xref: /netbsd-src/sys/kern/subr_autoconf.c (revision c9496f6b604074a9451a67df576a5b423068e71e)
1 /* $NetBSD: subr_autoconf.c,v 1.256 2018/01/26 22:58:09 pgoyette Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.256 2018/01/26 22:58:09 pgoyette Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <sys/rndsource.h>
114 
115 #include <machine/limits.h>
116 
117 /*
118  * Autoconfiguration subroutines.
119  */
120 
121 /*
122  * Device autoconfiguration timings are mixed into the entropy pool.
123  */
124 extern krndsource_t rnd_autoconf_source;
125 
126 /*
127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
128  * devices and drivers are found via these tables.
129  */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132 
133 /*
134  * List of all cfdriver structures.  We use this to detect duplicates
135  * when other cfdrivers are loaded.
136  */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139 
140 /*
141  * Initial list of cfattach's.
142  */
143 extern const struct cfattachinit cfattachinit[];
144 
145 /*
146  * List of cfdata tables.  We always have one such list -- the one
147  * built statically when the kernel was configured.
148  */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151 
152 #define	ROOT ((device_t)NULL)
153 
154 struct matchinfo {
155 	cfsubmatch_t fn;
156 	device_t parent;
157 	const int *locs;
158 	void	*aux;
159 	struct	cfdata *match;
160 	int	pri;
161 };
162 
163 struct alldevs_foray {
164 	int			af_s;
165 	struct devicelist	af_garbage;
166 };
167 
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178 
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181 
182 static void pmflock_debug(device_t, const char *, int);
183 
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186 
187 struct deferred_config {
188 	TAILQ_ENTRY(deferred_config) dc_queue;
189 	device_t dc_dev;
190 	void (*dc_func)(device_t);
191 };
192 
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194 
195 struct deferred_config_head deferred_config_queue =
196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 struct deferred_config_head interrupt_config_queue =
198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 int interrupt_config_threads = 8;
200 struct deferred_config_head mountroot_config_queue =
201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 static bool root_is_mounted = false;
206 
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208 
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 	TAILQ_ENTRY(finalize_hook) f_list;
212 	int (*f_func)(device_t);
213 	device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218 
219 /* list of all devices */
220 static struct {
221 	kmutex_t		lock;
222 	struct devicelist	list;
223 	devgen_t		gen;
224 	int			nread;
225 	int			nwrite;
226 	bool			garbage;
227 } alldevs __cacheline_aligned = {
228 	.list = TAILQ_HEAD_INITIALIZER(alldevs.list),
229 	.gen = 1,
230 	.nread = 0,
231 	.nwrite = 0,
232 	.garbage = false,
233 };
234 
235 static int config_pending;		/* semaphore for mountroot */
236 static kmutex_t config_misc_lock;
237 static kcondvar_t config_misc_cv;
238 
239 static bool detachall = false;
240 
241 #define	STREQ(s1, s2)			\
242 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
243 
244 static bool config_initialized = false;	/* config_init() has been called. */
245 
246 static int config_do_twiddle;
247 static callout_t config_twiddle_ch;
248 
249 static void sysctl_detach_setup(struct sysctllog **);
250 
251 int no_devmon_insert(const char *, prop_dictionary_t);
252 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
253 
254 typedef int (*cfdriver_fn)(struct cfdriver *);
255 static int
256 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
257 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
258 	const char *style, bool dopanic)
259 {
260 	void (*pr)(const char *, ...) __printflike(1, 2) =
261 	    dopanic ? panic : printf;
262 	int i, error = 0, e2 __diagused;
263 
264 	for (i = 0; cfdriverv[i] != NULL; i++) {
265 		if ((error = drv_do(cfdriverv[i])) != 0) {
266 			pr("configure: `%s' driver %s failed: %d",
267 			    cfdriverv[i]->cd_name, style, error);
268 			goto bad;
269 		}
270 	}
271 
272 	KASSERT(error == 0);
273 	return 0;
274 
275  bad:
276 	printf("\n");
277 	for (i--; i >= 0; i--) {
278 		e2 = drv_undo(cfdriverv[i]);
279 		KASSERT(e2 == 0);
280 	}
281 
282 	return error;
283 }
284 
285 typedef int (*cfattach_fn)(const char *, struct cfattach *);
286 static int
287 frob_cfattachvec(const struct cfattachinit *cfattachv,
288 	cfattach_fn att_do, cfattach_fn att_undo,
289 	const char *style, bool dopanic)
290 {
291 	const struct cfattachinit *cfai = NULL;
292 	void (*pr)(const char *, ...) __printflike(1, 2) =
293 	    dopanic ? panic : printf;
294 	int j = 0, error = 0, e2 __diagused;
295 
296 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
297 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
298 			if ((error = att_do(cfai->cfai_name,
299 			    cfai->cfai_list[j])) != 0) {
300 				pr("configure: attachment `%s' "
301 				    "of `%s' driver %s failed: %d",
302 				    cfai->cfai_list[j]->ca_name,
303 				    cfai->cfai_name, style, error);
304 				goto bad;
305 			}
306 		}
307 	}
308 
309 	KASSERT(error == 0);
310 	return 0;
311 
312  bad:
313 	/*
314 	 * Rollback in reverse order.  dunno if super-important, but
315 	 * do that anyway.  Although the code looks a little like
316 	 * someone did a little integration (in the math sense).
317 	 */
318 	printf("\n");
319 	if (cfai) {
320 		bool last;
321 
322 		for (last = false; last == false; ) {
323 			if (cfai == &cfattachv[0])
324 				last = true;
325 			for (j--; j >= 0; j--) {
326 				e2 = att_undo(cfai->cfai_name,
327 				    cfai->cfai_list[j]);
328 				KASSERT(e2 == 0);
329 			}
330 			if (!last) {
331 				cfai--;
332 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
333 					;
334 			}
335 		}
336 	}
337 
338 	return error;
339 }
340 
341 /*
342  * Initialize the autoconfiguration data structures.  Normally this
343  * is done by configure(), but some platforms need to do this very
344  * early (to e.g. initialize the console).
345  */
346 void
347 config_init(void)
348 {
349 
350 	KASSERT(config_initialized == false);
351 
352 	mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM);
353 
354 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
355 	cv_init(&config_misc_cv, "cfgmisc");
356 
357 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
358 
359 	frob_cfdrivervec(cfdriver_list_initial,
360 	    config_cfdriver_attach, NULL, "bootstrap", true);
361 	frob_cfattachvec(cfattachinit,
362 	    config_cfattach_attach, NULL, "bootstrap", true);
363 
364 	initcftable.ct_cfdata = cfdata;
365 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
366 
367 	config_initialized = true;
368 }
369 
370 /*
371  * Init or fini drivers and attachments.  Either all or none
372  * are processed (via rollback).  It would be nice if this were
373  * atomic to outside consumers, but with the current state of
374  * locking ...
375  */
376 int
377 config_init_component(struct cfdriver * const *cfdriverv,
378 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
379 {
380 	int error;
381 
382 	if ((error = frob_cfdrivervec(cfdriverv,
383 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
384 		return error;
385 	if ((error = frob_cfattachvec(cfattachv,
386 	    config_cfattach_attach, config_cfattach_detach,
387 	    "init", false)) != 0) {
388 		frob_cfdrivervec(cfdriverv,
389 	            config_cfdriver_detach, NULL, "init rollback", true);
390 		return error;
391 	}
392 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
393 		frob_cfattachvec(cfattachv,
394 		    config_cfattach_detach, NULL, "init rollback", true);
395 		frob_cfdrivervec(cfdriverv,
396 	            config_cfdriver_detach, NULL, "init rollback", true);
397 		return error;
398 	}
399 
400 	return 0;
401 }
402 
403 int
404 config_fini_component(struct cfdriver * const *cfdriverv,
405 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
406 {
407 	int error;
408 
409 	if ((error = config_cfdata_detach(cfdatav)) != 0)
410 		return error;
411 	if ((error = frob_cfattachvec(cfattachv,
412 	    config_cfattach_detach, config_cfattach_attach,
413 	    "fini", false)) != 0) {
414 		if (config_cfdata_attach(cfdatav, 0) != 0)
415 			panic("config_cfdata fini rollback failed");
416 		return error;
417 	}
418 	if ((error = frob_cfdrivervec(cfdriverv,
419 	    config_cfdriver_detach, config_cfdriver_attach,
420 	    "fini", false)) != 0) {
421 		frob_cfattachvec(cfattachv,
422 	            config_cfattach_attach, NULL, "fini rollback", true);
423 		if (config_cfdata_attach(cfdatav, 0) != 0)
424 			panic("config_cfdata fini rollback failed");
425 		return error;
426 	}
427 
428 	return 0;
429 }
430 
431 void
432 config_init_mi(void)
433 {
434 
435 	if (!config_initialized)
436 		config_init();
437 
438 	sysctl_detach_setup(NULL);
439 }
440 
441 void
442 config_deferred(device_t dev)
443 {
444 	config_process_deferred(&deferred_config_queue, dev);
445 	config_process_deferred(&interrupt_config_queue, dev);
446 	config_process_deferred(&mountroot_config_queue, dev);
447 }
448 
449 static void
450 config_interrupts_thread(void *cookie)
451 {
452 	struct deferred_config *dc;
453 
454 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
455 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
456 		(*dc->dc_func)(dc->dc_dev);
457 		config_pending_decr(dc->dc_dev);
458 		kmem_free(dc, sizeof(*dc));
459 	}
460 	kthread_exit(0);
461 }
462 
463 void
464 config_create_interruptthreads(void)
465 {
466 	int i;
467 
468 	for (i = 0; i < interrupt_config_threads; i++) {
469 		(void)kthread_create(PRI_NONE, 0, NULL,
470 		    config_interrupts_thread, NULL, NULL, "configintr");
471 	}
472 }
473 
474 static void
475 config_mountroot_thread(void *cookie)
476 {
477 	struct deferred_config *dc;
478 
479 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
480 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
481 		(*dc->dc_func)(dc->dc_dev);
482 		kmem_free(dc, sizeof(*dc));
483 	}
484 	kthread_exit(0);
485 }
486 
487 void
488 config_create_mountrootthreads(void)
489 {
490 	int i;
491 
492 	if (!root_is_mounted)
493 		root_is_mounted = true;
494 
495 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
496 				       mountroot_config_threads;
497 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
498 					     KM_NOSLEEP);
499 	KASSERT(mountroot_config_lwpids);
500 	for (i = 0; i < mountroot_config_threads; i++) {
501 		mountroot_config_lwpids[i] = 0;
502 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
503 				     config_mountroot_thread, NULL,
504 				     &mountroot_config_lwpids[i],
505 				     "configroot");
506 	}
507 }
508 
509 void
510 config_finalize_mountroot(void)
511 {
512 	int i, error;
513 
514 	for (i = 0; i < mountroot_config_threads; i++) {
515 		if (mountroot_config_lwpids[i] == 0)
516 			continue;
517 
518 		error = kthread_join(mountroot_config_lwpids[i]);
519 		if (error)
520 			printf("%s: thread %x joined with error %d\n",
521 			       __func__, i, error);
522 	}
523 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
524 }
525 
526 /*
527  * Announce device attach/detach to userland listeners.
528  */
529 
530 int
531 no_devmon_insert(const char *name, prop_dictionary_t p)
532 {
533 
534 	return ENODEV;
535 }
536 
537 static void
538 devmon_report_device(device_t dev, bool isattach)
539 {
540 	prop_dictionary_t ev;
541 	const char *parent;
542 	const char *what;
543 	device_t pdev = device_parent(dev);
544 
545 	/* If currently no drvctl device, just return */
546 	if (devmon_insert_vec == no_devmon_insert)
547 		return;
548 
549 	ev = prop_dictionary_create();
550 	if (ev == NULL)
551 		return;
552 
553 	what = (isattach ? "device-attach" : "device-detach");
554 	parent = (pdev == NULL ? "root" : device_xname(pdev));
555 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
556 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
557 		prop_object_release(ev);
558 		return;
559 	}
560 
561 	if ((*devmon_insert_vec)(what, ev) != 0)
562 		prop_object_release(ev);
563 }
564 
565 /*
566  * Add a cfdriver to the system.
567  */
568 int
569 config_cfdriver_attach(struct cfdriver *cd)
570 {
571 	struct cfdriver *lcd;
572 
573 	/* Make sure this driver isn't already in the system. */
574 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
575 		if (STREQ(lcd->cd_name, cd->cd_name))
576 			return EEXIST;
577 	}
578 
579 	LIST_INIT(&cd->cd_attach);
580 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
581 
582 	return 0;
583 }
584 
585 /*
586  * Remove a cfdriver from the system.
587  */
588 int
589 config_cfdriver_detach(struct cfdriver *cd)
590 {
591 	struct alldevs_foray af;
592 	int i, rc = 0;
593 
594 	config_alldevs_enter(&af);
595 	/* Make sure there are no active instances. */
596 	for (i = 0; i < cd->cd_ndevs; i++) {
597 		if (cd->cd_devs[i] != NULL) {
598 			rc = EBUSY;
599 			break;
600 		}
601 	}
602 	config_alldevs_exit(&af);
603 
604 	if (rc != 0)
605 		return rc;
606 
607 	/* ...and no attachments loaded. */
608 	if (LIST_EMPTY(&cd->cd_attach) == 0)
609 		return EBUSY;
610 
611 	LIST_REMOVE(cd, cd_list);
612 
613 	KASSERT(cd->cd_devs == NULL);
614 
615 	return 0;
616 }
617 
618 /*
619  * Look up a cfdriver by name.
620  */
621 struct cfdriver *
622 config_cfdriver_lookup(const char *name)
623 {
624 	struct cfdriver *cd;
625 
626 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
627 		if (STREQ(cd->cd_name, name))
628 			return cd;
629 	}
630 
631 	return NULL;
632 }
633 
634 /*
635  * Add a cfattach to the specified driver.
636  */
637 int
638 config_cfattach_attach(const char *driver, struct cfattach *ca)
639 {
640 	struct cfattach *lca;
641 	struct cfdriver *cd;
642 
643 	cd = config_cfdriver_lookup(driver);
644 	if (cd == NULL)
645 		return ESRCH;
646 
647 	/* Make sure this attachment isn't already on this driver. */
648 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
649 		if (STREQ(lca->ca_name, ca->ca_name))
650 			return EEXIST;
651 	}
652 
653 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
654 
655 	return 0;
656 }
657 
658 /*
659  * Remove a cfattach from the specified driver.
660  */
661 int
662 config_cfattach_detach(const char *driver, struct cfattach *ca)
663 {
664 	struct alldevs_foray af;
665 	struct cfdriver *cd;
666 	device_t dev;
667 	int i, rc = 0;
668 
669 	cd = config_cfdriver_lookup(driver);
670 	if (cd == NULL)
671 		return ESRCH;
672 
673 	config_alldevs_enter(&af);
674 	/* Make sure there are no active instances. */
675 	for (i = 0; i < cd->cd_ndevs; i++) {
676 		if ((dev = cd->cd_devs[i]) == NULL)
677 			continue;
678 		if (dev->dv_cfattach == ca) {
679 			rc = EBUSY;
680 			break;
681 		}
682 	}
683 	config_alldevs_exit(&af);
684 
685 	if (rc != 0)
686 		return rc;
687 
688 	LIST_REMOVE(ca, ca_list);
689 
690 	return 0;
691 }
692 
693 /*
694  * Look up a cfattach by name.
695  */
696 static struct cfattach *
697 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
698 {
699 	struct cfattach *ca;
700 
701 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
702 		if (STREQ(ca->ca_name, atname))
703 			return ca;
704 	}
705 
706 	return NULL;
707 }
708 
709 /*
710  * Look up a cfattach by driver/attachment name.
711  */
712 struct cfattach *
713 config_cfattach_lookup(const char *name, const char *atname)
714 {
715 	struct cfdriver *cd;
716 
717 	cd = config_cfdriver_lookup(name);
718 	if (cd == NULL)
719 		return NULL;
720 
721 	return config_cfattach_lookup_cd(cd, atname);
722 }
723 
724 /*
725  * Apply the matching function and choose the best.  This is used
726  * a few times and we want to keep the code small.
727  */
728 static void
729 mapply(struct matchinfo *m, cfdata_t cf)
730 {
731 	int pri;
732 
733 	if (m->fn != NULL) {
734 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
735 	} else {
736 		pri = config_match(m->parent, cf, m->aux);
737 	}
738 	if (pri > m->pri) {
739 		m->match = cf;
740 		m->pri = pri;
741 	}
742 }
743 
744 int
745 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
746 {
747 	const struct cfiattrdata *ci;
748 	const struct cflocdesc *cl;
749 	int nlocs, i;
750 
751 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
752 	KASSERT(ci);
753 	nlocs = ci->ci_loclen;
754 	KASSERT(!nlocs || locs);
755 	for (i = 0; i < nlocs; i++) {
756 		cl = &ci->ci_locdesc[i];
757 		if (cl->cld_defaultstr != NULL &&
758 		    cf->cf_loc[i] == cl->cld_default)
759 			continue;
760 		if (cf->cf_loc[i] == locs[i])
761 			continue;
762 		return 0;
763 	}
764 
765 	return config_match(parent, cf, aux);
766 }
767 
768 /*
769  * Helper function: check whether the driver supports the interface attribute
770  * and return its descriptor structure.
771  */
772 static const struct cfiattrdata *
773 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
774 {
775 	const struct cfiattrdata * const *cpp;
776 
777 	if (cd->cd_attrs == NULL)
778 		return 0;
779 
780 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
781 		if (STREQ((*cpp)->ci_name, ia)) {
782 			/* Match. */
783 			return *cpp;
784 		}
785 	}
786 	return 0;
787 }
788 
789 /*
790  * Lookup an interface attribute description by name.
791  * If the driver is given, consider only its supported attributes.
792  */
793 const struct cfiattrdata *
794 cfiattr_lookup(const char *name, const struct cfdriver *cd)
795 {
796 	const struct cfdriver *d;
797 	const struct cfiattrdata *ia;
798 
799 	if (cd)
800 		return cfdriver_get_iattr(cd, name);
801 
802 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
803 		ia = cfdriver_get_iattr(d, name);
804 		if (ia)
805 			return ia;
806 	}
807 	return 0;
808 }
809 
810 /*
811  * Determine if `parent' is a potential parent for a device spec based
812  * on `cfp'.
813  */
814 static int
815 cfparent_match(const device_t parent, const struct cfparent *cfp)
816 {
817 	struct cfdriver *pcd;
818 
819 	/* We don't match root nodes here. */
820 	if (cfp == NULL)
821 		return 0;
822 
823 	pcd = parent->dv_cfdriver;
824 	KASSERT(pcd != NULL);
825 
826 	/*
827 	 * First, ensure this parent has the correct interface
828 	 * attribute.
829 	 */
830 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
831 		return 0;
832 
833 	/*
834 	 * If no specific parent device instance was specified (i.e.
835 	 * we're attaching to the attribute only), we're done!
836 	 */
837 	if (cfp->cfp_parent == NULL)
838 		return 1;
839 
840 	/*
841 	 * Check the parent device's name.
842 	 */
843 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
844 		return 0;	/* not the same parent */
845 
846 	/*
847 	 * Make sure the unit number matches.
848 	 */
849 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
850 	    cfp->cfp_unit == parent->dv_unit)
851 		return 1;
852 
853 	/* Unit numbers don't match. */
854 	return 0;
855 }
856 
857 /*
858  * Helper for config_cfdata_attach(): check all devices whether it could be
859  * parent any attachment in the config data table passed, and rescan.
860  */
861 static void
862 rescan_with_cfdata(const struct cfdata *cf)
863 {
864 	device_t d;
865 	const struct cfdata *cf1;
866 	deviter_t di;
867 
868 
869 	/*
870 	 * "alldevs" is likely longer than a modules's cfdata, so make it
871 	 * the outer loop.
872 	 */
873 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
874 
875 		if (!(d->dv_cfattach->ca_rescan))
876 			continue;
877 
878 		for (cf1 = cf; cf1->cf_name; cf1++) {
879 
880 			if (!cfparent_match(d, cf1->cf_pspec))
881 				continue;
882 
883 			(*d->dv_cfattach->ca_rescan)(d,
884 				cfdata_ifattr(cf1), cf1->cf_loc);
885 
886 			config_deferred(d);
887 		}
888 	}
889 	deviter_release(&di);
890 }
891 
892 /*
893  * Attach a supplemental config data table and rescan potential
894  * parent devices if required.
895  */
896 int
897 config_cfdata_attach(cfdata_t cf, int scannow)
898 {
899 	struct cftable *ct;
900 
901 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
902 	ct->ct_cfdata = cf;
903 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
904 
905 	if (scannow)
906 		rescan_with_cfdata(cf);
907 
908 	return 0;
909 }
910 
911 /*
912  * Helper for config_cfdata_detach: check whether a device is
913  * found through any attachment in the config data table.
914  */
915 static int
916 dev_in_cfdata(device_t d, cfdata_t cf)
917 {
918 	const struct cfdata *cf1;
919 
920 	for (cf1 = cf; cf1->cf_name; cf1++)
921 		if (d->dv_cfdata == cf1)
922 			return 1;
923 
924 	return 0;
925 }
926 
927 /*
928  * Detach a supplemental config data table. Detach all devices found
929  * through that table (and thus keeping references to it) before.
930  */
931 int
932 config_cfdata_detach(cfdata_t cf)
933 {
934 	device_t d;
935 	int error = 0;
936 	struct cftable *ct;
937 	deviter_t di;
938 
939 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
940 	     d = deviter_next(&di)) {
941 		if (!dev_in_cfdata(d, cf))
942 			continue;
943 		if ((error = config_detach(d, 0)) != 0)
944 			break;
945 	}
946 	deviter_release(&di);
947 	if (error) {
948 		aprint_error_dev(d, "unable to detach instance\n");
949 		return error;
950 	}
951 
952 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
953 		if (ct->ct_cfdata == cf) {
954 			TAILQ_REMOVE(&allcftables, ct, ct_list);
955 			kmem_free(ct, sizeof(*ct));
956 			return 0;
957 		}
958 	}
959 
960 	/* not found -- shouldn't happen */
961 	return EINVAL;
962 }
963 
964 /*
965  * Invoke the "match" routine for a cfdata entry on behalf of
966  * an external caller, usually a "submatch" routine.
967  */
968 int
969 config_match(device_t parent, cfdata_t cf, void *aux)
970 {
971 	struct cfattach *ca;
972 
973 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
974 	if (ca == NULL) {
975 		/* No attachment for this entry, oh well. */
976 		return 0;
977 	}
978 
979 	return (*ca->ca_match)(parent, cf, aux);
980 }
981 
982 /*
983  * Iterate over all potential children of some device, calling the given
984  * function (default being the child's match function) for each one.
985  * Nonzero returns are matches; the highest value returned is considered
986  * the best match.  Return the `found child' if we got a match, or NULL
987  * otherwise.  The `aux' pointer is simply passed on through.
988  *
989  * Note that this function is designed so that it can be used to apply
990  * an arbitrary function to all potential children (its return value
991  * can be ignored).
992  */
993 cfdata_t
994 config_search_loc(cfsubmatch_t fn, device_t parent,
995 		  const char *ifattr, const int *locs, void *aux)
996 {
997 	struct cftable *ct;
998 	cfdata_t cf;
999 	struct matchinfo m;
1000 
1001 	KASSERT(config_initialized);
1002 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1003 
1004 	m.fn = fn;
1005 	m.parent = parent;
1006 	m.locs = locs;
1007 	m.aux = aux;
1008 	m.match = NULL;
1009 	m.pri = 0;
1010 
1011 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1012 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1013 
1014 			/* We don't match root nodes here. */
1015 			if (!cf->cf_pspec)
1016 				continue;
1017 
1018 			/*
1019 			 * Skip cf if no longer eligible, otherwise scan
1020 			 * through parents for one matching `parent', and
1021 			 * try match function.
1022 			 */
1023 			if (cf->cf_fstate == FSTATE_FOUND)
1024 				continue;
1025 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1026 			    cf->cf_fstate == FSTATE_DSTAR)
1027 				continue;
1028 
1029 			/*
1030 			 * If an interface attribute was specified,
1031 			 * consider only children which attach to
1032 			 * that attribute.
1033 			 */
1034 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1035 				continue;
1036 
1037 			if (cfparent_match(parent, cf->cf_pspec))
1038 				mapply(&m, cf);
1039 		}
1040 	}
1041 	return m.match;
1042 }
1043 
1044 cfdata_t
1045 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1046     void *aux)
1047 {
1048 
1049 	return config_search_loc(fn, parent, ifattr, NULL, aux);
1050 }
1051 
1052 /*
1053  * Find the given root device.
1054  * This is much like config_search, but there is no parent.
1055  * Don't bother with multiple cfdata tables; the root node
1056  * must always be in the initial table.
1057  */
1058 cfdata_t
1059 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1060 {
1061 	cfdata_t cf;
1062 	const short *p;
1063 	struct matchinfo m;
1064 
1065 	m.fn = fn;
1066 	m.parent = ROOT;
1067 	m.aux = aux;
1068 	m.match = NULL;
1069 	m.pri = 0;
1070 	m.locs = 0;
1071 	/*
1072 	 * Look at root entries for matching name.  We do not bother
1073 	 * with found-state here since only one root should ever be
1074 	 * searched (and it must be done first).
1075 	 */
1076 	for (p = cfroots; *p >= 0; p++) {
1077 		cf = &cfdata[*p];
1078 		if (strcmp(cf->cf_name, rootname) == 0)
1079 			mapply(&m, cf);
1080 	}
1081 	return m.match;
1082 }
1083 
1084 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1085 
1086 /*
1087  * The given `aux' argument describes a device that has been found
1088  * on the given parent, but not necessarily configured.  Locate the
1089  * configuration data for that device (using the submatch function
1090  * provided, or using candidates' cd_match configuration driver
1091  * functions) and attach it, and return its device_t.  If the device was
1092  * not configured, call the given `print' function and return NULL.
1093  */
1094 device_t
1095 config_found_sm_loc(device_t parent,
1096 		const char *ifattr, const int *locs, void *aux,
1097 		cfprint_t print, cfsubmatch_t submatch)
1098 {
1099 	cfdata_t cf;
1100 
1101 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1102 		return(config_attach_loc(parent, cf, locs, aux, print));
1103 	if (print) {
1104 		if (config_do_twiddle && cold)
1105 			twiddle();
1106 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1107 	}
1108 
1109 	/*
1110 	 * This has the effect of mixing in a single timestamp to the
1111 	 * entropy pool.  Experiments indicate the estimator will almost
1112 	 * always attribute one bit of entropy to this sample; analysis
1113 	 * of device attach/detach timestamps on FreeBSD indicates 4
1114 	 * bits of entropy/sample so this seems appropriately conservative.
1115 	 */
1116 	rnd_add_uint32(&rnd_autoconf_source, 0);
1117 	return NULL;
1118 }
1119 
1120 device_t
1121 config_found_ia(device_t parent, const char *ifattr, void *aux,
1122     cfprint_t print)
1123 {
1124 
1125 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1126 }
1127 
1128 device_t
1129 config_found(device_t parent, void *aux, cfprint_t print)
1130 {
1131 
1132 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1133 }
1134 
1135 /*
1136  * As above, but for root devices.
1137  */
1138 device_t
1139 config_rootfound(const char *rootname, void *aux)
1140 {
1141 	cfdata_t cf;
1142 
1143 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1144 		return config_attach(ROOT, cf, aux, NULL);
1145 	aprint_error("root device %s not configured\n", rootname);
1146 	return NULL;
1147 }
1148 
1149 /* just like sprintf(buf, "%d") except that it works from the end */
1150 static char *
1151 number(char *ep, int n)
1152 {
1153 
1154 	*--ep = 0;
1155 	while (n >= 10) {
1156 		*--ep = (n % 10) + '0';
1157 		n /= 10;
1158 	}
1159 	*--ep = n + '0';
1160 	return ep;
1161 }
1162 
1163 /*
1164  * Expand the size of the cd_devs array if necessary.
1165  *
1166  * The caller must hold alldevs.lock. config_makeroom() may release and
1167  * re-acquire alldevs.lock, so callers should re-check conditions such
1168  * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom()
1169  * returns.
1170  */
1171 static void
1172 config_makeroom(int n, struct cfdriver *cd)
1173 {
1174 	int ondevs, nndevs;
1175 	device_t *osp, *nsp;
1176 
1177 	KASSERT(mutex_owned(&alldevs.lock));
1178 	alldevs.nwrite++;
1179 
1180 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1181 		;
1182 
1183 	while (n >= cd->cd_ndevs) {
1184 		/*
1185 		 * Need to expand the array.
1186 		 */
1187 		ondevs = cd->cd_ndevs;
1188 		osp = cd->cd_devs;
1189 
1190 		/*
1191 		 * Release alldevs.lock around allocation, which may
1192 		 * sleep.
1193 		 */
1194 		mutex_exit(&alldevs.lock);
1195 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1196 		mutex_enter(&alldevs.lock);
1197 
1198 		/*
1199 		 * If another thread moved the array while we did
1200 		 * not hold alldevs.lock, try again.
1201 		 */
1202 		if (cd->cd_devs != osp) {
1203 			mutex_exit(&alldevs.lock);
1204 			kmem_free(nsp, sizeof(device_t[nndevs]));
1205 			mutex_enter(&alldevs.lock);
1206 			continue;
1207 		}
1208 
1209 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1210 		if (ondevs != 0)
1211 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1212 
1213 		cd->cd_ndevs = nndevs;
1214 		cd->cd_devs = nsp;
1215 		if (ondevs != 0) {
1216 			mutex_exit(&alldevs.lock);
1217 			kmem_free(osp, sizeof(device_t[ondevs]));
1218 			mutex_enter(&alldevs.lock);
1219 		}
1220 	}
1221 	KASSERT(mutex_owned(&alldevs.lock));
1222 	alldevs.nwrite--;
1223 }
1224 
1225 /*
1226  * Put dev into the devices list.
1227  */
1228 static void
1229 config_devlink(device_t dev)
1230 {
1231 
1232 	mutex_enter(&alldevs.lock);
1233 
1234 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1235 
1236 	dev->dv_add_gen = alldevs.gen;
1237 	/* It is safe to add a device to the tail of the list while
1238 	 * readers and writers are in the list.
1239 	 */
1240 	TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list);
1241 	mutex_exit(&alldevs.lock);
1242 }
1243 
1244 static void
1245 config_devfree(device_t dev)
1246 {
1247 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1248 
1249 	if (dev->dv_cfattach->ca_devsize > 0)
1250 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1251 	if (priv)
1252 		kmem_free(dev, sizeof(*dev));
1253 }
1254 
1255 /*
1256  * Caller must hold alldevs.lock.
1257  */
1258 static void
1259 config_devunlink(device_t dev, struct devicelist *garbage)
1260 {
1261 	struct device_garbage *dg = &dev->dv_garbage;
1262 	cfdriver_t cd = device_cfdriver(dev);
1263 	int i;
1264 
1265 	KASSERT(mutex_owned(&alldevs.lock));
1266 
1267  	/* Unlink from device list.  Link to garbage list. */
1268 	TAILQ_REMOVE(&alldevs.list, dev, dv_list);
1269 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1270 
1271 	/* Remove from cfdriver's array. */
1272 	cd->cd_devs[dev->dv_unit] = NULL;
1273 
1274 	/*
1275 	 * If the device now has no units in use, unlink its softc array.
1276 	 */
1277 	for (i = 0; i < cd->cd_ndevs; i++) {
1278 		if (cd->cd_devs[i] != NULL)
1279 			break;
1280 	}
1281 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1282 	if (i == cd->cd_ndevs) {
1283 		dg->dg_ndevs = cd->cd_ndevs;
1284 		dg->dg_devs = cd->cd_devs;
1285 		cd->cd_devs = NULL;
1286 		cd->cd_ndevs = 0;
1287 	}
1288 }
1289 
1290 static void
1291 config_devdelete(device_t dev)
1292 {
1293 	struct device_garbage *dg = &dev->dv_garbage;
1294 	device_lock_t dvl = device_getlock(dev);
1295 
1296 	if (dg->dg_devs != NULL)
1297 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1298 
1299 	cv_destroy(&dvl->dvl_cv);
1300 	mutex_destroy(&dvl->dvl_mtx);
1301 
1302 	KASSERT(dev->dv_properties != NULL);
1303 	prop_object_release(dev->dv_properties);
1304 
1305 	if (dev->dv_activity_handlers)
1306 		panic("%s with registered handlers", __func__);
1307 
1308 	if (dev->dv_locators) {
1309 		size_t amount = *--dev->dv_locators;
1310 		kmem_free(dev->dv_locators, amount);
1311 	}
1312 
1313 	config_devfree(dev);
1314 }
1315 
1316 static int
1317 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1318 {
1319 	int unit;
1320 
1321 	if (cf->cf_fstate == FSTATE_STAR) {
1322 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1323 			if (cd->cd_devs[unit] == NULL)
1324 				break;
1325 		/*
1326 		 * unit is now the unit of the first NULL device pointer,
1327 		 * or max(cd->cd_ndevs,cf->cf_unit).
1328 		 */
1329 	} else {
1330 		unit = cf->cf_unit;
1331 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1332 			unit = -1;
1333 	}
1334 	return unit;
1335 }
1336 
1337 static int
1338 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1339 {
1340 	struct alldevs_foray af;
1341 	int unit;
1342 
1343 	config_alldevs_enter(&af);
1344 	for (;;) {
1345 		unit = config_unit_nextfree(cd, cf);
1346 		if (unit == -1)
1347 			break;
1348 		if (unit < cd->cd_ndevs) {
1349 			cd->cd_devs[unit] = dev;
1350 			dev->dv_unit = unit;
1351 			break;
1352 		}
1353 		config_makeroom(unit, cd);
1354 	}
1355 	config_alldevs_exit(&af);
1356 
1357 	return unit;
1358 }
1359 
1360 static device_t
1361 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1362 {
1363 	cfdriver_t cd;
1364 	cfattach_t ca;
1365 	size_t lname, lunit;
1366 	const char *xunit;
1367 	int myunit;
1368 	char num[10];
1369 	device_t dev;
1370 	void *dev_private;
1371 	const struct cfiattrdata *ia;
1372 	device_lock_t dvl;
1373 
1374 	cd = config_cfdriver_lookup(cf->cf_name);
1375 	if (cd == NULL)
1376 		return NULL;
1377 
1378 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1379 	if (ca == NULL)
1380 		return NULL;
1381 
1382 	/* get memory for all device vars */
1383 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1384 	    || ca->ca_devsize >= sizeof(struct device),
1385 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1386 	    sizeof(struct device));
1387 	if (ca->ca_devsize > 0) {
1388 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1389 	} else {
1390 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1391 		dev_private = NULL;
1392 	}
1393 
1394 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1395 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1396 	} else {
1397 		dev = dev_private;
1398 #ifdef DIAGNOSTIC
1399 		printf("%s has not been converted to device_t\n", cd->cd_name);
1400 #endif
1401 		KASSERT(dev != NULL);
1402 	}
1403 	dev->dv_class = cd->cd_class;
1404 	dev->dv_cfdata = cf;
1405 	dev->dv_cfdriver = cd;
1406 	dev->dv_cfattach = ca;
1407 	dev->dv_activity_count = 0;
1408 	dev->dv_activity_handlers = NULL;
1409 	dev->dv_private = dev_private;
1410 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1411 
1412 	myunit = config_unit_alloc(dev, cd, cf);
1413 	if (myunit == -1) {
1414 		config_devfree(dev);
1415 		return NULL;
1416 	}
1417 
1418 	/* compute length of name and decimal expansion of unit number */
1419 	lname = strlen(cd->cd_name);
1420 	xunit = number(&num[sizeof(num)], myunit);
1421 	lunit = &num[sizeof(num)] - xunit;
1422 	if (lname + lunit > sizeof(dev->dv_xname))
1423 		panic("config_devalloc: device name too long");
1424 
1425 	dvl = device_getlock(dev);
1426 
1427 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1428 	cv_init(&dvl->dvl_cv, "pmfsusp");
1429 
1430 	memcpy(dev->dv_xname, cd->cd_name, lname);
1431 	memcpy(dev->dv_xname + lname, xunit, lunit);
1432 	dev->dv_parent = parent;
1433 	if (parent != NULL)
1434 		dev->dv_depth = parent->dv_depth + 1;
1435 	else
1436 		dev->dv_depth = 0;
1437 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1438 	if (locs) {
1439 		KASSERT(parent); /* no locators at root */
1440 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1441 		dev->dv_locators =
1442 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1443 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1444 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1445 	}
1446 	dev->dv_properties = prop_dictionary_create();
1447 	KASSERT(dev->dv_properties != NULL);
1448 
1449 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1450 	    "device-driver", dev->dv_cfdriver->cd_name);
1451 	prop_dictionary_set_uint16(dev->dv_properties,
1452 	    "device-unit", dev->dv_unit);
1453 	if (parent != NULL) {
1454 		prop_dictionary_set_cstring(dev->dv_properties,
1455 		    "device-parent", device_xname(parent));
1456 	}
1457 
1458 	if (dev->dv_cfdriver->cd_attrs != NULL)
1459 		config_add_attrib_dict(dev);
1460 
1461 	return dev;
1462 }
1463 
1464 /*
1465  * Create an array of device attach attributes and add it
1466  * to the device's dv_properties dictionary.
1467  *
1468  * <key>interface-attributes</key>
1469  * <array>
1470  *    <dict>
1471  *       <key>attribute-name</key>
1472  *       <string>foo</string>
1473  *       <key>locators</key>
1474  *       <array>
1475  *          <dict>
1476  *             <key>loc-name</key>
1477  *             <string>foo-loc1</string>
1478  *          </dict>
1479  *          <dict>
1480  *             <key>loc-name</key>
1481  *             <string>foo-loc2</string>
1482  *             <key>default</key>
1483  *             <string>foo-loc2-default</string>
1484  *          </dict>
1485  *          ...
1486  *       </array>
1487  *    </dict>
1488  *    ...
1489  * </array>
1490  */
1491 
1492 static void
1493 config_add_attrib_dict(device_t dev)
1494 {
1495 	int i, j;
1496 	const struct cfiattrdata *ci;
1497 	prop_dictionary_t attr_dict, loc_dict;
1498 	prop_array_t attr_array, loc_array;
1499 
1500 	if ((attr_array = prop_array_create()) == NULL)
1501 		return;
1502 
1503 	for (i = 0; ; i++) {
1504 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1505 			break;
1506 		if ((attr_dict = prop_dictionary_create()) == NULL)
1507 			break;
1508 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1509 		    ci->ci_name);
1510 
1511 		/* Create an array of the locator names and defaults */
1512 
1513 		if (ci->ci_loclen != 0 &&
1514 		    (loc_array = prop_array_create()) != NULL) {
1515 			for (j = 0; j < ci->ci_loclen; j++) {
1516 				loc_dict = prop_dictionary_create();
1517 				if (loc_dict == NULL)
1518 					continue;
1519 				prop_dictionary_set_cstring_nocopy(loc_dict,
1520 				    "loc-name", ci->ci_locdesc[j].cld_name);
1521 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1522 					prop_dictionary_set_cstring_nocopy(
1523 					    loc_dict, "default",
1524 					    ci->ci_locdesc[j].cld_defaultstr);
1525 				prop_array_set(loc_array, j, loc_dict);
1526 				prop_object_release(loc_dict);
1527 			}
1528 			prop_dictionary_set_and_rel(attr_dict, "locators",
1529 			    loc_array);
1530 		}
1531 		prop_array_add(attr_array, attr_dict);
1532 		prop_object_release(attr_dict);
1533 	}
1534 	if (i == 0)
1535 		prop_object_release(attr_array);
1536 	else
1537 		prop_dictionary_set_and_rel(dev->dv_properties,
1538 		    "interface-attributes", attr_array);
1539 
1540 	return;
1541 }
1542 
1543 /*
1544  * Attach a found device.
1545  */
1546 device_t
1547 config_attach_loc(device_t parent, cfdata_t cf,
1548 	const int *locs, void *aux, cfprint_t print)
1549 {
1550 	device_t dev;
1551 	struct cftable *ct;
1552 	const char *drvname;
1553 
1554 	dev = config_devalloc(parent, cf, locs);
1555 	if (!dev)
1556 		panic("config_attach: allocation of device softc failed");
1557 
1558 	/* XXX redundant - see below? */
1559 	if (cf->cf_fstate != FSTATE_STAR) {
1560 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1561 		cf->cf_fstate = FSTATE_FOUND;
1562 	}
1563 
1564 	config_devlink(dev);
1565 
1566 	if (config_do_twiddle && cold)
1567 		twiddle();
1568 	else
1569 		aprint_naive("Found ");
1570 	/*
1571 	 * We want the next two printfs for normal, verbose, and quiet,
1572 	 * but not silent (in which case, we're twiddling, instead).
1573 	 */
1574 	if (parent == ROOT) {
1575 		aprint_naive("%s (root)", device_xname(dev));
1576 		aprint_normal("%s (root)", device_xname(dev));
1577 	} else {
1578 		aprint_naive("%s at %s", device_xname(dev),
1579 		    device_xname(parent));
1580 		aprint_normal("%s at %s", device_xname(dev),
1581 		    device_xname(parent));
1582 		if (print)
1583 			(void) (*print)(aux, NULL);
1584 	}
1585 
1586 	/*
1587 	 * Before attaching, clobber any unfound devices that are
1588 	 * otherwise identical.
1589 	 * XXX code above is redundant?
1590 	 */
1591 	drvname = dev->dv_cfdriver->cd_name;
1592 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1593 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1594 			if (STREQ(cf->cf_name, drvname) &&
1595 			    cf->cf_unit == dev->dv_unit) {
1596 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1597 					cf->cf_fstate = FSTATE_FOUND;
1598 			}
1599 		}
1600 	}
1601 	device_register(dev, aux);
1602 
1603 	/* Let userland know */
1604 	devmon_report_device(dev, true);
1605 
1606 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1607 
1608 	if (!device_pmf_is_registered(dev))
1609 		aprint_debug_dev(dev, "WARNING: power management not "
1610 		    "supported\n");
1611 
1612 	config_process_deferred(&deferred_config_queue, dev);
1613 
1614 	device_register_post_config(dev, aux);
1615 	return dev;
1616 }
1617 
1618 device_t
1619 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1620 {
1621 
1622 	return config_attach_loc(parent, cf, NULL, aux, print);
1623 }
1624 
1625 /*
1626  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1627  * way are silently inserted into the device tree, and their children
1628  * attached.
1629  *
1630  * Note that because pseudo-devices are attached silently, any information
1631  * the attach routine wishes to print should be prefixed with the device
1632  * name by the attach routine.
1633  */
1634 device_t
1635 config_attach_pseudo(cfdata_t cf)
1636 {
1637 	device_t dev;
1638 
1639 	dev = config_devalloc(ROOT, cf, NULL);
1640 	if (!dev)
1641 		return NULL;
1642 
1643 	/* XXX mark busy in cfdata */
1644 
1645 	if (cf->cf_fstate != FSTATE_STAR) {
1646 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1647 		cf->cf_fstate = FSTATE_FOUND;
1648 	}
1649 
1650 	config_devlink(dev);
1651 
1652 #if 0	/* XXXJRT not yet */
1653 	device_register(dev, NULL);	/* like a root node */
1654 #endif
1655 
1656 	/* Let userland know */
1657 	devmon_report_device(dev, true);
1658 
1659 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1660 
1661 	config_process_deferred(&deferred_config_queue, dev);
1662 	return dev;
1663 }
1664 
1665 /*
1666  * Caller must hold alldevs.lock.
1667  */
1668 static void
1669 config_collect_garbage(struct devicelist *garbage)
1670 {
1671 	device_t dv;
1672 
1673 	KASSERT(!cpu_intr_p());
1674 	KASSERT(!cpu_softintr_p());
1675 	KASSERT(mutex_owned(&alldevs.lock));
1676 
1677 	while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) {
1678 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
1679 			if (dv->dv_del_gen != 0)
1680 				break;
1681 		}
1682 		if (dv == NULL) {
1683 			alldevs.garbage = false;
1684 			break;
1685 		}
1686 		config_devunlink(dv, garbage);
1687 	}
1688 	KASSERT(mutex_owned(&alldevs.lock));
1689 }
1690 
1691 static void
1692 config_dump_garbage(struct devicelist *garbage)
1693 {
1694 	device_t dv;
1695 
1696 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1697 		TAILQ_REMOVE(garbage, dv, dv_list);
1698 		config_devdelete(dv);
1699 	}
1700 }
1701 
1702 /*
1703  * Detach a device.  Optionally forced (e.g. because of hardware
1704  * removal) and quiet.  Returns zero if successful, non-zero
1705  * (an error code) otherwise.
1706  *
1707  * Note that this code wants to be run from a process context, so
1708  * that the detach can sleep to allow processes which have a device
1709  * open to run and unwind their stacks.
1710  */
1711 int
1712 config_detach(device_t dev, int flags)
1713 {
1714 	struct alldevs_foray af;
1715 	struct cftable *ct;
1716 	cfdata_t cf;
1717 	const struct cfattach *ca;
1718 	struct cfdriver *cd;
1719 	device_t d __diagused;
1720 	int rv = 0;
1721 
1722 	cf = dev->dv_cfdata;
1723 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1724 		cf->cf_fstate == FSTATE_STAR),
1725 	    "config_detach: %s: bad device fstate: %d",
1726 	    device_xname(dev), cf ? cf->cf_fstate : -1);
1727 
1728 	cd = dev->dv_cfdriver;
1729 	KASSERT(cd != NULL);
1730 
1731 	ca = dev->dv_cfattach;
1732 	KASSERT(ca != NULL);
1733 
1734 	mutex_enter(&alldevs.lock);
1735 	if (dev->dv_del_gen != 0) {
1736 		mutex_exit(&alldevs.lock);
1737 #ifdef DIAGNOSTIC
1738 		printf("%s: %s is already detached\n", __func__,
1739 		    device_xname(dev));
1740 #endif /* DIAGNOSTIC */
1741 		return ENOENT;
1742 	}
1743 	alldevs.nwrite++;
1744 	mutex_exit(&alldevs.lock);
1745 
1746 	if (!detachall &&
1747 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1748 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1749 		rv = EOPNOTSUPP;
1750 	} else if (ca->ca_detach != NULL) {
1751 		rv = (*ca->ca_detach)(dev, flags);
1752 	} else
1753 		rv = EOPNOTSUPP;
1754 
1755 	/*
1756 	 * If it was not possible to detach the device, then we either
1757 	 * panic() (for the forced but failed case), or return an error.
1758 	 *
1759 	 * If it was possible to detach the device, ensure that the
1760 	 * device is deactivated.
1761 	 */
1762 	if (rv == 0)
1763 		dev->dv_flags &= ~DVF_ACTIVE;
1764 	else if ((flags & DETACH_FORCE) == 0)
1765 		goto out;
1766 	else {
1767 		panic("config_detach: forced detach of %s failed (%d)",
1768 		    device_xname(dev), rv);
1769 	}
1770 
1771 	/*
1772 	 * The device has now been successfully detached.
1773 	 */
1774 
1775 	/* Let userland know */
1776 	devmon_report_device(dev, false);
1777 
1778 #ifdef DIAGNOSTIC
1779 	/*
1780 	 * Sanity: If you're successfully detached, you should have no
1781 	 * children.  (Note that because children must be attached
1782 	 * after parents, we only need to search the latter part of
1783 	 * the list.)
1784 	 */
1785 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1786 	    d = TAILQ_NEXT(d, dv_list)) {
1787 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1788 			printf("config_detach: detached device %s"
1789 			    " has children %s\n", device_xname(dev),
1790 			    device_xname(d));
1791 			panic("config_detach");
1792 		}
1793 	}
1794 #endif
1795 
1796 	/* notify the parent that the child is gone */
1797 	if (dev->dv_parent) {
1798 		device_t p = dev->dv_parent;
1799 		if (p->dv_cfattach->ca_childdetached)
1800 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1801 	}
1802 
1803 	/*
1804 	 * Mark cfdata to show that the unit can be reused, if possible.
1805 	 */
1806 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1807 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1808 			if (STREQ(cf->cf_name, cd->cd_name)) {
1809 				if (cf->cf_fstate == FSTATE_FOUND &&
1810 				    cf->cf_unit == dev->dv_unit)
1811 					cf->cf_fstate = FSTATE_NOTFOUND;
1812 			}
1813 		}
1814 	}
1815 
1816 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1817 		aprint_normal_dev(dev, "detached\n");
1818 
1819 out:
1820 	config_alldevs_enter(&af);
1821 	KASSERT(alldevs.nwrite != 0);
1822 	--alldevs.nwrite;
1823 	if (rv == 0 && dev->dv_del_gen == 0) {
1824 		if (alldevs.nwrite == 0 && alldevs.nread == 0)
1825 			config_devunlink(dev, &af.af_garbage);
1826 		else {
1827 			dev->dv_del_gen = alldevs.gen;
1828 			alldevs.garbage = true;
1829 		}
1830 	}
1831 	config_alldevs_exit(&af);
1832 
1833 	return rv;
1834 }
1835 
1836 int
1837 config_detach_children(device_t parent, int flags)
1838 {
1839 	device_t dv;
1840 	deviter_t di;
1841 	int error = 0;
1842 
1843 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1844 	     dv = deviter_next(&di)) {
1845 		if (device_parent(dv) != parent)
1846 			continue;
1847 		if ((error = config_detach(dv, flags)) != 0)
1848 			break;
1849 	}
1850 	deviter_release(&di);
1851 	return error;
1852 }
1853 
1854 device_t
1855 shutdown_first(struct shutdown_state *s)
1856 {
1857 	if (!s->initialized) {
1858 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1859 		s->initialized = true;
1860 	}
1861 	return shutdown_next(s);
1862 }
1863 
1864 device_t
1865 shutdown_next(struct shutdown_state *s)
1866 {
1867 	device_t dv;
1868 
1869 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1870 		;
1871 
1872 	if (dv == NULL)
1873 		s->initialized = false;
1874 
1875 	return dv;
1876 }
1877 
1878 bool
1879 config_detach_all(int how)
1880 {
1881 	static struct shutdown_state s;
1882 	device_t curdev;
1883 	bool progress = false;
1884 	int flags;
1885 
1886 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1887 		return false;
1888 
1889 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1890 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1891 	else
1892 		flags = DETACH_SHUTDOWN;
1893 
1894 	for (curdev = shutdown_first(&s); curdev != NULL;
1895 	     curdev = shutdown_next(&s)) {
1896 		aprint_debug(" detaching %s, ", device_xname(curdev));
1897 		if (config_detach(curdev, flags) == 0) {
1898 			progress = true;
1899 			aprint_debug("success.");
1900 		} else
1901 			aprint_debug("failed.");
1902 	}
1903 	return progress;
1904 }
1905 
1906 static bool
1907 device_is_ancestor_of(device_t ancestor, device_t descendant)
1908 {
1909 	device_t dv;
1910 
1911 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1912 		if (device_parent(dv) == ancestor)
1913 			return true;
1914 	}
1915 	return false;
1916 }
1917 
1918 int
1919 config_deactivate(device_t dev)
1920 {
1921 	deviter_t di;
1922 	const struct cfattach *ca;
1923 	device_t descendant;
1924 	int s, rv = 0, oflags;
1925 
1926 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1927 	     descendant != NULL;
1928 	     descendant = deviter_next(&di)) {
1929 		if (dev != descendant &&
1930 		    !device_is_ancestor_of(dev, descendant))
1931 			continue;
1932 
1933 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1934 			continue;
1935 
1936 		ca = descendant->dv_cfattach;
1937 		oflags = descendant->dv_flags;
1938 
1939 		descendant->dv_flags &= ~DVF_ACTIVE;
1940 		if (ca->ca_activate == NULL)
1941 			continue;
1942 		s = splhigh();
1943 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1944 		splx(s);
1945 		if (rv != 0)
1946 			descendant->dv_flags = oflags;
1947 	}
1948 	deviter_release(&di);
1949 	return rv;
1950 }
1951 
1952 /*
1953  * Defer the configuration of the specified device until all
1954  * of its parent's devices have been attached.
1955  */
1956 void
1957 config_defer(device_t dev, void (*func)(device_t))
1958 {
1959 	struct deferred_config *dc;
1960 
1961 	if (dev->dv_parent == NULL)
1962 		panic("config_defer: can't defer config of a root device");
1963 
1964 #ifdef DIAGNOSTIC
1965 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1966 		if (dc->dc_dev == dev)
1967 			panic("config_defer: deferred twice");
1968 	}
1969 #endif
1970 
1971 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1972 	dc->dc_dev = dev;
1973 	dc->dc_func = func;
1974 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1975 	config_pending_incr(dev);
1976 }
1977 
1978 /*
1979  * Defer some autoconfiguration for a device until after interrupts
1980  * are enabled.
1981  */
1982 void
1983 config_interrupts(device_t dev, void (*func)(device_t))
1984 {
1985 	struct deferred_config *dc;
1986 
1987 	/*
1988 	 * If interrupts are enabled, callback now.
1989 	 */
1990 	if (cold == 0) {
1991 		(*func)(dev);
1992 		return;
1993 	}
1994 
1995 #ifdef DIAGNOSTIC
1996 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1997 		if (dc->dc_dev == dev)
1998 			panic("config_interrupts: deferred twice");
1999 	}
2000 #endif
2001 
2002 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2003 	dc->dc_dev = dev;
2004 	dc->dc_func = func;
2005 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2006 	config_pending_incr(dev);
2007 }
2008 
2009 /*
2010  * Defer some autoconfiguration for a device until after root file system
2011  * is mounted (to load firmware etc).
2012  */
2013 void
2014 config_mountroot(device_t dev, void (*func)(device_t))
2015 {
2016 	struct deferred_config *dc;
2017 
2018 	/*
2019 	 * If root file system is mounted, callback now.
2020 	 */
2021 	if (root_is_mounted) {
2022 		(*func)(dev);
2023 		return;
2024 	}
2025 
2026 #ifdef DIAGNOSTIC
2027 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2028 		if (dc->dc_dev == dev)
2029 			panic("%s: deferred twice", __func__);
2030 	}
2031 #endif
2032 
2033 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2034 	dc->dc_dev = dev;
2035 	dc->dc_func = func;
2036 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2037 }
2038 
2039 /*
2040  * Process a deferred configuration queue.
2041  */
2042 static void
2043 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2044 {
2045 	struct deferred_config *dc, *ndc;
2046 
2047 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2048 		ndc = TAILQ_NEXT(dc, dc_queue);
2049 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2050 			TAILQ_REMOVE(queue, dc, dc_queue);
2051 			(*dc->dc_func)(dc->dc_dev);
2052 			config_pending_decr(dc->dc_dev);
2053 			kmem_free(dc, sizeof(*dc));
2054 		}
2055 	}
2056 }
2057 
2058 /*
2059  * Manipulate the config_pending semaphore.
2060  */
2061 void
2062 config_pending_incr(device_t dev)
2063 {
2064 
2065 	mutex_enter(&config_misc_lock);
2066 	config_pending++;
2067 #ifdef DEBUG_AUTOCONF
2068 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2069 #endif
2070 	mutex_exit(&config_misc_lock);
2071 }
2072 
2073 void
2074 config_pending_decr(device_t dev)
2075 {
2076 
2077 	KASSERT(0 < config_pending);
2078 	mutex_enter(&config_misc_lock);
2079 	config_pending--;
2080 #ifdef DEBUG_AUTOCONF
2081 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2082 #endif
2083 	if (config_pending == 0)
2084 		cv_broadcast(&config_misc_cv);
2085 	mutex_exit(&config_misc_lock);
2086 }
2087 
2088 /*
2089  * Register a "finalization" routine.  Finalization routines are
2090  * called iteratively once all real devices have been found during
2091  * autoconfiguration, for as long as any one finalizer has done
2092  * any work.
2093  */
2094 int
2095 config_finalize_register(device_t dev, int (*fn)(device_t))
2096 {
2097 	struct finalize_hook *f;
2098 
2099 	/*
2100 	 * If finalization has already been done, invoke the
2101 	 * callback function now.
2102 	 */
2103 	if (config_finalize_done) {
2104 		while ((*fn)(dev) != 0)
2105 			/* loop */ ;
2106 		return 0;
2107 	}
2108 
2109 	/* Ensure this isn't already on the list. */
2110 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2111 		if (f->f_func == fn && f->f_dev == dev)
2112 			return EEXIST;
2113 	}
2114 
2115 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
2116 	f->f_func = fn;
2117 	f->f_dev = dev;
2118 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2119 
2120 	return 0;
2121 }
2122 
2123 void
2124 config_finalize(void)
2125 {
2126 	struct finalize_hook *f;
2127 	struct pdevinit *pdev;
2128 	extern struct pdevinit pdevinit[];
2129 	int errcnt, rv;
2130 
2131 	/*
2132 	 * Now that device driver threads have been created, wait for
2133 	 * them to finish any deferred autoconfiguration.
2134 	 */
2135 	mutex_enter(&config_misc_lock);
2136 	while (config_pending != 0)
2137 		cv_wait(&config_misc_cv, &config_misc_lock);
2138 	mutex_exit(&config_misc_lock);
2139 
2140 	KERNEL_LOCK(1, NULL);
2141 
2142 	/* Attach pseudo-devices. */
2143 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2144 		(*pdev->pdev_attach)(pdev->pdev_count);
2145 
2146 	/* Run the hooks until none of them does any work. */
2147 	do {
2148 		rv = 0;
2149 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
2150 			rv |= (*f->f_func)(f->f_dev);
2151 	} while (rv != 0);
2152 
2153 	config_finalize_done = 1;
2154 
2155 	/* Now free all the hooks. */
2156 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2157 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2158 		kmem_free(f, sizeof(*f));
2159 	}
2160 
2161 	KERNEL_UNLOCK_ONE(NULL);
2162 
2163 	errcnt = aprint_get_error_count();
2164 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2165 	    (boothowto & AB_VERBOSE) == 0) {
2166 		mutex_enter(&config_misc_lock);
2167 		if (config_do_twiddle) {
2168 			config_do_twiddle = 0;
2169 			printf_nolog(" done.\n");
2170 		}
2171 		mutex_exit(&config_misc_lock);
2172 	}
2173 	if (errcnt != 0) {
2174 		printf("WARNING: %d error%s while detecting hardware; "
2175 		    "check system log.\n", errcnt,
2176 		    errcnt == 1 ? "" : "s");
2177 	}
2178 }
2179 
2180 void
2181 config_twiddle_init(void)
2182 {
2183 
2184 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2185 		config_do_twiddle = 1;
2186 	}
2187 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2188 }
2189 
2190 void
2191 config_twiddle_fn(void *cookie)
2192 {
2193 
2194 	mutex_enter(&config_misc_lock);
2195 	if (config_do_twiddle) {
2196 		twiddle();
2197 		callout_schedule(&config_twiddle_ch, mstohz(100));
2198 	}
2199 	mutex_exit(&config_misc_lock);
2200 }
2201 
2202 static void
2203 config_alldevs_enter(struct alldevs_foray *af)
2204 {
2205 	TAILQ_INIT(&af->af_garbage);
2206 	mutex_enter(&alldevs.lock);
2207 	config_collect_garbage(&af->af_garbage);
2208 }
2209 
2210 static void
2211 config_alldevs_exit(struct alldevs_foray *af)
2212 {
2213 	mutex_exit(&alldevs.lock);
2214 	config_dump_garbage(&af->af_garbage);
2215 }
2216 
2217 /*
2218  * device_lookup:
2219  *
2220  *	Look up a device instance for a given driver.
2221  */
2222 device_t
2223 device_lookup(cfdriver_t cd, int unit)
2224 {
2225 	device_t dv;
2226 
2227 	mutex_enter(&alldevs.lock);
2228 	if (unit < 0 || unit >= cd->cd_ndevs)
2229 		dv = NULL;
2230 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2231 		dv = NULL;
2232 	mutex_exit(&alldevs.lock);
2233 
2234 	return dv;
2235 }
2236 
2237 /*
2238  * device_lookup_private:
2239  *
2240  *	Look up a softc instance for a given driver.
2241  */
2242 void *
2243 device_lookup_private(cfdriver_t cd, int unit)
2244 {
2245 
2246 	return device_private(device_lookup(cd, unit));
2247 }
2248 
2249 /*
2250  * device_find_by_xname:
2251  *
2252  *	Returns the device of the given name or NULL if it doesn't exist.
2253  */
2254 device_t
2255 device_find_by_xname(const char *name)
2256 {
2257 	device_t dv;
2258 	deviter_t di;
2259 
2260 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2261 		if (strcmp(device_xname(dv), name) == 0)
2262 			break;
2263 	}
2264 	deviter_release(&di);
2265 
2266 	return dv;
2267 }
2268 
2269 /*
2270  * device_find_by_driver_unit:
2271  *
2272  *	Returns the device of the given driver name and unit or
2273  *	NULL if it doesn't exist.
2274  */
2275 device_t
2276 device_find_by_driver_unit(const char *name, int unit)
2277 {
2278 	struct cfdriver *cd;
2279 
2280 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2281 		return NULL;
2282 	return device_lookup(cd, unit);
2283 }
2284 
2285 /*
2286  * Power management related functions.
2287  */
2288 
2289 bool
2290 device_pmf_is_registered(device_t dev)
2291 {
2292 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2293 }
2294 
2295 bool
2296 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2297 {
2298 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2299 		return true;
2300 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2301 		return false;
2302 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2303 	    dev->dv_driver_suspend != NULL &&
2304 	    !(*dev->dv_driver_suspend)(dev, qual))
2305 		return false;
2306 
2307 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2308 	return true;
2309 }
2310 
2311 bool
2312 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2313 {
2314 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2315 		return true;
2316 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2317 		return false;
2318 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2319 	    dev->dv_driver_resume != NULL &&
2320 	    !(*dev->dv_driver_resume)(dev, qual))
2321 		return false;
2322 
2323 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2324 	return true;
2325 }
2326 
2327 bool
2328 device_pmf_driver_shutdown(device_t dev, int how)
2329 {
2330 
2331 	if (*dev->dv_driver_shutdown != NULL &&
2332 	    !(*dev->dv_driver_shutdown)(dev, how))
2333 		return false;
2334 	return true;
2335 }
2336 
2337 bool
2338 device_pmf_driver_register(device_t dev,
2339     bool (*suspend)(device_t, const pmf_qual_t *),
2340     bool (*resume)(device_t, const pmf_qual_t *),
2341     bool (*shutdown)(device_t, int))
2342 {
2343 	dev->dv_driver_suspend = suspend;
2344 	dev->dv_driver_resume = resume;
2345 	dev->dv_driver_shutdown = shutdown;
2346 	dev->dv_flags |= DVF_POWER_HANDLERS;
2347 	return true;
2348 }
2349 
2350 static const char *
2351 curlwp_name(void)
2352 {
2353 	if (curlwp->l_name != NULL)
2354 		return curlwp->l_name;
2355 	else
2356 		return curlwp->l_proc->p_comm;
2357 }
2358 
2359 void
2360 device_pmf_driver_deregister(device_t dev)
2361 {
2362 	device_lock_t dvl = device_getlock(dev);
2363 
2364 	dev->dv_driver_suspend = NULL;
2365 	dev->dv_driver_resume = NULL;
2366 
2367 	mutex_enter(&dvl->dvl_mtx);
2368 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2369 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2370 		/* Wake a thread that waits for the lock.  That
2371 		 * thread will fail to acquire the lock, and then
2372 		 * it will wake the next thread that waits for the
2373 		 * lock, or else it will wake us.
2374 		 */
2375 		cv_signal(&dvl->dvl_cv);
2376 		pmflock_debug(dev, __func__, __LINE__);
2377 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2378 		pmflock_debug(dev, __func__, __LINE__);
2379 	}
2380 	mutex_exit(&dvl->dvl_mtx);
2381 }
2382 
2383 bool
2384 device_pmf_driver_child_register(device_t dev)
2385 {
2386 	device_t parent = device_parent(dev);
2387 
2388 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2389 		return true;
2390 	return (*parent->dv_driver_child_register)(dev);
2391 }
2392 
2393 void
2394 device_pmf_driver_set_child_register(device_t dev,
2395     bool (*child_register)(device_t))
2396 {
2397 	dev->dv_driver_child_register = child_register;
2398 }
2399 
2400 static void
2401 pmflock_debug(device_t dev, const char *func, int line)
2402 {
2403 	device_lock_t dvl = device_getlock(dev);
2404 
2405 	aprint_debug_dev(dev,
2406 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2407 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2408 }
2409 
2410 static bool
2411 device_pmf_lock1(device_t dev)
2412 {
2413 	device_lock_t dvl = device_getlock(dev);
2414 
2415 	while (device_pmf_is_registered(dev) &&
2416 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2417 		dvl->dvl_nwait++;
2418 		pmflock_debug(dev, __func__, __LINE__);
2419 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2420 		pmflock_debug(dev, __func__, __LINE__);
2421 		dvl->dvl_nwait--;
2422 	}
2423 	if (!device_pmf_is_registered(dev)) {
2424 		pmflock_debug(dev, __func__, __LINE__);
2425 		/* We could not acquire the lock, but some other thread may
2426 		 * wait for it, also.  Wake that thread.
2427 		 */
2428 		cv_signal(&dvl->dvl_cv);
2429 		return false;
2430 	}
2431 	dvl->dvl_nlock++;
2432 	dvl->dvl_holder = curlwp;
2433 	pmflock_debug(dev, __func__, __LINE__);
2434 	return true;
2435 }
2436 
2437 bool
2438 device_pmf_lock(device_t dev)
2439 {
2440 	bool rc;
2441 	device_lock_t dvl = device_getlock(dev);
2442 
2443 	mutex_enter(&dvl->dvl_mtx);
2444 	rc = device_pmf_lock1(dev);
2445 	mutex_exit(&dvl->dvl_mtx);
2446 
2447 	return rc;
2448 }
2449 
2450 void
2451 device_pmf_unlock(device_t dev)
2452 {
2453 	device_lock_t dvl = device_getlock(dev);
2454 
2455 	KASSERT(dvl->dvl_nlock > 0);
2456 	mutex_enter(&dvl->dvl_mtx);
2457 	if (--dvl->dvl_nlock == 0)
2458 		dvl->dvl_holder = NULL;
2459 	cv_signal(&dvl->dvl_cv);
2460 	pmflock_debug(dev, __func__, __LINE__);
2461 	mutex_exit(&dvl->dvl_mtx);
2462 }
2463 
2464 device_lock_t
2465 device_getlock(device_t dev)
2466 {
2467 	return &dev->dv_lock;
2468 }
2469 
2470 void *
2471 device_pmf_bus_private(device_t dev)
2472 {
2473 	return dev->dv_bus_private;
2474 }
2475 
2476 bool
2477 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2478 {
2479 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2480 		return true;
2481 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2482 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2483 		return false;
2484 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2485 	    dev->dv_bus_suspend != NULL &&
2486 	    !(*dev->dv_bus_suspend)(dev, qual))
2487 		return false;
2488 
2489 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2490 	return true;
2491 }
2492 
2493 bool
2494 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2495 {
2496 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2497 		return true;
2498 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2499 	    dev->dv_bus_resume != NULL &&
2500 	    !(*dev->dv_bus_resume)(dev, qual))
2501 		return false;
2502 
2503 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2504 	return true;
2505 }
2506 
2507 bool
2508 device_pmf_bus_shutdown(device_t dev, int how)
2509 {
2510 
2511 	if (*dev->dv_bus_shutdown != NULL &&
2512 	    !(*dev->dv_bus_shutdown)(dev, how))
2513 		return false;
2514 	return true;
2515 }
2516 
2517 void
2518 device_pmf_bus_register(device_t dev, void *priv,
2519     bool (*suspend)(device_t, const pmf_qual_t *),
2520     bool (*resume)(device_t, const pmf_qual_t *),
2521     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2522 {
2523 	dev->dv_bus_private = priv;
2524 	dev->dv_bus_resume = resume;
2525 	dev->dv_bus_suspend = suspend;
2526 	dev->dv_bus_shutdown = shutdown;
2527 	dev->dv_bus_deregister = deregister;
2528 }
2529 
2530 void
2531 device_pmf_bus_deregister(device_t dev)
2532 {
2533 	if (dev->dv_bus_deregister == NULL)
2534 		return;
2535 	(*dev->dv_bus_deregister)(dev);
2536 	dev->dv_bus_private = NULL;
2537 	dev->dv_bus_suspend = NULL;
2538 	dev->dv_bus_resume = NULL;
2539 	dev->dv_bus_deregister = NULL;
2540 }
2541 
2542 void *
2543 device_pmf_class_private(device_t dev)
2544 {
2545 	return dev->dv_class_private;
2546 }
2547 
2548 bool
2549 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2550 {
2551 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2552 		return true;
2553 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2554 	    dev->dv_class_suspend != NULL &&
2555 	    !(*dev->dv_class_suspend)(dev, qual))
2556 		return false;
2557 
2558 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2559 	return true;
2560 }
2561 
2562 bool
2563 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2564 {
2565 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2566 		return true;
2567 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2568 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2569 		return false;
2570 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2571 	    dev->dv_class_resume != NULL &&
2572 	    !(*dev->dv_class_resume)(dev, qual))
2573 		return false;
2574 
2575 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2576 	return true;
2577 }
2578 
2579 void
2580 device_pmf_class_register(device_t dev, void *priv,
2581     bool (*suspend)(device_t, const pmf_qual_t *),
2582     bool (*resume)(device_t, const pmf_qual_t *),
2583     void (*deregister)(device_t))
2584 {
2585 	dev->dv_class_private = priv;
2586 	dev->dv_class_suspend = suspend;
2587 	dev->dv_class_resume = resume;
2588 	dev->dv_class_deregister = deregister;
2589 }
2590 
2591 void
2592 device_pmf_class_deregister(device_t dev)
2593 {
2594 	if (dev->dv_class_deregister == NULL)
2595 		return;
2596 	(*dev->dv_class_deregister)(dev);
2597 	dev->dv_class_private = NULL;
2598 	dev->dv_class_suspend = NULL;
2599 	dev->dv_class_resume = NULL;
2600 	dev->dv_class_deregister = NULL;
2601 }
2602 
2603 bool
2604 device_active(device_t dev, devactive_t type)
2605 {
2606 	size_t i;
2607 
2608 	if (dev->dv_activity_count == 0)
2609 		return false;
2610 
2611 	for (i = 0; i < dev->dv_activity_count; ++i) {
2612 		if (dev->dv_activity_handlers[i] == NULL)
2613 			break;
2614 		(*dev->dv_activity_handlers[i])(dev, type);
2615 	}
2616 
2617 	return true;
2618 }
2619 
2620 bool
2621 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2622 {
2623 	void (**new_handlers)(device_t, devactive_t);
2624 	void (**old_handlers)(device_t, devactive_t);
2625 	size_t i, old_size, new_size;
2626 	int s;
2627 
2628 	old_handlers = dev->dv_activity_handlers;
2629 	old_size = dev->dv_activity_count;
2630 
2631 	KASSERT(old_size == 0 || old_handlers != NULL);
2632 
2633 	for (i = 0; i < old_size; ++i) {
2634 		KASSERT(old_handlers[i] != handler);
2635 		if (old_handlers[i] == NULL) {
2636 			old_handlers[i] = handler;
2637 			return true;
2638 		}
2639 	}
2640 
2641 	new_size = old_size + 4;
2642 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2643 
2644 	for (i = 0; i < old_size; ++i)
2645 		new_handlers[i] = old_handlers[i];
2646 	new_handlers[old_size] = handler;
2647 	for (i = old_size+1; i < new_size; ++i)
2648 		new_handlers[i] = NULL;
2649 
2650 	s = splhigh();
2651 	dev->dv_activity_count = new_size;
2652 	dev->dv_activity_handlers = new_handlers;
2653 	splx(s);
2654 
2655 	if (old_size > 0)
2656 		kmem_free(old_handlers, sizeof(void * [old_size]));
2657 
2658 	return true;
2659 }
2660 
2661 void
2662 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2663 {
2664 	void (**old_handlers)(device_t, devactive_t);
2665 	size_t i, old_size;
2666 	int s;
2667 
2668 	old_handlers = dev->dv_activity_handlers;
2669 	old_size = dev->dv_activity_count;
2670 
2671 	for (i = 0; i < old_size; ++i) {
2672 		if (old_handlers[i] == handler)
2673 			break;
2674 		if (old_handlers[i] == NULL)
2675 			return; /* XXX panic? */
2676 	}
2677 
2678 	if (i == old_size)
2679 		return; /* XXX panic? */
2680 
2681 	for (; i < old_size - 1; ++i) {
2682 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2683 			continue;
2684 
2685 		if (i == 0) {
2686 			s = splhigh();
2687 			dev->dv_activity_count = 0;
2688 			dev->dv_activity_handlers = NULL;
2689 			splx(s);
2690 			kmem_free(old_handlers, sizeof(void *[old_size]));
2691 		}
2692 		return;
2693 	}
2694 	old_handlers[i] = NULL;
2695 }
2696 
2697 /* Return true iff the device_t `dev' exists at generation `gen'. */
2698 static bool
2699 device_exists_at(device_t dv, devgen_t gen)
2700 {
2701 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2702 	    dv->dv_add_gen <= gen;
2703 }
2704 
2705 static bool
2706 deviter_visits(const deviter_t *di, device_t dv)
2707 {
2708 	return device_exists_at(dv, di->di_gen);
2709 }
2710 
2711 /*
2712  * Device Iteration
2713  *
2714  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2715  *     each device_t's in the device tree.
2716  *
2717  * deviter_init(di, flags): initialize the device iterator `di'
2718  *     to "walk" the device tree.  deviter_next(di) will return
2719  *     the first device_t in the device tree, or NULL if there are
2720  *     no devices.
2721  *
2722  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2723  *     caller intends to modify the device tree by calling
2724  *     config_detach(9) on devices in the order that the iterator
2725  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2726  *     nearest the "root" of the device tree to be returned, first;
2727  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2728  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2729  *     indicating both that deviter_init() should not respect any
2730  *     locks on the device tree, and that deviter_next(di) may run
2731  *     in more than one LWP before the walk has finished.
2732  *
2733  *     Only one DEVITER_F_RW iterator may be in the device tree at
2734  *     once.
2735  *
2736  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2737  *
2738  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2739  *     DEVITER_F_LEAVES_FIRST are used in combination.
2740  *
2741  * deviter_first(di, flags): initialize the device iterator `di'
2742  *     and return the first device_t in the device tree, or NULL
2743  *     if there are no devices.  The statement
2744  *
2745  *         dv = deviter_first(di);
2746  *
2747  *     is shorthand for
2748  *
2749  *         deviter_init(di);
2750  *         dv = deviter_next(di);
2751  *
2752  * deviter_next(di): return the next device_t in the device tree,
2753  *     or NULL if there are no more devices.  deviter_next(di)
2754  *     is undefined if `di' was not initialized with deviter_init() or
2755  *     deviter_first().
2756  *
2757  * deviter_release(di): stops iteration (subsequent calls to
2758  *     deviter_next() will return NULL), releases any locks and
2759  *     resources held by the device iterator.
2760  *
2761  * Device iteration does not return device_t's in any particular
2762  * order.  An iterator will never return the same device_t twice.
2763  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2764  * is called repeatedly on the same `di', it will eventually return
2765  * NULL.  It is ok to attach/detach devices during device iteration.
2766  */
2767 void
2768 deviter_init(deviter_t *di, deviter_flags_t flags)
2769 {
2770 	device_t dv;
2771 
2772 	memset(di, 0, sizeof(*di));
2773 
2774 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2775 		flags |= DEVITER_F_RW;
2776 
2777 	mutex_enter(&alldevs.lock);
2778 	if ((flags & DEVITER_F_RW) != 0)
2779 		alldevs.nwrite++;
2780 	else
2781 		alldevs.nread++;
2782 	di->di_gen = alldevs.gen++;
2783 	di->di_flags = flags;
2784 
2785 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2786 	case DEVITER_F_LEAVES_FIRST:
2787 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2788 			if (!deviter_visits(di, dv))
2789 				continue;
2790 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2791 		}
2792 		break;
2793 	case DEVITER_F_ROOT_FIRST:
2794 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2795 			if (!deviter_visits(di, dv))
2796 				continue;
2797 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2798 		}
2799 		break;
2800 	default:
2801 		break;
2802 	}
2803 
2804 	deviter_reinit(di);
2805 	mutex_exit(&alldevs.lock);
2806 }
2807 
2808 static void
2809 deviter_reinit(deviter_t *di)
2810 {
2811 
2812 	KASSERT(mutex_owned(&alldevs.lock));
2813 	if ((di->di_flags & DEVITER_F_RW) != 0)
2814 		di->di_prev = TAILQ_LAST(&alldevs.list, devicelist);
2815 	else
2816 		di->di_prev = TAILQ_FIRST(&alldevs.list);
2817 }
2818 
2819 device_t
2820 deviter_first(deviter_t *di, deviter_flags_t flags)
2821 {
2822 
2823 	deviter_init(di, flags);
2824 	return deviter_next(di);
2825 }
2826 
2827 static device_t
2828 deviter_next2(deviter_t *di)
2829 {
2830 	device_t dv;
2831 
2832 	KASSERT(mutex_owned(&alldevs.lock));
2833 
2834 	dv = di->di_prev;
2835 
2836 	if (dv == NULL)
2837 		return NULL;
2838 
2839 	if ((di->di_flags & DEVITER_F_RW) != 0)
2840 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2841 	else
2842 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2843 
2844 	return dv;
2845 }
2846 
2847 static device_t
2848 deviter_next1(deviter_t *di)
2849 {
2850 	device_t dv;
2851 
2852 	KASSERT(mutex_owned(&alldevs.lock));
2853 
2854 	do {
2855 		dv = deviter_next2(di);
2856 	} while (dv != NULL && !deviter_visits(di, dv));
2857 
2858 	return dv;
2859 }
2860 
2861 device_t
2862 deviter_next(deviter_t *di)
2863 {
2864 	device_t dv = NULL;
2865 
2866 	mutex_enter(&alldevs.lock);
2867 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2868 	case 0:
2869 		dv = deviter_next1(di);
2870 		break;
2871 	case DEVITER_F_LEAVES_FIRST:
2872 		while (di->di_curdepth >= 0) {
2873 			if ((dv = deviter_next1(di)) == NULL) {
2874 				di->di_curdepth--;
2875 				deviter_reinit(di);
2876 			} else if (dv->dv_depth == di->di_curdepth)
2877 				break;
2878 		}
2879 		break;
2880 	case DEVITER_F_ROOT_FIRST:
2881 		while (di->di_curdepth <= di->di_maxdepth) {
2882 			if ((dv = deviter_next1(di)) == NULL) {
2883 				di->di_curdepth++;
2884 				deviter_reinit(di);
2885 			} else if (dv->dv_depth == di->di_curdepth)
2886 				break;
2887 		}
2888 		break;
2889 	default:
2890 		break;
2891 	}
2892 	mutex_exit(&alldevs.lock);
2893 
2894 	return dv;
2895 }
2896 
2897 void
2898 deviter_release(deviter_t *di)
2899 {
2900 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2901 
2902 	mutex_enter(&alldevs.lock);
2903 	if (rw)
2904 		--alldevs.nwrite;
2905 	else
2906 		--alldevs.nread;
2907 	/* XXX wake a garbage-collection thread */
2908 	mutex_exit(&alldevs.lock);
2909 }
2910 
2911 const char *
2912 cfdata_ifattr(const struct cfdata *cf)
2913 {
2914 	return cf->cf_pspec->cfp_iattr;
2915 }
2916 
2917 bool
2918 ifattr_match(const char *snull, const char *t)
2919 {
2920 	return (snull == NULL) || strcmp(snull, t) == 0;
2921 }
2922 
2923 void
2924 null_childdetached(device_t self, device_t child)
2925 {
2926 	/* do nothing */
2927 }
2928 
2929 static void
2930 sysctl_detach_setup(struct sysctllog **clog)
2931 {
2932 
2933 	sysctl_createv(clog, 0, NULL, NULL,
2934 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2935 		CTLTYPE_BOOL, "detachall",
2936 		SYSCTL_DESCR("Detach all devices at shutdown"),
2937 		NULL, 0, &detachall, 0,
2938 		CTL_KERN, CTL_CREATE, CTL_EOL);
2939 }
2940