1 /* $NetBSD: subr_autoconf.c,v 1.208 2010/06/26 06:43:13 tsutsui Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.208 2010/06/26 06:43:13 tsutsui Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/device.h> 88 #include <sys/disklabel.h> 89 #include <sys/conf.h> 90 #include <sys/kauth.h> 91 #include <sys/malloc.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 111 #include <sys/disk.h> 112 113 #include <machine/limits.h> 114 115 #if defined(__i386__) && defined(_KERNEL_OPT) 116 #include "opt_splash.h" 117 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 118 #include <dev/splash/splash.h> 119 extern struct splash_progress *splash_progress_state; 120 #endif 121 #endif 122 123 /* 124 * Autoconfiguration subroutines. 125 */ 126 127 /* 128 * ioconf.c exports exactly two names: cfdata and cfroots. All system 129 * devices and drivers are found via these tables. 130 */ 131 extern struct cfdata cfdata[]; 132 extern const short cfroots[]; 133 134 /* 135 * List of all cfdriver structures. We use this to detect duplicates 136 * when other cfdrivers are loaded. 137 */ 138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 139 extern struct cfdriver * const cfdriver_list_initial[]; 140 141 /* 142 * Initial list of cfattach's. 143 */ 144 extern const struct cfattachinit cfattachinit[]; 145 146 /* 147 * List of cfdata tables. We always have one such list -- the one 148 * built statically when the kernel was configured. 149 */ 150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 151 static struct cftable initcftable; 152 153 #define ROOT ((device_t)NULL) 154 155 struct matchinfo { 156 cfsubmatch_t fn; 157 struct device *parent; 158 const int *locs; 159 void *aux; 160 struct cfdata *match; 161 int pri; 162 }; 163 164 struct alldevs_foray { 165 int af_s; 166 struct devicelist af_garbage; 167 }; 168 169 static char *number(char *, int); 170 static void mapply(struct matchinfo *, cfdata_t); 171 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 172 static void config_devdelete(device_t); 173 static void config_devunlink(device_t, struct devicelist *); 174 static void config_makeroom(int, struct cfdriver *); 175 static void config_devlink(device_t); 176 static void config_alldevs_unlock(int); 177 static int config_alldevs_lock(void); 178 static void config_alldevs_enter(struct alldevs_foray *); 179 static void config_alldevs_exit(struct alldevs_foray *); 180 181 static void config_collect_garbage(struct devicelist *); 182 static void config_dump_garbage(struct devicelist *); 183 184 static void pmflock_debug(device_t, const char *, int); 185 186 static device_t deviter_next1(deviter_t *); 187 static void deviter_reinit(deviter_t *); 188 189 struct deferred_config { 190 TAILQ_ENTRY(deferred_config) dc_queue; 191 device_t dc_dev; 192 void (*dc_func)(device_t); 193 }; 194 195 TAILQ_HEAD(deferred_config_head, deferred_config); 196 197 struct deferred_config_head deferred_config_queue = 198 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 199 struct deferred_config_head interrupt_config_queue = 200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 201 int interrupt_config_threads = 8; 202 struct deferred_config_head mountroot_config_queue = 203 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 204 int mountroot_config_threads = 2; 205 static bool root_is_mounted = false; 206 207 static void config_process_deferred(struct deferred_config_head *, device_t); 208 209 /* Hooks to finalize configuration once all real devices have been found. */ 210 struct finalize_hook { 211 TAILQ_ENTRY(finalize_hook) f_list; 212 int (*f_func)(device_t); 213 device_t f_dev; 214 }; 215 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 216 TAILQ_HEAD_INITIALIZER(config_finalize_list); 217 static int config_finalize_done; 218 219 /* list of all devices */ 220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 221 static kmutex_t alldevs_mtx; 222 static volatile bool alldevs_garbage = false; 223 static volatile devgen_t alldevs_gen = 1; 224 static volatile int alldevs_nread = 0; 225 static volatile int alldevs_nwrite = 0; 226 227 static int config_pending; /* semaphore for mountroot */ 228 static kmutex_t config_misc_lock; 229 static kcondvar_t config_misc_cv; 230 231 static int detachall = 0; 232 233 #define STREQ(s1, s2) \ 234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 235 236 static bool config_initialized = false; /* config_init() has been called. */ 237 238 static int config_do_twiddle; 239 static callout_t config_twiddle_ch; 240 241 static void sysctl_detach_setup(struct sysctllog **); 242 243 typedef int (*cfdriver_fn)(struct cfdriver *); 244 static int 245 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 246 cfdriver_fn drv_do, cfdriver_fn drv_undo, 247 const char *style, bool dopanic) 248 { 249 void (*pr)(const char *, ...) = dopanic ? panic : printf; 250 int i = 0, error = 0, e2; 251 252 for (i = 0; cfdriverv[i] != NULL; i++) { 253 if ((error = drv_do(cfdriverv[i])) != 0) { 254 pr("configure: `%s' driver %s failed: %d", 255 cfdriverv[i]->cd_name, style, error); 256 goto bad; 257 } 258 } 259 260 KASSERT(error == 0); 261 return 0; 262 263 bad: 264 printf("\n"); 265 for (i--; i >= 0; i--) { 266 e2 = drv_undo(cfdriverv[i]); 267 KASSERT(e2 == 0); 268 } 269 270 return error; 271 } 272 273 typedef int (*cfattach_fn)(const char *, struct cfattach *); 274 static int 275 frob_cfattachvec(const struct cfattachinit *cfattachv, 276 cfattach_fn att_do, cfattach_fn att_undo, 277 const char *style, bool dopanic) 278 { 279 const struct cfattachinit *cfai = NULL; 280 void (*pr)(const char *, ...) = dopanic ? panic : printf; 281 int j = 0, error = 0, e2; 282 283 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 284 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 285 if ((error = att_do(cfai->cfai_name, 286 cfai->cfai_list[j]) != 0)) { 287 pr("configure: attachment `%s' " 288 "of `%s' driver %s failed: %d", 289 cfai->cfai_list[j]->ca_name, 290 cfai->cfai_name, style, error); 291 goto bad; 292 } 293 } 294 } 295 296 KASSERT(error == 0); 297 return 0; 298 299 bad: 300 /* 301 * Rollback in reverse order. dunno if super-important, but 302 * do that anyway. Although the code looks a little like 303 * someone did a little integration (in the math sense). 304 */ 305 printf("\n"); 306 if (cfai) { 307 bool last; 308 309 for (last = false; last == false; ) { 310 if (cfai == &cfattachv[0]) 311 last = true; 312 for (j--; j >= 0; j--) { 313 e2 = att_undo(cfai->cfai_name, 314 cfai->cfai_list[j]); 315 KASSERT(e2 == 0); 316 } 317 if (!last) { 318 cfai--; 319 for (j = 0; cfai->cfai_list[j] != NULL; j++) 320 ; 321 } 322 } 323 } 324 325 return error; 326 } 327 328 /* 329 * Initialize the autoconfiguration data structures. Normally this 330 * is done by configure(), but some platforms need to do this very 331 * early (to e.g. initialize the console). 332 */ 333 void 334 config_init(void) 335 { 336 337 KASSERT(config_initialized == false); 338 339 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM); 340 341 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 342 cv_init(&config_misc_cv, "cfgmisc"); 343 344 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 345 346 frob_cfdrivervec(cfdriver_list_initial, 347 config_cfdriver_attach, NULL, "bootstrap", true); 348 frob_cfattachvec(cfattachinit, 349 config_cfattach_attach, NULL, "bootstrap", true); 350 351 initcftable.ct_cfdata = cfdata; 352 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 353 354 config_initialized = true; 355 } 356 357 /* 358 * Init or fini drivers and attachments. Either all or none 359 * are processed (via rollback). It would be nice if this were 360 * atomic to outside consumers, but with the current state of 361 * locking ... 362 */ 363 int 364 config_init_component(struct cfdriver * const *cfdriverv, 365 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 366 { 367 int error; 368 369 if ((error = frob_cfdrivervec(cfdriverv, 370 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 371 return error; 372 if ((error = frob_cfattachvec(cfattachv, 373 config_cfattach_attach, config_cfattach_detach, 374 "init", false)) != 0) { 375 frob_cfdrivervec(cfdriverv, 376 config_cfdriver_detach, NULL, "init rollback", true); 377 return error; 378 } 379 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 380 frob_cfattachvec(cfattachv, 381 config_cfattach_detach, NULL, "init rollback", true); 382 frob_cfdrivervec(cfdriverv, 383 config_cfdriver_detach, NULL, "init rollback", true); 384 return error; 385 } 386 387 return 0; 388 } 389 390 int 391 config_fini_component(struct cfdriver * const *cfdriverv, 392 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 393 { 394 int error; 395 396 if ((error = config_cfdata_detach(cfdatav)) != 0) 397 return error; 398 if ((error = frob_cfattachvec(cfattachv, 399 config_cfattach_detach, config_cfattach_attach, 400 "fini", false)) != 0) { 401 if (config_cfdata_attach(cfdatav, 0) != 0) 402 panic("config_cfdata fini rollback failed"); 403 return error; 404 } 405 if ((error = frob_cfdrivervec(cfdriverv, 406 config_cfdriver_detach, config_cfdriver_attach, 407 "fini", false)) != 0) { 408 frob_cfattachvec(cfattachv, 409 config_cfattach_attach, NULL, "fini rollback", true); 410 if (config_cfdata_attach(cfdatav, 0) != 0) 411 panic("config_cfdata fini rollback failed"); 412 return error; 413 } 414 415 return 0; 416 } 417 418 void 419 config_init_mi(void) 420 { 421 422 if (!config_initialized) 423 config_init(); 424 425 sysctl_detach_setup(NULL); 426 } 427 428 void 429 config_deferred(device_t dev) 430 { 431 config_process_deferred(&deferred_config_queue, dev); 432 config_process_deferred(&interrupt_config_queue, dev); 433 config_process_deferred(&mountroot_config_queue, dev); 434 } 435 436 static void 437 config_interrupts_thread(void *cookie) 438 { 439 struct deferred_config *dc; 440 441 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 442 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 443 (*dc->dc_func)(dc->dc_dev); 444 kmem_free(dc, sizeof(*dc)); 445 config_pending_decr(); 446 } 447 kthread_exit(0); 448 } 449 450 void 451 config_create_interruptthreads() 452 { 453 int i; 454 455 for (i = 0; i < interrupt_config_threads; i++) { 456 (void)kthread_create(PRI_NONE, 0, NULL, 457 config_interrupts_thread, NULL, NULL, "config"); 458 } 459 } 460 461 static void 462 config_mountroot_thread(void *cookie) 463 { 464 struct deferred_config *dc; 465 466 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 467 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 468 (*dc->dc_func)(dc->dc_dev); 469 kmem_free(dc, sizeof(*dc)); 470 } 471 kthread_exit(0); 472 } 473 474 void 475 config_create_mountrootthreads() 476 { 477 int i; 478 479 if (!root_is_mounted) 480 root_is_mounted = true; 481 482 for (i = 0; i < mountroot_config_threads; i++) { 483 (void)kthread_create(PRI_NONE, 0, NULL, 484 config_mountroot_thread, NULL, NULL, "config"); 485 } 486 } 487 488 /* 489 * Announce device attach/detach to userland listeners. 490 */ 491 static void 492 devmon_report_device(device_t dev, bool isattach) 493 { 494 #if NDRVCTL > 0 495 prop_dictionary_t ev; 496 const char *parent; 497 const char *what; 498 device_t pdev = device_parent(dev); 499 500 ev = prop_dictionary_create(); 501 if (ev == NULL) 502 return; 503 504 what = (isattach ? "device-attach" : "device-detach"); 505 parent = (pdev == NULL ? "root" : device_xname(pdev)); 506 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 507 !prop_dictionary_set_cstring(ev, "parent", parent)) { 508 prop_object_release(ev); 509 return; 510 } 511 512 devmon_insert(what, ev); 513 #endif 514 } 515 516 /* 517 * Add a cfdriver to the system. 518 */ 519 int 520 config_cfdriver_attach(struct cfdriver *cd) 521 { 522 struct cfdriver *lcd; 523 524 /* Make sure this driver isn't already in the system. */ 525 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 526 if (STREQ(lcd->cd_name, cd->cd_name)) 527 return EEXIST; 528 } 529 530 LIST_INIT(&cd->cd_attach); 531 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 532 533 return 0; 534 } 535 536 /* 537 * Remove a cfdriver from the system. 538 */ 539 int 540 config_cfdriver_detach(struct cfdriver *cd) 541 { 542 struct alldevs_foray af; 543 int i, rc = 0; 544 545 config_alldevs_enter(&af); 546 /* Make sure there are no active instances. */ 547 for (i = 0; i < cd->cd_ndevs; i++) { 548 if (cd->cd_devs[i] != NULL) { 549 rc = EBUSY; 550 break; 551 } 552 } 553 config_alldevs_exit(&af); 554 555 if (rc != 0) 556 return rc; 557 558 /* ...and no attachments loaded. */ 559 if (LIST_EMPTY(&cd->cd_attach) == 0) 560 return EBUSY; 561 562 LIST_REMOVE(cd, cd_list); 563 564 KASSERT(cd->cd_devs == NULL); 565 566 return 0; 567 } 568 569 /* 570 * Look up a cfdriver by name. 571 */ 572 struct cfdriver * 573 config_cfdriver_lookup(const char *name) 574 { 575 struct cfdriver *cd; 576 577 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 578 if (STREQ(cd->cd_name, name)) 579 return cd; 580 } 581 582 return NULL; 583 } 584 585 /* 586 * Add a cfattach to the specified driver. 587 */ 588 int 589 config_cfattach_attach(const char *driver, struct cfattach *ca) 590 { 591 struct cfattach *lca; 592 struct cfdriver *cd; 593 594 cd = config_cfdriver_lookup(driver); 595 if (cd == NULL) 596 return ESRCH; 597 598 /* Make sure this attachment isn't already on this driver. */ 599 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 600 if (STREQ(lca->ca_name, ca->ca_name)) 601 return EEXIST; 602 } 603 604 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 605 606 return 0; 607 } 608 609 /* 610 * Remove a cfattach from the specified driver. 611 */ 612 int 613 config_cfattach_detach(const char *driver, struct cfattach *ca) 614 { 615 struct alldevs_foray af; 616 struct cfdriver *cd; 617 device_t dev; 618 int i, rc = 0; 619 620 cd = config_cfdriver_lookup(driver); 621 if (cd == NULL) 622 return ESRCH; 623 624 config_alldevs_enter(&af); 625 /* Make sure there are no active instances. */ 626 for (i = 0; i < cd->cd_ndevs; i++) { 627 if ((dev = cd->cd_devs[i]) == NULL) 628 continue; 629 if (dev->dv_cfattach == ca) { 630 rc = EBUSY; 631 break; 632 } 633 } 634 config_alldevs_exit(&af); 635 636 if (rc != 0) 637 return rc; 638 639 LIST_REMOVE(ca, ca_list); 640 641 return 0; 642 } 643 644 /* 645 * Look up a cfattach by name. 646 */ 647 static struct cfattach * 648 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 649 { 650 struct cfattach *ca; 651 652 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 653 if (STREQ(ca->ca_name, atname)) 654 return ca; 655 } 656 657 return NULL; 658 } 659 660 /* 661 * Look up a cfattach by driver/attachment name. 662 */ 663 struct cfattach * 664 config_cfattach_lookup(const char *name, const char *atname) 665 { 666 struct cfdriver *cd; 667 668 cd = config_cfdriver_lookup(name); 669 if (cd == NULL) 670 return NULL; 671 672 return config_cfattach_lookup_cd(cd, atname); 673 } 674 675 /* 676 * Apply the matching function and choose the best. This is used 677 * a few times and we want to keep the code small. 678 */ 679 static void 680 mapply(struct matchinfo *m, cfdata_t cf) 681 { 682 int pri; 683 684 if (m->fn != NULL) { 685 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 686 } else { 687 pri = config_match(m->parent, cf, m->aux); 688 } 689 if (pri > m->pri) { 690 m->match = cf; 691 m->pri = pri; 692 } 693 } 694 695 int 696 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 697 { 698 const struct cfiattrdata *ci; 699 const struct cflocdesc *cl; 700 int nlocs, i; 701 702 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 703 KASSERT(ci); 704 nlocs = ci->ci_loclen; 705 KASSERT(!nlocs || locs); 706 for (i = 0; i < nlocs; i++) { 707 cl = &ci->ci_locdesc[i]; 708 /* !cld_defaultstr means no default value */ 709 if ((!(cl->cld_defaultstr) 710 || (cf->cf_loc[i] != cl->cld_default)) 711 && cf->cf_loc[i] != locs[i]) 712 return 0; 713 } 714 715 return config_match(parent, cf, aux); 716 } 717 718 /* 719 * Helper function: check whether the driver supports the interface attribute 720 * and return its descriptor structure. 721 */ 722 static const struct cfiattrdata * 723 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 724 { 725 const struct cfiattrdata * const *cpp; 726 727 if (cd->cd_attrs == NULL) 728 return 0; 729 730 for (cpp = cd->cd_attrs; *cpp; cpp++) { 731 if (STREQ((*cpp)->ci_name, ia)) { 732 /* Match. */ 733 return *cpp; 734 } 735 } 736 return 0; 737 } 738 739 /* 740 * Lookup an interface attribute description by name. 741 * If the driver is given, consider only its supported attributes. 742 */ 743 const struct cfiattrdata * 744 cfiattr_lookup(const char *name, const struct cfdriver *cd) 745 { 746 const struct cfdriver *d; 747 const struct cfiattrdata *ia; 748 749 if (cd) 750 return cfdriver_get_iattr(cd, name); 751 752 LIST_FOREACH(d, &allcfdrivers, cd_list) { 753 ia = cfdriver_get_iattr(d, name); 754 if (ia) 755 return ia; 756 } 757 return 0; 758 } 759 760 /* 761 * Determine if `parent' is a potential parent for a device spec based 762 * on `cfp'. 763 */ 764 static int 765 cfparent_match(const device_t parent, const struct cfparent *cfp) 766 { 767 struct cfdriver *pcd; 768 769 /* We don't match root nodes here. */ 770 if (cfp == NULL) 771 return 0; 772 773 pcd = parent->dv_cfdriver; 774 KASSERT(pcd != NULL); 775 776 /* 777 * First, ensure this parent has the correct interface 778 * attribute. 779 */ 780 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 781 return 0; 782 783 /* 784 * If no specific parent device instance was specified (i.e. 785 * we're attaching to the attribute only), we're done! 786 */ 787 if (cfp->cfp_parent == NULL) 788 return 1; 789 790 /* 791 * Check the parent device's name. 792 */ 793 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 794 return 0; /* not the same parent */ 795 796 /* 797 * Make sure the unit number matches. 798 */ 799 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 800 cfp->cfp_unit == parent->dv_unit) 801 return 1; 802 803 /* Unit numbers don't match. */ 804 return 0; 805 } 806 807 /* 808 * Helper for config_cfdata_attach(): check all devices whether it could be 809 * parent any attachment in the config data table passed, and rescan. 810 */ 811 static void 812 rescan_with_cfdata(const struct cfdata *cf) 813 { 814 device_t d; 815 const struct cfdata *cf1; 816 deviter_t di; 817 818 819 /* 820 * "alldevs" is likely longer than a modules's cfdata, so make it 821 * the outer loop. 822 */ 823 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 824 825 if (!(d->dv_cfattach->ca_rescan)) 826 continue; 827 828 for (cf1 = cf; cf1->cf_name; cf1++) { 829 830 if (!cfparent_match(d, cf1->cf_pspec)) 831 continue; 832 833 (*d->dv_cfattach->ca_rescan)(d, 834 cfdata_ifattr(cf1), cf1->cf_loc); 835 } 836 } 837 deviter_release(&di); 838 } 839 840 /* 841 * Attach a supplemental config data table and rescan potential 842 * parent devices if required. 843 */ 844 int 845 config_cfdata_attach(cfdata_t cf, int scannow) 846 { 847 struct cftable *ct; 848 849 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 850 ct->ct_cfdata = cf; 851 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 852 853 if (scannow) 854 rescan_with_cfdata(cf); 855 856 return 0; 857 } 858 859 /* 860 * Helper for config_cfdata_detach: check whether a device is 861 * found through any attachment in the config data table. 862 */ 863 static int 864 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 865 { 866 const struct cfdata *cf1; 867 868 for (cf1 = cf; cf1->cf_name; cf1++) 869 if (d->dv_cfdata == cf1) 870 return 1; 871 872 return 0; 873 } 874 875 /* 876 * Detach a supplemental config data table. Detach all devices found 877 * through that table (and thus keeping references to it) before. 878 */ 879 int 880 config_cfdata_detach(cfdata_t cf) 881 { 882 device_t d; 883 int error = 0; 884 struct cftable *ct; 885 deviter_t di; 886 887 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 888 d = deviter_next(&di)) { 889 if (!dev_in_cfdata(d, cf)) 890 continue; 891 if ((error = config_detach(d, 0)) != 0) 892 break; 893 } 894 deviter_release(&di); 895 if (error) { 896 aprint_error_dev(d, "unable to detach instance\n"); 897 return error; 898 } 899 900 TAILQ_FOREACH(ct, &allcftables, ct_list) { 901 if (ct->ct_cfdata == cf) { 902 TAILQ_REMOVE(&allcftables, ct, ct_list); 903 kmem_free(ct, sizeof(*ct)); 904 return 0; 905 } 906 } 907 908 /* not found -- shouldn't happen */ 909 return EINVAL; 910 } 911 912 /* 913 * Invoke the "match" routine for a cfdata entry on behalf of 914 * an external caller, usually a "submatch" routine. 915 */ 916 int 917 config_match(device_t parent, cfdata_t cf, void *aux) 918 { 919 struct cfattach *ca; 920 921 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 922 if (ca == NULL) { 923 /* No attachment for this entry, oh well. */ 924 return 0; 925 } 926 927 return (*ca->ca_match)(parent, cf, aux); 928 } 929 930 /* 931 * Iterate over all potential children of some device, calling the given 932 * function (default being the child's match function) for each one. 933 * Nonzero returns are matches; the highest value returned is considered 934 * the best match. Return the `found child' if we got a match, or NULL 935 * otherwise. The `aux' pointer is simply passed on through. 936 * 937 * Note that this function is designed so that it can be used to apply 938 * an arbitrary function to all potential children (its return value 939 * can be ignored). 940 */ 941 cfdata_t 942 config_search_loc(cfsubmatch_t fn, device_t parent, 943 const char *ifattr, const int *locs, void *aux) 944 { 945 struct cftable *ct; 946 cfdata_t cf; 947 struct matchinfo m; 948 949 KASSERT(config_initialized); 950 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 951 952 m.fn = fn; 953 m.parent = parent; 954 m.locs = locs; 955 m.aux = aux; 956 m.match = NULL; 957 m.pri = 0; 958 959 TAILQ_FOREACH(ct, &allcftables, ct_list) { 960 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 961 962 /* We don't match root nodes here. */ 963 if (!cf->cf_pspec) 964 continue; 965 966 /* 967 * Skip cf if no longer eligible, otherwise scan 968 * through parents for one matching `parent', and 969 * try match function. 970 */ 971 if (cf->cf_fstate == FSTATE_FOUND) 972 continue; 973 if (cf->cf_fstate == FSTATE_DNOTFOUND || 974 cf->cf_fstate == FSTATE_DSTAR) 975 continue; 976 977 /* 978 * If an interface attribute was specified, 979 * consider only children which attach to 980 * that attribute. 981 */ 982 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 983 continue; 984 985 if (cfparent_match(parent, cf->cf_pspec)) 986 mapply(&m, cf); 987 } 988 } 989 return m.match; 990 } 991 992 cfdata_t 993 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 994 void *aux) 995 { 996 997 return config_search_loc(fn, parent, ifattr, NULL, aux); 998 } 999 1000 /* 1001 * Find the given root device. 1002 * This is much like config_search, but there is no parent. 1003 * Don't bother with multiple cfdata tables; the root node 1004 * must always be in the initial table. 1005 */ 1006 cfdata_t 1007 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1008 { 1009 cfdata_t cf; 1010 const short *p; 1011 struct matchinfo m; 1012 1013 m.fn = fn; 1014 m.parent = ROOT; 1015 m.aux = aux; 1016 m.match = NULL; 1017 m.pri = 0; 1018 m.locs = 0; 1019 /* 1020 * Look at root entries for matching name. We do not bother 1021 * with found-state here since only one root should ever be 1022 * searched (and it must be done first). 1023 */ 1024 for (p = cfroots; *p >= 0; p++) { 1025 cf = &cfdata[*p]; 1026 if (strcmp(cf->cf_name, rootname) == 0) 1027 mapply(&m, cf); 1028 } 1029 return m.match; 1030 } 1031 1032 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1033 1034 /* 1035 * The given `aux' argument describes a device that has been found 1036 * on the given parent, but not necessarily configured. Locate the 1037 * configuration data for that device (using the submatch function 1038 * provided, or using candidates' cd_match configuration driver 1039 * functions) and attach it, and return true. If the device was 1040 * not configured, call the given `print' function and return 0. 1041 */ 1042 device_t 1043 config_found_sm_loc(device_t parent, 1044 const char *ifattr, const int *locs, void *aux, 1045 cfprint_t print, cfsubmatch_t submatch) 1046 { 1047 cfdata_t cf; 1048 1049 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1050 if (splash_progress_state) 1051 splash_progress_update(splash_progress_state); 1052 #endif 1053 1054 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1055 return(config_attach_loc(parent, cf, locs, aux, print)); 1056 if (print) { 1057 if (config_do_twiddle && cold) 1058 twiddle(); 1059 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1060 } 1061 1062 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1063 if (splash_progress_state) 1064 splash_progress_update(splash_progress_state); 1065 #endif 1066 1067 return NULL; 1068 } 1069 1070 device_t 1071 config_found_ia(device_t parent, const char *ifattr, void *aux, 1072 cfprint_t print) 1073 { 1074 1075 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1076 } 1077 1078 device_t 1079 config_found(device_t parent, void *aux, cfprint_t print) 1080 { 1081 1082 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1083 } 1084 1085 /* 1086 * As above, but for root devices. 1087 */ 1088 device_t 1089 config_rootfound(const char *rootname, void *aux) 1090 { 1091 cfdata_t cf; 1092 1093 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 1094 return config_attach(ROOT, cf, aux, (cfprint_t)NULL); 1095 aprint_error("root device %s not configured\n", rootname); 1096 return NULL; 1097 } 1098 1099 /* just like sprintf(buf, "%d") except that it works from the end */ 1100 static char * 1101 number(char *ep, int n) 1102 { 1103 1104 *--ep = 0; 1105 while (n >= 10) { 1106 *--ep = (n % 10) + '0'; 1107 n /= 10; 1108 } 1109 *--ep = n + '0'; 1110 return ep; 1111 } 1112 1113 /* 1114 * Expand the size of the cd_devs array if necessary. 1115 * 1116 * The caller must hold alldevs_mtx. config_makeroom() may release and 1117 * re-acquire alldevs_mtx, so callers should re-check conditions such 1118 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1119 * returns. 1120 */ 1121 static void 1122 config_makeroom(int n, struct cfdriver *cd) 1123 { 1124 int old, new; 1125 device_t *osp, *nsp; 1126 1127 alldevs_nwrite++; 1128 1129 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new) 1130 ; 1131 1132 while (n >= cd->cd_ndevs) { 1133 /* 1134 * Need to expand the array. 1135 */ 1136 old = cd->cd_ndevs; 1137 osp = cd->cd_devs; 1138 1139 /* Release alldevs_mtx around allocation, which may 1140 * sleep. 1141 */ 1142 mutex_exit(&alldevs_mtx); 1143 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP); 1144 if (nsp == NULL) 1145 panic("%s: could not expand cd_devs", __func__); 1146 mutex_enter(&alldevs_mtx); 1147 1148 /* If another thread moved the array while we did 1149 * not hold alldevs_mtx, try again. 1150 */ 1151 if (cd->cd_devs != osp) { 1152 mutex_exit(&alldevs_mtx); 1153 kmem_free(nsp, sizeof(device_t[new])); 1154 mutex_enter(&alldevs_mtx); 1155 continue; 1156 } 1157 1158 memset(nsp + old, 0, sizeof(device_t[new - old])); 1159 if (old != 0) 1160 memcpy(nsp, cd->cd_devs, sizeof(device_t[old])); 1161 1162 cd->cd_ndevs = new; 1163 cd->cd_devs = nsp; 1164 if (old != 0) { 1165 mutex_exit(&alldevs_mtx); 1166 kmem_free(osp, sizeof(device_t[old])); 1167 mutex_enter(&alldevs_mtx); 1168 } 1169 } 1170 alldevs_nwrite--; 1171 } 1172 1173 /* 1174 * Put dev into the devices list. 1175 */ 1176 static void 1177 config_devlink(device_t dev) 1178 { 1179 int s; 1180 1181 s = config_alldevs_lock(); 1182 1183 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1184 1185 dev->dv_add_gen = alldevs_gen; 1186 /* It is safe to add a device to the tail of the list while 1187 * readers and writers are in the list. 1188 */ 1189 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1190 config_alldevs_unlock(s); 1191 } 1192 1193 static void 1194 config_devfree(device_t dev) 1195 { 1196 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1197 1198 if (dev->dv_cfattach->ca_devsize > 0) 1199 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1200 if (priv) 1201 kmem_free(dev, sizeof(*dev)); 1202 } 1203 1204 /* 1205 * Caller must hold alldevs_mtx. 1206 */ 1207 static void 1208 config_devunlink(device_t dev, struct devicelist *garbage) 1209 { 1210 struct device_garbage *dg = &dev->dv_garbage; 1211 cfdriver_t cd = device_cfdriver(dev); 1212 int i; 1213 1214 KASSERT(mutex_owned(&alldevs_mtx)); 1215 1216 /* Unlink from device list. Link to garbage list. */ 1217 TAILQ_REMOVE(&alldevs, dev, dv_list); 1218 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1219 1220 /* Remove from cfdriver's array. */ 1221 cd->cd_devs[dev->dv_unit] = NULL; 1222 1223 /* 1224 * If the device now has no units in use, unlink its softc array. 1225 */ 1226 for (i = 0; i < cd->cd_ndevs; i++) { 1227 if (cd->cd_devs[i] != NULL) 1228 break; 1229 } 1230 /* Nothing found. Unlink, now. Deallocate, later. */ 1231 if (i == cd->cd_ndevs) { 1232 dg->dg_ndevs = cd->cd_ndevs; 1233 dg->dg_devs = cd->cd_devs; 1234 cd->cd_devs = NULL; 1235 cd->cd_ndevs = 0; 1236 } 1237 } 1238 1239 static void 1240 config_devdelete(device_t dev) 1241 { 1242 struct device_garbage *dg = &dev->dv_garbage; 1243 device_lock_t dvl = device_getlock(dev); 1244 1245 if (dg->dg_devs != NULL) 1246 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1247 1248 cv_destroy(&dvl->dvl_cv); 1249 mutex_destroy(&dvl->dvl_mtx); 1250 1251 KASSERT(dev->dv_properties != NULL); 1252 prop_object_release(dev->dv_properties); 1253 1254 if (dev->dv_activity_handlers) 1255 panic("%s with registered handlers", __func__); 1256 1257 if (dev->dv_locators) { 1258 size_t amount = *--dev->dv_locators; 1259 kmem_free(dev->dv_locators, amount); 1260 } 1261 1262 config_devfree(dev); 1263 } 1264 1265 static int 1266 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1267 { 1268 int unit; 1269 1270 if (cf->cf_fstate == FSTATE_STAR) { 1271 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1272 if (cd->cd_devs[unit] == NULL) 1273 break; 1274 /* 1275 * unit is now the unit of the first NULL device pointer, 1276 * or max(cd->cd_ndevs,cf->cf_unit). 1277 */ 1278 } else { 1279 unit = cf->cf_unit; 1280 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1281 unit = -1; 1282 } 1283 return unit; 1284 } 1285 1286 static int 1287 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1288 { 1289 struct alldevs_foray af; 1290 int unit; 1291 1292 config_alldevs_enter(&af); 1293 for (;;) { 1294 unit = config_unit_nextfree(cd, cf); 1295 if (unit == -1) 1296 break; 1297 if (unit < cd->cd_ndevs) { 1298 cd->cd_devs[unit] = dev; 1299 dev->dv_unit = unit; 1300 break; 1301 } 1302 config_makeroom(unit, cd); 1303 } 1304 config_alldevs_exit(&af); 1305 1306 return unit; 1307 } 1308 1309 static device_t 1310 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1311 { 1312 cfdriver_t cd; 1313 cfattach_t ca; 1314 size_t lname, lunit; 1315 const char *xunit; 1316 int myunit; 1317 char num[10]; 1318 device_t dev; 1319 void *dev_private; 1320 const struct cfiattrdata *ia; 1321 device_lock_t dvl; 1322 1323 cd = config_cfdriver_lookup(cf->cf_name); 1324 if (cd == NULL) 1325 return NULL; 1326 1327 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1328 if (ca == NULL) 1329 return NULL; 1330 1331 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1332 ca->ca_devsize < sizeof(struct device)) 1333 panic("config_devalloc: %s", cf->cf_atname); 1334 1335 /* get memory for all device vars */ 1336 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1337 if (ca->ca_devsize > 0) { 1338 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1339 if (dev_private == NULL) 1340 panic("config_devalloc: memory allocation for device softc failed"); 1341 } else { 1342 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1343 dev_private = NULL; 1344 } 1345 1346 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1347 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1348 } else { 1349 dev = dev_private; 1350 } 1351 if (dev == NULL) 1352 panic("config_devalloc: memory allocation for device_t failed"); 1353 1354 dev->dv_class = cd->cd_class; 1355 dev->dv_cfdata = cf; 1356 dev->dv_cfdriver = cd; 1357 dev->dv_cfattach = ca; 1358 dev->dv_activity_count = 0; 1359 dev->dv_activity_handlers = NULL; 1360 dev->dv_private = dev_private; 1361 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1362 1363 myunit = config_unit_alloc(dev, cd, cf); 1364 if (myunit == -1) { 1365 config_devfree(dev); 1366 return NULL; 1367 } 1368 1369 /* compute length of name and decimal expansion of unit number */ 1370 lname = strlen(cd->cd_name); 1371 xunit = number(&num[sizeof(num)], myunit); 1372 lunit = &num[sizeof(num)] - xunit; 1373 if (lname + lunit > sizeof(dev->dv_xname)) 1374 panic("config_devalloc: device name too long"); 1375 1376 dvl = device_getlock(dev); 1377 1378 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1379 cv_init(&dvl->dvl_cv, "pmfsusp"); 1380 1381 memcpy(dev->dv_xname, cd->cd_name, lname); 1382 memcpy(dev->dv_xname + lname, xunit, lunit); 1383 dev->dv_parent = parent; 1384 if (parent != NULL) 1385 dev->dv_depth = parent->dv_depth + 1; 1386 else 1387 dev->dv_depth = 0; 1388 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1389 if (locs) { 1390 KASSERT(parent); /* no locators at root */ 1391 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1392 dev->dv_locators = 1393 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1394 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1395 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1396 } 1397 dev->dv_properties = prop_dictionary_create(); 1398 KASSERT(dev->dv_properties != NULL); 1399 1400 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1401 "device-driver", dev->dv_cfdriver->cd_name); 1402 prop_dictionary_set_uint16(dev->dv_properties, 1403 "device-unit", dev->dv_unit); 1404 1405 return dev; 1406 } 1407 1408 /* 1409 * Attach a found device. 1410 */ 1411 device_t 1412 config_attach_loc(device_t parent, cfdata_t cf, 1413 const int *locs, void *aux, cfprint_t print) 1414 { 1415 device_t dev; 1416 struct cftable *ct; 1417 const char *drvname; 1418 1419 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1420 if (splash_progress_state) 1421 splash_progress_update(splash_progress_state); 1422 #endif 1423 1424 dev = config_devalloc(parent, cf, locs); 1425 if (!dev) 1426 panic("config_attach: allocation of device softc failed"); 1427 1428 /* XXX redundant - see below? */ 1429 if (cf->cf_fstate != FSTATE_STAR) { 1430 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1431 cf->cf_fstate = FSTATE_FOUND; 1432 } 1433 1434 config_devlink(dev); 1435 1436 if (config_do_twiddle && cold) 1437 twiddle(); 1438 else 1439 aprint_naive("Found "); 1440 /* 1441 * We want the next two printfs for normal, verbose, and quiet, 1442 * but not silent (in which case, we're twiddling, instead). 1443 */ 1444 if (parent == ROOT) { 1445 aprint_naive("%s (root)", device_xname(dev)); 1446 aprint_normal("%s (root)", device_xname(dev)); 1447 } else { 1448 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1449 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1450 if (print) 1451 (void) (*print)(aux, NULL); 1452 } 1453 1454 /* 1455 * Before attaching, clobber any unfound devices that are 1456 * otherwise identical. 1457 * XXX code above is redundant? 1458 */ 1459 drvname = dev->dv_cfdriver->cd_name; 1460 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1461 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1462 if (STREQ(cf->cf_name, drvname) && 1463 cf->cf_unit == dev->dv_unit) { 1464 if (cf->cf_fstate == FSTATE_NOTFOUND) 1465 cf->cf_fstate = FSTATE_FOUND; 1466 } 1467 } 1468 } 1469 #ifdef __HAVE_DEVICE_REGISTER 1470 device_register(dev, aux); 1471 #endif 1472 1473 /* Let userland know */ 1474 devmon_report_device(dev, true); 1475 1476 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1477 if (splash_progress_state) 1478 splash_progress_update(splash_progress_state); 1479 #endif 1480 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1481 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1482 if (splash_progress_state) 1483 splash_progress_update(splash_progress_state); 1484 #endif 1485 1486 if (!device_pmf_is_registered(dev)) 1487 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1488 1489 config_process_deferred(&deferred_config_queue, dev); 1490 1491 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG 1492 device_register_post_config(dev, aux); 1493 #endif 1494 return dev; 1495 } 1496 1497 device_t 1498 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1499 { 1500 1501 return config_attach_loc(parent, cf, NULL, aux, print); 1502 } 1503 1504 /* 1505 * As above, but for pseudo-devices. Pseudo-devices attached in this 1506 * way are silently inserted into the device tree, and their children 1507 * attached. 1508 * 1509 * Note that because pseudo-devices are attached silently, any information 1510 * the attach routine wishes to print should be prefixed with the device 1511 * name by the attach routine. 1512 */ 1513 device_t 1514 config_attach_pseudo(cfdata_t cf) 1515 { 1516 device_t dev; 1517 1518 dev = config_devalloc(ROOT, cf, NULL); 1519 if (!dev) 1520 return NULL; 1521 1522 /* XXX mark busy in cfdata */ 1523 1524 if (cf->cf_fstate != FSTATE_STAR) { 1525 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1526 cf->cf_fstate = FSTATE_FOUND; 1527 } 1528 1529 config_devlink(dev); 1530 1531 #if 0 /* XXXJRT not yet */ 1532 #ifdef __HAVE_DEVICE_REGISTER 1533 device_register(dev, NULL); /* like a root node */ 1534 #endif 1535 #endif 1536 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1537 config_process_deferred(&deferred_config_queue, dev); 1538 return dev; 1539 } 1540 1541 /* 1542 * Caller must hold alldevs_mtx. 1543 */ 1544 static void 1545 config_collect_garbage(struct devicelist *garbage) 1546 { 1547 device_t dv; 1548 1549 KASSERT(!cpu_intr_p()); 1550 KASSERT(!cpu_softintr_p()); 1551 KASSERT(mutex_owned(&alldevs_mtx)); 1552 1553 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1554 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1555 if (dv->dv_del_gen != 0) 1556 break; 1557 } 1558 if (dv == NULL) { 1559 alldevs_garbage = false; 1560 break; 1561 } 1562 config_devunlink(dv, garbage); 1563 } 1564 KASSERT(mutex_owned(&alldevs_mtx)); 1565 } 1566 1567 static void 1568 config_dump_garbage(struct devicelist *garbage) 1569 { 1570 device_t dv; 1571 1572 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1573 TAILQ_REMOVE(garbage, dv, dv_list); 1574 config_devdelete(dv); 1575 } 1576 } 1577 1578 /* 1579 * Detach a device. Optionally forced (e.g. because of hardware 1580 * removal) and quiet. Returns zero if successful, non-zero 1581 * (an error code) otherwise. 1582 * 1583 * Note that this code wants to be run from a process context, so 1584 * that the detach can sleep to allow processes which have a device 1585 * open to run and unwind their stacks. 1586 */ 1587 int 1588 config_detach(device_t dev, int flags) 1589 { 1590 struct alldevs_foray af; 1591 struct cftable *ct; 1592 cfdata_t cf; 1593 const struct cfattach *ca; 1594 struct cfdriver *cd; 1595 #ifdef DIAGNOSTIC 1596 device_t d; 1597 #endif 1598 int rv = 0, s; 1599 1600 #ifdef DIAGNOSTIC 1601 cf = dev->dv_cfdata; 1602 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1603 cf->cf_fstate != FSTATE_STAR) 1604 panic("config_detach: %s: bad device fstate %d", 1605 device_xname(dev), cf ? cf->cf_fstate : -1); 1606 #endif 1607 cd = dev->dv_cfdriver; 1608 KASSERT(cd != NULL); 1609 1610 ca = dev->dv_cfattach; 1611 KASSERT(ca != NULL); 1612 1613 s = config_alldevs_lock(); 1614 if (dev->dv_del_gen != 0) { 1615 config_alldevs_unlock(s); 1616 #ifdef DIAGNOSTIC 1617 printf("%s: %s is already detached\n", __func__, 1618 device_xname(dev)); 1619 #endif /* DIAGNOSTIC */ 1620 return ENOENT; 1621 } 1622 alldevs_nwrite++; 1623 config_alldevs_unlock(s); 1624 1625 if (!detachall && 1626 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1627 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1628 rv = EOPNOTSUPP; 1629 } else if (ca->ca_detach != NULL) { 1630 rv = (*ca->ca_detach)(dev, flags); 1631 } else 1632 rv = EOPNOTSUPP; 1633 1634 /* 1635 * If it was not possible to detach the device, then we either 1636 * panic() (for the forced but failed case), or return an error. 1637 * 1638 * If it was possible to detach the device, ensure that the 1639 * device is deactivated. 1640 */ 1641 if (rv == 0) 1642 dev->dv_flags &= ~DVF_ACTIVE; 1643 else if ((flags & DETACH_FORCE) == 0) 1644 goto out; 1645 else { 1646 panic("config_detach: forced detach of %s failed (%d)", 1647 device_xname(dev), rv); 1648 } 1649 1650 /* 1651 * The device has now been successfully detached. 1652 */ 1653 1654 /* Let userland know */ 1655 devmon_report_device(dev, false); 1656 1657 #ifdef DIAGNOSTIC 1658 /* 1659 * Sanity: If you're successfully detached, you should have no 1660 * children. (Note that because children must be attached 1661 * after parents, we only need to search the latter part of 1662 * the list.) 1663 */ 1664 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1665 d = TAILQ_NEXT(d, dv_list)) { 1666 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1667 printf("config_detach: detached device %s" 1668 " has children %s\n", device_xname(dev), device_xname(d)); 1669 panic("config_detach"); 1670 } 1671 } 1672 #endif 1673 1674 /* notify the parent that the child is gone */ 1675 if (dev->dv_parent) { 1676 device_t p = dev->dv_parent; 1677 if (p->dv_cfattach->ca_childdetached) 1678 (*p->dv_cfattach->ca_childdetached)(p, dev); 1679 } 1680 1681 /* 1682 * Mark cfdata to show that the unit can be reused, if possible. 1683 */ 1684 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1685 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1686 if (STREQ(cf->cf_name, cd->cd_name)) { 1687 if (cf->cf_fstate == FSTATE_FOUND && 1688 cf->cf_unit == dev->dv_unit) 1689 cf->cf_fstate = FSTATE_NOTFOUND; 1690 } 1691 } 1692 } 1693 1694 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1695 aprint_normal_dev(dev, "detached\n"); 1696 1697 out: 1698 config_alldevs_enter(&af); 1699 KASSERT(alldevs_nwrite != 0); 1700 --alldevs_nwrite; 1701 if (rv == 0 && dev->dv_del_gen == 0) 1702 config_devunlink(dev, &af.af_garbage); 1703 config_alldevs_exit(&af); 1704 1705 return rv; 1706 } 1707 1708 int 1709 config_detach_children(device_t parent, int flags) 1710 { 1711 device_t dv; 1712 deviter_t di; 1713 int error = 0; 1714 1715 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1716 dv = deviter_next(&di)) { 1717 if (device_parent(dv) != parent) 1718 continue; 1719 if ((error = config_detach(dv, flags)) != 0) 1720 break; 1721 } 1722 deviter_release(&di); 1723 return error; 1724 } 1725 1726 device_t 1727 shutdown_first(struct shutdown_state *s) 1728 { 1729 if (!s->initialized) { 1730 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1731 s->initialized = true; 1732 } 1733 return shutdown_next(s); 1734 } 1735 1736 device_t 1737 shutdown_next(struct shutdown_state *s) 1738 { 1739 device_t dv; 1740 1741 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1742 ; 1743 1744 if (dv == NULL) 1745 s->initialized = false; 1746 1747 return dv; 1748 } 1749 1750 bool 1751 config_detach_all(int how) 1752 { 1753 static struct shutdown_state s; 1754 device_t curdev; 1755 bool progress = false; 1756 1757 if ((how & RB_NOSYNC) != 0) 1758 return false; 1759 1760 for (curdev = shutdown_first(&s); curdev != NULL; 1761 curdev = shutdown_next(&s)) { 1762 aprint_debug(" detaching %s, ", device_xname(curdev)); 1763 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1764 progress = true; 1765 aprint_debug("success."); 1766 } else 1767 aprint_debug("failed."); 1768 } 1769 return progress; 1770 } 1771 1772 static bool 1773 device_is_ancestor_of(device_t ancestor, device_t descendant) 1774 { 1775 device_t dv; 1776 1777 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1778 if (device_parent(dv) == ancestor) 1779 return true; 1780 } 1781 return false; 1782 } 1783 1784 int 1785 config_deactivate(device_t dev) 1786 { 1787 deviter_t di; 1788 const struct cfattach *ca; 1789 device_t descendant; 1790 int s, rv = 0, oflags; 1791 1792 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1793 descendant != NULL; 1794 descendant = deviter_next(&di)) { 1795 if (dev != descendant && 1796 !device_is_ancestor_of(dev, descendant)) 1797 continue; 1798 1799 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1800 continue; 1801 1802 ca = descendant->dv_cfattach; 1803 oflags = descendant->dv_flags; 1804 1805 descendant->dv_flags &= ~DVF_ACTIVE; 1806 if (ca->ca_activate == NULL) 1807 continue; 1808 s = splhigh(); 1809 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1810 splx(s); 1811 if (rv != 0) 1812 descendant->dv_flags = oflags; 1813 } 1814 deviter_release(&di); 1815 return rv; 1816 } 1817 1818 /* 1819 * Defer the configuration of the specified device until all 1820 * of its parent's devices have been attached. 1821 */ 1822 void 1823 config_defer(device_t dev, void (*func)(device_t)) 1824 { 1825 struct deferred_config *dc; 1826 1827 if (dev->dv_parent == NULL) 1828 panic("config_defer: can't defer config of a root device"); 1829 1830 #ifdef DIAGNOSTIC 1831 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1832 if (dc->dc_dev == dev) 1833 panic("config_defer: deferred twice"); 1834 } 1835 #endif 1836 1837 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1838 if (dc == NULL) 1839 panic("config_defer: unable to allocate callback"); 1840 1841 dc->dc_dev = dev; 1842 dc->dc_func = func; 1843 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1844 config_pending_incr(); 1845 } 1846 1847 /* 1848 * Defer some autoconfiguration for a device until after interrupts 1849 * are enabled. 1850 */ 1851 void 1852 config_interrupts(device_t dev, void (*func)(device_t)) 1853 { 1854 struct deferred_config *dc; 1855 1856 /* 1857 * If interrupts are enabled, callback now. 1858 */ 1859 if (cold == 0) { 1860 (*func)(dev); 1861 return; 1862 } 1863 1864 #ifdef DIAGNOSTIC 1865 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1866 if (dc->dc_dev == dev) 1867 panic("config_interrupts: deferred twice"); 1868 } 1869 #endif 1870 1871 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1872 if (dc == NULL) 1873 panic("config_interrupts: unable to allocate callback"); 1874 1875 dc->dc_dev = dev; 1876 dc->dc_func = func; 1877 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1878 config_pending_incr(); 1879 } 1880 1881 /* 1882 * Defer some autoconfiguration for a device until after root file system 1883 * is mounted (to load firmware etc). 1884 */ 1885 void 1886 config_mountroot(device_t dev, void (*func)(device_t)) 1887 { 1888 struct deferred_config *dc; 1889 1890 /* 1891 * If root file system is mounted, callback now. 1892 */ 1893 if (root_is_mounted) { 1894 (*func)(dev); 1895 return; 1896 } 1897 1898 #ifdef DIAGNOSTIC 1899 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) { 1900 if (dc->dc_dev == dev) 1901 panic("%s: deferred twice", __func__); 1902 } 1903 #endif 1904 1905 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1906 if (dc == NULL) 1907 panic("%s: unable to allocate callback", __func__); 1908 1909 dc->dc_dev = dev; 1910 dc->dc_func = func; 1911 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 1912 } 1913 1914 /* 1915 * Process a deferred configuration queue. 1916 */ 1917 static void 1918 config_process_deferred(struct deferred_config_head *queue, 1919 device_t parent) 1920 { 1921 struct deferred_config *dc, *ndc; 1922 1923 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1924 ndc = TAILQ_NEXT(dc, dc_queue); 1925 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1926 TAILQ_REMOVE(queue, dc, dc_queue); 1927 (*dc->dc_func)(dc->dc_dev); 1928 kmem_free(dc, sizeof(*dc)); 1929 config_pending_decr(); 1930 } 1931 } 1932 } 1933 1934 /* 1935 * Manipulate the config_pending semaphore. 1936 */ 1937 void 1938 config_pending_incr(void) 1939 { 1940 1941 mutex_enter(&config_misc_lock); 1942 config_pending++; 1943 mutex_exit(&config_misc_lock); 1944 } 1945 1946 void 1947 config_pending_decr(void) 1948 { 1949 1950 #ifdef DIAGNOSTIC 1951 if (config_pending == 0) 1952 panic("config_pending_decr: config_pending == 0"); 1953 #endif 1954 mutex_enter(&config_misc_lock); 1955 config_pending--; 1956 if (config_pending == 0) 1957 cv_broadcast(&config_misc_cv); 1958 mutex_exit(&config_misc_lock); 1959 } 1960 1961 /* 1962 * Register a "finalization" routine. Finalization routines are 1963 * called iteratively once all real devices have been found during 1964 * autoconfiguration, for as long as any one finalizer has done 1965 * any work. 1966 */ 1967 int 1968 config_finalize_register(device_t dev, int (*fn)(device_t)) 1969 { 1970 struct finalize_hook *f; 1971 1972 /* 1973 * If finalization has already been done, invoke the 1974 * callback function now. 1975 */ 1976 if (config_finalize_done) { 1977 while ((*fn)(dev) != 0) 1978 /* loop */ ; 1979 } 1980 1981 /* Ensure this isn't already on the list. */ 1982 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1983 if (f->f_func == fn && f->f_dev == dev) 1984 return EEXIST; 1985 } 1986 1987 f = kmem_alloc(sizeof(*f), KM_SLEEP); 1988 f->f_func = fn; 1989 f->f_dev = dev; 1990 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1991 1992 return 0; 1993 } 1994 1995 void 1996 config_finalize(void) 1997 { 1998 struct finalize_hook *f; 1999 struct pdevinit *pdev; 2000 extern struct pdevinit pdevinit[]; 2001 int errcnt, rv; 2002 2003 /* 2004 * Now that device driver threads have been created, wait for 2005 * them to finish any deferred autoconfiguration. 2006 */ 2007 mutex_enter(&config_misc_lock); 2008 while (config_pending != 0) 2009 cv_wait(&config_misc_cv, &config_misc_lock); 2010 mutex_exit(&config_misc_lock); 2011 2012 KERNEL_LOCK(1, NULL); 2013 2014 /* Attach pseudo-devices. */ 2015 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2016 (*pdev->pdev_attach)(pdev->pdev_count); 2017 2018 /* Run the hooks until none of them does any work. */ 2019 do { 2020 rv = 0; 2021 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2022 rv |= (*f->f_func)(f->f_dev); 2023 } while (rv != 0); 2024 2025 config_finalize_done = 1; 2026 2027 /* Now free all the hooks. */ 2028 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2029 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2030 kmem_free(f, sizeof(*f)); 2031 } 2032 2033 KERNEL_UNLOCK_ONE(NULL); 2034 2035 errcnt = aprint_get_error_count(); 2036 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2037 (boothowto & AB_VERBOSE) == 0) { 2038 mutex_enter(&config_misc_lock); 2039 if (config_do_twiddle) { 2040 config_do_twiddle = 0; 2041 printf_nolog(" done.\n"); 2042 } 2043 mutex_exit(&config_misc_lock); 2044 if (errcnt != 0) { 2045 printf("WARNING: %d error%s while detecting hardware; " 2046 "check system log.\n", errcnt, 2047 errcnt == 1 ? "" : "s"); 2048 } 2049 } 2050 } 2051 2052 void 2053 config_twiddle_init() 2054 { 2055 2056 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2057 config_do_twiddle = 1; 2058 } 2059 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2060 } 2061 2062 void 2063 config_twiddle_fn(void *cookie) 2064 { 2065 2066 mutex_enter(&config_misc_lock); 2067 if (config_do_twiddle) { 2068 twiddle(); 2069 callout_schedule(&config_twiddle_ch, mstohz(100)); 2070 } 2071 mutex_exit(&config_misc_lock); 2072 } 2073 2074 static int 2075 config_alldevs_lock(void) 2076 { 2077 mutex_enter(&alldevs_mtx); 2078 return 0; 2079 } 2080 2081 static void 2082 config_alldevs_enter(struct alldevs_foray *af) 2083 { 2084 TAILQ_INIT(&af->af_garbage); 2085 af->af_s = config_alldevs_lock(); 2086 config_collect_garbage(&af->af_garbage); 2087 } 2088 2089 static void 2090 config_alldevs_exit(struct alldevs_foray *af) 2091 { 2092 config_alldevs_unlock(af->af_s); 2093 config_dump_garbage(&af->af_garbage); 2094 } 2095 2096 /*ARGSUSED*/ 2097 static void 2098 config_alldevs_unlock(int s) 2099 { 2100 mutex_exit(&alldevs_mtx); 2101 } 2102 2103 /* 2104 * device_lookup: 2105 * 2106 * Look up a device instance for a given driver. 2107 */ 2108 device_t 2109 device_lookup(cfdriver_t cd, int unit) 2110 { 2111 device_t dv; 2112 int s; 2113 2114 s = config_alldevs_lock(); 2115 KASSERT(mutex_owned(&alldevs_mtx)); 2116 if (unit < 0 || unit >= cd->cd_ndevs) 2117 dv = NULL; 2118 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2119 dv = NULL; 2120 config_alldevs_unlock(s); 2121 2122 return dv; 2123 } 2124 2125 /* 2126 * device_lookup_private: 2127 * 2128 * Look up a softc instance for a given driver. 2129 */ 2130 void * 2131 device_lookup_private(cfdriver_t cd, int unit) 2132 { 2133 2134 return device_private(device_lookup(cd, unit)); 2135 } 2136 2137 /* 2138 * device_find_by_xname: 2139 * 2140 * Returns the device of the given name or NULL if it doesn't exist. 2141 */ 2142 device_t 2143 device_find_by_xname(const char *name) 2144 { 2145 device_t dv; 2146 deviter_t di; 2147 2148 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2149 if (strcmp(device_xname(dv), name) == 0) 2150 break; 2151 } 2152 deviter_release(&di); 2153 2154 return dv; 2155 } 2156 2157 /* 2158 * device_find_by_driver_unit: 2159 * 2160 * Returns the device of the given driver name and unit or 2161 * NULL if it doesn't exist. 2162 */ 2163 device_t 2164 device_find_by_driver_unit(const char *name, int unit) 2165 { 2166 struct cfdriver *cd; 2167 2168 if ((cd = config_cfdriver_lookup(name)) == NULL) 2169 return NULL; 2170 return device_lookup(cd, unit); 2171 } 2172 2173 /* 2174 * Power management related functions. 2175 */ 2176 2177 bool 2178 device_pmf_is_registered(device_t dev) 2179 { 2180 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2181 } 2182 2183 bool 2184 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2185 { 2186 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2187 return true; 2188 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2189 return false; 2190 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2191 dev->dv_driver_suspend != NULL && 2192 !(*dev->dv_driver_suspend)(dev, qual)) 2193 return false; 2194 2195 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2196 return true; 2197 } 2198 2199 bool 2200 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2201 { 2202 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2203 return true; 2204 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2205 return false; 2206 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2207 dev->dv_driver_resume != NULL && 2208 !(*dev->dv_driver_resume)(dev, qual)) 2209 return false; 2210 2211 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2212 return true; 2213 } 2214 2215 bool 2216 device_pmf_driver_shutdown(device_t dev, int how) 2217 { 2218 2219 if (*dev->dv_driver_shutdown != NULL && 2220 !(*dev->dv_driver_shutdown)(dev, how)) 2221 return false; 2222 return true; 2223 } 2224 2225 bool 2226 device_pmf_driver_register(device_t dev, 2227 bool (*suspend)(device_t, const pmf_qual_t *), 2228 bool (*resume)(device_t, const pmf_qual_t *), 2229 bool (*shutdown)(device_t, int)) 2230 { 2231 dev->dv_driver_suspend = suspend; 2232 dev->dv_driver_resume = resume; 2233 dev->dv_driver_shutdown = shutdown; 2234 dev->dv_flags |= DVF_POWER_HANDLERS; 2235 return true; 2236 } 2237 2238 static const char * 2239 curlwp_name(void) 2240 { 2241 if (curlwp->l_name != NULL) 2242 return curlwp->l_name; 2243 else 2244 return curlwp->l_proc->p_comm; 2245 } 2246 2247 void 2248 device_pmf_driver_deregister(device_t dev) 2249 { 2250 device_lock_t dvl = device_getlock(dev); 2251 2252 dev->dv_driver_suspend = NULL; 2253 dev->dv_driver_resume = NULL; 2254 2255 mutex_enter(&dvl->dvl_mtx); 2256 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2257 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2258 /* Wake a thread that waits for the lock. That 2259 * thread will fail to acquire the lock, and then 2260 * it will wake the next thread that waits for the 2261 * lock, or else it will wake us. 2262 */ 2263 cv_signal(&dvl->dvl_cv); 2264 pmflock_debug(dev, __func__, __LINE__); 2265 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2266 pmflock_debug(dev, __func__, __LINE__); 2267 } 2268 mutex_exit(&dvl->dvl_mtx); 2269 } 2270 2271 bool 2272 device_pmf_driver_child_register(device_t dev) 2273 { 2274 device_t parent = device_parent(dev); 2275 2276 if (parent == NULL || parent->dv_driver_child_register == NULL) 2277 return true; 2278 return (*parent->dv_driver_child_register)(dev); 2279 } 2280 2281 void 2282 device_pmf_driver_set_child_register(device_t dev, 2283 bool (*child_register)(device_t)) 2284 { 2285 dev->dv_driver_child_register = child_register; 2286 } 2287 2288 static void 2289 pmflock_debug(device_t dev, const char *func, int line) 2290 { 2291 device_lock_t dvl = device_getlock(dev); 2292 2293 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2294 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2295 dev->dv_flags); 2296 } 2297 2298 static bool 2299 device_pmf_lock1(device_t dev) 2300 { 2301 device_lock_t dvl = device_getlock(dev); 2302 2303 while (device_pmf_is_registered(dev) && 2304 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2305 dvl->dvl_nwait++; 2306 pmflock_debug(dev, __func__, __LINE__); 2307 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2308 pmflock_debug(dev, __func__, __LINE__); 2309 dvl->dvl_nwait--; 2310 } 2311 if (!device_pmf_is_registered(dev)) { 2312 pmflock_debug(dev, __func__, __LINE__); 2313 /* We could not acquire the lock, but some other thread may 2314 * wait for it, also. Wake that thread. 2315 */ 2316 cv_signal(&dvl->dvl_cv); 2317 return false; 2318 } 2319 dvl->dvl_nlock++; 2320 dvl->dvl_holder = curlwp; 2321 pmflock_debug(dev, __func__, __LINE__); 2322 return true; 2323 } 2324 2325 bool 2326 device_pmf_lock(device_t dev) 2327 { 2328 bool rc; 2329 device_lock_t dvl = device_getlock(dev); 2330 2331 mutex_enter(&dvl->dvl_mtx); 2332 rc = device_pmf_lock1(dev); 2333 mutex_exit(&dvl->dvl_mtx); 2334 2335 return rc; 2336 } 2337 2338 void 2339 device_pmf_unlock(device_t dev) 2340 { 2341 device_lock_t dvl = device_getlock(dev); 2342 2343 KASSERT(dvl->dvl_nlock > 0); 2344 mutex_enter(&dvl->dvl_mtx); 2345 if (--dvl->dvl_nlock == 0) 2346 dvl->dvl_holder = NULL; 2347 cv_signal(&dvl->dvl_cv); 2348 pmflock_debug(dev, __func__, __LINE__); 2349 mutex_exit(&dvl->dvl_mtx); 2350 } 2351 2352 device_lock_t 2353 device_getlock(device_t dev) 2354 { 2355 return &dev->dv_lock; 2356 } 2357 2358 void * 2359 device_pmf_bus_private(device_t dev) 2360 { 2361 return dev->dv_bus_private; 2362 } 2363 2364 bool 2365 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2366 { 2367 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2368 return true; 2369 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2370 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2371 return false; 2372 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2373 dev->dv_bus_suspend != NULL && 2374 !(*dev->dv_bus_suspend)(dev, qual)) 2375 return false; 2376 2377 dev->dv_flags |= DVF_BUS_SUSPENDED; 2378 return true; 2379 } 2380 2381 bool 2382 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2383 { 2384 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2385 return true; 2386 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2387 dev->dv_bus_resume != NULL && 2388 !(*dev->dv_bus_resume)(dev, qual)) 2389 return false; 2390 2391 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2392 return true; 2393 } 2394 2395 bool 2396 device_pmf_bus_shutdown(device_t dev, int how) 2397 { 2398 2399 if (*dev->dv_bus_shutdown != NULL && 2400 !(*dev->dv_bus_shutdown)(dev, how)) 2401 return false; 2402 return true; 2403 } 2404 2405 void 2406 device_pmf_bus_register(device_t dev, void *priv, 2407 bool (*suspend)(device_t, const pmf_qual_t *), 2408 bool (*resume)(device_t, const pmf_qual_t *), 2409 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2410 { 2411 dev->dv_bus_private = priv; 2412 dev->dv_bus_resume = resume; 2413 dev->dv_bus_suspend = suspend; 2414 dev->dv_bus_shutdown = shutdown; 2415 dev->dv_bus_deregister = deregister; 2416 } 2417 2418 void 2419 device_pmf_bus_deregister(device_t dev) 2420 { 2421 if (dev->dv_bus_deregister == NULL) 2422 return; 2423 (*dev->dv_bus_deregister)(dev); 2424 dev->dv_bus_private = NULL; 2425 dev->dv_bus_suspend = NULL; 2426 dev->dv_bus_resume = NULL; 2427 dev->dv_bus_deregister = NULL; 2428 } 2429 2430 void * 2431 device_pmf_class_private(device_t dev) 2432 { 2433 return dev->dv_class_private; 2434 } 2435 2436 bool 2437 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2438 { 2439 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2440 return true; 2441 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2442 dev->dv_class_suspend != NULL && 2443 !(*dev->dv_class_suspend)(dev, qual)) 2444 return false; 2445 2446 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2447 return true; 2448 } 2449 2450 bool 2451 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2452 { 2453 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2454 return true; 2455 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2456 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2457 return false; 2458 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2459 dev->dv_class_resume != NULL && 2460 !(*dev->dv_class_resume)(dev, qual)) 2461 return false; 2462 2463 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2464 return true; 2465 } 2466 2467 void 2468 device_pmf_class_register(device_t dev, void *priv, 2469 bool (*suspend)(device_t, const pmf_qual_t *), 2470 bool (*resume)(device_t, const pmf_qual_t *), 2471 void (*deregister)(device_t)) 2472 { 2473 dev->dv_class_private = priv; 2474 dev->dv_class_suspend = suspend; 2475 dev->dv_class_resume = resume; 2476 dev->dv_class_deregister = deregister; 2477 } 2478 2479 void 2480 device_pmf_class_deregister(device_t dev) 2481 { 2482 if (dev->dv_class_deregister == NULL) 2483 return; 2484 (*dev->dv_class_deregister)(dev); 2485 dev->dv_class_private = NULL; 2486 dev->dv_class_suspend = NULL; 2487 dev->dv_class_resume = NULL; 2488 dev->dv_class_deregister = NULL; 2489 } 2490 2491 bool 2492 device_active(device_t dev, devactive_t type) 2493 { 2494 size_t i; 2495 2496 if (dev->dv_activity_count == 0) 2497 return false; 2498 2499 for (i = 0; i < dev->dv_activity_count; ++i) { 2500 if (dev->dv_activity_handlers[i] == NULL) 2501 break; 2502 (*dev->dv_activity_handlers[i])(dev, type); 2503 } 2504 2505 return true; 2506 } 2507 2508 bool 2509 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2510 { 2511 void (**new_handlers)(device_t, devactive_t); 2512 void (**old_handlers)(device_t, devactive_t); 2513 size_t i, old_size, new_size; 2514 int s; 2515 2516 old_handlers = dev->dv_activity_handlers; 2517 old_size = dev->dv_activity_count; 2518 2519 for (i = 0; i < old_size; ++i) { 2520 KASSERT(old_handlers[i] != handler); 2521 if (old_handlers[i] == NULL) { 2522 old_handlers[i] = handler; 2523 return true; 2524 } 2525 } 2526 2527 new_size = old_size + 4; 2528 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2529 2530 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2531 new_handlers[old_size] = handler; 2532 memset(new_handlers + old_size + 1, 0, 2533 sizeof(int [new_size - (old_size+1)])); 2534 2535 s = splhigh(); 2536 dev->dv_activity_count = new_size; 2537 dev->dv_activity_handlers = new_handlers; 2538 splx(s); 2539 2540 if (old_handlers != NULL) 2541 kmem_free(old_handlers, sizeof(void * [old_size])); 2542 2543 return true; 2544 } 2545 2546 void 2547 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2548 { 2549 void (**old_handlers)(device_t, devactive_t); 2550 size_t i, old_size; 2551 int s; 2552 2553 old_handlers = dev->dv_activity_handlers; 2554 old_size = dev->dv_activity_count; 2555 2556 for (i = 0; i < old_size; ++i) { 2557 if (old_handlers[i] == handler) 2558 break; 2559 if (old_handlers[i] == NULL) 2560 return; /* XXX panic? */ 2561 } 2562 2563 if (i == old_size) 2564 return; /* XXX panic? */ 2565 2566 for (; i < old_size - 1; ++i) { 2567 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2568 continue; 2569 2570 if (i == 0) { 2571 s = splhigh(); 2572 dev->dv_activity_count = 0; 2573 dev->dv_activity_handlers = NULL; 2574 splx(s); 2575 kmem_free(old_handlers, sizeof(void *[old_size])); 2576 } 2577 return; 2578 } 2579 old_handlers[i] = NULL; 2580 } 2581 2582 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2583 static bool 2584 device_exists_at(device_t dv, devgen_t gen) 2585 { 2586 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2587 dv->dv_add_gen <= gen; 2588 } 2589 2590 static bool 2591 deviter_visits(const deviter_t *di, device_t dv) 2592 { 2593 return device_exists_at(dv, di->di_gen); 2594 } 2595 2596 /* 2597 * Device Iteration 2598 * 2599 * deviter_t: a device iterator. Holds state for a "walk" visiting 2600 * each device_t's in the device tree. 2601 * 2602 * deviter_init(di, flags): initialize the device iterator `di' 2603 * to "walk" the device tree. deviter_next(di) will return 2604 * the first device_t in the device tree, or NULL if there are 2605 * no devices. 2606 * 2607 * `flags' is one or more of DEVITER_F_RW, indicating that the 2608 * caller intends to modify the device tree by calling 2609 * config_detach(9) on devices in the order that the iterator 2610 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2611 * nearest the "root" of the device tree to be returned, first; 2612 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2613 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2614 * indicating both that deviter_init() should not respect any 2615 * locks on the device tree, and that deviter_next(di) may run 2616 * in more than one LWP before the walk has finished. 2617 * 2618 * Only one DEVITER_F_RW iterator may be in the device tree at 2619 * once. 2620 * 2621 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2622 * 2623 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2624 * DEVITER_F_LEAVES_FIRST are used in combination. 2625 * 2626 * deviter_first(di, flags): initialize the device iterator `di' 2627 * and return the first device_t in the device tree, or NULL 2628 * if there are no devices. The statement 2629 * 2630 * dv = deviter_first(di); 2631 * 2632 * is shorthand for 2633 * 2634 * deviter_init(di); 2635 * dv = deviter_next(di); 2636 * 2637 * deviter_next(di): return the next device_t in the device tree, 2638 * or NULL if there are no more devices. deviter_next(di) 2639 * is undefined if `di' was not initialized with deviter_init() or 2640 * deviter_first(). 2641 * 2642 * deviter_release(di): stops iteration (subsequent calls to 2643 * deviter_next() will return NULL), releases any locks and 2644 * resources held by the device iterator. 2645 * 2646 * Device iteration does not return device_t's in any particular 2647 * order. An iterator will never return the same device_t twice. 2648 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2649 * is called repeatedly on the same `di', it will eventually return 2650 * NULL. It is ok to attach/detach devices during device iteration. 2651 */ 2652 void 2653 deviter_init(deviter_t *di, deviter_flags_t flags) 2654 { 2655 device_t dv; 2656 int s; 2657 2658 memset(di, 0, sizeof(*di)); 2659 2660 s = config_alldevs_lock(); 2661 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2662 flags |= DEVITER_F_RW; 2663 2664 if ((flags & DEVITER_F_RW) != 0) 2665 alldevs_nwrite++; 2666 else 2667 alldevs_nread++; 2668 di->di_gen = alldevs_gen++; 2669 config_alldevs_unlock(s); 2670 2671 di->di_flags = flags; 2672 2673 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2674 case DEVITER_F_LEAVES_FIRST: 2675 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2676 if (!deviter_visits(di, dv)) 2677 continue; 2678 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2679 } 2680 break; 2681 case DEVITER_F_ROOT_FIRST: 2682 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2683 if (!deviter_visits(di, dv)) 2684 continue; 2685 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2686 } 2687 break; 2688 default: 2689 break; 2690 } 2691 2692 deviter_reinit(di); 2693 } 2694 2695 static void 2696 deviter_reinit(deviter_t *di) 2697 { 2698 if ((di->di_flags & DEVITER_F_RW) != 0) 2699 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2700 else 2701 di->di_prev = TAILQ_FIRST(&alldevs); 2702 } 2703 2704 device_t 2705 deviter_first(deviter_t *di, deviter_flags_t flags) 2706 { 2707 deviter_init(di, flags); 2708 return deviter_next(di); 2709 } 2710 2711 static device_t 2712 deviter_next2(deviter_t *di) 2713 { 2714 device_t dv; 2715 2716 dv = di->di_prev; 2717 2718 if (dv == NULL) 2719 return NULL; 2720 2721 if ((di->di_flags & DEVITER_F_RW) != 0) 2722 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2723 else 2724 di->di_prev = TAILQ_NEXT(dv, dv_list); 2725 2726 return dv; 2727 } 2728 2729 static device_t 2730 deviter_next1(deviter_t *di) 2731 { 2732 device_t dv; 2733 2734 do { 2735 dv = deviter_next2(di); 2736 } while (dv != NULL && !deviter_visits(di, dv)); 2737 2738 return dv; 2739 } 2740 2741 device_t 2742 deviter_next(deviter_t *di) 2743 { 2744 device_t dv = NULL; 2745 2746 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2747 case 0: 2748 return deviter_next1(di); 2749 case DEVITER_F_LEAVES_FIRST: 2750 while (di->di_curdepth >= 0) { 2751 if ((dv = deviter_next1(di)) == NULL) { 2752 di->di_curdepth--; 2753 deviter_reinit(di); 2754 } else if (dv->dv_depth == di->di_curdepth) 2755 break; 2756 } 2757 return dv; 2758 case DEVITER_F_ROOT_FIRST: 2759 while (di->di_curdepth <= di->di_maxdepth) { 2760 if ((dv = deviter_next1(di)) == NULL) { 2761 di->di_curdepth++; 2762 deviter_reinit(di); 2763 } else if (dv->dv_depth == di->di_curdepth) 2764 break; 2765 } 2766 return dv; 2767 default: 2768 return NULL; 2769 } 2770 } 2771 2772 void 2773 deviter_release(deviter_t *di) 2774 { 2775 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2776 int s; 2777 2778 s = config_alldevs_lock(); 2779 if (rw) 2780 --alldevs_nwrite; 2781 else 2782 --alldevs_nread; 2783 /* XXX wake a garbage-collection thread */ 2784 config_alldevs_unlock(s); 2785 } 2786 2787 const char * 2788 cfdata_ifattr(const struct cfdata *cf) 2789 { 2790 return cf->cf_pspec->cfp_iattr; 2791 } 2792 2793 bool 2794 ifattr_match(const char *snull, const char *t) 2795 { 2796 return (snull == NULL) || strcmp(snull, t) == 0; 2797 } 2798 2799 void 2800 null_childdetached(device_t self, device_t child) 2801 { 2802 /* do nothing */ 2803 } 2804 2805 static void 2806 sysctl_detach_setup(struct sysctllog **clog) 2807 { 2808 const struct sysctlnode *node = NULL; 2809 2810 sysctl_createv(clog, 0, NULL, &node, 2811 CTLFLAG_PERMANENT, 2812 CTLTYPE_NODE, "kern", NULL, 2813 NULL, 0, NULL, 0, 2814 CTL_KERN, CTL_EOL); 2815 2816 if (node == NULL) 2817 return; 2818 2819 sysctl_createv(clog, 0, &node, NULL, 2820 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2821 CTLTYPE_BOOL, "detachall", 2822 SYSCTL_DESCR("Detach all devices at shutdown"), 2823 NULL, 0, &detachall, 0, 2824 CTL_CREATE, CTL_EOL); 2825 } 2826