_attach(): check all devices whether it could be 800 * parent any attachment in the config data table passed, and rescan. 801 */ 802 static void 803 rescan_with_cfdata(const struct cfdata *cf) 804 { 805 device_t d; 806 const struct cfdata *cf1; 807 deviter_t di; 808 809 810 /* 811 * "alldevs" is likely longer than a modules's cfdata, so make it 812 * the outer loop. 813 */ 814 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 815 816 if (!(d->dv_cfattach->ca_rescan)) 817 continue; 818 819 for (cf1 = cf; cf1->cf_name; cf1++) { 820 821 if (!cfparent_match(d, cf1->cf_pspec)) 822 continue; 823 824 (*d->dv_cfattach->ca_rescan)(d, 825 cfdata_ifattr(cf1), cf1->cf_loc); 826 827 config_deferred(d); 828 } 829 } 830 deviter_release(&di); 831 } 832 833 /* 834 * Attach a supplemental config data table and rescan potential 835 * parent devices if required. 836 */ 837 int 838 config_cfdata_attach(cfdata_t cf, int scannow) 839 { 840 struct cftable *ct; 841 842 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 843 ct->ct_cfdata = cf; 844 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 845 846 if (scannow) 847 rescan_with_cfdata(cf); 848 849 return 0; 850 } 851 852 /* 853 * Helper for config_cfdata_detach: check whether a device is 854 * found through any attachment in the config data table. 855 */ 856 static int 857 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 858 { 859 const struct cfdata *cf1; 860 861 for (cf1 = cf; cf1->cf_name; cf1++) 862 if (d->dv_cfdata == cf1) 863 return 1; 864 865 return 0; 866 } 867 868 /* 869 * Detach a supplemental config data table. Detach all devices found 870 * through that table (and thus keeping references to it) before. 871 */ 872 int 873 config_cfdata_detach(cfdata_t cf) 874 { 875 device_t d; 876 int error = 0; 877 struct cftable *ct; 878 deviter_t di; 879 880 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 881 d = deviter_next(&di)) { 882 if (!dev_in_cfdata(d, cf)) 883 continue; 884 if ((error = config_detach(d, 0)) != 0) 885 break; 886 } 887 deviter_release(&di); 888 if (error) { 889 aprint_error_dev(d, "unable to detach instance\n"); 890 return error; 891 } 892 893 TAILQ_FOREACH(ct, &allcftables, ct_list) { 894 if (ct->ct_cfdata == cf) { 895 TAILQ_REMOVE(&allcftables, ct, ct_list); 896 kmem_free(ct, sizeof(*ct)); 897 return 0; 898 } 899 } 900 901 /* not found -- shouldn't happen */ 902 return EINVAL; 903 } 904 905 /* 906 * Invoke the "match" routine for a cfdata entry on behalf of 907 * an external caller, usually a "submatch" routine. 908 */ 909 int 910 config_match(device_t parent, cfdata_t cf, void *aux) 911 { 912 struct cfattach *ca; 913 914 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 915 if (ca == NULL) { 916 /* No attachment for this entry, oh well. */ 917 return 0; 918 } 919 920 return (*ca->ca_match)(parent, cf, aux); 921 } 922 923 /* 924 * Iterate over all potential children of some device, calling the given 925 * function (default being the child's match function) for each one. 926 * Nonzero returns are matches; the highest value returned is considered 927 * the best match. Return the `found child' if we got a match, or NULL 928 * otherwise. The `aux' pointer is simply passed on through. 929 * 930 * Note that this function is designed so that it can be used to apply 931 * an arbitrary function to all potential children (its return value 932 * can be ignored). 933 */ 934 cfdata_t 935 config_search_loc(cfsubmatch_t fn, device_t parent, 936 const char *ifattr, const int *locs, void *aux) 937 { 938 struct cftable *ct; 939 cfdata_t cf; 940 struct matchinfo m; 941 942 KASSERT(config_initialized); 943 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 944 945 m.fn = fn; 946 m.parent = parent; 947 m.locs = locs; 948 m.aux = aux; 949 m.match = NULL; 950 m.pri = 0; 951 952 TAILQ_FOREACH(ct, &allcftables, ct_list) { 953 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 954 955 /* We don't match root nodes here. */ 956 if (!cf->cf_pspec) 957 continue; 958 959 /* 960 * Skip cf if no longer eligible, otherwise scan 961 * through parents for one matching `parent', and 962 * try match function. 963 */ 964 if (cf->cf_fstate == FSTATE_FOUND) 965 continue; 966 if (cf->cf_fstate == FSTATE_DNOTFOUND || 967 cf->cf_fstate == FSTATE_DSTAR) 968 continue; 969 970 /* 971 * If an interface attribute was specified, 972 * consider only children which attach to 973 * that attribute. 974 */ 975 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 976 continue; 977 978 if (cfparent_match(parent, cf->cf_pspec)) 979 mapply(&m, cf); 980 } 981 } 982 return m.match; 983 } 984 985 cfdata_t 986 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 987 void *aux) 988 { 989 990 return config_search_loc(fn, parent, ifattr, NULL, aux); 991 } 992 993 /* 994 * Find the given root device. 995 * This is much like config_search, but there is no parent. 996 * Don't bother with multiple cfdata tables; the root node 997 * must always be in the initial table. 998 */ 999 cfdata_t 1000 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1001 { 1002 cfdata_t cf; 1003 const short *p; 1004 struct matchinfo m; 1005 1006 m.fn = fn; 1007 m.parent = ROOT; 1008 m.aux = aux; 1009 m.match = NULL; 1010 m.pri = 0; 1011 m.locs = 0; 1012 /* 1013 * Look at root entries for matching name. We do not bother 1014 * with found-state here since only one root should ever be 1015 * searched (and it must be done first). 1016 */ 1017 for (p = cfroots; *p >= 0; p++) { 1018 cf = &cfdata[*p]; 1019 if (strcmp(cf->cf_name, rootname) == 0) 1020 mapply(&m, cf); 1021 } 1022 return m.match; 1023 } 1024 1025 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1026 1027 /* 1028 * The given `aux' argument describes a device that has been found 1029 * on the given parent, but not necessarily configured. Locate the 1030 * configuration data for that device (using the submatch function 1031 * provided, or using candidates' cd_match configuration driver 1032 * functions) and attach it, and return true. If the device was 1033 * not configured, call the given `print' function and return 0. 1034 */ 1035 device_t 1036 config_found_sm_loc(device_t parent, 1037 const char *ifattr, const int *locs, void *aux, 1038 cfprint_t print, cfsubmatch_t submatch) 1039 { 1040 cfdata_t cf; 1041 1042 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1043 return(config_attach_loc(parent, cf, locs, aux, print)); 1044 if (print) { 1045 if (config_do_twiddle && cold) 1046 twiddle(); 1047 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1048 } 1049 1050 return NULL; 1051 } 1052 1053 device_t 1054 config_found_ia(device_t parent, const char *ifattr, void *aux, 1055 cfprint_t print) 1056 { 1057 1058 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1059 } 1060 1061 device_t 1062 config_found(device_t parent, void *aux, cfprint_t print) 1063 { 1064 1065 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1066 } 1067 1068 /* 1069 * As above, but for root devices. 1070 */ 1071 device_t 1072 config_rootfound(const char *rootname, void *aux) 1073 { 1074 cfdata_t cf; 1075 1076 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 1077 return config_attach(ROOT, cf, aux, (cfprint_t)NULL); 1078 aprint_error("root device %s not configured\n", rootname); 1079 return NULL; 1080 } 1081 1082 /* just like sprintf(buf, "%d") except that it works from the end */ 1083 static char * 1084 number(char *ep, int n) 1085 { 1086 1087 *--ep = 0; 1088 while (n >= 10) { 1089 *--ep = (n % 10) + '0'; 1090 n /= 10; 1091 } 1092 *--ep = n + '0'; 1093 return ep; 1094 } 1095 1096 /* 1097 * Expand the size of the cd_devs array if necessary. 1098 * 1099 * The caller must hold alldevs_mtx. config_makeroom() may release and 1100 * re-acquire alldevs_mtx, so callers should re-check conditions such 1101 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1102 * returns. 1103 */ 1104 static void 1105 config_makeroom(int n, struct cfdriver *cd) 1106 { 1107 int old, new; 1108 device_t *osp, *nsp; 1109 1110 alldevs_nwrite++; 1111 1112 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new) 1113 ; 1114 1115 while (n >= cd->cd_ndevs) { 1116 /* 1117 * Need to expand the array. 1118 */ 1119 old = cd->cd_ndevs; 1120 osp = cd->cd_devs; 1121 1122 /* Release alldevs_mtx around allocation, which may 1123 * sleep. 1124 */ 1125 mutex_exit(&alldevs_mtx); 1126 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP); 1127 if (nsp == NULL) 1128 panic("%s: could not expand cd_devs", __func__); 1129 mutex_enter(&alldevs_mtx); 1130 1131 /* If another thread moved the array while we did 1132 * not hold alldevs_mtx, try again. 1133 */ 1134 if (cd->cd_devs != osp) { 1135 mutex_exit(&alldevs_mtx); 1136 kmem_free(nsp, sizeof(device_t[new])); 1137 mutex_enter(&alldevs_mtx); 1138 continue; 1139 } 1140 1141 memset(nsp + old, 0, sizeof(device_t[new - old])); 1142 if (old != 0) 1143 memcpy(nsp, cd->cd_devs, sizeof(device_t[old])); 1144 1145 cd->cd_ndevs = new; 1146 cd->cd_devs = nsp; 1147 if (old != 0) { 1148 mutex_exit(&alldevs_mtx); 1149 kmem_free(osp, sizeof(device_t[old])); 1150 mutex_enter(&alldevs_mtx); 1151 } 1152 } 1153 alldevs_nwrite--; 1154 } 1155 1156 /* 1157 * Put dev into the devices list. 1158 */ 1159 static void 1160 config_devlink(device_t dev) 1161 { 1162 int s; 1163 1164 s = config_alldevs_lock(); 1165 1166 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1167 1168 dev->dv_add_gen = alldevs_gen; 1169 /* It is safe to add a device to the tail of the list while 1170 * readers and writers are in the list. 1171 */ 1172 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1173 config_alldevs_unlock(s); 1174 } 1175 1176 static void 1177 config_devfree(device_t dev) 1178 { 1179 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1180 1181 if (dev->dv_cfattach->ca_devsize > 0) 1182 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1183 if (priv) 1184 kmem_free(dev, sizeof(*dev)); 1185 } 1186 1187 /* 1188 * Caller must hold alldevs_mtx. 1189 */ 1190 static void 1191 config_devunlink(device_t dev, struct devicelist *garbage) 1192 { 1193 struct device_garbage *dg = &dev->dv_garbage; 1194 cfdriver_t cd = device_cfdriver(dev); 1195 int i; 1196 1197 KASSERT(mutex_owned(&alldevs_mtx)); 1198 1199 /* Unlink from device list. Link to garbage list. */ 1200 TAILQ_REMOVE(&alldevs, dev, dv_list); 1201 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1202 1203 /* Remove from cfdriver's array. */ 1204 cd->cd_devs[dev->dv_unit] = NULL; 1205 1206 /* 1207 * If the device now has no units in use, unlink its softc array. 1208 */ 1209 for (i = 0; i < cd->cd_ndevs; i++) { 1210 if (cd->cd_devs[i] != NULL) 1211 break; 1212 } 1213 /* Nothing found. Unlink, now. Deallocate, later. */ 1214 if (i == cd->cd_ndevs) { 1215 dg->dg_ndevs = cd->cd_ndevs; 1216 dg->dg_devs = cd->cd_devs; 1217 cd->cd_devs = NULL; 1218 cd->cd_ndevs = 0; 1219 } 1220 } 1221 1222 static void 1223 config_devdelete(device_t dev) 1224 { 1225 struct device_garbage *dg = &dev->dv_garbage; 1226 device_lock_t dvl = device_getlock(dev); 1227 1228 if (dg->dg_devs != NULL) 1229 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1230 1231 cv_destroy(&dvl->dvl_cv); 1232 mutex_destroy(&dvl->dvl_mtx); 1233 1234 KASSERT(dev->dv_properties != NULL); 1235 prop_object_release(dev->dv_properties); 1236 1237 if (dev->dv_activity_handlers) 1238 panic("%s with registered handlers", __func__); 1239 1240 if (dev->dv_locators) { 1241 size_t amount = *--dev->dv_locators; 1242 kmem_free(dev->dv_locators, amount); 1243 } 1244 1245 config_devfree(dev); 1246 } 1247 1248 static int 1249 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1250 { 1251 int unit; 1252 1253 if (cf->cf_fstate == FSTATE_STAR) { 1254 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1255 if (cd->cd_devs[unit] == NULL) 1256 break; 1257 /* 1258 * unit is now the unit of the first NULL device pointer, 1259 * or max(cd->cd_ndevs,cf->cf_unit). 1260 */ 1261 } else { 1262 unit = cf->cf_unit; 1263 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1264 unit = -1; 1265 } 1266 return unit; 1267 } 1268 1269 static int 1270 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1271 { 1272 struct alldevs_foray af; 1273 int unit; 1274 1275 config_alldevs_enter(&af); 1276 for (;;) { 1277 unit = config_unit_nextfree(cd, cf); 1278 if (unit == -1) 1279 break; 1280 if (unit < cd->cd_ndevs) { 1281 cd->cd_devs[unit] = dev; 1282 dev->dv_unit = unit; 1283 break; 1284 } 1285 config_makeroom(unit, cd); 1286 } 1287 config_alldevs_exit(&af); 1288 1289 return unit; 1290 } 1291 1292 static device_t 1293 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1294 { 1295 cfdriver_t cd; 1296 cfattach_t ca; 1297 size_t lname, lunit; 1298 const char *xunit; 1299 int myunit; 1300 char num[10]; 1301 device_t dev; 1302 void *dev_private; 1303 const struct cfiattrdata *ia; 1304 device_lock_t dvl; 1305 1306 cd = config_cfdriver_lookup(cf->cf_name); 1307 if (cd == NULL) 1308 return NULL; 1309 1310 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1311 if (ca == NULL) 1312 return NULL; 1313 1314 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1315 ca->ca_devsize < sizeof(struct device)) 1316 panic("config_devalloc: %s", cf->cf_atname); 1317 1318 /* get memory for all device vars */ 1319 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1320 if (ca->ca_devsize > 0) { 1321 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1322 if (dev_private == NULL) 1323 panic("config_devalloc: memory allocation for device softc failed"); 1324 } else { 1325 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1326 dev_private = NULL; 1327 } 1328 1329 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1330 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1331 } else { 1332 dev = dev_private; 1333 } 1334 if (dev == NULL) 1335 panic("config_devalloc: memory allocation for device_t failed"); 1336 1337 dev->dv_class = cd->cd_class; 1338 dev->dv_cfdata = cf; 1339 dev->dv_cfdriver = cd; 1340 dev->dv_cfattach = ca; 1341 dev->dv_activity_count = 0; 1342 dev->dv_activity_handlers = NULL; 1343 dev->dv_private = dev_private; 1344 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1345 1346 myunit = config_unit_alloc(dev, cd, cf); 1347 if (myunit == -1) { 1348 config_devfree(dev); 1349 return NULL; 1350 } 1351 1352 /* compute length of name and decimal expansion of unit number */ 1353 lname = strlen(cd->cd_name); 1354 xunit = number(&num[sizeof(num)], myunit); 1355 lunit = &num[sizeof(num)] - xunit; 1356 if (lname + lunit > sizeof(dev->dv_xname)) 1357 panic("config_devalloc: device name too long"); 1358 1359 dvl = device_getlock(dev); 1360 1361 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1362 cv_init(&dvl->dvl_cv, "pmfsusp"); 1363 1364 memcpy(dev->dv_xname, cd->cd_name, lname); 1365 memcpy(dev->dv_xname + lname, xunit, lunit); 1366 dev->dv_parent = parent; 1367 if (parent != NULL) 1368 dev->dv_depth = parent->dv_depth + 1; 1369 else 1370 dev->dv_depth = 0; 1371 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1372 if (locs) { 1373 KASSERT(parent); /* no locators at root */ 1374 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1375 dev->dv_locators = 1376 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1377 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1378 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1379 } 1380 dev->dv_properties = prop_dictionary_create(); 1381 KASSERT(dev->dv_properties != NULL); 1382 1383 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1384 "device-driver", dev->dv_cfdriver->cd_name); 1385 prop_dictionary_set_uint16(dev->dv_properties, 1386 "device-unit", dev->dv_unit); 1387 1388 return dev; 1389 } 1390 1391 /* 1392 * Attach a found device. 1393 */ 1394 device_t 1395 config_attach_loc(device_t parent, cfdata_t cf, 1396 const int *locs, void *aux, cfprint_t print) 1397 { 1398 device_t dev; 1399 struct cftable *ct; 1400 const char *drvname; 1401 1402 dev = config_devalloc(parent, cf, locs); 1403 if (!dev) 1404 panic("config_attach: allocation of device softc failed"); 1405 1406 /* XXX redundant - see below? */ 1407 if (cf->cf_fstate != FSTATE_STAR) { 1408 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1409 cf->cf_fstate = FSTATE_FOUND; 1410 } 1411 1412 config_devlink(dev); 1413 1414 if (config_do_twiddle && cold) 1415 twiddle(); 1416 else 1417 aprint_naive("Found "); 1418 /* 1419 * We want the next two printfs for normal, verbose, and quiet, 1420 * but not silent (in which case, we're twiddling, instead). 1421 */ 1422 if (parent == ROOT) { 1423 aprint_naive("%s (root)", device_xname(dev)); 1424 aprint_normal("%s (root)", device_xname(dev)); 1425 } else { 1426 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1427 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1428 if (print) 1429 (void) (*print)(aux, NULL); 1430 } 1431 1432 /* 1433 * Before attaching, clobber any unfound devices that are 1434 * otherwise identical. 1435 * XXX code above is redundant? 1436 */ 1437 drvname = dev->dv_cfdriver->cd_name; 1438 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1439 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1440 if (STREQ(cf->cf_name, drvname) && 1441 cf->cf_unit == dev->dv_unit) { 1442 if (cf->cf_fstate == FSTATE_NOTFOUND) 1443 cf->cf_fstate = FSTATE_FOUND; 1444 } 1445 } 1446 } 1447 device_register(dev, aux); 1448 1449 /* Let userland know */ 1450 devmon_report_device(dev, true); 1451 1452 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1453 1454 if (!device_pmf_is_registered(dev)) 1455 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1456 1457 config_process_deferred(&deferred_config_queue, dev); 1458 1459 device_register_post_config(dev, aux); 1460 return dev; 1461 } 1462 1463 device_t 1464 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1465 { 1466 1467 return config_attach_loc(parent, cf, NULL, aux, print); 1468 } 1469 1470 /* 1471 * As above, but for pseudo-devices. Pseudo-devices attached in this 1472 * way are silently inserted into the device tree, and their children 1473 * attached. 1474 * 1475 * Note that because pseudo-devices are attached silently, any information 1476 * the attach routine wishes to print should be prefixed with the device 1477 * name by the attach routine. 1478 */ 1479 device_t 1480 config_attach_pseudo(cfdata_t cf) 1481 { 1482 device_t dev; 1483 1484 dev = config_devalloc(ROOT, cf, NULL); 1485 if (!dev) 1486 return NULL; 1487 1488 /* XXX mark busy in cfdata */ 1489 1490 if (cf->cf_fstate != FSTATE_STAR) { 1491 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1492 cf->cf_fstate = FSTATE_FOUND; 1493 } 1494 1495 config_devlink(dev); 1496 1497 #if 0 /* XXXJRT not yet */ 1498 device_register(dev, NULL); /* like a root node */ 1499 #endif 1500 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1501 config_process_deferred(&deferred_config_queue, dev); 1502 return dev; 1503 } 1504 1505 /* 1506 * Caller must hold alldevs_mtx. 1507 */ 1508 static void 1509 config_collect_garbage(struct devicelist *garbage) 1510 { 1511 device_t dv; 1512 1513 KASSERT(!cpu_intr_p()); 1514 KASSERT(!cpu_softintr_p()); 1515 KASSERT(mutex_owned(&alldevs_mtx)); 1516 1517 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1518 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1519 if (dv->dv_del_gen != 0) 1520 break; 1521 } 1522 if (dv == NULL) { 1523 alldevs_garbage = false; 1524 break; 1525 } 1526 config_devunlink(dv, garbage); 1527 } 1528 KASSERT(mutex_owned(&alldevs_mtx)); 1529 } 1530 1531 static void 1532 config_dump_garbage(struct devicelist *garbage) 1533 { 1534 device_t dv; 1535 1536 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1537 TAILQ_REMOVE(garbage, dv, dv_list); 1538 config_devdelete(dv); 1539 } 1540 } 1541 1542 /* 1543 * Detach a device. Optionally forced (e.g. because of hardware 1544 * removal) and quiet. Returns zero if successful, non-zero 1545 * (an error code) otherwise. 1546 * 1547 * Note that this code wants to be run from a process context, so 1548 * that the detach can sleep to allow processes which have a device 1549 * open to run and unwind their stacks. 1550 */ 1551 int 1552 config_detach(device_t dev, int flags) 1553 { 1554 struct alldevs_foray af; 1555 struct cftable *ct; 1556 cfdata_t cf; 1557 const struct cfattach *ca; 1558 struct cfdriver *cd; 1559 #ifdef DIAGNOSTIC 1560 device_t d; 1561 #endif 1562 int rv = 0, s; 1563 1564 #ifdef DIAGNOSTIC 1565 cf = dev->dv_cfdata; 1566 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1567 cf->cf_fstate != FSTATE_STAR) 1568 panic("config_detach: %s: bad device fstate %d", 1569 device_xname(dev), cf ? cf->cf_fstate : -1); 1570 #endif 1571 cd = dev->dv_cfdriver; 1572 KASSERT(cd != NULL); 1573 1574 ca = dev->dv_cfattach; 1575 KASSERT(ca != NULL); 1576 1577 s = config_alldevs_lock(); 1578 if (dev->dv_del_gen != 0) { 1579 config_alldevs_unlock(s); 1580 #ifdef DIAGNOSTIC 1581 printf("%s: %s is already detached\n", __func__, 1582 device_xname(dev)); 1583 #endif /* DIAGNOSTIC */ 1584 return ENOENT; 1585 } 1586 alldevs_nwrite++; 1587 config_alldevs_unlock(s); 1588 1589 if (!detachall && 1590 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1591 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1592 rv = EOPNOTSUPP; 1593 } else if (ca->ca_detach != NULL) { 1594 rv = (*ca->ca_detach)(dev, flags); 1595 } else 1596 rv = EOPNOTSUPP; 1597 1598 /* 1599 * If it was not possible to detach the device, then we either 1600 * panic() (for the forced but failed case), or return an error. 1601 * 1602 * If it was possible to detach the device, ensure that the 1603 * device is deactivated. 1604 */ 1605 if (rv == 0) 1606 dev->dv_flags &= ~DVF_ACTIVE; 1607 else if ((flags & DETACH_FORCE) == 0) 1608 goto out; 1609 else { 1610 panic("config_detach: forced detach of %s failed (%d)", 1611 device_xname(dev), rv); 1612 } 1613 1614 /* 1615 * The device has now been successfully detached. 1616 */ 1617 1618 /* Let userland know */ 1619 devmon_report_device(dev, false); 1620 1621 #ifdef DIAGNOSTIC 1622 /* 1623 * Sanity: If you're successfully detached, you should have no 1624 * children. (Note that because children must be attached 1625 * after parents, we only need to search the latter part of 1626 * the list.) 1627 */ 1628 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1629 d = TAILQ_NEXT(d, dv_list)) { 1630 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1631 printf("config_detach: detached device %s" 1632 " has children %s\n", device_xname(dev), device_xname(d)); 1633 panic("config_detach"); 1634 } 1635 } 1636 #endif 1637 1638 /* notify the parent that the child is gone */ 1639 if (dev->dv_parent) { 1640 device_t p = dev->dv_parent; 1641 if (p->dv_cfattach->ca_childdetached) 1642 (*p->dv_cfattach->ca_childdetached)(p, dev); 1643 } 1644 1645 /* 1646 * Mark cfdata to show that the unit can be reused, if possible. 1647 */ 1648 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1649 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1650 if (STREQ(cf->cf_name, cd->cd_name)) { 1651 if (cf->cf_fstate == FSTATE_FOUND && 1652 cf->cf_unit == dev->dv_unit) 1653 cf->cf_fstate = FSTATE_NOTFOUND; 1654 } 1655 } 1656 } 1657 1658 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1659 aprint_normal_dev(dev, "detached\n"); 1660 1661 out: 1662 config_alldevs_enter(&af); 1663 KASSERT(alldevs_nwrite != 0); 1664 --alldevs_nwrite; 1665 if (rv == 0 && dev->dv_del_gen == 0) { 1666 if (alldevs_nwrite == 0 && alldevs_nread == 0) 1667 config_devunlink(dev, &af.af_garbage); 1668 else { 1669 dev->dv_del_gen = alldevs_gen; 1670 alldevs_garbage = true; 1671 } 1672 } 1673 config_alldevs_exit(&af); 1674 1675 return rv; 1676 } 1677 1678 int 1679 config_detach_children(device_t parent, int flags) 1680 { 1681 device_t dv; 1682 deviter_t di; 1683 int error = 0; 1684 1685 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1686 dv = deviter_next(&di)) { 1687 if (device_parent(dv) != parent) 1688 continue; 1689 if ((error = config_detach(dv, flags)) != 0) 1690 break; 1691 } 1692 deviter_release(&di); 1693 return error; 1694 } 1695 1696 device_t 1697 shutdown_first(struct shutdown_state *s) 1698 { 1699 if (!s->initialized) { 1700 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1701 s->initialized = true; 1702 } 1703 return shutdown_next(s); 1704 } 1705 1706 device_t 1707 shutdown_next(struct shutdown_state *s) 1708 { 1709 device_t dv; 1710 1711 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1712 ; 1713 1714 if (dv == NULL) 1715 s->initialized = false; 1716 1717 return dv; 1718 } 1719 1720 bool 1721 config_detach_all(int how) 1722 { 1723 static struct shutdown_state s; 1724 device_t curdev; 1725 bool progress = false; 1726 1727 if ((how & RB_NOSYNC) != 0) 1728 return false; 1729 1730 for (curdev = shutdown_first(&s); curdev != NULL; 1731 curdev = shutdown_next(&s)) { 1732 aprint_debug(" detaching %s, ", device_xname(curdev)); 1733 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1734 progress = true; 1735 aprint_debug("success."); 1736 } else 1737 aprint_debug("failed."); 1738 } 1739 return progress; 1740 } 1741 1742 static bool 1743 device_is_ancestor_of(device_t ancestor, device_t descendant) 1744 { 1745 device_t dv; 1746 1747 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1748 if (device_parent(dv) == ancestor) 1749 return true; 1750 } 1751 return false; 1752 } 1753 1754 int 1755 config_deactivate(device_t dev) 1756 { 1757 deviter_t di; 1758 const struct cfattach *ca; 1759 device_t descendant; 1760 int s, rv = 0, oflags; 1761 1762 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1763 descendant != NULL; 1764 descendant = deviter_next(&di)) { 1765 if (dev != descendant && 1766 !device_is_ancestor_of(dev, descendant)) 1767 continue; 1768 1769 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1770 continue; 1771 1772 ca = descendant->dv_cfattach; 1773 oflags = descendant->dv_flags; 1774 1775 descendant->dv_flags &= ~DVF_ACTIVE; 1776 if (ca->ca_activate == NULL) 1777 continue; 1778 s = splhigh(); 1779 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1780 splx(s); 1781 if (rv != 0) 1782 descendant->dv_flags = oflags; 1783 } 1784 deviter_release(&di); 1785 return rv; 1786 } 1787 1788 /* 1789 * Defer the configuration of the specified device until all 1790 * of its parent's devices have been attached. 1791 */ 1792 void 1793 config_defer(device_t dev, void (*func)(device_t)) 1794 { 1795 struct deferred_config *dc; 1796 1797 if (dev->dv_parent == NULL) 1798 panic("config_defer: can't defer config of a root device"); 1799 1800 #ifdef DIAGNOSTIC 1801 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1802 if (dc->dc_dev == dev) 1803 panic("config_defer: deferred twice"); 1804 } 1805 #endif 1806 1807 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1808 if (dc == NULL) 1809 panic("config_defer: unable to allocate callback"); 1810 1811 dc->dc_dev = dev; 1812 dc->dc_func = func; 1813 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1814 config_pending_incr(); 1815 } 1816 1817 /* 1818 * Defer some autoconfiguration for a device until after interrupts 1819 * are enabled. 1820 */ 1821 void 1822 config_interrupts(device_t dev, void (*func)(device_t)) 1823 { 1824 struct deferred_config *dc; 1825 1826 /* 1827 * If interrupts are enabled, callback now. 1828 */ 1829 if (cold == 0) { 1830 (*func)(dev); 1831 return; 1832 } 1833 1834 #ifdef DIAGNOSTIC 1835 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1836 if (dc->dc_dev == dev) 1837 panic("config_interrupts: deferred twice"); 1838 } 1839 #endif 1840 1841 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1842 if (dc == NULL) 1843 panic("config_interrupts: unable to allocate callback"); 1844 1845 dc->dc_dev = dev; 1846 dc->dc_func = func; 1847 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1848 config_pending_incr(); 1849 } 1850 1851 /* 1852 * Defer some autoconfiguration for a device until after root file system 1853 * is mounted (to load firmware etc). 1854 */ 1855 void 1856 config_mountroot(device_t dev, void (*func)(device_t)) 1857 { 1858 struct deferred_config *dc; 1859 1860 /* 1861 * If root file system is mounted, callback now. 1862 */ 1863 if (root_is_mounted) { 1864 (*func)(dev); 1865 return; 1866 } 1867 1868 #ifdef DIAGNOSTIC 1869 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) { 1870 if (dc->dc_dev == dev) 1871 panic("%s: deferred twice", __func__); 1872 } 1873 #endif 1874 1875 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1876 if (dc == NULL) 1877 panic("%s: unable to allocate callback", __func__); 1878 1879 dc->dc_dev = dev; 1880 dc->dc_func = func; 1881 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 1882 } 1883 1884 /* 1885 * Process a deferred configuration queue. 1886 */ 1887 static void 1888 config_process_deferred(struct deferred_config_head *queue, 1889 device_t parent) 1890 { 1891 struct deferred_config *dc, *ndc; 1892 1893 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1894 ndc = TAILQ_NEXT(dc, dc_queue); 1895 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1896 TAILQ_REMOVE(queue, dc, dc_queue); 1897 (*dc->dc_func)(dc->dc_dev); 1898 kmem_free(dc, sizeof(*dc)); 1899 config_pending_decr(); 1900 } 1901 } 1902 } 1903 1904 /* 1905 * Manipulate the config_pending semaphore. 1906 */ 1907 void 1908 config_pending_incr(void) 1909 { 1910 1911 mutex_enter(&config_misc_lock); 1912 config_pending++; 1913 mutex_exit(&config_misc_lock); 1914 } 1915 1916 void 1917 config_pending_decr(void) 1918 { 1919 1920 #ifdef DIAGNOSTIC 1921 if (config_pending == 0) 1922 panic("config_pending_decr: config_pending == 0"); 1923 #endif 1924 mutex_enter(&config_misc_lock); 1925 config_pending--; 1926 if (config_pending == 0) 1927 cv_broadcast(&config_misc_cv); 1928 mutex_exit(&config_misc_lock); 1929 } 1930 1931 /* 1932 * Register a "finalization" routine. Finalization routines are 1933 * called iteratively once all real devices have been found during 1934 * autoconfiguration, for as long as any one finalizer has done 1935 * any work. 1936 */ 1937 int 1938 config_finalize_register(device_t dev, int (*fn)(device_t)) 1939 { 1940 struct finalize_hook *f; 1941 1942 /* 1943 * If finalization has already been done, invoke the 1944 * callback function now. 1945 */ 1946 if (config_finalize_done) { 1947 while ((*fn)(dev) != 0) 1948 /* loop */ ; 1949 } 1950 1951 /* Ensure this isn't already on the list. */ 1952 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1953 if (f->f_func == fn && f->f_dev == dev) 1954 return EEXIST; 1955 } 1956 1957 f = kmem_alloc(sizeof(*f), KM_SLEEP); 1958 f->f_func = fn; 1959 f->f_dev = dev; 1960 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1961 1962 return 0; 1963 } 1964 1965 void 1966 config_finalize(void) 1967 { 1968 struct finalize_hook *f; 1969 struct pdevinit *pdev; 1970 extern struct pdevinit pdevinit[]; 1971 int errcnt, rv; 1972 1973 /* 1974 * Now that device driver threads have been created, wait for 1975 * them to finish any deferred autoconfiguration. 1976 */ 1977 mutex_enter(&config_misc_lock); 1978 while (config_pending != 0) 1979 cv_wait(&config_misc_cv, &config_misc_lock); 1980 mutex_exit(&config_misc_lock); 1981 1982 KERNEL_LOCK(1, NULL); 1983 1984 /* Attach pseudo-devices. */ 1985 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 1986 (*pdev->pdev_attach)(pdev->pdev_count); 1987 1988 /* Run the hooks until none of them does any work. */ 1989 do { 1990 rv = 0; 1991 TAILQ_FOREACH(f, &config_finalize_list, f_list) 1992 rv |= (*f->f_func)(f->f_dev); 1993 } while (rv != 0); 1994 1995 config_finalize_done = 1; 1996 1997 /* Now free all the hooks. */ 1998 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 1999 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2000 kmem_free(f, sizeof(*f)); 2001 } 2002 2003 KERNEL_UNLOCK_ONE(NULL); 2004 2005 errcnt = aprint_get_error_count(); 2006 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2007 (boothowto & AB_VERBOSE) == 0) { 2008 mutex_enter(&config_misc_lock); 2009 if (config_do_twiddle) { 2010 config_do_twiddle = 0; 2011 printf_nolog(" done.\n"); 2012 } 2013 mutex_exit(&config_misc_lock); 2014 if (errcnt != 0) { 2015 printf("WARNING: %d error%s while detecting hardware; " 2016 "check system log.\n", errcnt, 2017 errcnt == 1 ? "" : "s"); 2018 } 2019 } 2020 } 2021 2022 void 2023 config_twiddle_init() 2024 { 2025 2026 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2027 config_do_twiddle = 1; 2028 } 2029 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2030 } 2031 2032 void 2033 config_twiddle_fn(void *cookie) 2034 { 2035 2036 mutex_enter(&config_misc_lock); 2037 if (config_do_twiddle) { 2038 twiddle(); 2039 callout_schedule(&config_twiddle_ch, mstohz(100)); 2040 } 2041 mutex_exit(&config_misc_lock); 2042 } 2043 2044 static int 2045 config_alldevs_lock(void) 2046 { 2047 mutex_enter(&alldevs_mtx); 2048 return 0; 2049 } 2050 2051 static void 2052 config_alldevs_enter(struct alldevs_foray *af) 2053 { 2054 TAILQ_INIT(&af->af_garbage); 2055 af->af_s = config_alldevs_lock(); 2056 config_collect_garbage(&af->af_garbage); 2057 } 2058 2059 static void 2060 config_alldevs_exit(struct alldevs_foray *af) 2061 { 2062 config_alldevs_unlock(af->af_s); 2063 config_dump_garbage(&af->af_garbage); 2064 } 2065 2066 /*ARGSUSED*/ 2067 static void 2068 config_alldevs_unlock(int s) 2069 { 2070 mutex_exit(&alldevs_mtx); 2071 } 2072 2073 /* 2074 * device_lookup: 2075 * 2076 * Look up a device instance for a given driver. 2077 */ 2078 device_t 2079 device_lookup(cfdriver_t cd, int unit) 2080 { 2081 device_t dv; 2082 int s; 2083 2084 s = config_alldevs_lock(); 2085 KASSERT(mutex_owned(&alldevs_mtx)); 2086 if (unit < 0 || unit >= cd->cd_ndevs) 2087 dv = NULL; 2088 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2089 dv = NULL; 2090 config_alldevs_unlock(s); 2091 2092 return dv; 2093 } 2094 2095 /* 2096 * device_lookup_private: 2097 * 2098 * Look up a softc instance for a given driver. 2099 */ 2100 void * 2101 device_lookup_private(cfdriver_t cd, int unit) 2102 { 2103 2104 return device_private(device_lookup(cd, unit)); 2105 } 2106 2107 /* 2108 * device_find_by_xname: 2109 * 2110 * Returns the device of the given name or NULL if it doesn't exist. 2111 */ 2112 device_t 2113 device_find_by_xname(const char *name) 2114 { 2115 device_t dv; 2116 deviter_t di; 2117 2118 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2119 if (strcmp(device_xname(dv), name) == 0) 2120 break; 2121 } 2122 deviter_release(&di); 2123 2124 return dv; 2125 } 2126 2127 /* 2128 * device_find_by_driver_unit: 2129 * 2130 * Returns the device of the given driver name and unit or 2131 * NULL if it doesn't exist. 2132 */ 2133 device_t 2134 device_find_by_driver_unit(const char *name, int unit) 2135 { 2136 struct cfdriver *cd; 2137 2138 if ((cd = config_cfdriver_lookup(name)) == NULL) 2139 return NULL; 2140 return device_lookup(cd, unit); 2141 } 2142 2143 /* 2144 * Power management related functions. 2145 */ 2146 2147 bool 2148 device_pmf_is_registered(device_t dev) 2149 { 2150 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2151 } 2152 2153 bool 2154 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2155 { 2156 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2157 return true; 2158 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2159 return false; 2160 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2161 dev->dv_driver_suspend != NULL && 2162 !(*dev->dv_driver_suspend)(dev, qual)) 2163 return false; 2164 2165 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2166 return true; 2167 } 2168 2169 bool 2170 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2171 { 2172 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2173 return true; 2174 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2175 return false; 2176 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2177 dev->dv_driver_resume != NULL && 2178 !(*dev->dv_driver_resume)(dev, qual)) 2179 return false; 2180 2181 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2182 return true; 2183 } 2184 2185 bool 2186 device_pmf_driver_shutdown(device_t dev, int how) 2187 { 2188 2189 if (*dev->dv_driver_shutdown != NULL && 2190 !(*dev->dv_driver_shutdown)(dev, how)) 2191 return false; 2192 return true; 2193 } 2194 2195 bool 2196 device_pmf_driver_register(device_t dev, 2197 bool (*suspend)(device_t, const pmf_qual_t *), 2198 bool (*resume)(device_t, const pmf_qual_t *), 2199 bool (*shutdown)(device_t, int)) 2200 { 2201 dev->dv_driver_suspend = suspend; 2202 dev->dv_driver_resume = resume; 2203 dev->dv_driver_shutdown = shutdown; 2204 dev->dv_flags |= DVF_POWER_HANDLERS; 2205 return true; 2206 } 2207 2208 static const char * 2209 curlwp_name(void) 2210 { 2211 if (curlwp->l_name != NULL) 2212 return curlwp->l_name; 2213 else 2214 return curlwp->l_proc->p_comm; 2215 } 2216 2217 void 2218 device_pmf_driver_deregister(device_t dev) 2219 { 2220 device_lock_t dvl = device_getlock(dev); 2221 2222 dev->dv_driver_suspend = NULL; 2223 dev->dv_driver_resume = NULL; 2224 2225 mutex_enter(&dvl->dvl_mtx); 2226 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2227 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2228 /* Wake a thread that waits for the lock. That 2229 * thread will fail to acquire the lock, and then 2230 * it will wake the next thread that waits for the 2231 * lock, or else it will wake us. 2232 */ 2233 cv_signal(&dvl->dvl_cv); 2234 pmflock_debug(dev, __func__, __LINE__); 2235 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2236 pmflock_debug(dev, __func__, __LINE__); 2237 } 2238 mutex_exit(&dvl->dvl_mtx); 2239 } 2240 2241 bool 2242 device_pmf_driver_child_register(device_t dev) 2243 { 2244 device_t parent = device_parent(dev); 2245 2246 if (parent == NULL || parent->dv_driver_child_register == NULL) 2247 return true; 2248 return (*parent->dv_driver_child_register)(dev); 2249 } 2250 2251 void 2252 device_pmf_driver_set_child_register(device_t dev, 2253 bool (*child_register)(device_t)) 2254 { 2255 dev->dv_driver_child_register = child_register; 2256 } 2257 2258 static void 2259 pmflock_debug(device_t dev, const char *func, int line) 2260 { 2261 device_lock_t dvl = device_getlock(dev); 2262 2263 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2264 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2265 dev->dv_flags); 2266 } 2267 2268 static bool 2269 device_pmf_lock1(device_t dev) 2270 { 2271 device_lock_t dvl = device_getlock(dev); 2272 2273 while (device_pmf_is_registered(dev) && 2274 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2275 dvl->dvl_nwait++; 2276 pmflock_debug(dev, __func__, __LINE__); 2277 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2278 pmflock_debug(dev, __func__, __LINE__); 2279 dvl->dvl_nwait--; 2280 } 2281 if (!device_pmf_is_registered(dev)) { 2282 pmflock_debug(dev, __func__, __LINE__); 2283 /* We could not acquire the lock, but some other thread may 2284 * wait for it, also. Wake that thread. 2285 */ 2286 cv_signal(&dvl->dvl_cv); 2287 return false; 2288 } 2289 dvl->dvl_nlock++; 2290 dvl->dvl_holder = curlwp; 2291 pmflock_debug(dev, __func__, __LINE__); 2292 return true; 2293 } 2294 2295 bool 2296 device_pmf_lock(device_t dev) 2297 { 2298 bool rc; 2299 device_lock_t dvl = device_getlock(dev); 2300 2301 mutex_enter(&dvl->dvl_mtx); 2302 rc = device_pmf_lock1(dev); 2303 mutex_exit(&dvl->dvl_mtx); 2304 2305 return rc; 2306 } 2307 2308 void 2309 device_pmf_unlock(device_t dev) 2310 { 2311 device_lock_t dvl = device_getlock(dev); 2312 2313 KASSERT(dvl->dvl_nlock > 0); 2314 mutex_enter(&dvl->dvl_mtx); 2315 if (--dvl->dvl_nlock == 0) 2316 dvl->dvl_holder = NULL; 2317 cv_signal(&dvl->dvl_cv); 2318 pmflock_debug(dev, __func__, __LINE__); 2319 mutex_exit(&dvl->dvl_mtx); 2320 } 2321 2322 device_lock_t 2323 device_getlock(device_t dev) 2324 { 2325 return &dev->dv_lock; 2326 } 2327 2328 void * 2329 device_pmf_bus_private(device_t dev) 2330 { 2331 return dev->dv_bus_private; 2332 } 2333 2334 bool 2335 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2336 { 2337 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2338 return true; 2339 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2340 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2341 return false; 2342 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2343 dev->dv_bus_suspend != NULL && 2344 !(*dev->dv_bus_suspend)(dev, qual)) 2345 return false; 2346 2347 dev->dv_flags |= DVF_BUS_SUSPENDED; 2348 return true; 2349 } 2350 2351 bool 2352 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2353 { 2354 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2355 return true; 2356 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2357 dev->dv_bus_resume != NULL && 2358 !(*dev->dv_bus_resume)(dev, qual)) 2359 return false; 2360 2361 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2362 return true; 2363 } 2364 2365 bool 2366 device_pmf_bus_shutdown(device_t dev, int how) 2367 { 2368 2369 if (*dev->dv_bus_shutdown != NULL && 2370 !(*dev->dv_bus_shutdown)(dev, how)) 2371 return false; 2372 return true; 2373 } 2374 2375 void 2376 device_pmf_bus_register(device_t dev, void *priv, 2377 bool (*suspend)(device_t, const pmf_qual_t *), 2378 bool (*resume)(device_t, const pmf_qual_t *), 2379 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2380 { 2381 dev->dv_bus_private = priv; 2382 dev->dv_bus_resume = resume; 2383 dev->dv_bus_suspend = suspend; 2384 dev->dv_bus_shutdown = shutdown; 2385 dev->dv_bus_deregister = deregister; 2386 } 2387 2388 void 2389 device_pmf_bus_deregister(device_t dev) 2390 { 2391 if (dev->dv_bus_deregister == NULL) 2392 return; 2393 (*dev->dv_bus_deregister)(dev); 2394 dev->dv_bus_private = NULL; 2395 dev->dv_bus_suspend = NULL; 2396 dev->dv_bus_resume = NULL; 2397 dev->dv_bus_deregister = NULL; 2398 } 2399 2400 void * 2401 device_pmf_class_private(device_t dev) 2402 { 2403 return dev->dv_class_private; 2404 } 2405 2406 bool 2407 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2408 { 2409 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2410 return true; 2411 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2412 dev->dv_class_suspend != NULL && 2413 !(*dev->dv_class_suspend)(dev, qual)) 2414 return false; 2415 2416 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2417 return true; 2418 } 2419 2420 bool 2421 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2422 { 2423 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2424 return true; 2425 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2426 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2427 return false; 2428 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2429 dev->dv_class_resume != NULL && 2430 !(*dev->dv_class_resume)(dev, qual)) 2431 return false; 2432 2433 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2434 return true; 2435 } 2436 2437 void 2438 device_pmf_class_register(device_t dev, void *priv, 2439 bool (*suspend)(device_t, const pmf_qual_t *), 2440 bool (*resume)(device_t, const pmf_qual_t *), 2441 void (*deregister)(device_t)) 2442 { 2443 dev->dv_class_private = priv; 2444 dev->dv_class_suspend = suspend; 2445 dev->dv_class_resume = resume; 2446 dev->dv_class_deregister = deregister; 2447 } 2448 2449 void 2450 device_pmf_class_deregister(device_t dev) 2451 { 2452 if (dev->dv_class_deregister == NULL) 2453 return; 2454 (*dev->dv_class_deregister)(dev); 2455 dev->dv_class_private = NULL; 2456 dev->dv_class_suspend = NULL; 2457 dev->dv_class_resume = NULL; 2458 dev->dv_class_deregister = NULL; 2459 } 2460 2461 bool 2462 device_active(device_t dev, devactive_t type) 2463 { 2464 size_t i; 2465 2466 if (dev->dv_activity_count == 0) 2467 return false; 2468 2469 for (i = 0; i < dev->dv_activity_count; ++i) { 2470 if (dev->dv_activity_handlers[i] == NULL) 2471 break; 2472 (*dev->dv_activity_handlers[i])(dev, type); 2473 } 2474 2475 return true; 2476 } 2477 2478 bool 2479 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2480 { 2481 void (**new_handlers)(device_t, devactive_t); 2482 void (**old_handlers)(device_t, devactive_t); 2483 size_t i, old_size, new_size; 2484 int s; 2485 2486 old_handlers = dev->dv_activity_handlers; 2487 old_size = dev->dv_activity_count; 2488 2489 for (i = 0; i < old_size; ++i) { 2490 KASSERT(old_handlers[i] != handler); 2491 if (old_handlers[i] == NULL) { 2492 old_handlers[i] = handler; 2493 return true; 2494 } 2495 } 2496 2497 new_size = old_size + 4; 2498 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2499 2500 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2501 new_handlers[old_size] = handler; 2502 memset(new_handlers + old_size + 1, 0, 2503 sizeof(int [new_size - (old_size+1)])); 2504 2505 s = splhigh(); 2506 dev->dv_activity_count = new_size; 2507 dev->dv_activity_handlers = new_handlers; 2508 splx(s); 2509 2510 if (old_handlers != NULL) 2511 kmem_free(old_handlers, sizeof(void * [old_size])); 2512 2513 return true; 2514 } 2515 2516 void 2517 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2518 { 2519 void (**old_handlers)(device_t, devactive_t); 2520 size_t i, old_size; 2521 int s; 2522 2523 old_handlers = dev->dv_activity_handlers; 2524 old_size = dev->dv_activity_count; 2525 2526 for (i = 0; i < old_size; ++i) { 2527 if (old_handlers[i] == handler) 2528 break; 2529 if (old_handlers[i] == NULL) 2530 return; /* XXX panic? */ 2531 } 2532 2533 if (i == old_size) 2534 return; /* XXX panic? */ 2535 2536 for (; i < old_size - 1; ++i) { 2537 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2538 continue; 2539 2540 if (i == 0) { 2541 s = splhigh(); 2542 dev->dv_activity_count = 0; 2543 dev->dv_activity_handlers = NULL; 2544 splx(s); 2545 kmem_free(old_handlers, sizeof(void *[old_size])); 2546 } 2547 return; 2548 } 2549 old_handlers[i] = NULL; 2550 } 2551 2552 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2553 static bool 2554 device_exists_at(device_t dv, devgen_t gen) 2555 { 2556 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2557 dv->dv_add_gen <= gen; 2558 } 2559 2560 static bool 2561 deviter_visits(const deviter_t *di, device_t dv) 2562 { 2563 return device_exists_at(dv, di->di_gen); 2564 } 2565 2566 /* 2567 * Device Iteration 2568 * 2569 * deviter_t: a device iterator. Holds state for a "walk" visiting 2570 * each device_t's in the device tree. 2571 * 2572 * deviter_init(di, flags): initialize the device iterator `di' 2573 * to "walk" the device tree. deviter_next(di) will return 2574 * the first device_t in the device tree, or NULL if there are 2575 * no devices. 2576 * 2577 * `flags' is one or more of DEVITER_F_RW, indicating that the 2578 * caller intends to modify the device tree by calling 2579 * config_detach(9) on devices in the order that the iterator 2580 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2581 * nearest the "root" of the device tree to be returned, first; 2582 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2583 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2584 * indicating both that deviter_init() should not respect any 2585 * locks on the device tree, and that deviter_next(di) may run 2586 * in more than one LWP before the walk has finished. 2587 * 2588 * Only one DEVITER_F_RW iterator may be in the device tree at 2589 * once. 2590 * 2591 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2592 * 2593 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2594 * DEVITER_F_LEAVES_FIRST are used in combination. 2595 * 2596 * deviter_first(di, flags): initialize the device iterator `di' 2597 * and return the first device_t in the device tree, or NULL 2598 * if there are no devices. The statement 2599 * 2600 * dv = deviter_first(di); 2601 * 2602 * is shorthand for 2603 * 2604 * deviter_init(di); 2605 * dv = deviter_next(di); 2606 * 2607 * deviter_next(di): return the next device_t in the device tree, 2608 * or NULL if there are no more devices. deviter_next(di) 2609 * is undefined if `di' was not initialized with deviter_init() or 2610 * deviter_first(). 2611 * 2612 * deviter_release(di): stops iteration (subsequent calls to 2613 * deviter_next() will return NULL), releases any locks and 2614 * resources held by the device iterator. 2615 * 2616 * Device iteration does not return device_t's in any particular 2617 * order. An iterator will never return the same device_t twice. 2618 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2619 * is called repeatedly on the same `di', it will eventually return 2620 * NULL. It is ok to attach/detach devices during device iteration. 2621 */ 2622 void 2623 deviter_init(deviter_t *di, deviter_flags_t flags) 2624 { 2625 device_t dv; 2626 int s; 2627 2628 memset(di, 0, sizeof(*di)); 2629 2630 s = config_alldevs_lock(); 2631 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2632 flags |= DEVITER_F_RW; 2633 2634 if ((flags & DEVITER_F_RW) != 0) 2635 alldevs_nwrite++; 2636 else 2637 alldevs_nread++; 2638 di->di_gen = alldevs_gen++; 2639 config_alldevs_unlock(s); 2640 2641 di->di_flags = flags; 2642 2643 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2644 case DEVITER_F_LEAVES_FIRST: 2645 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2646 if (!deviter_visits(di, dv)) 2647 continue; 2648 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2649 } 2650 break; 2651 case DEVITER_F_ROOT_FIRST: 2652 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2653 if (!deviter_visits(di, dv)) 2654 continue; 2655 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2656 } 2657 break; 2658 default: 2659 break; 2660 } 2661 2662 deviter_reinit(di); 2663 } 2664 2665 static void 2666 deviter_reinit(deviter_t *di) 2667 { 2668 if ((di->di_flags & DEVITER_F_RW) != 0) 2669 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2670 else 2671 di->di_prev = TAILQ_FIRST(&alldevs); 2672 } 2673 2674 device_t 2675 deviter_first(deviter_t *di, deviter_flags_t flags) 2676 { 2677 deviter_init(di, flags); 2678 return deviter_next(di); 2679 } 2680 2681 static device_t 2682 deviter_next2(deviter_t *di) 2683 { 2684 device_t dv; 2685 2686 dv = di->di_prev; 2687 2688 if (dv == NULL) 2689 return NULL; 2690 2691 if ((di->di_flags & DEVITER_F_RW) != 0) 2692 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2693 else 2694 di->di_prev = TAILQ_NEXT(dv, dv_list); 2695 2696 return dv; 2697 } 2698 2699 static device_t 2700 deviter_next1(deviter_t *di) 2701 { 2702 device_t dv; 2703 2704 do { 2705 dv = deviter_next2(di); 2706 } while (dv != NULL && !deviter_visits(di, dv)); 2707 2708 return dv; 2709 } 2710 2711 device_t 2712 deviter_next(deviter_t *di) 2713 { 2714 device_t dv = NULL; 2715 2716 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2717 case 0: 2718 return deviter_next1(di); 2719 case DEVITER_F_LEAVES_FIRST: 2720 while (di->di_curdepth >= 0) { 2721 if ((dv = deviter_next1(di)) == NULL) { 2722 di->di_curdepth--; 2723 deviter_reinit(di); 2724 } else if (dv->dv_depth == di->di_curdepth) 2725 break; 2726 } 2727 return dv; 2728 case DEVITER_F_ROOT_FIRST: 2729 while (di->di_curdepth <= di->di_maxdepth) { 2730 if ((dv = deviter_next1(di)) == NULL) { 2731 di->di_curdepth++; 2732 deviter_reinit(di); 2733 } else if (dv->dv_depth == di->di_curdepth) 2734 break; 2735 } 2736 return dv; 2737 default: 2738 return NULL; 2739 } 2740 } 2741 2742 void 2743 deviter_release(deviter_t *di) 2744 { 2745 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2746 int s; 2747 2748 s = config_alldevs_lock(); 2749 if (rw) 2750 --alldevs_nwrite; 2751 else 2752 --alldevs_nread; 2753 /* XXX wake a garbage-collection thread */ 2754 config_alldevs_unlock(s); 2755 } 2756 2757 const char * 2758 cfdata_ifattr(const struct cfdata *cf) 2759 { 2760 return cf->cf_pspec->cfp_iattr; 2761 } 2762 2763 bool 2764 ifattr_match(const char *snull, const char *t) 2765 { 2766 return (snull == NULL) || strcmp(snull, t) == 0; 2767 } 2768 2769 void 2770 null_childdetached(device_t self, device_t child) 2771 { 2772 /* do nothing */ 2773 } 2774 2775 static void 2776 sysctl_detach_setup(struct sysctllog **clog) 2777 { 2778 const struct sysctlnode *node = NULL; 2779 2780 sysctl_createv(clog, 0, NULL, &node, 2781 CTLFLAG_PERMANENT, 2782 CTLTYPE_NODE, "kern", NULL, 2783 NULL, 0, NULL, 0, 2784 CTL_KERN, CTL_EOL); 2785 2786 if (node == NULL) 2787 return; 2788 2789 sysctl_createv(clog, 0, &node, NULL, 2790 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2791 CTLTYPE_BOOL, "detachall", 2792 SYSCTL_DESCR("Detach all devices at shutdown"), 2793 NULL, 0, &detachall, 0, 2794 CTL_CREATE, CTL_EOL); 2795 } 2796