1 /* $NetBSD: subr_autoconf.c,v 1.262 2018/06/26 06:03:57 thorpej Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.262 2018/06/26 06:03:57 thorpej Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/disklabel.h> 90 #include <sys/conf.h> 91 #include <sys/kauth.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 111 #include <sys/disk.h> 112 113 #include <sys/rndsource.h> 114 115 #include <machine/limits.h> 116 117 /* 118 * Autoconfiguration subroutines. 119 */ 120 121 /* 122 * Device autoconfiguration timings are mixed into the entropy pool. 123 */ 124 extern krndsource_t rnd_autoconf_source; 125 126 /* 127 * ioconf.c exports exactly two names: cfdata and cfroots. All system 128 * devices and drivers are found via these tables. 129 */ 130 extern struct cfdata cfdata[]; 131 extern const short cfroots[]; 132 133 /* 134 * List of all cfdriver structures. We use this to detect duplicates 135 * when other cfdrivers are loaded. 136 */ 137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 138 extern struct cfdriver * const cfdriver_list_initial[]; 139 140 /* 141 * Initial list of cfattach's. 142 */ 143 extern const struct cfattachinit cfattachinit[]; 144 145 /* 146 * List of cfdata tables. We always have one such list -- the one 147 * built statically when the kernel was configured. 148 */ 149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 150 static struct cftable initcftable; 151 152 #define ROOT ((device_t)NULL) 153 154 struct matchinfo { 155 cfsubmatch_t fn; 156 device_t parent; 157 const int *locs; 158 void *aux; 159 struct cfdata *match; 160 int pri; 161 }; 162 163 struct alldevs_foray { 164 int af_s; 165 struct devicelist af_garbage; 166 }; 167 168 static char *number(char *, int); 169 static void mapply(struct matchinfo *, cfdata_t); 170 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 171 static void config_devdelete(device_t); 172 static void config_devunlink(device_t, struct devicelist *); 173 static void config_makeroom(int, struct cfdriver *); 174 static void config_devlink(device_t); 175 static void config_alldevs_enter(struct alldevs_foray *); 176 static void config_alldevs_exit(struct alldevs_foray *); 177 static void config_add_attrib_dict(device_t); 178 179 static void config_collect_garbage(struct devicelist *); 180 static void config_dump_garbage(struct devicelist *); 181 182 static void pmflock_debug(device_t, const char *, int); 183 184 static device_t deviter_next1(deviter_t *); 185 static void deviter_reinit(deviter_t *); 186 187 struct deferred_config { 188 TAILQ_ENTRY(deferred_config) dc_queue; 189 device_t dc_dev; 190 void (*dc_func)(device_t); 191 }; 192 193 TAILQ_HEAD(deferred_config_head, deferred_config); 194 195 struct deferred_config_head deferred_config_queue = 196 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 197 struct deferred_config_head interrupt_config_queue = 198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 199 int interrupt_config_threads = 8; 200 struct deferred_config_head mountroot_config_queue = 201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 202 int mountroot_config_threads = 2; 203 static lwp_t **mountroot_config_lwpids; 204 static size_t mountroot_config_lwpids_size; 205 static bool root_is_mounted = false; 206 207 static void config_process_deferred(struct deferred_config_head *, device_t); 208 209 /* Hooks to finalize configuration once all real devices have been found. */ 210 struct finalize_hook { 211 TAILQ_ENTRY(finalize_hook) f_list; 212 int (*f_func)(device_t); 213 device_t f_dev; 214 }; 215 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 216 TAILQ_HEAD_INITIALIZER(config_finalize_list); 217 static int config_finalize_done; 218 219 /* list of all devices */ 220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 221 static kmutex_t alldevs_lock __cacheline_aligned; 222 static devgen_t alldevs_gen = 1; 223 static int alldevs_nread = 0; 224 static int alldevs_nwrite = 0; 225 static bool alldevs_garbage = false; 226 227 static int config_pending; /* semaphore for mountroot */ 228 static kmutex_t config_misc_lock; 229 static kcondvar_t config_misc_cv; 230 231 static bool detachall = false; 232 233 #define STREQ(s1, s2) \ 234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 235 236 static bool config_initialized = false; /* config_init() has been called. */ 237 238 static int config_do_twiddle; 239 static callout_t config_twiddle_ch; 240 241 static void sysctl_detach_setup(struct sysctllog **); 242 243 int no_devmon_insert(const char *, prop_dictionary_t); 244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; 245 246 typedef int (*cfdriver_fn)(struct cfdriver *); 247 static int 248 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 249 cfdriver_fn drv_do, cfdriver_fn drv_undo, 250 const char *style, bool dopanic) 251 { 252 void (*pr)(const char *, ...) __printflike(1, 2) = 253 dopanic ? panic : printf; 254 int i, error = 0, e2 __diagused; 255 256 for (i = 0; cfdriverv[i] != NULL; i++) { 257 if ((error = drv_do(cfdriverv[i])) != 0) { 258 pr("configure: `%s' driver %s failed: %d", 259 cfdriverv[i]->cd_name, style, error); 260 goto bad; 261 } 262 } 263 264 KASSERT(error == 0); 265 return 0; 266 267 bad: 268 printf("\n"); 269 for (i--; i >= 0; i--) { 270 e2 = drv_undo(cfdriverv[i]); 271 KASSERT(e2 == 0); 272 } 273 274 return error; 275 } 276 277 typedef int (*cfattach_fn)(const char *, struct cfattach *); 278 static int 279 frob_cfattachvec(const struct cfattachinit *cfattachv, 280 cfattach_fn att_do, cfattach_fn att_undo, 281 const char *style, bool dopanic) 282 { 283 const struct cfattachinit *cfai = NULL; 284 void (*pr)(const char *, ...) __printflike(1, 2) = 285 dopanic ? panic : printf; 286 int j = 0, error = 0, e2 __diagused; 287 288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 289 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 290 if ((error = att_do(cfai->cfai_name, 291 cfai->cfai_list[j])) != 0) { 292 pr("configure: attachment `%s' " 293 "of `%s' driver %s failed: %d", 294 cfai->cfai_list[j]->ca_name, 295 cfai->cfai_name, style, error); 296 goto bad; 297 } 298 } 299 } 300 301 KASSERT(error == 0); 302 return 0; 303 304 bad: 305 /* 306 * Rollback in reverse order. dunno if super-important, but 307 * do that anyway. Although the code looks a little like 308 * someone did a little integration (in the math sense). 309 */ 310 printf("\n"); 311 if (cfai) { 312 bool last; 313 314 for (last = false; last == false; ) { 315 if (cfai == &cfattachv[0]) 316 last = true; 317 for (j--; j >= 0; j--) { 318 e2 = att_undo(cfai->cfai_name, 319 cfai->cfai_list[j]); 320 KASSERT(e2 == 0); 321 } 322 if (!last) { 323 cfai--; 324 for (j = 0; cfai->cfai_list[j] != NULL; j++) 325 ; 326 } 327 } 328 } 329 330 return error; 331 } 332 333 /* 334 * Initialize the autoconfiguration data structures. Normally this 335 * is done by configure(), but some platforms need to do this very 336 * early (to e.g. initialize the console). 337 */ 338 void 339 config_init(void) 340 { 341 342 KASSERT(config_initialized == false); 343 344 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM); 345 346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 347 cv_init(&config_misc_cv, "cfgmisc"); 348 349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 350 351 frob_cfdrivervec(cfdriver_list_initial, 352 config_cfdriver_attach, NULL, "bootstrap", true); 353 frob_cfattachvec(cfattachinit, 354 config_cfattach_attach, NULL, "bootstrap", true); 355 356 initcftable.ct_cfdata = cfdata; 357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 358 359 config_initialized = true; 360 } 361 362 /* 363 * Init or fini drivers and attachments. Either all or none 364 * are processed (via rollback). It would be nice if this were 365 * atomic to outside consumers, but with the current state of 366 * locking ... 367 */ 368 int 369 config_init_component(struct cfdriver * const *cfdriverv, 370 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 371 { 372 int error; 373 374 if ((error = frob_cfdrivervec(cfdriverv, 375 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 376 return error; 377 if ((error = frob_cfattachvec(cfattachv, 378 config_cfattach_attach, config_cfattach_detach, 379 "init", false)) != 0) { 380 frob_cfdrivervec(cfdriverv, 381 config_cfdriver_detach, NULL, "init rollback", true); 382 return error; 383 } 384 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 385 frob_cfattachvec(cfattachv, 386 config_cfattach_detach, NULL, "init rollback", true); 387 frob_cfdrivervec(cfdriverv, 388 config_cfdriver_detach, NULL, "init rollback", true); 389 return error; 390 } 391 392 return 0; 393 } 394 395 int 396 config_fini_component(struct cfdriver * const *cfdriverv, 397 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 398 { 399 int error; 400 401 if ((error = config_cfdata_detach(cfdatav)) != 0) 402 return error; 403 if ((error = frob_cfattachvec(cfattachv, 404 config_cfattach_detach, config_cfattach_attach, 405 "fini", false)) != 0) { 406 if (config_cfdata_attach(cfdatav, 0) != 0) 407 panic("config_cfdata fini rollback failed"); 408 return error; 409 } 410 if ((error = frob_cfdrivervec(cfdriverv, 411 config_cfdriver_detach, config_cfdriver_attach, 412 "fini", false)) != 0) { 413 frob_cfattachvec(cfattachv, 414 config_cfattach_attach, NULL, "fini rollback", true); 415 if (config_cfdata_attach(cfdatav, 0) != 0) 416 panic("config_cfdata fini rollback failed"); 417 return error; 418 } 419 420 return 0; 421 } 422 423 void 424 config_init_mi(void) 425 { 426 427 if (!config_initialized) 428 config_init(); 429 430 sysctl_detach_setup(NULL); 431 } 432 433 void 434 config_deferred(device_t dev) 435 { 436 config_process_deferred(&deferred_config_queue, dev); 437 config_process_deferred(&interrupt_config_queue, dev); 438 config_process_deferred(&mountroot_config_queue, dev); 439 } 440 441 static void 442 config_interrupts_thread(void *cookie) 443 { 444 struct deferred_config *dc; 445 446 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 447 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 448 (*dc->dc_func)(dc->dc_dev); 449 config_pending_decr(dc->dc_dev); 450 kmem_free(dc, sizeof(*dc)); 451 } 452 kthread_exit(0); 453 } 454 455 void 456 config_create_interruptthreads(void) 457 { 458 int i; 459 460 for (i = 0; i < interrupt_config_threads; i++) { 461 (void)kthread_create(PRI_NONE, 0, NULL, 462 config_interrupts_thread, NULL, NULL, "configintr"); 463 } 464 } 465 466 static void 467 config_mountroot_thread(void *cookie) 468 { 469 struct deferred_config *dc; 470 471 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 472 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 473 (*dc->dc_func)(dc->dc_dev); 474 kmem_free(dc, sizeof(*dc)); 475 } 476 kthread_exit(0); 477 } 478 479 void 480 config_create_mountrootthreads(void) 481 { 482 int i; 483 484 if (!root_is_mounted) 485 root_is_mounted = true; 486 487 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * 488 mountroot_config_threads; 489 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, 490 KM_NOSLEEP); 491 KASSERT(mountroot_config_lwpids); 492 for (i = 0; i < mountroot_config_threads; i++) { 493 mountroot_config_lwpids[i] = 0; 494 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL, 495 config_mountroot_thread, NULL, 496 &mountroot_config_lwpids[i], 497 "configroot"); 498 } 499 } 500 501 void 502 config_finalize_mountroot(void) 503 { 504 int i, error; 505 506 for (i = 0; i < mountroot_config_threads; i++) { 507 if (mountroot_config_lwpids[i] == 0) 508 continue; 509 510 error = kthread_join(mountroot_config_lwpids[i]); 511 if (error) 512 printf("%s: thread %x joined with error %d\n", 513 __func__, i, error); 514 } 515 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); 516 } 517 518 /* 519 * Announce device attach/detach to userland listeners. 520 */ 521 522 int 523 no_devmon_insert(const char *name, prop_dictionary_t p) 524 { 525 526 return ENODEV; 527 } 528 529 static void 530 devmon_report_device(device_t dev, bool isattach) 531 { 532 prop_dictionary_t ev; 533 const char *parent; 534 const char *what; 535 device_t pdev = device_parent(dev); 536 537 /* If currently no drvctl device, just return */ 538 if (devmon_insert_vec == no_devmon_insert) 539 return; 540 541 ev = prop_dictionary_create(); 542 if (ev == NULL) 543 return; 544 545 what = (isattach ? "device-attach" : "device-detach"); 546 parent = (pdev == NULL ? "root" : device_xname(pdev)); 547 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 548 !prop_dictionary_set_cstring(ev, "parent", parent)) { 549 prop_object_release(ev); 550 return; 551 } 552 553 if ((*devmon_insert_vec)(what, ev) != 0) 554 prop_object_release(ev); 555 } 556 557 /* 558 * Add a cfdriver to the system. 559 */ 560 int 561 config_cfdriver_attach(struct cfdriver *cd) 562 { 563 struct cfdriver *lcd; 564 565 /* Make sure this driver isn't already in the system. */ 566 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 567 if (STREQ(lcd->cd_name, cd->cd_name)) 568 return EEXIST; 569 } 570 571 LIST_INIT(&cd->cd_attach); 572 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 573 574 return 0; 575 } 576 577 /* 578 * Remove a cfdriver from the system. 579 */ 580 int 581 config_cfdriver_detach(struct cfdriver *cd) 582 { 583 struct alldevs_foray af; 584 int i, rc = 0; 585 586 config_alldevs_enter(&af); 587 /* Make sure there are no active instances. */ 588 for (i = 0; i < cd->cd_ndevs; i++) { 589 if (cd->cd_devs[i] != NULL) { 590 rc = EBUSY; 591 break; 592 } 593 } 594 config_alldevs_exit(&af); 595 596 if (rc != 0) 597 return rc; 598 599 /* ...and no attachments loaded. */ 600 if (LIST_EMPTY(&cd->cd_attach) == 0) 601 return EBUSY; 602 603 LIST_REMOVE(cd, cd_list); 604 605 KASSERT(cd->cd_devs == NULL); 606 607 return 0; 608 } 609 610 /* 611 * Look up a cfdriver by name. 612 */ 613 struct cfdriver * 614 config_cfdriver_lookup(const char *name) 615 { 616 struct cfdriver *cd; 617 618 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 619 if (STREQ(cd->cd_name, name)) 620 return cd; 621 } 622 623 return NULL; 624 } 625 626 /* 627 * Add a cfattach to the specified driver. 628 */ 629 int 630 config_cfattach_attach(const char *driver, struct cfattach *ca) 631 { 632 struct cfattach *lca; 633 struct cfdriver *cd; 634 635 cd = config_cfdriver_lookup(driver); 636 if (cd == NULL) 637 return ESRCH; 638 639 /* Make sure this attachment isn't already on this driver. */ 640 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 641 if (STREQ(lca->ca_name, ca->ca_name)) 642 return EEXIST; 643 } 644 645 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 646 647 return 0; 648 } 649 650 /* 651 * Remove a cfattach from the specified driver. 652 */ 653 int 654 config_cfattach_detach(const char *driver, struct cfattach *ca) 655 { 656 struct alldevs_foray af; 657 struct cfdriver *cd; 658 device_t dev; 659 int i, rc = 0; 660 661 cd = config_cfdriver_lookup(driver); 662 if (cd == NULL) 663 return ESRCH; 664 665 config_alldevs_enter(&af); 666 /* Make sure there are no active instances. */ 667 for (i = 0; i < cd->cd_ndevs; i++) { 668 if ((dev = cd->cd_devs[i]) == NULL) 669 continue; 670 if (dev->dv_cfattach == ca) { 671 rc = EBUSY; 672 break; 673 } 674 } 675 config_alldevs_exit(&af); 676 677 if (rc != 0) 678 return rc; 679 680 LIST_REMOVE(ca, ca_list); 681 682 return 0; 683 } 684 685 /* 686 * Look up a cfattach by name. 687 */ 688 static struct cfattach * 689 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 690 { 691 struct cfattach *ca; 692 693 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 694 if (STREQ(ca->ca_name, atname)) 695 return ca; 696 } 697 698 return NULL; 699 } 700 701 /* 702 * Look up a cfattach by driver/attachment name. 703 */ 704 struct cfattach * 705 config_cfattach_lookup(const char *name, const char *atname) 706 { 707 struct cfdriver *cd; 708 709 cd = config_cfdriver_lookup(name); 710 if (cd == NULL) 711 return NULL; 712 713 return config_cfattach_lookup_cd(cd, atname); 714 } 715 716 /* 717 * Apply the matching function and choose the best. This is used 718 * a few times and we want to keep the code small. 719 */ 720 static void 721 mapply(struct matchinfo *m, cfdata_t cf) 722 { 723 int pri; 724 725 if (m->fn != NULL) { 726 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 727 } else { 728 pri = config_match(m->parent, cf, m->aux); 729 } 730 if (pri > m->pri) { 731 m->match = cf; 732 m->pri = pri; 733 } 734 } 735 736 int 737 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 738 { 739 const struct cfiattrdata *ci; 740 const struct cflocdesc *cl; 741 int nlocs, i; 742 743 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 744 KASSERT(ci); 745 nlocs = ci->ci_loclen; 746 KASSERT(!nlocs || locs); 747 for (i = 0; i < nlocs; i++) { 748 cl = &ci->ci_locdesc[i]; 749 if (cl->cld_defaultstr != NULL && 750 cf->cf_loc[i] == cl->cld_default) 751 continue; 752 if (cf->cf_loc[i] == locs[i]) 753 continue; 754 return 0; 755 } 756 757 return config_match(parent, cf, aux); 758 } 759 760 /* 761 * Helper function: check whether the driver supports the interface attribute 762 * and return its descriptor structure. 763 */ 764 static const struct cfiattrdata * 765 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 766 { 767 const struct cfiattrdata * const *cpp; 768 769 if (cd->cd_attrs == NULL) 770 return 0; 771 772 for (cpp = cd->cd_attrs; *cpp; cpp++) { 773 if (STREQ((*cpp)->ci_name, ia)) { 774 /* Match. */ 775 return *cpp; 776 } 777 } 778 return 0; 779 } 780 781 /* 782 * Lookup an interface attribute description by name. 783 * If the driver is given, consider only its supported attributes. 784 */ 785 const struct cfiattrdata * 786 cfiattr_lookup(const char *name, const struct cfdriver *cd) 787 { 788 const struct cfdriver *d; 789 const struct cfiattrdata *ia; 790 791 if (cd) 792 return cfdriver_get_iattr(cd, name); 793 794 LIST_FOREACH(d, &allcfdrivers, cd_list) { 795 ia = cfdriver_get_iattr(d, name); 796 if (ia) 797 return ia; 798 } 799 return 0; 800 } 801 802 /* 803 * Determine if `parent' is a potential parent for a device spec based 804 * on `cfp'. 805 */ 806 static int 807 cfparent_match(const device_t parent, const struct cfparent *cfp) 808 { 809 struct cfdriver *pcd; 810 811 /* We don't match root nodes here. */ 812 if (cfp == NULL) 813 return 0; 814 815 pcd = parent->dv_cfdriver; 816 KASSERT(pcd != NULL); 817 818 /* 819 * First, ensure this parent has the correct interface 820 * attribute. 821 */ 822 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 823 return 0; 824 825 /* 826 * If no specific parent device instance was specified (i.e. 827 * we're attaching to the attribute only), we're done! 828 */ 829 if (cfp->cfp_parent == NULL) 830 return 1; 831 832 /* 833 * Check the parent device's name. 834 */ 835 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 836 return 0; /* not the same parent */ 837 838 /* 839 * Make sure the unit number matches. 840 */ 841 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 842 cfp->cfp_unit == parent->dv_unit) 843 return 1; 844 845 /* Unit numbers don't match. */ 846 return 0; 847 } 848 849 /* 850 * Helper for config_cfdata_attach(): check all devices whether it could be 851 * parent any attachment in the config data table passed, and rescan. 852 */ 853 static void 854 rescan_with_cfdata(const struct cfdata *cf) 855 { 856 device_t d; 857 const struct cfdata *cf1; 858 deviter_t di; 859 860 861 /* 862 * "alldevs" is likely longer than a modules's cfdata, so make it 863 * the outer loop. 864 */ 865 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 866 867 if (!(d->dv_cfattach->ca_rescan)) 868 continue; 869 870 for (cf1 = cf; cf1->cf_name; cf1++) { 871 872 if (!cfparent_match(d, cf1->cf_pspec)) 873 continue; 874 875 (*d->dv_cfattach->ca_rescan)(d, 876 cfdata_ifattr(cf1), cf1->cf_loc); 877 878 config_deferred(d); 879 } 880 } 881 deviter_release(&di); 882 } 883 884 /* 885 * Attach a supplemental config data table and rescan potential 886 * parent devices if required. 887 */ 888 int 889 config_cfdata_attach(cfdata_t cf, int scannow) 890 { 891 struct cftable *ct; 892 893 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 894 ct->ct_cfdata = cf; 895 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 896 897 if (scannow) 898 rescan_with_cfdata(cf); 899 900 return 0; 901 } 902 903 /* 904 * Helper for config_cfdata_detach: check whether a device is 905 * found through any attachment in the config data table. 906 */ 907 static int 908 dev_in_cfdata(device_t d, cfdata_t cf) 909 { 910 const struct cfdata *cf1; 911 912 for (cf1 = cf; cf1->cf_name; cf1++) 913 if (d->dv_cfdata == cf1) 914 return 1; 915 916 return 0; 917 } 918 919 /* 920 * Detach a supplemental config data table. Detach all devices found 921 * through that table (and thus keeping references to it) before. 922 */ 923 int 924 config_cfdata_detach(cfdata_t cf) 925 { 926 device_t d; 927 int error = 0; 928 struct cftable *ct; 929 deviter_t di; 930 931 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 932 d = deviter_next(&di)) { 933 if (!dev_in_cfdata(d, cf)) 934 continue; 935 if ((error = config_detach(d, 0)) != 0) 936 break; 937 } 938 deviter_release(&di); 939 if (error) { 940 aprint_error_dev(d, "unable to detach instance\n"); 941 return error; 942 } 943 944 TAILQ_FOREACH(ct, &allcftables, ct_list) { 945 if (ct->ct_cfdata == cf) { 946 TAILQ_REMOVE(&allcftables, ct, ct_list); 947 kmem_free(ct, sizeof(*ct)); 948 return 0; 949 } 950 } 951 952 /* not found -- shouldn't happen */ 953 return EINVAL; 954 } 955 956 /* 957 * Invoke the "match" routine for a cfdata entry on behalf of 958 * an external caller, usually a "submatch" routine. 959 */ 960 int 961 config_match(device_t parent, cfdata_t cf, void *aux) 962 { 963 struct cfattach *ca; 964 965 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 966 if (ca == NULL) { 967 /* No attachment for this entry, oh well. */ 968 return 0; 969 } 970 971 return (*ca->ca_match)(parent, cf, aux); 972 } 973 974 /* 975 * Iterate over all potential children of some device, calling the given 976 * function (default being the child's match function) for each one. 977 * Nonzero returns are matches; the highest value returned is considered 978 * the best match. Return the `found child' if we got a match, or NULL 979 * otherwise. The `aux' pointer is simply passed on through. 980 * 981 * Note that this function is designed so that it can be used to apply 982 * an arbitrary function to all potential children (its return value 983 * can be ignored). 984 */ 985 cfdata_t 986 config_search_loc(cfsubmatch_t fn, device_t parent, 987 const char *ifattr, const int *locs, void *aux) 988 { 989 struct cftable *ct; 990 cfdata_t cf; 991 struct matchinfo m; 992 993 KASSERT(config_initialized); 994 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 995 996 m.fn = fn; 997 m.parent = parent; 998 m.locs = locs; 999 m.aux = aux; 1000 m.match = NULL; 1001 m.pri = 0; 1002 1003 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1004 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1005 1006 /* We don't match root nodes here. */ 1007 if (!cf->cf_pspec) 1008 continue; 1009 1010 /* 1011 * Skip cf if no longer eligible, otherwise scan 1012 * through parents for one matching `parent', and 1013 * try match function. 1014 */ 1015 if (cf->cf_fstate == FSTATE_FOUND) 1016 continue; 1017 if (cf->cf_fstate == FSTATE_DNOTFOUND || 1018 cf->cf_fstate == FSTATE_DSTAR) 1019 continue; 1020 1021 /* 1022 * If an interface attribute was specified, 1023 * consider only children which attach to 1024 * that attribute. 1025 */ 1026 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 1027 continue; 1028 1029 if (cfparent_match(parent, cf->cf_pspec)) 1030 mapply(&m, cf); 1031 } 1032 } 1033 return m.match; 1034 } 1035 1036 cfdata_t 1037 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 1038 void *aux) 1039 { 1040 1041 return config_search_loc(fn, parent, ifattr, NULL, aux); 1042 } 1043 1044 /* 1045 * Find the given root device. 1046 * This is much like config_search, but there is no parent. 1047 * Don't bother with multiple cfdata tables; the root node 1048 * must always be in the initial table. 1049 */ 1050 cfdata_t 1051 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1052 { 1053 cfdata_t cf; 1054 const short *p; 1055 struct matchinfo m; 1056 1057 m.fn = fn; 1058 m.parent = ROOT; 1059 m.aux = aux; 1060 m.match = NULL; 1061 m.pri = 0; 1062 m.locs = 0; 1063 /* 1064 * Look at root entries for matching name. We do not bother 1065 * with found-state here since only one root should ever be 1066 * searched (and it must be done first). 1067 */ 1068 for (p = cfroots; *p >= 0; p++) { 1069 cf = &cfdata[*p]; 1070 if (strcmp(cf->cf_name, rootname) == 0) 1071 mapply(&m, cf); 1072 } 1073 return m.match; 1074 } 1075 1076 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1077 1078 /* 1079 * The given `aux' argument describes a device that has been found 1080 * on the given parent, but not necessarily configured. Locate the 1081 * configuration data for that device (using the submatch function 1082 * provided, or using candidates' cd_match configuration driver 1083 * functions) and attach it, and return its device_t. If the device was 1084 * not configured, call the given `print' function and return NULL. 1085 */ 1086 device_t 1087 config_found_sm_loc(device_t parent, 1088 const char *ifattr, const int *locs, void *aux, 1089 cfprint_t print, cfsubmatch_t submatch) 1090 { 1091 cfdata_t cf; 1092 1093 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1094 return(config_attach_loc(parent, cf, locs, aux, print)); 1095 if (print) { 1096 if (config_do_twiddle && cold) 1097 twiddle(); 1098 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1099 } 1100 1101 /* 1102 * This has the effect of mixing in a single timestamp to the 1103 * entropy pool. Experiments indicate the estimator will almost 1104 * always attribute one bit of entropy to this sample; analysis 1105 * of device attach/detach timestamps on FreeBSD indicates 4 1106 * bits of entropy/sample so this seems appropriately conservative. 1107 */ 1108 rnd_add_uint32(&rnd_autoconf_source, 0); 1109 return NULL; 1110 } 1111 1112 device_t 1113 config_found_ia(device_t parent, const char *ifattr, void *aux, 1114 cfprint_t print) 1115 { 1116 1117 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1118 } 1119 1120 device_t 1121 config_found(device_t parent, void *aux, cfprint_t print) 1122 { 1123 1124 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1125 } 1126 1127 /* 1128 * As above, but for root devices. 1129 */ 1130 device_t 1131 config_rootfound(const char *rootname, void *aux) 1132 { 1133 cfdata_t cf; 1134 1135 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1136 return config_attach(ROOT, cf, aux, NULL); 1137 aprint_error("root device %s not configured\n", rootname); 1138 return NULL; 1139 } 1140 1141 /* just like sprintf(buf, "%d") except that it works from the end */ 1142 static char * 1143 number(char *ep, int n) 1144 { 1145 1146 *--ep = 0; 1147 while (n >= 10) { 1148 *--ep = (n % 10) + '0'; 1149 n /= 10; 1150 } 1151 *--ep = n + '0'; 1152 return ep; 1153 } 1154 1155 /* 1156 * Expand the size of the cd_devs array if necessary. 1157 * 1158 * The caller must hold alldevs_lock. config_makeroom() may release and 1159 * re-acquire alldevs_lock, so callers should re-check conditions such 1160 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1161 * returns. 1162 */ 1163 static void 1164 config_makeroom(int n, struct cfdriver *cd) 1165 { 1166 int ondevs, nndevs; 1167 device_t *osp, *nsp; 1168 1169 KASSERT(mutex_owned(&alldevs_lock)); 1170 alldevs_nwrite++; 1171 1172 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1173 ; 1174 1175 while (n >= cd->cd_ndevs) { 1176 /* 1177 * Need to expand the array. 1178 */ 1179 ondevs = cd->cd_ndevs; 1180 osp = cd->cd_devs; 1181 1182 /* 1183 * Release alldevs_lock around allocation, which may 1184 * sleep. 1185 */ 1186 mutex_exit(&alldevs_lock); 1187 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP); 1188 mutex_enter(&alldevs_lock); 1189 1190 /* 1191 * If another thread moved the array while we did 1192 * not hold alldevs_lock, try again. 1193 */ 1194 if (cd->cd_devs != osp) { 1195 mutex_exit(&alldevs_lock); 1196 kmem_free(nsp, sizeof(device_t[nndevs])); 1197 mutex_enter(&alldevs_lock); 1198 continue; 1199 } 1200 1201 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs])); 1202 if (ondevs != 0) 1203 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs])); 1204 1205 cd->cd_ndevs = nndevs; 1206 cd->cd_devs = nsp; 1207 if (ondevs != 0) { 1208 mutex_exit(&alldevs_lock); 1209 kmem_free(osp, sizeof(device_t[ondevs])); 1210 mutex_enter(&alldevs_lock); 1211 } 1212 } 1213 KASSERT(mutex_owned(&alldevs_lock)); 1214 alldevs_nwrite--; 1215 } 1216 1217 /* 1218 * Put dev into the devices list. 1219 */ 1220 static void 1221 config_devlink(device_t dev) 1222 { 1223 1224 mutex_enter(&alldevs_lock); 1225 1226 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1227 1228 dev->dv_add_gen = alldevs_gen; 1229 /* It is safe to add a device to the tail of the list while 1230 * readers and writers are in the list. 1231 */ 1232 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1233 mutex_exit(&alldevs_lock); 1234 } 1235 1236 static void 1237 config_devfree(device_t dev) 1238 { 1239 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1240 1241 if (dev->dv_cfattach->ca_devsize > 0) 1242 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1243 if (priv) 1244 kmem_free(dev, sizeof(*dev)); 1245 } 1246 1247 /* 1248 * Caller must hold alldevs_lock. 1249 */ 1250 static void 1251 config_devunlink(device_t dev, struct devicelist *garbage) 1252 { 1253 struct device_garbage *dg = &dev->dv_garbage; 1254 cfdriver_t cd = device_cfdriver(dev); 1255 int i; 1256 1257 KASSERT(mutex_owned(&alldevs_lock)); 1258 1259 /* Unlink from device list. Link to garbage list. */ 1260 TAILQ_REMOVE(&alldevs, dev, dv_list); 1261 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1262 1263 /* Remove from cfdriver's array. */ 1264 cd->cd_devs[dev->dv_unit] = NULL; 1265 1266 /* 1267 * If the device now has no units in use, unlink its softc array. 1268 */ 1269 for (i = 0; i < cd->cd_ndevs; i++) { 1270 if (cd->cd_devs[i] != NULL) 1271 break; 1272 } 1273 /* Nothing found. Unlink, now. Deallocate, later. */ 1274 if (i == cd->cd_ndevs) { 1275 dg->dg_ndevs = cd->cd_ndevs; 1276 dg->dg_devs = cd->cd_devs; 1277 cd->cd_devs = NULL; 1278 cd->cd_ndevs = 0; 1279 } 1280 } 1281 1282 static void 1283 config_devdelete(device_t dev) 1284 { 1285 struct device_garbage *dg = &dev->dv_garbage; 1286 device_lock_t dvl = device_getlock(dev); 1287 1288 if (dg->dg_devs != NULL) 1289 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1290 1291 cv_destroy(&dvl->dvl_cv); 1292 mutex_destroy(&dvl->dvl_mtx); 1293 1294 KASSERT(dev->dv_properties != NULL); 1295 prop_object_release(dev->dv_properties); 1296 1297 if (dev->dv_activity_handlers) 1298 panic("%s with registered handlers", __func__); 1299 1300 if (dev->dv_locators) { 1301 size_t amount = *--dev->dv_locators; 1302 kmem_free(dev->dv_locators, amount); 1303 } 1304 1305 config_devfree(dev); 1306 } 1307 1308 static int 1309 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1310 { 1311 int unit; 1312 1313 if (cf->cf_fstate == FSTATE_STAR) { 1314 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1315 if (cd->cd_devs[unit] == NULL) 1316 break; 1317 /* 1318 * unit is now the unit of the first NULL device pointer, 1319 * or max(cd->cd_ndevs,cf->cf_unit). 1320 */ 1321 } else { 1322 unit = cf->cf_unit; 1323 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1324 unit = -1; 1325 } 1326 return unit; 1327 } 1328 1329 static int 1330 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1331 { 1332 struct alldevs_foray af; 1333 int unit; 1334 1335 config_alldevs_enter(&af); 1336 for (;;) { 1337 unit = config_unit_nextfree(cd, cf); 1338 if (unit == -1) 1339 break; 1340 if (unit < cd->cd_ndevs) { 1341 cd->cd_devs[unit] = dev; 1342 dev->dv_unit = unit; 1343 break; 1344 } 1345 config_makeroom(unit, cd); 1346 } 1347 config_alldevs_exit(&af); 1348 1349 return unit; 1350 } 1351 1352 static device_t 1353 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1354 { 1355 cfdriver_t cd; 1356 cfattach_t ca; 1357 size_t lname, lunit; 1358 const char *xunit; 1359 int myunit; 1360 char num[10]; 1361 device_t dev; 1362 void *dev_private; 1363 const struct cfiattrdata *ia; 1364 device_lock_t dvl; 1365 1366 cd = config_cfdriver_lookup(cf->cf_name); 1367 if (cd == NULL) 1368 return NULL; 1369 1370 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1371 if (ca == NULL) 1372 return NULL; 1373 1374 /* get memory for all device vars */ 1375 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC) 1376 || ca->ca_devsize >= sizeof(struct device), 1377 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize, 1378 sizeof(struct device)); 1379 if (ca->ca_devsize > 0) { 1380 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1381 } else { 1382 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1383 dev_private = NULL; 1384 } 1385 1386 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1387 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1388 } else { 1389 dev = dev_private; 1390 #ifdef DIAGNOSTIC 1391 printf("%s has not been converted to device_t\n", cd->cd_name); 1392 #endif 1393 KASSERT(dev != NULL); 1394 } 1395 dev->dv_class = cd->cd_class; 1396 dev->dv_cfdata = cf; 1397 dev->dv_cfdriver = cd; 1398 dev->dv_cfattach = ca; 1399 dev->dv_activity_count = 0; 1400 dev->dv_activity_handlers = NULL; 1401 dev->dv_private = dev_private; 1402 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1403 1404 myunit = config_unit_alloc(dev, cd, cf); 1405 if (myunit == -1) { 1406 config_devfree(dev); 1407 return NULL; 1408 } 1409 1410 /* compute length of name and decimal expansion of unit number */ 1411 lname = strlen(cd->cd_name); 1412 xunit = number(&num[sizeof(num)], myunit); 1413 lunit = &num[sizeof(num)] - xunit; 1414 if (lname + lunit > sizeof(dev->dv_xname)) 1415 panic("config_devalloc: device name too long"); 1416 1417 dvl = device_getlock(dev); 1418 1419 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1420 cv_init(&dvl->dvl_cv, "pmfsusp"); 1421 1422 memcpy(dev->dv_xname, cd->cd_name, lname); 1423 memcpy(dev->dv_xname + lname, xunit, lunit); 1424 dev->dv_parent = parent; 1425 if (parent != NULL) 1426 dev->dv_depth = parent->dv_depth + 1; 1427 else 1428 dev->dv_depth = 0; 1429 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1430 if (locs) { 1431 KASSERT(parent); /* no locators at root */ 1432 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1433 dev->dv_locators = 1434 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1435 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1436 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1437 } 1438 dev->dv_properties = prop_dictionary_create(); 1439 KASSERT(dev->dv_properties != NULL); 1440 1441 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1442 "device-driver", dev->dv_cfdriver->cd_name); 1443 prop_dictionary_set_uint16(dev->dv_properties, 1444 "device-unit", dev->dv_unit); 1445 if (parent != NULL) { 1446 prop_dictionary_set_cstring(dev->dv_properties, 1447 "device-parent", device_xname(parent)); 1448 } 1449 1450 if (dev->dv_cfdriver->cd_attrs != NULL) 1451 config_add_attrib_dict(dev); 1452 1453 return dev; 1454 } 1455 1456 /* 1457 * Create an array of device attach attributes and add it 1458 * to the device's dv_properties dictionary. 1459 * 1460 * <key>interface-attributes</key> 1461 * <array> 1462 * <dict> 1463 * <key>attribute-name</key> 1464 * <string>foo</string> 1465 * <key>locators</key> 1466 * <array> 1467 * <dict> 1468 * <key>loc-name</key> 1469 * <string>foo-loc1</string> 1470 * </dict> 1471 * <dict> 1472 * <key>loc-name</key> 1473 * <string>foo-loc2</string> 1474 * <key>default</key> 1475 * <string>foo-loc2-default</string> 1476 * </dict> 1477 * ... 1478 * </array> 1479 * </dict> 1480 * ... 1481 * </array> 1482 */ 1483 1484 static void 1485 config_add_attrib_dict(device_t dev) 1486 { 1487 int i, j; 1488 const struct cfiattrdata *ci; 1489 prop_dictionary_t attr_dict, loc_dict; 1490 prop_array_t attr_array, loc_array; 1491 1492 if ((attr_array = prop_array_create()) == NULL) 1493 return; 1494 1495 for (i = 0; ; i++) { 1496 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1497 break; 1498 if ((attr_dict = prop_dictionary_create()) == NULL) 1499 break; 1500 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name", 1501 ci->ci_name); 1502 1503 /* Create an array of the locator names and defaults */ 1504 1505 if (ci->ci_loclen != 0 && 1506 (loc_array = prop_array_create()) != NULL) { 1507 for (j = 0; j < ci->ci_loclen; j++) { 1508 loc_dict = prop_dictionary_create(); 1509 if (loc_dict == NULL) 1510 continue; 1511 prop_dictionary_set_cstring_nocopy(loc_dict, 1512 "loc-name", ci->ci_locdesc[j].cld_name); 1513 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1514 prop_dictionary_set_cstring_nocopy( 1515 loc_dict, "default", 1516 ci->ci_locdesc[j].cld_defaultstr); 1517 prop_array_set(loc_array, j, loc_dict); 1518 prop_object_release(loc_dict); 1519 } 1520 prop_dictionary_set_and_rel(attr_dict, "locators", 1521 loc_array); 1522 } 1523 prop_array_add(attr_array, attr_dict); 1524 prop_object_release(attr_dict); 1525 } 1526 if (i == 0) 1527 prop_object_release(attr_array); 1528 else 1529 prop_dictionary_set_and_rel(dev->dv_properties, 1530 "interface-attributes", attr_array); 1531 1532 return; 1533 } 1534 1535 /* 1536 * Attach a found device. 1537 */ 1538 device_t 1539 config_attach_loc(device_t parent, cfdata_t cf, 1540 const int *locs, void *aux, cfprint_t print) 1541 { 1542 device_t dev; 1543 struct cftable *ct; 1544 const char *drvname; 1545 1546 dev = config_devalloc(parent, cf, locs); 1547 if (!dev) 1548 panic("config_attach: allocation of device softc failed"); 1549 1550 /* XXX redundant - see below? */ 1551 if (cf->cf_fstate != FSTATE_STAR) { 1552 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1553 cf->cf_fstate = FSTATE_FOUND; 1554 } 1555 1556 config_devlink(dev); 1557 1558 if (config_do_twiddle && cold) 1559 twiddle(); 1560 else 1561 aprint_naive("Found "); 1562 /* 1563 * We want the next two printfs for normal, verbose, and quiet, 1564 * but not silent (in which case, we're twiddling, instead). 1565 */ 1566 if (parent == ROOT) { 1567 aprint_naive("%s (root)", device_xname(dev)); 1568 aprint_normal("%s (root)", device_xname(dev)); 1569 } else { 1570 aprint_naive("%s at %s", device_xname(dev), 1571 device_xname(parent)); 1572 aprint_normal("%s at %s", device_xname(dev), 1573 device_xname(parent)); 1574 if (print) 1575 (void) (*print)(aux, NULL); 1576 } 1577 1578 /* 1579 * Before attaching, clobber any unfound devices that are 1580 * otherwise identical. 1581 * XXX code above is redundant? 1582 */ 1583 drvname = dev->dv_cfdriver->cd_name; 1584 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1585 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1586 if (STREQ(cf->cf_name, drvname) && 1587 cf->cf_unit == dev->dv_unit) { 1588 if (cf->cf_fstate == FSTATE_NOTFOUND) 1589 cf->cf_fstate = FSTATE_FOUND; 1590 } 1591 } 1592 } 1593 device_register(dev, aux); 1594 1595 /* Let userland know */ 1596 devmon_report_device(dev, true); 1597 1598 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1599 1600 if (!device_pmf_is_registered(dev)) 1601 aprint_debug_dev(dev, "WARNING: power management not " 1602 "supported\n"); 1603 1604 config_process_deferred(&deferred_config_queue, dev); 1605 1606 device_register_post_config(dev, aux); 1607 return dev; 1608 } 1609 1610 device_t 1611 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1612 { 1613 1614 return config_attach_loc(parent, cf, NULL, aux, print); 1615 } 1616 1617 /* 1618 * As above, but for pseudo-devices. Pseudo-devices attached in this 1619 * way are silently inserted into the device tree, and their children 1620 * attached. 1621 * 1622 * Note that because pseudo-devices are attached silently, any information 1623 * the attach routine wishes to print should be prefixed with the device 1624 * name by the attach routine. 1625 */ 1626 device_t 1627 config_attach_pseudo(cfdata_t cf) 1628 { 1629 device_t dev; 1630 1631 dev = config_devalloc(ROOT, cf, NULL); 1632 if (!dev) 1633 return NULL; 1634 1635 /* XXX mark busy in cfdata */ 1636 1637 if (cf->cf_fstate != FSTATE_STAR) { 1638 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1639 cf->cf_fstate = FSTATE_FOUND; 1640 } 1641 1642 config_devlink(dev); 1643 1644 #if 0 /* XXXJRT not yet */ 1645 device_register(dev, NULL); /* like a root node */ 1646 #endif 1647 1648 /* Let userland know */ 1649 devmon_report_device(dev, true); 1650 1651 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1652 1653 config_process_deferred(&deferred_config_queue, dev); 1654 return dev; 1655 } 1656 1657 /* 1658 * Caller must hold alldevs_lock. 1659 */ 1660 static void 1661 config_collect_garbage(struct devicelist *garbage) 1662 { 1663 device_t dv; 1664 1665 KASSERT(!cpu_intr_p()); 1666 KASSERT(!cpu_softintr_p()); 1667 KASSERT(mutex_owned(&alldevs_lock)); 1668 1669 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1670 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1671 if (dv->dv_del_gen != 0) 1672 break; 1673 } 1674 if (dv == NULL) { 1675 alldevs_garbage = false; 1676 break; 1677 } 1678 config_devunlink(dv, garbage); 1679 } 1680 KASSERT(mutex_owned(&alldevs_lock)); 1681 } 1682 1683 static void 1684 config_dump_garbage(struct devicelist *garbage) 1685 { 1686 device_t dv; 1687 1688 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1689 TAILQ_REMOVE(garbage, dv, dv_list); 1690 config_devdelete(dv); 1691 } 1692 } 1693 1694 /* 1695 * Detach a device. Optionally forced (e.g. because of hardware 1696 * removal) and quiet. Returns zero if successful, non-zero 1697 * (an error code) otherwise. 1698 * 1699 * Note that this code wants to be run from a process context, so 1700 * that the detach can sleep to allow processes which have a device 1701 * open to run and unwind their stacks. 1702 */ 1703 int 1704 config_detach(device_t dev, int flags) 1705 { 1706 struct alldevs_foray af; 1707 struct cftable *ct; 1708 cfdata_t cf; 1709 const struct cfattach *ca; 1710 struct cfdriver *cd; 1711 device_t d __diagused; 1712 int rv = 0; 1713 1714 cf = dev->dv_cfdata; 1715 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND || 1716 cf->cf_fstate == FSTATE_STAR), 1717 "config_detach: %s: bad device fstate: %d", 1718 device_xname(dev), cf ? cf->cf_fstate : -1); 1719 1720 cd = dev->dv_cfdriver; 1721 KASSERT(cd != NULL); 1722 1723 ca = dev->dv_cfattach; 1724 KASSERT(ca != NULL); 1725 1726 mutex_enter(&alldevs_lock); 1727 if (dev->dv_del_gen != 0) { 1728 mutex_exit(&alldevs_lock); 1729 #ifdef DIAGNOSTIC 1730 printf("%s: %s is already detached\n", __func__, 1731 device_xname(dev)); 1732 #endif /* DIAGNOSTIC */ 1733 return ENOENT; 1734 } 1735 alldevs_nwrite++; 1736 mutex_exit(&alldevs_lock); 1737 1738 if (!detachall && 1739 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1740 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1741 rv = EOPNOTSUPP; 1742 } else if (ca->ca_detach != NULL) { 1743 rv = (*ca->ca_detach)(dev, flags); 1744 } else 1745 rv = EOPNOTSUPP; 1746 1747 /* 1748 * If it was not possible to detach the device, then we either 1749 * panic() (for the forced but failed case), or return an error. 1750 * 1751 * If it was possible to detach the device, ensure that the 1752 * device is deactivated. 1753 */ 1754 if (rv == 0) 1755 dev->dv_flags &= ~DVF_ACTIVE; 1756 else if ((flags & DETACH_FORCE) == 0) 1757 goto out; 1758 else { 1759 panic("config_detach: forced detach of %s failed (%d)", 1760 device_xname(dev), rv); 1761 } 1762 1763 /* 1764 * The device has now been successfully detached. 1765 */ 1766 1767 /* Let userland know */ 1768 devmon_report_device(dev, false); 1769 1770 #ifdef DIAGNOSTIC 1771 /* 1772 * Sanity: If you're successfully detached, you should have no 1773 * children. (Note that because children must be attached 1774 * after parents, we only need to search the latter part of 1775 * the list.) 1776 */ 1777 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1778 d = TAILQ_NEXT(d, dv_list)) { 1779 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1780 printf("config_detach: detached device %s" 1781 " has children %s\n", device_xname(dev), 1782 device_xname(d)); 1783 panic("config_detach"); 1784 } 1785 } 1786 #endif 1787 1788 /* notify the parent that the child is gone */ 1789 if (dev->dv_parent) { 1790 device_t p = dev->dv_parent; 1791 if (p->dv_cfattach->ca_childdetached) 1792 (*p->dv_cfattach->ca_childdetached)(p, dev); 1793 } 1794 1795 /* 1796 * Mark cfdata to show that the unit can be reused, if possible. 1797 */ 1798 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1799 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1800 if (STREQ(cf->cf_name, cd->cd_name)) { 1801 if (cf->cf_fstate == FSTATE_FOUND && 1802 cf->cf_unit == dev->dv_unit) 1803 cf->cf_fstate = FSTATE_NOTFOUND; 1804 } 1805 } 1806 } 1807 1808 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1809 aprint_normal_dev(dev, "detached\n"); 1810 1811 out: 1812 config_alldevs_enter(&af); 1813 KASSERT(alldevs_nwrite != 0); 1814 --alldevs_nwrite; 1815 if (rv == 0 && dev->dv_del_gen == 0) { 1816 if (alldevs_nwrite == 0 && alldevs_nread == 0) 1817 config_devunlink(dev, &af.af_garbage); 1818 else { 1819 dev->dv_del_gen = alldevs_gen; 1820 alldevs_garbage = true; 1821 } 1822 } 1823 config_alldevs_exit(&af); 1824 1825 return rv; 1826 } 1827 1828 int 1829 config_detach_children(device_t parent, int flags) 1830 { 1831 device_t dv; 1832 deviter_t di; 1833 int error = 0; 1834 1835 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1836 dv = deviter_next(&di)) { 1837 if (device_parent(dv) != parent) 1838 continue; 1839 if ((error = config_detach(dv, flags)) != 0) 1840 break; 1841 } 1842 deviter_release(&di); 1843 return error; 1844 } 1845 1846 device_t 1847 shutdown_first(struct shutdown_state *s) 1848 { 1849 if (!s->initialized) { 1850 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1851 s->initialized = true; 1852 } 1853 return shutdown_next(s); 1854 } 1855 1856 device_t 1857 shutdown_next(struct shutdown_state *s) 1858 { 1859 device_t dv; 1860 1861 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1862 ; 1863 1864 if (dv == NULL) 1865 s->initialized = false; 1866 1867 return dv; 1868 } 1869 1870 bool 1871 config_detach_all(int how) 1872 { 1873 static struct shutdown_state s; 1874 device_t curdev; 1875 bool progress = false; 1876 int flags; 1877 1878 if ((how & (RB_NOSYNC|RB_DUMP)) != 0) 1879 return false; 1880 1881 if ((how & RB_POWERDOWN) == RB_POWERDOWN) 1882 flags = DETACH_SHUTDOWN | DETACH_POWEROFF; 1883 else 1884 flags = DETACH_SHUTDOWN; 1885 1886 for (curdev = shutdown_first(&s); curdev != NULL; 1887 curdev = shutdown_next(&s)) { 1888 aprint_debug(" detaching %s, ", device_xname(curdev)); 1889 if (config_detach(curdev, flags) == 0) { 1890 progress = true; 1891 aprint_debug("success."); 1892 } else 1893 aprint_debug("failed."); 1894 } 1895 return progress; 1896 } 1897 1898 static bool 1899 device_is_ancestor_of(device_t ancestor, device_t descendant) 1900 { 1901 device_t dv; 1902 1903 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1904 if (device_parent(dv) == ancestor) 1905 return true; 1906 } 1907 return false; 1908 } 1909 1910 int 1911 config_deactivate(device_t dev) 1912 { 1913 deviter_t di; 1914 const struct cfattach *ca; 1915 device_t descendant; 1916 int s, rv = 0, oflags; 1917 1918 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1919 descendant != NULL; 1920 descendant = deviter_next(&di)) { 1921 if (dev != descendant && 1922 !device_is_ancestor_of(dev, descendant)) 1923 continue; 1924 1925 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1926 continue; 1927 1928 ca = descendant->dv_cfattach; 1929 oflags = descendant->dv_flags; 1930 1931 descendant->dv_flags &= ~DVF_ACTIVE; 1932 if (ca->ca_activate == NULL) 1933 continue; 1934 s = splhigh(); 1935 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1936 splx(s); 1937 if (rv != 0) 1938 descendant->dv_flags = oflags; 1939 } 1940 deviter_release(&di); 1941 return rv; 1942 } 1943 1944 /* 1945 * Defer the configuration of the specified device until all 1946 * of its parent's devices have been attached. 1947 */ 1948 void 1949 config_defer(device_t dev, void (*func)(device_t)) 1950 { 1951 struct deferred_config *dc; 1952 1953 if (dev->dv_parent == NULL) 1954 panic("config_defer: can't defer config of a root device"); 1955 1956 #ifdef DIAGNOSTIC 1957 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1958 if (dc->dc_dev == dev) 1959 panic("config_defer: deferred twice"); 1960 } 1961 #endif 1962 1963 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1964 dc->dc_dev = dev; 1965 dc->dc_func = func; 1966 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1967 config_pending_incr(dev); 1968 } 1969 1970 /* 1971 * Defer some autoconfiguration for a device until after interrupts 1972 * are enabled. 1973 */ 1974 void 1975 config_interrupts(device_t dev, void (*func)(device_t)) 1976 { 1977 struct deferred_config *dc; 1978 1979 /* 1980 * If interrupts are enabled, callback now. 1981 */ 1982 if (cold == 0) { 1983 (*func)(dev); 1984 return; 1985 } 1986 1987 #ifdef DIAGNOSTIC 1988 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1989 if (dc->dc_dev == dev) 1990 panic("config_interrupts: deferred twice"); 1991 } 1992 #endif 1993 1994 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1995 dc->dc_dev = dev; 1996 dc->dc_func = func; 1997 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1998 config_pending_incr(dev); 1999 } 2000 2001 /* 2002 * Defer some autoconfiguration for a device until after root file system 2003 * is mounted (to load firmware etc). 2004 */ 2005 void 2006 config_mountroot(device_t dev, void (*func)(device_t)) 2007 { 2008 struct deferred_config *dc; 2009 2010 /* 2011 * If root file system is mounted, callback now. 2012 */ 2013 if (root_is_mounted) { 2014 (*func)(dev); 2015 return; 2016 } 2017 2018 #ifdef DIAGNOSTIC 2019 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) { 2020 if (dc->dc_dev == dev) 2021 panic("%s: deferred twice", __func__); 2022 } 2023 #endif 2024 2025 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2026 dc->dc_dev = dev; 2027 dc->dc_func = func; 2028 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 2029 } 2030 2031 /* 2032 * Process a deferred configuration queue. 2033 */ 2034 static void 2035 config_process_deferred(struct deferred_config_head *queue, device_t parent) 2036 { 2037 struct deferred_config *dc, *ndc; 2038 2039 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 2040 ndc = TAILQ_NEXT(dc, dc_queue); 2041 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2042 TAILQ_REMOVE(queue, dc, dc_queue); 2043 (*dc->dc_func)(dc->dc_dev); 2044 config_pending_decr(dc->dc_dev); 2045 kmem_free(dc, sizeof(*dc)); 2046 } 2047 } 2048 } 2049 2050 /* 2051 * Manipulate the config_pending semaphore. 2052 */ 2053 void 2054 config_pending_incr(device_t dev) 2055 { 2056 2057 mutex_enter(&config_misc_lock); 2058 config_pending++; 2059 #ifdef DEBUG_AUTOCONF 2060 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2061 #endif 2062 mutex_exit(&config_misc_lock); 2063 } 2064 2065 void 2066 config_pending_decr(device_t dev) 2067 { 2068 2069 KASSERT(0 < config_pending); 2070 mutex_enter(&config_misc_lock); 2071 config_pending--; 2072 #ifdef DEBUG_AUTOCONF 2073 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2074 #endif 2075 if (config_pending == 0) 2076 cv_broadcast(&config_misc_cv); 2077 mutex_exit(&config_misc_lock); 2078 } 2079 2080 /* 2081 * Register a "finalization" routine. Finalization routines are 2082 * called iteratively once all real devices have been found during 2083 * autoconfiguration, for as long as any one finalizer has done 2084 * any work. 2085 */ 2086 int 2087 config_finalize_register(device_t dev, int (*fn)(device_t)) 2088 { 2089 struct finalize_hook *f; 2090 2091 /* 2092 * If finalization has already been done, invoke the 2093 * callback function now. 2094 */ 2095 if (config_finalize_done) { 2096 while ((*fn)(dev) != 0) 2097 /* loop */ ; 2098 return 0; 2099 } 2100 2101 /* Ensure this isn't already on the list. */ 2102 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2103 if (f->f_func == fn && f->f_dev == dev) 2104 return EEXIST; 2105 } 2106 2107 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2108 f->f_func = fn; 2109 f->f_dev = dev; 2110 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2111 2112 return 0; 2113 } 2114 2115 void 2116 config_finalize(void) 2117 { 2118 struct finalize_hook *f; 2119 struct pdevinit *pdev; 2120 extern struct pdevinit pdevinit[]; 2121 int errcnt, rv; 2122 2123 /* 2124 * Now that device driver threads have been created, wait for 2125 * them to finish any deferred autoconfiguration. 2126 */ 2127 mutex_enter(&config_misc_lock); 2128 while (config_pending != 0) 2129 cv_wait(&config_misc_cv, &config_misc_lock); 2130 mutex_exit(&config_misc_lock); 2131 2132 KERNEL_LOCK(1, NULL); 2133 2134 /* Attach pseudo-devices. */ 2135 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2136 (*pdev->pdev_attach)(pdev->pdev_count); 2137 2138 /* Run the hooks until none of them does any work. */ 2139 do { 2140 rv = 0; 2141 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2142 rv |= (*f->f_func)(f->f_dev); 2143 } while (rv != 0); 2144 2145 config_finalize_done = 1; 2146 2147 /* Now free all the hooks. */ 2148 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2149 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2150 kmem_free(f, sizeof(*f)); 2151 } 2152 2153 KERNEL_UNLOCK_ONE(NULL); 2154 2155 errcnt = aprint_get_error_count(); 2156 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2157 (boothowto & AB_VERBOSE) == 0) { 2158 mutex_enter(&config_misc_lock); 2159 if (config_do_twiddle) { 2160 config_do_twiddle = 0; 2161 printf_nolog(" done.\n"); 2162 } 2163 mutex_exit(&config_misc_lock); 2164 } 2165 if (errcnt != 0) { 2166 printf("WARNING: %d error%s while detecting hardware; " 2167 "check system log.\n", errcnt, 2168 errcnt == 1 ? "" : "s"); 2169 } 2170 } 2171 2172 void 2173 config_twiddle_init(void) 2174 { 2175 2176 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2177 config_do_twiddle = 1; 2178 } 2179 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2180 } 2181 2182 void 2183 config_twiddle_fn(void *cookie) 2184 { 2185 2186 mutex_enter(&config_misc_lock); 2187 if (config_do_twiddle) { 2188 twiddle(); 2189 callout_schedule(&config_twiddle_ch, mstohz(100)); 2190 } 2191 mutex_exit(&config_misc_lock); 2192 } 2193 2194 static void 2195 config_alldevs_enter(struct alldevs_foray *af) 2196 { 2197 TAILQ_INIT(&af->af_garbage); 2198 mutex_enter(&alldevs_lock); 2199 config_collect_garbage(&af->af_garbage); 2200 } 2201 2202 static void 2203 config_alldevs_exit(struct alldevs_foray *af) 2204 { 2205 mutex_exit(&alldevs_lock); 2206 config_dump_garbage(&af->af_garbage); 2207 } 2208 2209 /* 2210 * device_lookup: 2211 * 2212 * Look up a device instance for a given driver. 2213 */ 2214 device_t 2215 device_lookup(cfdriver_t cd, int unit) 2216 { 2217 device_t dv; 2218 2219 mutex_enter(&alldevs_lock); 2220 if (unit < 0 || unit >= cd->cd_ndevs) 2221 dv = NULL; 2222 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2223 dv = NULL; 2224 mutex_exit(&alldevs_lock); 2225 2226 return dv; 2227 } 2228 2229 /* 2230 * device_lookup_private: 2231 * 2232 * Look up a softc instance for a given driver. 2233 */ 2234 void * 2235 device_lookup_private(cfdriver_t cd, int unit) 2236 { 2237 2238 return device_private(device_lookup(cd, unit)); 2239 } 2240 2241 /* 2242 * device_find_by_xname: 2243 * 2244 * Returns the device of the given name or NULL if it doesn't exist. 2245 */ 2246 device_t 2247 device_find_by_xname(const char *name) 2248 { 2249 device_t dv; 2250 deviter_t di; 2251 2252 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2253 if (strcmp(device_xname(dv), name) == 0) 2254 break; 2255 } 2256 deviter_release(&di); 2257 2258 return dv; 2259 } 2260 2261 /* 2262 * device_find_by_driver_unit: 2263 * 2264 * Returns the device of the given driver name and unit or 2265 * NULL if it doesn't exist. 2266 */ 2267 device_t 2268 device_find_by_driver_unit(const char *name, int unit) 2269 { 2270 struct cfdriver *cd; 2271 2272 if ((cd = config_cfdriver_lookup(name)) == NULL) 2273 return NULL; 2274 return device_lookup(cd, unit); 2275 } 2276 2277 /* 2278 * device_compatible_match: 2279 * 2280 * Match a driver's "compatible" data against a device's 2281 * "compatible" strings. If a match is found, we return 2282 * a weighted match result, and optionally the matching 2283 * entry. 2284 */ 2285 int 2286 device_compatible_match(const char **device_compats, int ndevice_compats, 2287 const struct device_compatible_entry *driver_compats, 2288 const struct device_compatible_entry **matching_entryp) 2289 { 2290 const struct device_compatible_entry *dce = NULL; 2291 int i, match_weight; 2292 2293 if (ndevice_compats == 0 || device_compats == NULL || 2294 driver_compats == NULL) 2295 return 0; 2296 2297 /* 2298 * We take the first match because we start with the most-specific 2299 * device compatible string. 2300 */ 2301 for (i = 0, match_weight = ndevice_compats - 1; 2302 i < ndevice_compats; 2303 i++, match_weight--) { 2304 for (dce = driver_compats; dce->compat != NULL; dce++) { 2305 if (strcmp(dce->compat, device_compats[i]) == 0) { 2306 KASSERT(match_weight >= 0); 2307 if (matching_entryp) 2308 *matching_entryp = dce; 2309 return 1 + match_weight; 2310 } 2311 } 2312 } 2313 return 0; 2314 } 2315 2316 /* 2317 * Power management related functions. 2318 */ 2319 2320 bool 2321 device_pmf_is_registered(device_t dev) 2322 { 2323 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2324 } 2325 2326 bool 2327 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2328 { 2329 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2330 return true; 2331 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2332 return false; 2333 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2334 dev->dv_driver_suspend != NULL && 2335 !(*dev->dv_driver_suspend)(dev, qual)) 2336 return false; 2337 2338 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2339 return true; 2340 } 2341 2342 bool 2343 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2344 { 2345 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2346 return true; 2347 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2348 return false; 2349 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2350 dev->dv_driver_resume != NULL && 2351 !(*dev->dv_driver_resume)(dev, qual)) 2352 return false; 2353 2354 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2355 return true; 2356 } 2357 2358 bool 2359 device_pmf_driver_shutdown(device_t dev, int how) 2360 { 2361 2362 if (*dev->dv_driver_shutdown != NULL && 2363 !(*dev->dv_driver_shutdown)(dev, how)) 2364 return false; 2365 return true; 2366 } 2367 2368 bool 2369 device_pmf_driver_register(device_t dev, 2370 bool (*suspend)(device_t, const pmf_qual_t *), 2371 bool (*resume)(device_t, const pmf_qual_t *), 2372 bool (*shutdown)(device_t, int)) 2373 { 2374 dev->dv_driver_suspend = suspend; 2375 dev->dv_driver_resume = resume; 2376 dev->dv_driver_shutdown = shutdown; 2377 dev->dv_flags |= DVF_POWER_HANDLERS; 2378 return true; 2379 } 2380 2381 static const char * 2382 curlwp_name(void) 2383 { 2384 if (curlwp->l_name != NULL) 2385 return curlwp->l_name; 2386 else 2387 return curlwp->l_proc->p_comm; 2388 } 2389 2390 void 2391 device_pmf_driver_deregister(device_t dev) 2392 { 2393 device_lock_t dvl = device_getlock(dev); 2394 2395 dev->dv_driver_suspend = NULL; 2396 dev->dv_driver_resume = NULL; 2397 2398 mutex_enter(&dvl->dvl_mtx); 2399 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2400 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2401 /* Wake a thread that waits for the lock. That 2402 * thread will fail to acquire the lock, and then 2403 * it will wake the next thread that waits for the 2404 * lock, or else it will wake us. 2405 */ 2406 cv_signal(&dvl->dvl_cv); 2407 pmflock_debug(dev, __func__, __LINE__); 2408 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2409 pmflock_debug(dev, __func__, __LINE__); 2410 } 2411 mutex_exit(&dvl->dvl_mtx); 2412 } 2413 2414 bool 2415 device_pmf_driver_child_register(device_t dev) 2416 { 2417 device_t parent = device_parent(dev); 2418 2419 if (parent == NULL || parent->dv_driver_child_register == NULL) 2420 return true; 2421 return (*parent->dv_driver_child_register)(dev); 2422 } 2423 2424 void 2425 device_pmf_driver_set_child_register(device_t dev, 2426 bool (*child_register)(device_t)) 2427 { 2428 dev->dv_driver_child_register = child_register; 2429 } 2430 2431 static void 2432 pmflock_debug(device_t dev, const char *func, int line) 2433 { 2434 device_lock_t dvl = device_getlock(dev); 2435 2436 aprint_debug_dev(dev, 2437 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line, 2438 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags); 2439 } 2440 2441 static bool 2442 device_pmf_lock1(device_t dev) 2443 { 2444 device_lock_t dvl = device_getlock(dev); 2445 2446 while (device_pmf_is_registered(dev) && 2447 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2448 dvl->dvl_nwait++; 2449 pmflock_debug(dev, __func__, __LINE__); 2450 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2451 pmflock_debug(dev, __func__, __LINE__); 2452 dvl->dvl_nwait--; 2453 } 2454 if (!device_pmf_is_registered(dev)) { 2455 pmflock_debug(dev, __func__, __LINE__); 2456 /* We could not acquire the lock, but some other thread may 2457 * wait for it, also. Wake that thread. 2458 */ 2459 cv_signal(&dvl->dvl_cv); 2460 return false; 2461 } 2462 dvl->dvl_nlock++; 2463 dvl->dvl_holder = curlwp; 2464 pmflock_debug(dev, __func__, __LINE__); 2465 return true; 2466 } 2467 2468 bool 2469 device_pmf_lock(device_t dev) 2470 { 2471 bool rc; 2472 device_lock_t dvl = device_getlock(dev); 2473 2474 mutex_enter(&dvl->dvl_mtx); 2475 rc = device_pmf_lock1(dev); 2476 mutex_exit(&dvl->dvl_mtx); 2477 2478 return rc; 2479 } 2480 2481 void 2482 device_pmf_unlock(device_t dev) 2483 { 2484 device_lock_t dvl = device_getlock(dev); 2485 2486 KASSERT(dvl->dvl_nlock > 0); 2487 mutex_enter(&dvl->dvl_mtx); 2488 if (--dvl->dvl_nlock == 0) 2489 dvl->dvl_holder = NULL; 2490 cv_signal(&dvl->dvl_cv); 2491 pmflock_debug(dev, __func__, __LINE__); 2492 mutex_exit(&dvl->dvl_mtx); 2493 } 2494 2495 device_lock_t 2496 device_getlock(device_t dev) 2497 { 2498 return &dev->dv_lock; 2499 } 2500 2501 void * 2502 device_pmf_bus_private(device_t dev) 2503 { 2504 return dev->dv_bus_private; 2505 } 2506 2507 bool 2508 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2509 { 2510 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2511 return true; 2512 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2513 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2514 return false; 2515 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2516 dev->dv_bus_suspend != NULL && 2517 !(*dev->dv_bus_suspend)(dev, qual)) 2518 return false; 2519 2520 dev->dv_flags |= DVF_BUS_SUSPENDED; 2521 return true; 2522 } 2523 2524 bool 2525 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2526 { 2527 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2528 return true; 2529 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2530 dev->dv_bus_resume != NULL && 2531 !(*dev->dv_bus_resume)(dev, qual)) 2532 return false; 2533 2534 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2535 return true; 2536 } 2537 2538 bool 2539 device_pmf_bus_shutdown(device_t dev, int how) 2540 { 2541 2542 if (*dev->dv_bus_shutdown != NULL && 2543 !(*dev->dv_bus_shutdown)(dev, how)) 2544 return false; 2545 return true; 2546 } 2547 2548 void 2549 device_pmf_bus_register(device_t dev, void *priv, 2550 bool (*suspend)(device_t, const pmf_qual_t *), 2551 bool (*resume)(device_t, const pmf_qual_t *), 2552 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2553 { 2554 dev->dv_bus_private = priv; 2555 dev->dv_bus_resume = resume; 2556 dev->dv_bus_suspend = suspend; 2557 dev->dv_bus_shutdown = shutdown; 2558 dev->dv_bus_deregister = deregister; 2559 } 2560 2561 void 2562 device_pmf_bus_deregister(device_t dev) 2563 { 2564 if (dev->dv_bus_deregister == NULL) 2565 return; 2566 (*dev->dv_bus_deregister)(dev); 2567 dev->dv_bus_private = NULL; 2568 dev->dv_bus_suspend = NULL; 2569 dev->dv_bus_resume = NULL; 2570 dev->dv_bus_deregister = NULL; 2571 } 2572 2573 void * 2574 device_pmf_class_private(device_t dev) 2575 { 2576 return dev->dv_class_private; 2577 } 2578 2579 bool 2580 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2581 { 2582 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2583 return true; 2584 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2585 dev->dv_class_suspend != NULL && 2586 !(*dev->dv_class_suspend)(dev, qual)) 2587 return false; 2588 2589 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2590 return true; 2591 } 2592 2593 bool 2594 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2595 { 2596 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2597 return true; 2598 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2599 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2600 return false; 2601 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2602 dev->dv_class_resume != NULL && 2603 !(*dev->dv_class_resume)(dev, qual)) 2604 return false; 2605 2606 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2607 return true; 2608 } 2609 2610 void 2611 device_pmf_class_register(device_t dev, void *priv, 2612 bool (*suspend)(device_t, const pmf_qual_t *), 2613 bool (*resume)(device_t, const pmf_qual_t *), 2614 void (*deregister)(device_t)) 2615 { 2616 dev->dv_class_private = priv; 2617 dev->dv_class_suspend = suspend; 2618 dev->dv_class_resume = resume; 2619 dev->dv_class_deregister = deregister; 2620 } 2621 2622 void 2623 device_pmf_class_deregister(device_t dev) 2624 { 2625 if (dev->dv_class_deregister == NULL) 2626 return; 2627 (*dev->dv_class_deregister)(dev); 2628 dev->dv_class_private = NULL; 2629 dev->dv_class_suspend = NULL; 2630 dev->dv_class_resume = NULL; 2631 dev->dv_class_deregister = NULL; 2632 } 2633 2634 bool 2635 device_active(device_t dev, devactive_t type) 2636 { 2637 size_t i; 2638 2639 if (dev->dv_activity_count == 0) 2640 return false; 2641 2642 for (i = 0; i < dev->dv_activity_count; ++i) { 2643 if (dev->dv_activity_handlers[i] == NULL) 2644 break; 2645 (*dev->dv_activity_handlers[i])(dev, type); 2646 } 2647 2648 return true; 2649 } 2650 2651 bool 2652 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2653 { 2654 void (**new_handlers)(device_t, devactive_t); 2655 void (**old_handlers)(device_t, devactive_t); 2656 size_t i, old_size, new_size; 2657 int s; 2658 2659 old_handlers = dev->dv_activity_handlers; 2660 old_size = dev->dv_activity_count; 2661 2662 KASSERT(old_size == 0 || old_handlers != NULL); 2663 2664 for (i = 0; i < old_size; ++i) { 2665 KASSERT(old_handlers[i] != handler); 2666 if (old_handlers[i] == NULL) { 2667 old_handlers[i] = handler; 2668 return true; 2669 } 2670 } 2671 2672 new_size = old_size + 4; 2673 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2674 2675 for (i = 0; i < old_size; ++i) 2676 new_handlers[i] = old_handlers[i]; 2677 new_handlers[old_size] = handler; 2678 for (i = old_size+1; i < new_size; ++i) 2679 new_handlers[i] = NULL; 2680 2681 s = splhigh(); 2682 dev->dv_activity_count = new_size; 2683 dev->dv_activity_handlers = new_handlers; 2684 splx(s); 2685 2686 if (old_size > 0) 2687 kmem_free(old_handlers, sizeof(void * [old_size])); 2688 2689 return true; 2690 } 2691 2692 void 2693 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2694 { 2695 void (**old_handlers)(device_t, devactive_t); 2696 size_t i, old_size; 2697 int s; 2698 2699 old_handlers = dev->dv_activity_handlers; 2700 old_size = dev->dv_activity_count; 2701 2702 for (i = 0; i < old_size; ++i) { 2703 if (old_handlers[i] == handler) 2704 break; 2705 if (old_handlers[i] == NULL) 2706 return; /* XXX panic? */ 2707 } 2708 2709 if (i == old_size) 2710 return; /* XXX panic? */ 2711 2712 for (; i < old_size - 1; ++i) { 2713 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2714 continue; 2715 2716 if (i == 0) { 2717 s = splhigh(); 2718 dev->dv_activity_count = 0; 2719 dev->dv_activity_handlers = NULL; 2720 splx(s); 2721 kmem_free(old_handlers, sizeof(void *[old_size])); 2722 } 2723 return; 2724 } 2725 old_handlers[i] = NULL; 2726 } 2727 2728 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2729 static bool 2730 device_exists_at(device_t dv, devgen_t gen) 2731 { 2732 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2733 dv->dv_add_gen <= gen; 2734 } 2735 2736 static bool 2737 deviter_visits(const deviter_t *di, device_t dv) 2738 { 2739 return device_exists_at(dv, di->di_gen); 2740 } 2741 2742 /* 2743 * Device Iteration 2744 * 2745 * deviter_t: a device iterator. Holds state for a "walk" visiting 2746 * each device_t's in the device tree. 2747 * 2748 * deviter_init(di, flags): initialize the device iterator `di' 2749 * to "walk" the device tree. deviter_next(di) will return 2750 * the first device_t in the device tree, or NULL if there are 2751 * no devices. 2752 * 2753 * `flags' is one or more of DEVITER_F_RW, indicating that the 2754 * caller intends to modify the device tree by calling 2755 * config_detach(9) on devices in the order that the iterator 2756 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2757 * nearest the "root" of the device tree to be returned, first; 2758 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2759 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2760 * indicating both that deviter_init() should not respect any 2761 * locks on the device tree, and that deviter_next(di) may run 2762 * in more than one LWP before the walk has finished. 2763 * 2764 * Only one DEVITER_F_RW iterator may be in the device tree at 2765 * once. 2766 * 2767 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2768 * 2769 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2770 * DEVITER_F_LEAVES_FIRST are used in combination. 2771 * 2772 * deviter_first(di, flags): initialize the device iterator `di' 2773 * and return the first device_t in the device tree, or NULL 2774 * if there are no devices. The statement 2775 * 2776 * dv = deviter_first(di); 2777 * 2778 * is shorthand for 2779 * 2780 * deviter_init(di); 2781 * dv = deviter_next(di); 2782 * 2783 * deviter_next(di): return the next device_t in the device tree, 2784 * or NULL if there are no more devices. deviter_next(di) 2785 * is undefined if `di' was not initialized with deviter_init() or 2786 * deviter_first(). 2787 * 2788 * deviter_release(di): stops iteration (subsequent calls to 2789 * deviter_next() will return NULL), releases any locks and 2790 * resources held by the device iterator. 2791 * 2792 * Device iteration does not return device_t's in any particular 2793 * order. An iterator will never return the same device_t twice. 2794 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2795 * is called repeatedly on the same `di', it will eventually return 2796 * NULL. It is ok to attach/detach devices during device iteration. 2797 */ 2798 void 2799 deviter_init(deviter_t *di, deviter_flags_t flags) 2800 { 2801 device_t dv; 2802 2803 memset(di, 0, sizeof(*di)); 2804 2805 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2806 flags |= DEVITER_F_RW; 2807 2808 mutex_enter(&alldevs_lock); 2809 if ((flags & DEVITER_F_RW) != 0) 2810 alldevs_nwrite++; 2811 else 2812 alldevs_nread++; 2813 di->di_gen = alldevs_gen++; 2814 di->di_flags = flags; 2815 2816 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2817 case DEVITER_F_LEAVES_FIRST: 2818 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2819 if (!deviter_visits(di, dv)) 2820 continue; 2821 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2822 } 2823 break; 2824 case DEVITER_F_ROOT_FIRST: 2825 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2826 if (!deviter_visits(di, dv)) 2827 continue; 2828 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2829 } 2830 break; 2831 default: 2832 break; 2833 } 2834 2835 deviter_reinit(di); 2836 mutex_exit(&alldevs_lock); 2837 } 2838 2839 static void 2840 deviter_reinit(deviter_t *di) 2841 { 2842 2843 KASSERT(mutex_owned(&alldevs_lock)); 2844 if ((di->di_flags & DEVITER_F_RW) != 0) 2845 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2846 else 2847 di->di_prev = TAILQ_FIRST(&alldevs); 2848 } 2849 2850 device_t 2851 deviter_first(deviter_t *di, deviter_flags_t flags) 2852 { 2853 2854 deviter_init(di, flags); 2855 return deviter_next(di); 2856 } 2857 2858 static device_t 2859 deviter_next2(deviter_t *di) 2860 { 2861 device_t dv; 2862 2863 KASSERT(mutex_owned(&alldevs_lock)); 2864 2865 dv = di->di_prev; 2866 2867 if (dv == NULL) 2868 return NULL; 2869 2870 if ((di->di_flags & DEVITER_F_RW) != 0) 2871 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2872 else 2873 di->di_prev = TAILQ_NEXT(dv, dv_list); 2874 2875 return dv; 2876 } 2877 2878 static device_t 2879 deviter_next1(deviter_t *di) 2880 { 2881 device_t dv; 2882 2883 KASSERT(mutex_owned(&alldevs_lock)); 2884 2885 do { 2886 dv = deviter_next2(di); 2887 } while (dv != NULL && !deviter_visits(di, dv)); 2888 2889 return dv; 2890 } 2891 2892 device_t 2893 deviter_next(deviter_t *di) 2894 { 2895 device_t dv = NULL; 2896 2897 mutex_enter(&alldevs_lock); 2898 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2899 case 0: 2900 dv = deviter_next1(di); 2901 break; 2902 case DEVITER_F_LEAVES_FIRST: 2903 while (di->di_curdepth >= 0) { 2904 if ((dv = deviter_next1(di)) == NULL) { 2905 di->di_curdepth--; 2906 deviter_reinit(di); 2907 } else if (dv->dv_depth == di->di_curdepth) 2908 break; 2909 } 2910 break; 2911 case DEVITER_F_ROOT_FIRST: 2912 while (di->di_curdepth <= di->di_maxdepth) { 2913 if ((dv = deviter_next1(di)) == NULL) { 2914 di->di_curdepth++; 2915 deviter_reinit(di); 2916 } else if (dv->dv_depth == di->di_curdepth) 2917 break; 2918 } 2919 break; 2920 default: 2921 break; 2922 } 2923 mutex_exit(&alldevs_lock); 2924 2925 return dv; 2926 } 2927 2928 void 2929 deviter_release(deviter_t *di) 2930 { 2931 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2932 2933 mutex_enter(&alldevs_lock); 2934 if (rw) 2935 --alldevs_nwrite; 2936 else 2937 --alldevs_nread; 2938 /* XXX wake a garbage-collection thread */ 2939 mutex_exit(&alldevs_lock); 2940 } 2941 2942 const char * 2943 cfdata_ifattr(const struct cfdata *cf) 2944 { 2945 return cf->cf_pspec->cfp_iattr; 2946 } 2947 2948 bool 2949 ifattr_match(const char *snull, const char *t) 2950 { 2951 return (snull == NULL) || strcmp(snull, t) == 0; 2952 } 2953 2954 void 2955 null_childdetached(device_t self, device_t child) 2956 { 2957 /* do nothing */ 2958 } 2959 2960 static void 2961 sysctl_detach_setup(struct sysctllog **clog) 2962 { 2963 2964 sysctl_createv(clog, 0, NULL, NULL, 2965 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2966 CTLTYPE_BOOL, "detachall", 2967 SYSCTL_DESCR("Detach all devices at shutdown"), 2968 NULL, 0, &detachall, 0, 2969 CTL_KERN, CTL_CREATE, CTL_EOL); 2970 } 2971