xref: /netbsd-src/sys/kern/subr_autoconf.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /* $NetBSD: subr_autoconf.c,v 1.157 2008/07/28 14:22:14 drochner Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.157 2008/07/28 14:22:14 drochner Exp $");
81 
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84 
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/systm.h>
92 #include <sys/kernel.h>
93 #include <sys/errno.h>
94 #include <sys/proc.h>
95 #include <sys/reboot.h>
96 #include <sys/kthread.h>
97 #include <sys/buf.h>
98 #include <sys/dirent.h>
99 #include <sys/vnode.h>
100 #include <sys/mount.h>
101 #include <sys/namei.h>
102 #include <sys/unistd.h>
103 #include <sys/fcntl.h>
104 #include <sys/lockf.h>
105 #include <sys/callout.h>
106 #include <sys/mutex.h>
107 #include <sys/condvar.h>
108 #include <sys/devmon.h>
109 #include <sys/cpu.h>
110 
111 #include <sys/disk.h>
112 
113 #include <machine/limits.h>
114 
115 #include "opt_userconf.h"
116 #ifdef USERCONF
117 #include <sys/userconf.h>
118 #endif
119 
120 #ifdef __i386__
121 #include "opt_splash.h"
122 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
123 #include <dev/splash/splash.h>
124 extern struct splash_progress *splash_progress_state;
125 #endif
126 #endif
127 
128 /*
129  * Autoconfiguration subroutines.
130  */
131 
132 typedef struct pmf_private {
133 	int		pp_nwait;
134 	int		pp_nlock;
135 	lwp_t		*pp_holder;
136 	kmutex_t	pp_mtx;
137 	kcondvar_t	pp_cv;
138 } pmf_private_t;
139 
140 /*
141  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
142  * devices and drivers are found via these tables.
143  */
144 extern struct cfdata cfdata[];
145 extern const short cfroots[];
146 
147 /*
148  * List of all cfdriver structures.  We use this to detect duplicates
149  * when other cfdrivers are loaded.
150  */
151 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
152 extern struct cfdriver * const cfdriver_list_initial[];
153 
154 /*
155  * Initial list of cfattach's.
156  */
157 extern const struct cfattachinit cfattachinit[];
158 
159 /*
160  * List of cfdata tables.  We always have one such list -- the one
161  * built statically when the kernel was configured.
162  */
163 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
164 static struct cftable initcftable;
165 
166 #define	ROOT ((device_t)NULL)
167 
168 struct matchinfo {
169 	cfsubmatch_t fn;
170 	struct	device *parent;
171 	const int *locs;
172 	void	*aux;
173 	struct	cfdata *match;
174 	int	pri;
175 };
176 
177 static char *number(char *, int);
178 static void mapply(struct matchinfo *, cfdata_t);
179 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
180 static void config_devdealloc(device_t);
181 static void config_makeroom(int, struct cfdriver *);
182 static void config_devlink(device_t);
183 static void config_devunlink(device_t);
184 
185 static void pmflock_debug(device_t, const char *, int);
186 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
187 
188 static device_t deviter_next1(deviter_t *);
189 static void deviter_reinit(deviter_t *);
190 
191 struct deferred_config {
192 	TAILQ_ENTRY(deferred_config) dc_queue;
193 	device_t dc_dev;
194 	void (*dc_func)(device_t);
195 };
196 
197 TAILQ_HEAD(deferred_config_head, deferred_config);
198 
199 struct deferred_config_head deferred_config_queue =
200 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
201 struct deferred_config_head interrupt_config_queue =
202 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
203 int interrupt_config_threads = 8;
204 
205 static void config_process_deferred(struct deferred_config_head *, device_t);
206 
207 /* Hooks to finalize configuration once all real devices have been found. */
208 struct finalize_hook {
209 	TAILQ_ENTRY(finalize_hook) f_list;
210 	int (*f_func)(device_t);
211 	device_t f_dev;
212 };
213 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
214 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
215 static int config_finalize_done;
216 
217 /* list of all devices */
218 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
219 kcondvar_t alldevs_cv;
220 kmutex_t alldevs_mtx;
221 static int alldevs_nread = 0;
222 static int alldevs_nwrite = 0;
223 static lwp_t *alldevs_writer = NULL;
224 
225 static int config_pending;		/* semaphore for mountroot */
226 static kmutex_t config_misc_lock;
227 static kcondvar_t config_misc_cv;
228 
229 #define	STREQ(s1, s2)			\
230 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
231 
232 static int config_initialized;		/* config_init() has been called. */
233 
234 static int config_do_twiddle;
235 
236 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
237 
238 struct vnode *
239 opendisk(struct device *dv)
240 {
241 	int bmajor, bminor;
242 	struct vnode *tmpvn;
243 	int error;
244 	dev_t dev;
245 
246 	/*
247 	 * Lookup major number for disk block device.
248 	 */
249 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
250 	if (bmajor == -1)
251 		return NULL;
252 
253 	bminor = minor(device_unit(dv));
254 	/*
255 	 * Fake a temporary vnode for the disk, open it, and read
256 	 * and hash the sectors.
257 	 */
258 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
259 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
260 	if (bdevvp(dev, &tmpvn))
261 		panic("%s: can't alloc vnode for %s", __func__,
262 		    device_xname(dv));
263 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
264 	if (error) {
265 #ifndef DEBUG
266 		/*
267 		 * Ignore errors caused by missing device, partition,
268 		 * or medium.
269 		 */
270 		if (error != ENXIO && error != ENODEV)
271 #endif
272 			printf("%s: can't open dev %s (%d)\n",
273 			    __func__, device_xname(dv), error);
274 		vput(tmpvn);
275 		return NULL;
276 	}
277 
278 	return tmpvn;
279 }
280 
281 int
282 config_handle_wedges(struct device *dv, int par)
283 {
284 	struct dkwedge_list wl;
285 	struct dkwedge_info *wi;
286 	struct vnode *vn;
287 	char diskname[16];
288 	int i, error;
289 
290 	if ((vn = opendisk(dv)) == NULL)
291 		return -1;
292 
293 	wl.dkwl_bufsize = sizeof(*wi) * 16;
294 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
295 
296 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
297 	VOP_CLOSE(vn, FREAD, NOCRED);
298 	vput(vn);
299 	if (error) {
300 #ifdef DEBUG_WEDGE
301 		printf("%s: List wedges returned %d\n",
302 		    device_xname(dv), error);
303 #endif
304 		free(wi, M_TEMP);
305 		return -1;
306 	}
307 
308 #ifdef DEBUG_WEDGE
309 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
310 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
311 #endif
312 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
313 	    par + 'a');
314 
315 	for (i = 0; i < wl.dkwl_ncopied; i++) {
316 #ifdef DEBUG_WEDGE
317 		printf("%s: Looking for %s in %s\n",
318 		    device_xname(dv), diskname, wi[i].dkw_wname);
319 #endif
320 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
321 			break;
322 	}
323 
324 	if (i == wl.dkwl_ncopied) {
325 #ifdef DEBUG_WEDGE
326 		printf("%s: Cannot find wedge with parent %s\n",
327 		    device_xname(dv), diskname);
328 #endif
329 		free(wi, M_TEMP);
330 		return -1;
331 	}
332 
333 #ifdef DEBUG_WEDGE
334 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
335 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
336 		(unsigned long long)wi[i].dkw_offset,
337 		(unsigned long long)wi[i].dkw_size);
338 #endif
339 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
340 	free(wi, M_TEMP);
341 	return 0;
342 }
343 
344 /*
345  * Initialize the autoconfiguration data structures.  Normally this
346  * is done by configure(), but some platforms need to do this very
347  * early (to e.g. initialize the console).
348  */
349 void
350 config_init(void)
351 {
352 	const struct cfattachinit *cfai;
353 	int i, j;
354 
355 	if (config_initialized)
356 		return;
357 
358 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
359 	cv_init(&alldevs_cv, "alldevs");
360 
361 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
362 	cv_init(&config_misc_cv, "cfgmisc");
363 
364 	/* allcfdrivers is statically initialized. */
365 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
366 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
367 			panic("configure: duplicate `%s' drivers",
368 			    cfdriver_list_initial[i]->cd_name);
369 	}
370 
371 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
372 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
373 			if (config_cfattach_attach(cfai->cfai_name,
374 						   cfai->cfai_list[j]) != 0)
375 				panic("configure: duplicate `%s' attachment "
376 				    "of `%s' driver",
377 				    cfai->cfai_list[j]->ca_name,
378 				    cfai->cfai_name);
379 		}
380 	}
381 
382 	initcftable.ct_cfdata = cfdata;
383 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
384 
385 	config_initialized = 1;
386 }
387 
388 void
389 config_deferred(device_t dev)
390 {
391 	config_process_deferred(&deferred_config_queue, dev);
392 	config_process_deferred(&interrupt_config_queue, dev);
393 }
394 
395 static void
396 config_interrupts_thread(void *cookie)
397 {
398 	struct deferred_config *dc;
399 
400 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
401 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
402 		(*dc->dc_func)(dc->dc_dev);
403 		free(dc, M_DEVBUF);
404 		config_pending_decr();
405 	}
406 	kthread_exit(0);
407 }
408 
409 /*
410  * Configure the system's hardware.
411  */
412 void
413 configure(void)
414 {
415 	extern void ssp_init(void);
416 	CPU_INFO_ITERATOR cii;
417 	struct cpu_info *ci;
418 	int i, s;
419 
420 	/* Initialize data structures. */
421 	config_init();
422 	pmf_init();
423 #if NDRVCTL > 0
424 	drvctl_init();
425 #endif
426 
427 #ifdef USERCONF
428 	if (boothowto & RB_USERCONF)
429 		user_config();
430 #endif
431 
432 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
433 		config_do_twiddle = 1;
434 		printf_nolog("Detecting hardware...");
435 	}
436 
437 	/*
438 	 * Do the machine-dependent portion of autoconfiguration.  This
439 	 * sets the configuration machinery here in motion by "finding"
440 	 * the root bus.  When this function returns, we expect interrupts
441 	 * to be enabled.
442 	 */
443 	cpu_configure();
444 
445 	/* Initialize SSP. */
446 	ssp_init();
447 
448 	/*
449 	 * Now that we've found all the hardware, start the real time
450 	 * and statistics clocks.
451 	 */
452 	initclocks();
453 
454 	cold = 0;	/* clocks are running, we're warm now! */
455 	s = splsched();
456 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
457 	splx(s);
458 
459 	/* Boot the secondary processors. */
460 	for (CPU_INFO_FOREACH(cii, ci)) {
461 		uvm_cpu_attach(ci);
462 	}
463 	mp_online = true;
464 #if defined(MULTIPROCESSOR)
465 	cpu_boot_secondary_processors();
466 #endif
467 
468 	/* Setup the runqueues and scheduler. */
469 	runq_init();
470 	sched_init();
471 
472 	/*
473 	 * Create threads to call back and finish configuration for
474 	 * devices that want interrupts enabled.
475 	 */
476 	for (i = 0; i < interrupt_config_threads; i++) {
477 		(void)kthread_create(PRI_NONE, 0, NULL,
478 		    config_interrupts_thread, NULL, NULL, "config");
479 	}
480 
481 	/* Get the threads going and into any sleeps before continuing. */
482 	yield();
483 
484 	/* Lock the kernel on behalf of lwp0. */
485 	KERNEL_LOCK(1, NULL);
486 }
487 
488 /*
489  * Announce device attach/detach to userland listeners.
490  */
491 static void
492 devmon_report_device(device_t dev, bool isattach)
493 {
494 #if NDRVCTL > 0
495 	prop_dictionary_t ev;
496 	const char *parent;
497 	const char *what;
498 	device_t pdev = device_parent(dev);
499 
500 	ev = prop_dictionary_create();
501 	if (ev == NULL)
502 		return;
503 
504 	what = (isattach ? "device-attach" : "device-detach");
505 	parent = (pdev == NULL ? "root" : device_xname(pdev));
506 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
507 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
508 		prop_object_release(ev);
509 		return;
510 	}
511 
512 	devmon_insert(what, ev);
513 #endif
514 }
515 
516 /*
517  * Add a cfdriver to the system.
518  */
519 int
520 config_cfdriver_attach(struct cfdriver *cd)
521 {
522 	struct cfdriver *lcd;
523 
524 	/* Make sure this driver isn't already in the system. */
525 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
526 		if (STREQ(lcd->cd_name, cd->cd_name))
527 			return (EEXIST);
528 	}
529 
530 	LIST_INIT(&cd->cd_attach);
531 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
532 
533 	return (0);
534 }
535 
536 /*
537  * Remove a cfdriver from the system.
538  */
539 int
540 config_cfdriver_detach(struct cfdriver *cd)
541 {
542 	int i;
543 
544 	/* Make sure there are no active instances. */
545 	for (i = 0; i < cd->cd_ndevs; i++) {
546 		if (cd->cd_devs[i] != NULL)
547 			return (EBUSY);
548 	}
549 
550 	/* ...and no attachments loaded. */
551 	if (LIST_EMPTY(&cd->cd_attach) == 0)
552 		return (EBUSY);
553 
554 	LIST_REMOVE(cd, cd_list);
555 
556 	KASSERT(cd->cd_devs == NULL);
557 
558 	return (0);
559 }
560 
561 /*
562  * Look up a cfdriver by name.
563  */
564 struct cfdriver *
565 config_cfdriver_lookup(const char *name)
566 {
567 	struct cfdriver *cd;
568 
569 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
570 		if (STREQ(cd->cd_name, name))
571 			return (cd);
572 	}
573 
574 	return (NULL);
575 }
576 
577 /*
578  * Add a cfattach to the specified driver.
579  */
580 int
581 config_cfattach_attach(const char *driver, struct cfattach *ca)
582 {
583 	struct cfattach *lca;
584 	struct cfdriver *cd;
585 
586 	cd = config_cfdriver_lookup(driver);
587 	if (cd == NULL)
588 		return (ESRCH);
589 
590 	/* Make sure this attachment isn't already on this driver. */
591 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
592 		if (STREQ(lca->ca_name, ca->ca_name))
593 			return (EEXIST);
594 	}
595 
596 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
597 
598 	return (0);
599 }
600 
601 /*
602  * Remove a cfattach from the specified driver.
603  */
604 int
605 config_cfattach_detach(const char *driver, struct cfattach *ca)
606 {
607 	struct cfdriver *cd;
608 	device_t dev;
609 	int i;
610 
611 	cd = config_cfdriver_lookup(driver);
612 	if (cd == NULL)
613 		return (ESRCH);
614 
615 	/* Make sure there are no active instances. */
616 	for (i = 0; i < cd->cd_ndevs; i++) {
617 		if ((dev = cd->cd_devs[i]) == NULL)
618 			continue;
619 		if (dev->dv_cfattach == ca)
620 			return (EBUSY);
621 	}
622 
623 	LIST_REMOVE(ca, ca_list);
624 
625 	return (0);
626 }
627 
628 /*
629  * Look up a cfattach by name.
630  */
631 static struct cfattach *
632 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
633 {
634 	struct cfattach *ca;
635 
636 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
637 		if (STREQ(ca->ca_name, atname))
638 			return (ca);
639 	}
640 
641 	return (NULL);
642 }
643 
644 /*
645  * Look up a cfattach by driver/attachment name.
646  */
647 struct cfattach *
648 config_cfattach_lookup(const char *name, const char *atname)
649 {
650 	struct cfdriver *cd;
651 
652 	cd = config_cfdriver_lookup(name);
653 	if (cd == NULL)
654 		return (NULL);
655 
656 	return (config_cfattach_lookup_cd(cd, atname));
657 }
658 
659 /*
660  * Apply the matching function and choose the best.  This is used
661  * a few times and we want to keep the code small.
662  */
663 static void
664 mapply(struct matchinfo *m, cfdata_t cf)
665 {
666 	int pri;
667 
668 	if (m->fn != NULL) {
669 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
670 	} else {
671 		pri = config_match(m->parent, cf, m->aux);
672 	}
673 	if (pri > m->pri) {
674 		m->match = cf;
675 		m->pri = pri;
676 	}
677 }
678 
679 int
680 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
681 {
682 	const struct cfiattrdata *ci;
683 	const struct cflocdesc *cl;
684 	int nlocs, i;
685 
686 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
687 	KASSERT(ci);
688 	nlocs = ci->ci_loclen;
689 	KASSERT(!nlocs || locs);
690 	for (i = 0; i < nlocs; i++) {
691 		cl = &ci->ci_locdesc[i];
692 		/* !cld_defaultstr means no default value */
693 		if ((!(cl->cld_defaultstr)
694 		     || (cf->cf_loc[i] != cl->cld_default))
695 		    && cf->cf_loc[i] != locs[i])
696 			return (0);
697 	}
698 
699 	return (config_match(parent, cf, aux));
700 }
701 
702 /*
703  * Helper function: check whether the driver supports the interface attribute
704  * and return its descriptor structure.
705  */
706 static const struct cfiattrdata *
707 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
708 {
709 	const struct cfiattrdata * const *cpp;
710 
711 	if (cd->cd_attrs == NULL)
712 		return (0);
713 
714 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
715 		if (STREQ((*cpp)->ci_name, ia)) {
716 			/* Match. */
717 			return (*cpp);
718 		}
719 	}
720 	return (0);
721 }
722 
723 /*
724  * Lookup an interface attribute description by name.
725  * If the driver is given, consider only its supported attributes.
726  */
727 const struct cfiattrdata *
728 cfiattr_lookup(const char *name, const struct cfdriver *cd)
729 {
730 	const struct cfdriver *d;
731 	const struct cfiattrdata *ia;
732 
733 	if (cd)
734 		return (cfdriver_get_iattr(cd, name));
735 
736 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
737 		ia = cfdriver_get_iattr(d, name);
738 		if (ia)
739 			return (ia);
740 	}
741 	return (0);
742 }
743 
744 /*
745  * Determine if `parent' is a potential parent for a device spec based
746  * on `cfp'.
747  */
748 static int
749 cfparent_match(const device_t parent, const struct cfparent *cfp)
750 {
751 	struct cfdriver *pcd;
752 
753 	/* We don't match root nodes here. */
754 	if (cfp == NULL)
755 		return (0);
756 
757 	pcd = parent->dv_cfdriver;
758 	KASSERT(pcd != NULL);
759 
760 	/*
761 	 * First, ensure this parent has the correct interface
762 	 * attribute.
763 	 */
764 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
765 		return (0);
766 
767 	/*
768 	 * If no specific parent device instance was specified (i.e.
769 	 * we're attaching to the attribute only), we're done!
770 	 */
771 	if (cfp->cfp_parent == NULL)
772 		return (1);
773 
774 	/*
775 	 * Check the parent device's name.
776 	 */
777 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
778 		return (0);	/* not the same parent */
779 
780 	/*
781 	 * Make sure the unit number matches.
782 	 */
783 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
784 	    cfp->cfp_unit == parent->dv_unit)
785 		return (1);
786 
787 	/* Unit numbers don't match. */
788 	return (0);
789 }
790 
791 /*
792  * Helper for config_cfdata_attach(): check all devices whether it could be
793  * parent any attachment in the config data table passed, and rescan.
794  */
795 static void
796 rescan_with_cfdata(const struct cfdata *cf)
797 {
798 	device_t d;
799 	const struct cfdata *cf1;
800 	deviter_t di;
801 
802 
803 	/*
804 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
805 	 * the outer loop.
806 	 */
807 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
808 
809 		if (!(d->dv_cfattach->ca_rescan))
810 			continue;
811 
812 		for (cf1 = cf; cf1->cf_name; cf1++) {
813 
814 			if (!cfparent_match(d, cf1->cf_pspec))
815 				continue;
816 
817 			(*d->dv_cfattach->ca_rescan)(d,
818 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
819 		}
820 	}
821 	deviter_release(&di);
822 }
823 
824 /*
825  * Attach a supplemental config data table and rescan potential
826  * parent devices if required.
827  */
828 int
829 config_cfdata_attach(cfdata_t cf, int scannow)
830 {
831 	struct cftable *ct;
832 
833 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
834 	ct->ct_cfdata = cf;
835 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
836 
837 	if (scannow)
838 		rescan_with_cfdata(cf);
839 
840 	return (0);
841 }
842 
843 /*
844  * Helper for config_cfdata_detach: check whether a device is
845  * found through any attachment in the config data table.
846  */
847 static int
848 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
849 {
850 	const struct cfdata *cf1;
851 
852 	for (cf1 = cf; cf1->cf_name; cf1++)
853 		if (d->dv_cfdata == cf1)
854 			return (1);
855 
856 	return (0);
857 }
858 
859 /*
860  * Detach a supplemental config data table. Detach all devices found
861  * through that table (and thus keeping references to it) before.
862  */
863 int
864 config_cfdata_detach(cfdata_t cf)
865 {
866 	device_t d;
867 	int error = 0;
868 	struct cftable *ct;
869 	deviter_t di;
870 
871 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
872 	     d = deviter_next(&di)) {
873 		if (!dev_in_cfdata(d, cf))
874 			continue;
875 		if ((error = config_detach(d, 0)) != 0)
876 			break;
877 	}
878 	deviter_release(&di);
879 	if (error) {
880 		aprint_error_dev(d, "unable to detach instance\n");
881 		return error;
882 	}
883 
884 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
885 		if (ct->ct_cfdata == cf) {
886 			TAILQ_REMOVE(&allcftables, ct, ct_list);
887 			free(ct, M_DEVBUF);
888 			return (0);
889 		}
890 	}
891 
892 	/* not found -- shouldn't happen */
893 	return (EINVAL);
894 }
895 
896 /*
897  * Invoke the "match" routine for a cfdata entry on behalf of
898  * an external caller, usually a "submatch" routine.
899  */
900 int
901 config_match(device_t parent, cfdata_t cf, void *aux)
902 {
903 	struct cfattach *ca;
904 
905 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
906 	if (ca == NULL) {
907 		/* No attachment for this entry, oh well. */
908 		return (0);
909 	}
910 
911 	return ((*ca->ca_match)(parent, cf, aux));
912 }
913 
914 /*
915  * Iterate over all potential children of some device, calling the given
916  * function (default being the child's match function) for each one.
917  * Nonzero returns are matches; the highest value returned is considered
918  * the best match.  Return the `found child' if we got a match, or NULL
919  * otherwise.  The `aux' pointer is simply passed on through.
920  *
921  * Note that this function is designed so that it can be used to apply
922  * an arbitrary function to all potential children (its return value
923  * can be ignored).
924  */
925 cfdata_t
926 config_search_loc(cfsubmatch_t fn, device_t parent,
927 		  const char *ifattr, const int *locs, void *aux)
928 {
929 	struct cftable *ct;
930 	cfdata_t cf;
931 	struct matchinfo m;
932 
933 	KASSERT(config_initialized);
934 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
935 
936 	m.fn = fn;
937 	m.parent = parent;
938 	m.locs = locs;
939 	m.aux = aux;
940 	m.match = NULL;
941 	m.pri = 0;
942 
943 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
944 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
945 
946 			/* We don't match root nodes here. */
947 			if (!cf->cf_pspec)
948 				continue;
949 
950 			/*
951 			 * Skip cf if no longer eligible, otherwise scan
952 			 * through parents for one matching `parent', and
953 			 * try match function.
954 			 */
955 			if (cf->cf_fstate == FSTATE_FOUND)
956 				continue;
957 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
958 			    cf->cf_fstate == FSTATE_DSTAR)
959 				continue;
960 
961 			/*
962 			 * If an interface attribute was specified,
963 			 * consider only children which attach to
964 			 * that attribute.
965 			 */
966 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
967 				continue;
968 
969 			if (cfparent_match(parent, cf->cf_pspec))
970 				mapply(&m, cf);
971 		}
972 	}
973 	return (m.match);
974 }
975 
976 cfdata_t
977 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
978     void *aux)
979 {
980 
981 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
982 }
983 
984 /*
985  * Find the given root device.
986  * This is much like config_search, but there is no parent.
987  * Don't bother with multiple cfdata tables; the root node
988  * must always be in the initial table.
989  */
990 cfdata_t
991 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
992 {
993 	cfdata_t cf;
994 	const short *p;
995 	struct matchinfo m;
996 
997 	m.fn = fn;
998 	m.parent = ROOT;
999 	m.aux = aux;
1000 	m.match = NULL;
1001 	m.pri = 0;
1002 	m.locs = 0;
1003 	/*
1004 	 * Look at root entries for matching name.  We do not bother
1005 	 * with found-state here since only one root should ever be
1006 	 * searched (and it must be done first).
1007 	 */
1008 	for (p = cfroots; *p >= 0; p++) {
1009 		cf = &cfdata[*p];
1010 		if (strcmp(cf->cf_name, rootname) == 0)
1011 			mapply(&m, cf);
1012 	}
1013 	return (m.match);
1014 }
1015 
1016 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1017 
1018 /*
1019  * The given `aux' argument describes a device that has been found
1020  * on the given parent, but not necessarily configured.  Locate the
1021  * configuration data for that device (using the submatch function
1022  * provided, or using candidates' cd_match configuration driver
1023  * functions) and attach it, and return true.  If the device was
1024  * not configured, call the given `print' function and return 0.
1025  */
1026 device_t
1027 config_found_sm_loc(device_t parent,
1028 		const char *ifattr, const int *locs, void *aux,
1029 		cfprint_t print, cfsubmatch_t submatch)
1030 {
1031 	cfdata_t cf;
1032 
1033 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1034 	if (splash_progress_state)
1035 		splash_progress_update(splash_progress_state);
1036 #endif
1037 
1038 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1039 		return(config_attach_loc(parent, cf, locs, aux, print));
1040 	if (print) {
1041 		if (config_do_twiddle)
1042 			twiddle();
1043 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1044 	}
1045 
1046 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1047 	if (splash_progress_state)
1048 		splash_progress_update(splash_progress_state);
1049 #endif
1050 
1051 	return (NULL);
1052 }
1053 
1054 device_t
1055 config_found_ia(device_t parent, const char *ifattr, void *aux,
1056     cfprint_t print)
1057 {
1058 
1059 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1060 }
1061 
1062 device_t
1063 config_found(device_t parent, void *aux, cfprint_t print)
1064 {
1065 
1066 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1067 }
1068 
1069 /*
1070  * As above, but for root devices.
1071  */
1072 device_t
1073 config_rootfound(const char *rootname, void *aux)
1074 {
1075 	cfdata_t cf;
1076 
1077 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1078 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1079 	aprint_error("root device %s not configured\n", rootname);
1080 	return (NULL);
1081 }
1082 
1083 /* just like sprintf(buf, "%d") except that it works from the end */
1084 static char *
1085 number(char *ep, int n)
1086 {
1087 
1088 	*--ep = 0;
1089 	while (n >= 10) {
1090 		*--ep = (n % 10) + '0';
1091 		n /= 10;
1092 	}
1093 	*--ep = n + '0';
1094 	return (ep);
1095 }
1096 
1097 /*
1098  * Expand the size of the cd_devs array if necessary.
1099  */
1100 static void
1101 config_makeroom(int n, struct cfdriver *cd)
1102 {
1103 	int old, new;
1104 	device_t *nsp;
1105 
1106 	if (n < cd->cd_ndevs)
1107 		return;
1108 
1109 	/*
1110 	 * Need to expand the array.
1111 	 */
1112 	old = cd->cd_ndevs;
1113 	if (old == 0)
1114 		new = 4;
1115 	else
1116 		new = old * 2;
1117 	while (new <= n)
1118 		new *= 2;
1119 	cd->cd_ndevs = new;
1120 	nsp = malloc(new * sizeof(device_t), M_DEVBUF,
1121 	    cold ? M_NOWAIT : M_WAITOK);
1122 	if (nsp == NULL)
1123 		panic("config_attach: %sing dev array",
1124 		    old != 0 ? "expand" : "creat");
1125 	memset(nsp + old, 0, (new - old) * sizeof(device_t));
1126 	if (old != 0) {
1127 		memcpy(nsp, cd->cd_devs, old * sizeof(device_t));
1128 		free(cd->cd_devs, M_DEVBUF);
1129 	}
1130 	cd->cd_devs = nsp;
1131 }
1132 
1133 static void
1134 config_devlink(device_t dev)
1135 {
1136 	struct cfdriver *cd = dev->dv_cfdriver;
1137 
1138 	/* put this device in the devices array */
1139 	config_makeroom(dev->dv_unit, cd);
1140 	if (cd->cd_devs[dev->dv_unit])
1141 		panic("config_attach: duplicate %s", device_xname(dev));
1142 	cd->cd_devs[dev->dv_unit] = dev;
1143 
1144 	/* It is safe to add a device to the tail of the list while
1145 	 * readers are in the list, but not while a writer is in
1146 	 * the list.  Wait for any writer to complete.
1147 	 */
1148 	mutex_enter(&alldevs_mtx);
1149 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1150 		cv_wait(&alldevs_cv, &alldevs_mtx);
1151 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
1152 	cv_signal(&alldevs_cv);
1153 	mutex_exit(&alldevs_mtx);
1154 }
1155 
1156 static void
1157 config_devunlink(device_t dev)
1158 {
1159 	struct cfdriver *cd = dev->dv_cfdriver;
1160 	int i;
1161 
1162 	/* Unlink from device list. */
1163 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1164 
1165 	/* Remove from cfdriver's array. */
1166 	cd->cd_devs[dev->dv_unit] = NULL;
1167 
1168 	/*
1169 	 * If the device now has no units in use, deallocate its softc array.
1170 	 */
1171 	for (i = 0; i < cd->cd_ndevs; i++)
1172 		if (cd->cd_devs[i] != NULL)
1173 			break;
1174 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
1175 		free(cd->cd_devs, M_DEVBUF);
1176 		cd->cd_devs = NULL;
1177 		cd->cd_ndevs = 0;
1178 	}
1179 }
1180 
1181 static device_t
1182 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1183 {
1184 	struct cfdriver *cd;
1185 	struct cfattach *ca;
1186 	size_t lname, lunit;
1187 	const char *xunit;
1188 	int myunit;
1189 	char num[10];
1190 	device_t dev;
1191 	void *dev_private;
1192 	const struct cfiattrdata *ia;
1193 
1194 	cd = config_cfdriver_lookup(cf->cf_name);
1195 	if (cd == NULL)
1196 		return (NULL);
1197 
1198 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1199 	if (ca == NULL)
1200 		return (NULL);
1201 
1202 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1203 	    ca->ca_devsize < sizeof(struct device))
1204 		panic("config_devalloc: %s", cf->cf_atname);
1205 
1206 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1207 	if (cf->cf_fstate == FSTATE_STAR) {
1208 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1209 			if (cd->cd_devs[myunit] == NULL)
1210 				break;
1211 		/*
1212 		 * myunit is now the unit of the first NULL device pointer,
1213 		 * or max(cd->cd_ndevs,cf->cf_unit).
1214 		 */
1215 	} else {
1216 		myunit = cf->cf_unit;
1217 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1218 			return (NULL);
1219 	}
1220 #else
1221 	myunit = cf->cf_unit;
1222 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1223 
1224 	/* compute length of name and decimal expansion of unit number */
1225 	lname = strlen(cd->cd_name);
1226 	xunit = number(&num[sizeof(num)], myunit);
1227 	lunit = &num[sizeof(num)] - xunit;
1228 	if (lname + lunit > sizeof(dev->dv_xname))
1229 		panic("config_devalloc: device name too long");
1230 
1231 	/* get memory for all device vars */
1232 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1233 	if (ca->ca_devsize > 0) {
1234 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
1235 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1236 		if (dev_private == NULL)
1237 			panic("config_devalloc: memory allocation for device softc failed");
1238 	} else {
1239 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1240 		dev_private = NULL;
1241 	}
1242 
1243 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1244 		dev = malloc(sizeof(struct device), M_DEVBUF,
1245 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1246 	} else {
1247 		dev = dev_private;
1248 	}
1249 	if (dev == NULL)
1250 		panic("config_devalloc: memory allocation for device_t failed");
1251 
1252 	dev->dv_class = cd->cd_class;
1253 	dev->dv_cfdata = cf;
1254 	dev->dv_cfdriver = cd;
1255 	dev->dv_cfattach = ca;
1256 	dev->dv_unit = myunit;
1257 	dev->dv_activity_count = 0;
1258 	dev->dv_activity_handlers = NULL;
1259 	dev->dv_private = dev_private;
1260 	memcpy(dev->dv_xname, cd->cd_name, lname);
1261 	memcpy(dev->dv_xname + lname, xunit, lunit);
1262 	dev->dv_parent = parent;
1263 	if (parent != NULL)
1264 		dev->dv_depth = parent->dv_depth + 1;
1265 	else
1266 		dev->dv_depth = 0;
1267 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
1268 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
1269 	if (locs) {
1270 		KASSERT(parent); /* no locators at root */
1271 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1272 				    parent->dv_cfdriver);
1273 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
1274 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1275 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
1276 	}
1277 	dev->dv_properties = prop_dictionary_create();
1278 	KASSERT(dev->dv_properties != NULL);
1279 
1280 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1281 	    "device-driver", dev->dv_cfdriver->cd_name);
1282 	prop_dictionary_set_uint16(dev->dv_properties,
1283 	    "device-unit", dev->dv_unit);
1284 
1285 	return (dev);
1286 }
1287 
1288 static void
1289 config_devdealloc(device_t dev)
1290 {
1291 
1292 	KASSERT(dev->dv_properties != NULL);
1293 	prop_object_release(dev->dv_properties);
1294 
1295 	if (dev->dv_activity_handlers)
1296 		panic("config_devdealloc with registered handlers");
1297 
1298 	if (dev->dv_locators)
1299 		free(dev->dv_locators, M_DEVBUF);
1300 
1301 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
1302 		free(dev->dv_private, M_DEVBUF);
1303 
1304 	free(dev, M_DEVBUF);
1305 }
1306 
1307 /*
1308  * Attach a found device.
1309  */
1310 device_t
1311 config_attach_loc(device_t parent, cfdata_t cf,
1312 	const int *locs, void *aux, cfprint_t print)
1313 {
1314 	device_t dev;
1315 	struct cftable *ct;
1316 	const char *drvname;
1317 
1318 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1319 	if (splash_progress_state)
1320 		splash_progress_update(splash_progress_state);
1321 #endif
1322 
1323 	dev = config_devalloc(parent, cf, locs);
1324 	if (!dev)
1325 		panic("config_attach: allocation of device softc failed");
1326 
1327 	/* XXX redundant - see below? */
1328 	if (cf->cf_fstate != FSTATE_STAR) {
1329 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1330 		cf->cf_fstate = FSTATE_FOUND;
1331 	}
1332 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1333 	  else
1334 		cf->cf_unit++;
1335 #endif
1336 
1337 	config_devlink(dev);
1338 
1339 	if (config_do_twiddle)
1340 		twiddle();
1341 	else
1342 		aprint_naive("Found ");
1343 	/*
1344 	 * We want the next two printfs for normal, verbose, and quiet,
1345 	 * but not silent (in which case, we're twiddling, instead).
1346 	 */
1347 	if (parent == ROOT) {
1348 		aprint_naive("%s (root)", device_xname(dev));
1349 		aprint_normal("%s (root)", device_xname(dev));
1350 	} else {
1351 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1352 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1353 		if (print)
1354 			(void) (*print)(aux, NULL);
1355 	}
1356 
1357 	/*
1358 	 * Before attaching, clobber any unfound devices that are
1359 	 * otherwise identical.
1360 	 * XXX code above is redundant?
1361 	 */
1362 	drvname = dev->dv_cfdriver->cd_name;
1363 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1364 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1365 			if (STREQ(cf->cf_name, drvname) &&
1366 			    cf->cf_unit == dev->dv_unit) {
1367 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1368 					cf->cf_fstate = FSTATE_FOUND;
1369 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1370 				/*
1371 				 * Bump the unit number on all starred cfdata
1372 				 * entries for this device.
1373 				 */
1374 				if (cf->cf_fstate == FSTATE_STAR)
1375 					cf->cf_unit++;
1376 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1377 			}
1378 		}
1379 	}
1380 #ifdef __HAVE_DEVICE_REGISTER
1381 	device_register(dev, aux);
1382 #endif
1383 
1384 	/* Let userland know */
1385 	devmon_report_device(dev, true);
1386 
1387 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1388 	if (splash_progress_state)
1389 		splash_progress_update(splash_progress_state);
1390 #endif
1391 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1392 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1393 	if (splash_progress_state)
1394 		splash_progress_update(splash_progress_state);
1395 #endif
1396 
1397 	if (!device_pmf_is_registered(dev))
1398 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1399 
1400 	config_process_deferred(&deferred_config_queue, dev);
1401 	return (dev);
1402 }
1403 
1404 device_t
1405 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1406 {
1407 
1408 	return (config_attach_loc(parent, cf, NULL, aux, print));
1409 }
1410 
1411 /*
1412  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1413  * way are silently inserted into the device tree, and their children
1414  * attached.
1415  *
1416  * Note that because pseudo-devices are attached silently, any information
1417  * the attach routine wishes to print should be prefixed with the device
1418  * name by the attach routine.
1419  */
1420 device_t
1421 config_attach_pseudo(cfdata_t cf)
1422 {
1423 	device_t dev;
1424 
1425 	dev = config_devalloc(ROOT, cf, NULL);
1426 	if (!dev)
1427 		return (NULL);
1428 
1429 	/* XXX mark busy in cfdata */
1430 
1431 	config_devlink(dev);
1432 
1433 #if 0	/* XXXJRT not yet */
1434 #ifdef __HAVE_DEVICE_REGISTER
1435 	device_register(dev, NULL);	/* like a root node */
1436 #endif
1437 #endif
1438 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1439 	config_process_deferred(&deferred_config_queue, dev);
1440 	return (dev);
1441 }
1442 
1443 /*
1444  * Detach a device.  Optionally forced (e.g. because of hardware
1445  * removal) and quiet.  Returns zero if successful, non-zero
1446  * (an error code) otherwise.
1447  *
1448  * Note that this code wants to be run from a process context, so
1449  * that the detach can sleep to allow processes which have a device
1450  * open to run and unwind their stacks.
1451  */
1452 int
1453 config_detach(device_t dev, int flags)
1454 {
1455 	struct cftable *ct;
1456 	cfdata_t cf;
1457 	const struct cfattach *ca;
1458 	struct cfdriver *cd;
1459 #ifdef DIAGNOSTIC
1460 	device_t d;
1461 #endif
1462 	int rv = 0;
1463 
1464 #ifdef DIAGNOSTIC
1465 	if (dev->dv_cfdata != NULL &&
1466 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
1467 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
1468 		panic("config_detach: bad device fstate");
1469 #endif
1470 	cd = dev->dv_cfdriver;
1471 	KASSERT(cd != NULL);
1472 
1473 	ca = dev->dv_cfattach;
1474 	KASSERT(ca != NULL);
1475 
1476 	KASSERT(curlwp != NULL);
1477 	mutex_enter(&alldevs_mtx);
1478 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1479 		;
1480 	else while (alldevs_nread != 0 ||
1481 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1482 		cv_wait(&alldevs_cv, &alldevs_mtx);
1483 	if (alldevs_nwrite++ == 0)
1484 		alldevs_writer = curlwp;
1485 	mutex_exit(&alldevs_mtx);
1486 
1487 	/*
1488 	 * Ensure the device is deactivated.  If the device doesn't
1489 	 * have an activation entry point, we allow DVF_ACTIVE to
1490 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
1491 	 * device is busy, and the detach fails.
1492 	 */
1493 	if (ca->ca_activate != NULL)
1494 		rv = config_deactivate(dev);
1495 
1496 	/*
1497 	 * Try to detach the device.  If that's not possible, then
1498 	 * we either panic() (for the forced but failed case), or
1499 	 * return an error.
1500 	 */
1501 	if (rv == 0) {
1502 		if (ca->ca_detach != NULL)
1503 			rv = (*ca->ca_detach)(dev, flags);
1504 		else
1505 			rv = EOPNOTSUPP;
1506 	}
1507 	if (rv != 0) {
1508 		if ((flags & DETACH_FORCE) == 0)
1509 			goto out;
1510 		else
1511 			panic("config_detach: forced detach of %s failed (%d)",
1512 			    device_xname(dev), rv);
1513 	}
1514 
1515 	/*
1516 	 * The device has now been successfully detached.
1517 	 */
1518 
1519 	/* Let userland know */
1520 	devmon_report_device(dev, false);
1521 
1522 #ifdef DIAGNOSTIC
1523 	/*
1524 	 * Sanity: If you're successfully detached, you should have no
1525 	 * children.  (Note that because children must be attached
1526 	 * after parents, we only need to search the latter part of
1527 	 * the list.)
1528 	 */
1529 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1530 	    d = TAILQ_NEXT(d, dv_list)) {
1531 		if (d->dv_parent == dev) {
1532 			printf("config_detach: detached device %s"
1533 			    " has children %s\n", device_xname(dev), device_xname(d));
1534 			panic("config_detach");
1535 		}
1536 	}
1537 #endif
1538 
1539 	/* notify the parent that the child is gone */
1540 	if (dev->dv_parent) {
1541 		device_t p = dev->dv_parent;
1542 		if (p->dv_cfattach->ca_childdetached)
1543 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1544 	}
1545 
1546 	/*
1547 	 * Mark cfdata to show that the unit can be reused, if possible.
1548 	 */
1549 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1550 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1551 			if (STREQ(cf->cf_name, cd->cd_name)) {
1552 				if (cf->cf_fstate == FSTATE_FOUND &&
1553 				    cf->cf_unit == dev->dv_unit)
1554 					cf->cf_fstate = FSTATE_NOTFOUND;
1555 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1556 				/*
1557 				 * Note that we can only re-use a starred
1558 				 * unit number if the unit being detached
1559 				 * had the last assigned unit number.
1560 				 */
1561 				if (cf->cf_fstate == FSTATE_STAR &&
1562 				    cf->cf_unit == dev->dv_unit + 1)
1563 					cf->cf_unit--;
1564 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1565 			}
1566 		}
1567 	}
1568 
1569 	config_devunlink(dev);
1570 
1571 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1572 		aprint_normal_dev(dev, "detached\n");
1573 
1574 	config_devdealloc(dev);
1575 
1576 out:
1577 	mutex_enter(&alldevs_mtx);
1578 	if (--alldevs_nwrite == 0)
1579 		alldevs_writer = NULL;
1580 	cv_signal(&alldevs_cv);
1581 	mutex_exit(&alldevs_mtx);
1582 	return rv;
1583 }
1584 
1585 int
1586 config_detach_children(device_t parent, int flags)
1587 {
1588 	device_t dv;
1589 	deviter_t di;
1590 	int error = 0;
1591 
1592 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1593 	     dv = deviter_next(&di)) {
1594 		if (device_parent(dv) != parent)
1595 			continue;
1596 		if ((error = config_detach(dv, flags)) != 0)
1597 			break;
1598 	}
1599 	deviter_release(&di);
1600 	return error;
1601 }
1602 
1603 int
1604 config_activate(device_t dev)
1605 {
1606 	const struct cfattach *ca = dev->dv_cfattach;
1607 	int rv = 0, oflags = dev->dv_flags;
1608 
1609 	if (ca->ca_activate == NULL)
1610 		return (EOPNOTSUPP);
1611 
1612 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1613 		dev->dv_flags |= DVF_ACTIVE;
1614 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1615 		if (rv)
1616 			dev->dv_flags = oflags;
1617 	}
1618 	return (rv);
1619 }
1620 
1621 int
1622 config_deactivate(device_t dev)
1623 {
1624 	const struct cfattach *ca = dev->dv_cfattach;
1625 	int rv = 0, oflags = dev->dv_flags;
1626 
1627 	if (ca->ca_activate == NULL)
1628 		return (EOPNOTSUPP);
1629 
1630 	if (dev->dv_flags & DVF_ACTIVE) {
1631 		dev->dv_flags &= ~DVF_ACTIVE;
1632 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1633 		if (rv)
1634 			dev->dv_flags = oflags;
1635 	}
1636 	return (rv);
1637 }
1638 
1639 /*
1640  * Defer the configuration of the specified device until all
1641  * of its parent's devices have been attached.
1642  */
1643 void
1644 config_defer(device_t dev, void (*func)(device_t))
1645 {
1646 	struct deferred_config *dc;
1647 
1648 	if (dev->dv_parent == NULL)
1649 		panic("config_defer: can't defer config of a root device");
1650 
1651 #ifdef DIAGNOSTIC
1652 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1653 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1654 		if (dc->dc_dev == dev)
1655 			panic("config_defer: deferred twice");
1656 	}
1657 #endif
1658 
1659 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1660 	if (dc == NULL)
1661 		panic("config_defer: unable to allocate callback");
1662 
1663 	dc->dc_dev = dev;
1664 	dc->dc_func = func;
1665 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1666 	config_pending_incr();
1667 }
1668 
1669 /*
1670  * Defer some autoconfiguration for a device until after interrupts
1671  * are enabled.
1672  */
1673 void
1674 config_interrupts(device_t dev, void (*func)(device_t))
1675 {
1676 	struct deferred_config *dc;
1677 
1678 	/*
1679 	 * If interrupts are enabled, callback now.
1680 	 */
1681 	if (cold == 0) {
1682 		(*func)(dev);
1683 		return;
1684 	}
1685 
1686 #ifdef DIAGNOSTIC
1687 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1688 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1689 		if (dc->dc_dev == dev)
1690 			panic("config_interrupts: deferred twice");
1691 	}
1692 #endif
1693 
1694 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1695 	if (dc == NULL)
1696 		panic("config_interrupts: unable to allocate callback");
1697 
1698 	dc->dc_dev = dev;
1699 	dc->dc_func = func;
1700 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1701 	config_pending_incr();
1702 }
1703 
1704 /*
1705  * Process a deferred configuration queue.
1706  */
1707 static void
1708 config_process_deferred(struct deferred_config_head *queue,
1709     device_t parent)
1710 {
1711 	struct deferred_config *dc, *ndc;
1712 
1713 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1714 		ndc = TAILQ_NEXT(dc, dc_queue);
1715 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1716 			TAILQ_REMOVE(queue, dc, dc_queue);
1717 			(*dc->dc_func)(dc->dc_dev);
1718 			free(dc, M_DEVBUF);
1719 			config_pending_decr();
1720 		}
1721 	}
1722 }
1723 
1724 /*
1725  * Manipulate the config_pending semaphore.
1726  */
1727 void
1728 config_pending_incr(void)
1729 {
1730 
1731 	mutex_enter(&config_misc_lock);
1732 	config_pending++;
1733 	mutex_exit(&config_misc_lock);
1734 }
1735 
1736 void
1737 config_pending_decr(void)
1738 {
1739 
1740 #ifdef DIAGNOSTIC
1741 	if (config_pending == 0)
1742 		panic("config_pending_decr: config_pending == 0");
1743 #endif
1744 	mutex_enter(&config_misc_lock);
1745 	config_pending--;
1746 	if (config_pending == 0)
1747 		cv_broadcast(&config_misc_cv);
1748 	mutex_exit(&config_misc_lock);
1749 }
1750 
1751 /*
1752  * Register a "finalization" routine.  Finalization routines are
1753  * called iteratively once all real devices have been found during
1754  * autoconfiguration, for as long as any one finalizer has done
1755  * any work.
1756  */
1757 int
1758 config_finalize_register(device_t dev, int (*fn)(device_t))
1759 {
1760 	struct finalize_hook *f;
1761 
1762 	/*
1763 	 * If finalization has already been done, invoke the
1764 	 * callback function now.
1765 	 */
1766 	if (config_finalize_done) {
1767 		while ((*fn)(dev) != 0)
1768 			/* loop */ ;
1769 	}
1770 
1771 	/* Ensure this isn't already on the list. */
1772 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1773 		if (f->f_func == fn && f->f_dev == dev)
1774 			return (EEXIST);
1775 	}
1776 
1777 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
1778 	f->f_func = fn;
1779 	f->f_dev = dev;
1780 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1781 
1782 	return (0);
1783 }
1784 
1785 void
1786 config_finalize(void)
1787 {
1788 	struct finalize_hook *f;
1789 	struct pdevinit *pdev;
1790 	extern struct pdevinit pdevinit[];
1791 	int errcnt, rv;
1792 
1793 	/*
1794 	 * Now that device driver threads have been created, wait for
1795 	 * them to finish any deferred autoconfiguration.
1796 	 */
1797 	mutex_enter(&config_misc_lock);
1798 	while (config_pending != 0)
1799 		cv_wait(&config_misc_cv, &config_misc_lock);
1800 	mutex_exit(&config_misc_lock);
1801 
1802 	/* Attach pseudo-devices. */
1803 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1804 		(*pdev->pdev_attach)(pdev->pdev_count);
1805 
1806 	/* Run the hooks until none of them does any work. */
1807 	do {
1808 		rv = 0;
1809 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1810 			rv |= (*f->f_func)(f->f_dev);
1811 	} while (rv != 0);
1812 
1813 	config_finalize_done = 1;
1814 
1815 	/* Now free all the hooks. */
1816 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1817 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1818 		free(f, M_TEMP);
1819 	}
1820 
1821 	errcnt = aprint_get_error_count();
1822 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1823 	    (boothowto & AB_VERBOSE) == 0) {
1824 		if (config_do_twiddle) {
1825 			config_do_twiddle = 0;
1826 			printf_nolog("done.\n");
1827 		}
1828 		if (errcnt != 0) {
1829 			printf("WARNING: %d error%s while detecting hardware; "
1830 			    "check system log.\n", errcnt,
1831 			    errcnt == 1 ? "" : "s");
1832 		}
1833 	}
1834 }
1835 
1836 /*
1837  * device_lookup:
1838  *
1839  *	Look up a device instance for a given driver.
1840  */
1841 device_t
1842 device_lookup(cfdriver_t cd, int unit)
1843 {
1844 
1845 	if (unit < 0 || unit >= cd->cd_ndevs)
1846 		return (NULL);
1847 
1848 	return (cd->cd_devs[unit]);
1849 }
1850 
1851 /*
1852  * device_lookup:
1853  *
1854  *	Look up a device instance for a given driver.
1855  */
1856 void *
1857 device_lookup_private(cfdriver_t cd, int unit)
1858 {
1859 	device_t dv;
1860 
1861 	if (unit < 0 || unit >= cd->cd_ndevs)
1862 		return NULL;
1863 
1864 	if ((dv = cd->cd_devs[unit]) == NULL)
1865 		return NULL;
1866 
1867 	return dv->dv_private;
1868 }
1869 
1870 /*
1871  * Accessor functions for the device_t type.
1872  */
1873 devclass_t
1874 device_class(device_t dev)
1875 {
1876 
1877 	return (dev->dv_class);
1878 }
1879 
1880 cfdata_t
1881 device_cfdata(device_t dev)
1882 {
1883 
1884 	return (dev->dv_cfdata);
1885 }
1886 
1887 cfdriver_t
1888 device_cfdriver(device_t dev)
1889 {
1890 
1891 	return (dev->dv_cfdriver);
1892 }
1893 
1894 cfattach_t
1895 device_cfattach(device_t dev)
1896 {
1897 
1898 	return (dev->dv_cfattach);
1899 }
1900 
1901 int
1902 device_unit(device_t dev)
1903 {
1904 
1905 	return (dev->dv_unit);
1906 }
1907 
1908 const char *
1909 device_xname(device_t dev)
1910 {
1911 
1912 	return (dev->dv_xname);
1913 }
1914 
1915 device_t
1916 device_parent(device_t dev)
1917 {
1918 
1919 	return (dev->dv_parent);
1920 }
1921 
1922 bool
1923 device_is_active(device_t dev)
1924 {
1925 	int active_flags;
1926 
1927 	active_flags = DVF_ACTIVE;
1928 	active_flags |= DVF_CLASS_SUSPENDED;
1929 	active_flags |= DVF_DRIVER_SUSPENDED;
1930 	active_flags |= DVF_BUS_SUSPENDED;
1931 
1932 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1933 }
1934 
1935 bool
1936 device_is_enabled(device_t dev)
1937 {
1938 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1939 }
1940 
1941 bool
1942 device_has_power(device_t dev)
1943 {
1944 	int active_flags;
1945 
1946 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1947 
1948 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1949 }
1950 
1951 int
1952 device_locator(device_t dev, u_int locnum)
1953 {
1954 
1955 	KASSERT(dev->dv_locators != NULL);
1956 	return (dev->dv_locators[locnum]);
1957 }
1958 
1959 void *
1960 device_private(device_t dev)
1961 {
1962 
1963 	/*
1964 	 * The reason why device_private(NULL) is allowed is to simplify the
1965 	 * work of a lot of userspace request handlers (i.e., c/bdev
1966 	 * handlers) which grab cfdriver_t->cd_units[n].
1967 	 * It avoids having them test for it to be NULL and only then calling
1968 	 * device_private.
1969 	 */
1970 	return dev == NULL ? NULL : dev->dv_private;
1971 }
1972 
1973 prop_dictionary_t
1974 device_properties(device_t dev)
1975 {
1976 
1977 	return (dev->dv_properties);
1978 }
1979 
1980 /*
1981  * device_is_a:
1982  *
1983  *	Returns true if the device is an instance of the specified
1984  *	driver.
1985  */
1986 bool
1987 device_is_a(device_t dev, const char *dname)
1988 {
1989 
1990 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1991 }
1992 
1993 /*
1994  * device_find_by_xname:
1995  *
1996  *	Returns the device of the given name or NULL if it doesn't exist.
1997  */
1998 device_t
1999 device_find_by_xname(const char *name)
2000 {
2001 	device_t dv;
2002 	deviter_t di;
2003 
2004 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2005 		if (strcmp(device_xname(dv), name) == 0)
2006 			break;
2007 	}
2008 	deviter_release(&di);
2009 
2010 	return dv;
2011 }
2012 
2013 /*
2014  * device_find_by_driver_unit:
2015  *
2016  *	Returns the device of the given driver name and unit or
2017  *	NULL if it doesn't exist.
2018  */
2019 device_t
2020 device_find_by_driver_unit(const char *name, int unit)
2021 {
2022 	struct cfdriver *cd;
2023 
2024 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2025 		return NULL;
2026 	return device_lookup(cd, unit);
2027 }
2028 
2029 /*
2030  * Power management related functions.
2031  */
2032 
2033 bool
2034 device_pmf_is_registered(device_t dev)
2035 {
2036 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2037 }
2038 
2039 bool
2040 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2041 {
2042 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2043 		return true;
2044 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2045 		return false;
2046 	if (*dev->dv_driver_suspend != NULL &&
2047 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2048 		return false;
2049 
2050 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2051 	return true;
2052 }
2053 
2054 bool
2055 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2056 {
2057 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2058 		return true;
2059 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2060 		return false;
2061 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2062 		return false;
2063 	if (*dev->dv_driver_resume != NULL &&
2064 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2065 		return false;
2066 
2067 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2068 	return true;
2069 }
2070 
2071 bool
2072 device_pmf_driver_shutdown(device_t dev, int how)
2073 {
2074 
2075 	if (*dev->dv_driver_shutdown != NULL &&
2076 	    !(*dev->dv_driver_shutdown)(dev, how))
2077 		return false;
2078 	return true;
2079 }
2080 
2081 bool
2082 device_pmf_driver_register(device_t dev,
2083     bool (*suspend)(device_t PMF_FN_PROTO),
2084     bool (*resume)(device_t PMF_FN_PROTO),
2085     bool (*shutdown)(device_t, int))
2086 {
2087 	pmf_private_t *pp;
2088 
2089 	if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
2090 		return false;
2091 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2092 	cv_init(&pp->pp_cv, "pmfsusp");
2093 	dev->dv_pmf_private = pp;
2094 
2095 	dev->dv_driver_suspend = suspend;
2096 	dev->dv_driver_resume = resume;
2097 	dev->dv_driver_shutdown = shutdown;
2098 	dev->dv_flags |= DVF_POWER_HANDLERS;
2099 	return true;
2100 }
2101 
2102 static const char *
2103 curlwp_name(void)
2104 {
2105 	if (curlwp->l_name != NULL)
2106 		return curlwp->l_name;
2107 	else
2108 		return curlwp->l_proc->p_comm;
2109 }
2110 
2111 void
2112 device_pmf_driver_deregister(device_t dev)
2113 {
2114 	pmf_private_t *pp = dev->dv_pmf_private;
2115 
2116 	/* XXX avoid crash in case we are not initialized */
2117 	if (!pp)
2118 		return;
2119 
2120 	dev->dv_driver_suspend = NULL;
2121 	dev->dv_driver_resume = NULL;
2122 
2123 	mutex_enter(&pp->pp_mtx);
2124 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2125 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2126 		/* Wake a thread that waits for the lock.  That
2127 		 * thread will fail to acquire the lock, and then
2128 		 * it will wake the next thread that waits for the
2129 		 * lock, or else it will wake us.
2130 		 */
2131 		cv_signal(&pp->pp_cv);
2132 		pmflock_debug(dev, __func__, __LINE__);
2133 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2134 		pmflock_debug(dev, __func__, __LINE__);
2135 	}
2136 	dev->dv_pmf_private = NULL;
2137 	mutex_exit(&pp->pp_mtx);
2138 
2139 	cv_destroy(&pp->pp_cv);
2140 	mutex_destroy(&pp->pp_mtx);
2141 	free(pp, M_PMFPRIV);
2142 }
2143 
2144 bool
2145 device_pmf_driver_child_register(device_t dev)
2146 {
2147 	device_t parent = device_parent(dev);
2148 
2149 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2150 		return true;
2151 	return (*parent->dv_driver_child_register)(dev);
2152 }
2153 
2154 void
2155 device_pmf_driver_set_child_register(device_t dev,
2156     bool (*child_register)(device_t))
2157 {
2158 	dev->dv_driver_child_register = child_register;
2159 }
2160 
2161 void
2162 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2163 {
2164 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2165 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2166 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2167 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2168 }
2169 
2170 bool
2171 device_is_self_suspended(device_t dev)
2172 {
2173 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2174 }
2175 
2176 void
2177 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2178 {
2179 	bool self = (flags & PMF_F_SELF) != 0;
2180 
2181 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2182 
2183 	if (!self)
2184 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2185 	else if (device_is_active(dev))
2186 		dev->dv_flags |= DVF_SELF_SUSPENDED;
2187 
2188 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2189 }
2190 
2191 static void
2192 pmflock_debug(device_t dev, const char *func, int line)
2193 {
2194 	pmf_private_t *pp = device_pmf_private(dev);
2195 
2196 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2197 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2198 	    dev->dv_flags);
2199 }
2200 
2201 static void
2202 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2203 {
2204 	pmf_private_t *pp = device_pmf_private(dev);
2205 
2206 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2207 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2208 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2209 }
2210 
2211 static bool
2212 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2213 {
2214 	pmf_private_t *pp = device_pmf_private(dev);
2215 
2216 	while (device_pmf_is_registered(dev) &&
2217 	    pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
2218 		pp->pp_nwait++;
2219 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2220 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2221 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2222 		pp->pp_nwait--;
2223 	}
2224 	if (!device_pmf_is_registered(dev)) {
2225 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2226 		/* We could not acquire the lock, but some other thread may
2227 		 * wait for it, also.  Wake that thread.
2228 		 */
2229 		cv_signal(&pp->pp_cv);
2230 		return false;
2231 	}
2232 	pp->pp_nlock++;
2233 	pp->pp_holder = curlwp;
2234 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2235 	return true;
2236 }
2237 
2238 bool
2239 device_pmf_lock(device_t dev PMF_FN_ARGS)
2240 {
2241 	bool rc;
2242 	pmf_private_t *pp = device_pmf_private(dev);
2243 
2244 	mutex_enter(&pp->pp_mtx);
2245 	rc = device_pmf_lock1(dev PMF_FN_CALL);
2246 	mutex_exit(&pp->pp_mtx);
2247 
2248 	return rc;
2249 }
2250 
2251 void
2252 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2253 {
2254 	pmf_private_t *pp = device_pmf_private(dev);
2255 
2256 	KASSERT(pp->pp_nlock > 0);
2257 	mutex_enter(&pp->pp_mtx);
2258 	if (--pp->pp_nlock == 0)
2259 		pp->pp_holder = NULL;
2260 	cv_signal(&pp->pp_cv);
2261 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2262 	mutex_exit(&pp->pp_mtx);
2263 }
2264 
2265 void *
2266 device_pmf_private(device_t dev)
2267 {
2268 	return dev->dv_pmf_private;
2269 }
2270 
2271 void *
2272 device_pmf_bus_private(device_t dev)
2273 {
2274 	return dev->dv_bus_private;
2275 }
2276 
2277 bool
2278 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2279 {
2280 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2281 		return true;
2282 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2283 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2284 		return false;
2285 	if (*dev->dv_bus_suspend != NULL &&
2286 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2287 		return false;
2288 
2289 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2290 	return true;
2291 }
2292 
2293 bool
2294 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2295 {
2296 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2297 		return true;
2298 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2299 		return false;
2300 	if (*dev->dv_bus_resume != NULL &&
2301 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2302 		return false;
2303 
2304 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2305 	return true;
2306 }
2307 
2308 bool
2309 device_pmf_bus_shutdown(device_t dev, int how)
2310 {
2311 
2312 	if (*dev->dv_bus_shutdown != NULL &&
2313 	    !(*dev->dv_bus_shutdown)(dev, how))
2314 		return false;
2315 	return true;
2316 }
2317 
2318 void
2319 device_pmf_bus_register(device_t dev, void *priv,
2320     bool (*suspend)(device_t PMF_FN_PROTO),
2321     bool (*resume)(device_t PMF_FN_PROTO),
2322     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2323 {
2324 	dev->dv_bus_private = priv;
2325 	dev->dv_bus_resume = resume;
2326 	dev->dv_bus_suspend = suspend;
2327 	dev->dv_bus_shutdown = shutdown;
2328 	dev->dv_bus_deregister = deregister;
2329 }
2330 
2331 void
2332 device_pmf_bus_deregister(device_t dev)
2333 {
2334 	if (dev->dv_bus_deregister == NULL)
2335 		return;
2336 	(*dev->dv_bus_deregister)(dev);
2337 	dev->dv_bus_private = NULL;
2338 	dev->dv_bus_suspend = NULL;
2339 	dev->dv_bus_resume = NULL;
2340 	dev->dv_bus_deregister = NULL;
2341 }
2342 
2343 void *
2344 device_pmf_class_private(device_t dev)
2345 {
2346 	return dev->dv_class_private;
2347 }
2348 
2349 bool
2350 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2351 {
2352 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2353 		return true;
2354 	if (*dev->dv_class_suspend != NULL &&
2355 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2356 		return false;
2357 
2358 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2359 	return true;
2360 }
2361 
2362 bool
2363 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2364 {
2365 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2366 		return true;
2367 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2368 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2369 		return false;
2370 	if (*dev->dv_class_resume != NULL &&
2371 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2372 		return false;
2373 
2374 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2375 	return true;
2376 }
2377 
2378 void
2379 device_pmf_class_register(device_t dev, void *priv,
2380     bool (*suspend)(device_t PMF_FN_PROTO),
2381     bool (*resume)(device_t PMF_FN_PROTO),
2382     void (*deregister)(device_t))
2383 {
2384 	dev->dv_class_private = priv;
2385 	dev->dv_class_suspend = suspend;
2386 	dev->dv_class_resume = resume;
2387 	dev->dv_class_deregister = deregister;
2388 }
2389 
2390 void
2391 device_pmf_class_deregister(device_t dev)
2392 {
2393 	if (dev->dv_class_deregister == NULL)
2394 		return;
2395 	(*dev->dv_class_deregister)(dev);
2396 	dev->dv_class_private = NULL;
2397 	dev->dv_class_suspend = NULL;
2398 	dev->dv_class_resume = NULL;
2399 	dev->dv_class_deregister = NULL;
2400 }
2401 
2402 bool
2403 device_active(device_t dev, devactive_t type)
2404 {
2405 	size_t i;
2406 
2407 	if (dev->dv_activity_count == 0)
2408 		return false;
2409 
2410 	for (i = 0; i < dev->dv_activity_count; ++i)
2411 		(*dev->dv_activity_handlers[i])(dev, type);
2412 
2413 	return true;
2414 }
2415 
2416 bool
2417 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2418 {
2419 	void (**new_handlers)(device_t, devactive_t);
2420 	void (**old_handlers)(device_t, devactive_t);
2421 	size_t i, new_size;
2422 	int s;
2423 
2424 	old_handlers = dev->dv_activity_handlers;
2425 
2426 	for (i = 0; i < dev->dv_activity_count; ++i) {
2427 		if (old_handlers[i] == handler)
2428 			panic("Double registering of idle handlers");
2429 	}
2430 
2431 	new_size = dev->dv_activity_count + 1;
2432 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
2433 
2434 	memcpy(new_handlers, old_handlers,
2435 	    sizeof(void *) * dev->dv_activity_count);
2436 	new_handlers[new_size - 1] = handler;
2437 
2438 	s = splhigh();
2439 	dev->dv_activity_count = new_size;
2440 	dev->dv_activity_handlers = new_handlers;
2441 	splx(s);
2442 
2443 	if (old_handlers != NULL)
2444 		free(old_handlers, M_DEVBUF);
2445 
2446 	return true;
2447 }
2448 
2449 void
2450 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2451 {
2452 	void (**new_handlers)(device_t, devactive_t);
2453 	void (**old_handlers)(device_t, devactive_t);
2454 	size_t i, new_size;
2455 	int s;
2456 
2457 	old_handlers = dev->dv_activity_handlers;
2458 
2459 	for (i = 0; i < dev->dv_activity_count; ++i) {
2460 		if (old_handlers[i] == handler)
2461 			break;
2462 	}
2463 
2464 	if (i == dev->dv_activity_count)
2465 		return; /* XXX panic? */
2466 
2467 	new_size = dev->dv_activity_count - 1;
2468 
2469 	if (new_size == 0) {
2470 		new_handlers = NULL;
2471 	} else {
2472 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
2473 		    M_WAITOK);
2474 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
2475 		memcpy(new_handlers + i, old_handlers + i + 1,
2476 		    sizeof(void *) * (new_size - i));
2477 	}
2478 
2479 	s = splhigh();
2480 	dev->dv_activity_count = new_size;
2481 	dev->dv_activity_handlers = new_handlers;
2482 	splx(s);
2483 
2484 	free(old_handlers, M_DEVBUF);
2485 }
2486 
2487 /*
2488  * Device Iteration
2489  *
2490  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2491  *     each device_t's in the device tree.
2492  *
2493  * deviter_init(di, flags): initialize the device iterator `di'
2494  *     to "walk" the device tree.  deviter_next(di) will return
2495  *     the first device_t in the device tree, or NULL if there are
2496  *     no devices.
2497  *
2498  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2499  *     caller intends to modify the device tree by calling
2500  *     config_detach(9) on devices in the order that the iterator
2501  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2502  *     nearest the "root" of the device tree to be returned, first;
2503  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2504  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2505  *     indicating both that deviter_init() should not respect any
2506  *     locks on the device tree, and that deviter_next(di) may run
2507  *     in more than one LWP before the walk has finished.
2508  *
2509  *     Only one DEVITER_F_RW iterator may be in the device tree at
2510  *     once.
2511  *
2512  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2513  *
2514  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2515  *     DEVITER_F_LEAVES_FIRST are used in combination.
2516  *
2517  * deviter_first(di, flags): initialize the device iterator `di'
2518  *     and return the first device_t in the device tree, or NULL
2519  *     if there are no devices.  The statement
2520  *
2521  *         dv = deviter_first(di);
2522  *
2523  *     is shorthand for
2524  *
2525  *         deviter_init(di);
2526  *         dv = deviter_next(di);
2527  *
2528  * deviter_next(di): return the next device_t in the device tree,
2529  *     or NULL if there are no more devices.  deviter_next(di)
2530  *     is undefined if `di' was not initialized with deviter_init() or
2531  *     deviter_first().
2532  *
2533  * deviter_release(di): stops iteration (subsequent calls to
2534  *     deviter_next() will return NULL), releases any locks and
2535  *     resources held by the device iterator.
2536  *
2537  * Device iteration does not return device_t's in any particular
2538  * order.  An iterator will never return the same device_t twice.
2539  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2540  * is called repeatedly on the same `di', it will eventually return
2541  * NULL.  It is ok to attach/detach devices during device iteration.
2542  */
2543 void
2544 deviter_init(deviter_t *di, deviter_flags_t flags)
2545 {
2546 	device_t dv;
2547 	bool rw;
2548 
2549 	mutex_enter(&alldevs_mtx);
2550 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2551 		flags |= DEVITER_F_RW;
2552 		alldevs_nwrite++;
2553 		alldevs_writer = NULL;
2554 		alldevs_nread = 0;
2555 	} else {
2556 		rw = (flags & DEVITER_F_RW) != 0;
2557 
2558 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2559 			;
2560 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2561 		       (rw && alldevs_nread != 0))
2562 			cv_wait(&alldevs_cv, &alldevs_mtx);
2563 
2564 		if (rw) {
2565 			if (alldevs_nwrite++ == 0)
2566 				alldevs_writer = curlwp;
2567 		} else
2568 			alldevs_nread++;
2569 	}
2570 	mutex_exit(&alldevs_mtx);
2571 
2572 	memset(di, 0, sizeof(*di));
2573 
2574 	di->di_flags = flags;
2575 
2576 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2577 	case DEVITER_F_LEAVES_FIRST:
2578 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2579 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2580 		break;
2581 	case DEVITER_F_ROOT_FIRST:
2582 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2583 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2584 		break;
2585 	default:
2586 		break;
2587 	}
2588 
2589 	deviter_reinit(di);
2590 }
2591 
2592 static void
2593 deviter_reinit(deviter_t *di)
2594 {
2595 	if ((di->di_flags & DEVITER_F_RW) != 0)
2596 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2597 	else
2598 		di->di_prev = TAILQ_FIRST(&alldevs);
2599 }
2600 
2601 device_t
2602 deviter_first(deviter_t *di, deviter_flags_t flags)
2603 {
2604 	deviter_init(di, flags);
2605 	return deviter_next(di);
2606 }
2607 
2608 static device_t
2609 deviter_next1(deviter_t *di)
2610 {
2611 	device_t dv;
2612 
2613 	dv = di->di_prev;
2614 
2615 	if (dv == NULL)
2616 		;
2617 	else if ((di->di_flags & DEVITER_F_RW) != 0)
2618 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2619 	else
2620 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2621 
2622 	return dv;
2623 }
2624 
2625 device_t
2626 deviter_next(deviter_t *di)
2627 {
2628 	device_t dv = NULL;
2629 
2630 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2631 	case 0:
2632 		return deviter_next1(di);
2633 	case DEVITER_F_LEAVES_FIRST:
2634 		while (di->di_curdepth >= 0) {
2635 			if ((dv = deviter_next1(di)) == NULL) {
2636 				di->di_curdepth--;
2637 				deviter_reinit(di);
2638 			} else if (dv->dv_depth == di->di_curdepth)
2639 				break;
2640 		}
2641 		return dv;
2642 	case DEVITER_F_ROOT_FIRST:
2643 		while (di->di_curdepth <= di->di_maxdepth) {
2644 			if ((dv = deviter_next1(di)) == NULL) {
2645 				di->di_curdepth++;
2646 				deviter_reinit(di);
2647 			} else if (dv->dv_depth == di->di_curdepth)
2648 				break;
2649 		}
2650 		return dv;
2651 	default:
2652 		return NULL;
2653 	}
2654 }
2655 
2656 void
2657 deviter_release(deviter_t *di)
2658 {
2659 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2660 
2661 	mutex_enter(&alldevs_mtx);
2662 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2663 		--alldevs_nwrite;
2664 	else {
2665 
2666 		if (rw) {
2667 			if (--alldevs_nwrite == 0)
2668 				alldevs_writer = NULL;
2669 		} else
2670 			--alldevs_nread;
2671 
2672 		cv_signal(&alldevs_cv);
2673 	}
2674 	mutex_exit(&alldevs_mtx);
2675 }
2676