xref: /netbsd-src/sys/kern/subr_autoconf.c (revision b5677b36047b601b9addaaa494a58ceae82c2a6c)
1 /* $NetBSD: subr_autoconf.c,v 1.174 2009/04/02 00:09:34 dyoung Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.174 2009/04/02 00:09:34 dyoung Exp $");
81 
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84 
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/vnode.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <machine/limits.h>
114 
115 #include "opt_userconf.h"
116 #ifdef USERCONF
117 #include <sys/userconf.h>
118 #endif
119 
120 #ifdef __i386__
121 #include "opt_splash.h"
122 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
123 #include <dev/splash/splash.h>
124 extern struct splash_progress *splash_progress_state;
125 #endif
126 #endif
127 
128 /*
129  * Autoconfiguration subroutines.
130  */
131 
132 /*
133  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
134  * devices and drivers are found via these tables.
135  */
136 extern struct cfdata cfdata[];
137 extern const short cfroots[];
138 
139 /*
140  * List of all cfdriver structures.  We use this to detect duplicates
141  * when other cfdrivers are loaded.
142  */
143 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
144 extern struct cfdriver * const cfdriver_list_initial[];
145 
146 /*
147  * Initial list of cfattach's.
148  */
149 extern const struct cfattachinit cfattachinit[];
150 
151 /*
152  * List of cfdata tables.  We always have one such list -- the one
153  * built statically when the kernel was configured.
154  */
155 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
156 static struct cftable initcftable;
157 
158 #define	ROOT ((device_t)NULL)
159 
160 struct matchinfo {
161 	cfsubmatch_t fn;
162 	struct	device *parent;
163 	const int *locs;
164 	void	*aux;
165 	struct	cfdata *match;
166 	int	pri;
167 };
168 
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdealloc(device_t);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_devunlink(device_t);
176 
177 static void pmflock_debug(device_t, const char *, int);
178 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
179 
180 static device_t deviter_next1(deviter_t *);
181 static void deviter_reinit(deviter_t *);
182 
183 struct deferred_config {
184 	TAILQ_ENTRY(deferred_config) dc_queue;
185 	device_t dc_dev;
186 	void (*dc_func)(device_t);
187 };
188 
189 TAILQ_HEAD(deferred_config_head, deferred_config);
190 
191 struct deferred_config_head deferred_config_queue =
192 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
193 struct deferred_config_head interrupt_config_queue =
194 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
195 int interrupt_config_threads = 8;
196 
197 static void config_process_deferred(struct deferred_config_head *, device_t);
198 
199 /* Hooks to finalize configuration once all real devices have been found. */
200 struct finalize_hook {
201 	TAILQ_ENTRY(finalize_hook) f_list;
202 	int (*f_func)(device_t);
203 	device_t f_dev;
204 };
205 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
206 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
207 static int config_finalize_done;
208 
209 /* list of all devices */
210 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
211 kcondvar_t alldevs_cv;
212 kmutex_t alldevs_mtx;
213 static int alldevs_nread = 0;
214 static int alldevs_nwrite = 0;
215 static lwp_t *alldevs_writer = NULL;
216 
217 static int config_pending;		/* semaphore for mountroot */
218 static kmutex_t config_misc_lock;
219 static kcondvar_t config_misc_cv;
220 
221 static int detachall = 0;
222 
223 #define	STREQ(s1, s2)			\
224 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
225 
226 static int config_initialized;		/* config_init() has been called. */
227 
228 static int config_do_twiddle;
229 
230 struct vnode *
231 opendisk(struct device *dv)
232 {
233 	int bmajor, bminor;
234 	struct vnode *tmpvn;
235 	int error;
236 	dev_t dev;
237 
238 	/*
239 	 * Lookup major number for disk block device.
240 	 */
241 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
242 	if (bmajor == -1)
243 		return NULL;
244 
245 	bminor = minor(device_unit(dv));
246 	/*
247 	 * Fake a temporary vnode for the disk, open it, and read
248 	 * and hash the sectors.
249 	 */
250 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
251 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
252 	if (bdevvp(dev, &tmpvn))
253 		panic("%s: can't alloc vnode for %s", __func__,
254 		    device_xname(dv));
255 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
256 	if (error) {
257 #ifndef DEBUG
258 		/*
259 		 * Ignore errors caused by missing device, partition,
260 		 * or medium.
261 		 */
262 		if (error != ENXIO && error != ENODEV)
263 #endif
264 			printf("%s: can't open dev %s (%d)\n",
265 			    __func__, device_xname(dv), error);
266 		vput(tmpvn);
267 		return NULL;
268 	}
269 
270 	return tmpvn;
271 }
272 
273 int
274 config_handle_wedges(struct device *dv, int par)
275 {
276 	struct dkwedge_list wl;
277 	struct dkwedge_info *wi;
278 	struct vnode *vn;
279 	char diskname[16];
280 	int i, error;
281 
282 	if ((vn = opendisk(dv)) == NULL)
283 		return -1;
284 
285 	wl.dkwl_bufsize = sizeof(*wi) * 16;
286 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
287 
288 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
289 	VOP_CLOSE(vn, FREAD, NOCRED);
290 	vput(vn);
291 	if (error) {
292 #ifdef DEBUG_WEDGE
293 		printf("%s: List wedges returned %d\n",
294 		    device_xname(dv), error);
295 #endif
296 		free(wi, M_TEMP);
297 		return -1;
298 	}
299 
300 #ifdef DEBUG_WEDGE
301 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
302 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
303 #endif
304 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
305 	    par + 'a');
306 
307 	for (i = 0; i < wl.dkwl_ncopied; i++) {
308 #ifdef DEBUG_WEDGE
309 		printf("%s: Looking for %s in %s\n",
310 		    device_xname(dv), diskname, wi[i].dkw_wname);
311 #endif
312 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
313 			break;
314 	}
315 
316 	if (i == wl.dkwl_ncopied) {
317 #ifdef DEBUG_WEDGE
318 		printf("%s: Cannot find wedge with parent %s\n",
319 		    device_xname(dv), diskname);
320 #endif
321 		free(wi, M_TEMP);
322 		return -1;
323 	}
324 
325 #ifdef DEBUG_WEDGE
326 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
327 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
328 		(unsigned long long)wi[i].dkw_offset,
329 		(unsigned long long)wi[i].dkw_size);
330 #endif
331 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
332 	free(wi, M_TEMP);
333 	return 0;
334 }
335 
336 /*
337  * Initialize the autoconfiguration data structures.  Normally this
338  * is done by configure(), but some platforms need to do this very
339  * early (to e.g. initialize the console).
340  */
341 void
342 config_init(void)
343 {
344 	const struct cfattachinit *cfai;
345 	int i, j;
346 
347 	if (config_initialized)
348 		return;
349 
350 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
351 	cv_init(&alldevs_cv, "alldevs");
352 
353 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
354 	cv_init(&config_misc_cv, "cfgmisc");
355 
356 	/* allcfdrivers is statically initialized. */
357 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
358 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
359 			panic("configure: duplicate `%s' drivers",
360 			    cfdriver_list_initial[i]->cd_name);
361 	}
362 
363 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
364 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
365 			if (config_cfattach_attach(cfai->cfai_name,
366 						   cfai->cfai_list[j]) != 0)
367 				panic("configure: duplicate `%s' attachment "
368 				    "of `%s' driver",
369 				    cfai->cfai_list[j]->ca_name,
370 				    cfai->cfai_name);
371 		}
372 	}
373 
374 	initcftable.ct_cfdata = cfdata;
375 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
376 
377 	config_initialized = 1;
378 }
379 
380 void
381 config_deferred(device_t dev)
382 {
383 	config_process_deferred(&deferred_config_queue, dev);
384 	config_process_deferred(&interrupt_config_queue, dev);
385 }
386 
387 static void
388 config_interrupts_thread(void *cookie)
389 {
390 	struct deferred_config *dc;
391 
392 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
393 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
394 		(*dc->dc_func)(dc->dc_dev);
395 		kmem_free(dc, sizeof(*dc));
396 		config_pending_decr();
397 	}
398 	kthread_exit(0);
399 }
400 
401 /*
402  * Configure the system's hardware.
403  */
404 void
405 configure(void)
406 {
407 	/* Initialize data structures. */
408 	config_init();
409 	pmf_init();
410 #if NDRVCTL > 0
411 	drvctl_init();
412 #endif
413 
414 #ifdef USERCONF
415 	if (boothowto & RB_USERCONF)
416 		user_config();
417 #endif
418 
419 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
420 		config_do_twiddle = 1;
421 		printf_nolog("Detecting hardware...");
422 	}
423 
424 	/*
425 	 * Do the machine-dependent portion of autoconfiguration.  This
426 	 * sets the configuration machinery here in motion by "finding"
427 	 * the root bus.  When this function returns, we expect interrupts
428 	 * to be enabled.
429 	 */
430 	cpu_configure();
431 }
432 
433 void
434 configure2(void)
435 {
436 	CPU_INFO_ITERATOR cii;
437 	struct cpu_info *ci;
438 	int i, s;
439 
440 	/*
441 	 * Now that we've found all the hardware, start the real time
442 	 * and statistics clocks.
443 	 */
444 	initclocks();
445 
446 	cold = 0;	/* clocks are running, we're warm now! */
447 	s = splsched();
448 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
449 	splx(s);
450 
451 	/* Boot the secondary processors. */
452 	for (CPU_INFO_FOREACH(cii, ci)) {
453 		uvm_cpu_attach(ci);
454 	}
455 	mp_online = true;
456 #if defined(MULTIPROCESSOR)
457 	cpu_boot_secondary_processors();
458 #endif
459 
460 	/* Setup the runqueues and scheduler. */
461 	runq_init();
462 	sched_init();
463 
464 	/*
465 	 * Create threads to call back and finish configuration for
466 	 * devices that want interrupts enabled.
467 	 */
468 	for (i = 0; i < interrupt_config_threads; i++) {
469 		(void)kthread_create(PRI_NONE, 0, NULL,
470 		    config_interrupts_thread, NULL, NULL, "config");
471 	}
472 
473 	/* Get the threads going and into any sleeps before continuing. */
474 	yield();
475 }
476 
477 /*
478  * Announce device attach/detach to userland listeners.
479  */
480 static void
481 devmon_report_device(device_t dev, bool isattach)
482 {
483 #if NDRVCTL > 0
484 	prop_dictionary_t ev;
485 	const char *parent;
486 	const char *what;
487 	device_t pdev = device_parent(dev);
488 
489 	ev = prop_dictionary_create();
490 	if (ev == NULL)
491 		return;
492 
493 	what = (isattach ? "device-attach" : "device-detach");
494 	parent = (pdev == NULL ? "root" : device_xname(pdev));
495 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
496 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
497 		prop_object_release(ev);
498 		return;
499 	}
500 
501 	devmon_insert(what, ev);
502 #endif
503 }
504 
505 /*
506  * Add a cfdriver to the system.
507  */
508 int
509 config_cfdriver_attach(struct cfdriver *cd)
510 {
511 	struct cfdriver *lcd;
512 
513 	/* Make sure this driver isn't already in the system. */
514 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
515 		if (STREQ(lcd->cd_name, cd->cd_name))
516 			return (EEXIST);
517 	}
518 
519 	LIST_INIT(&cd->cd_attach);
520 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
521 
522 	return (0);
523 }
524 
525 /*
526  * Remove a cfdriver from the system.
527  */
528 int
529 config_cfdriver_detach(struct cfdriver *cd)
530 {
531 	int i;
532 
533 	/* Make sure there are no active instances. */
534 	for (i = 0; i < cd->cd_ndevs; i++) {
535 		if (cd->cd_devs[i] != NULL)
536 			return (EBUSY);
537 	}
538 
539 	/* ...and no attachments loaded. */
540 	if (LIST_EMPTY(&cd->cd_attach) == 0)
541 		return (EBUSY);
542 
543 	LIST_REMOVE(cd, cd_list);
544 
545 	KASSERT(cd->cd_devs == NULL);
546 
547 	return (0);
548 }
549 
550 /*
551  * Look up a cfdriver by name.
552  */
553 struct cfdriver *
554 config_cfdriver_lookup(const char *name)
555 {
556 	struct cfdriver *cd;
557 
558 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
559 		if (STREQ(cd->cd_name, name))
560 			return (cd);
561 	}
562 
563 	return (NULL);
564 }
565 
566 /*
567  * Add a cfattach to the specified driver.
568  */
569 int
570 config_cfattach_attach(const char *driver, struct cfattach *ca)
571 {
572 	struct cfattach *lca;
573 	struct cfdriver *cd;
574 
575 	cd = config_cfdriver_lookup(driver);
576 	if (cd == NULL)
577 		return (ESRCH);
578 
579 	/* Make sure this attachment isn't already on this driver. */
580 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
581 		if (STREQ(lca->ca_name, ca->ca_name))
582 			return (EEXIST);
583 	}
584 
585 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
586 
587 	return (0);
588 }
589 
590 /*
591  * Remove a cfattach from the specified driver.
592  */
593 int
594 config_cfattach_detach(const char *driver, struct cfattach *ca)
595 {
596 	struct cfdriver *cd;
597 	device_t dev;
598 	int i;
599 
600 	cd = config_cfdriver_lookup(driver);
601 	if (cd == NULL)
602 		return (ESRCH);
603 
604 	/* Make sure there are no active instances. */
605 	for (i = 0; i < cd->cd_ndevs; i++) {
606 		if ((dev = cd->cd_devs[i]) == NULL)
607 			continue;
608 		if (dev->dv_cfattach == ca)
609 			return (EBUSY);
610 	}
611 
612 	LIST_REMOVE(ca, ca_list);
613 
614 	return (0);
615 }
616 
617 /*
618  * Look up a cfattach by name.
619  */
620 static struct cfattach *
621 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
622 {
623 	struct cfattach *ca;
624 
625 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
626 		if (STREQ(ca->ca_name, atname))
627 			return (ca);
628 	}
629 
630 	return (NULL);
631 }
632 
633 /*
634  * Look up a cfattach by driver/attachment name.
635  */
636 struct cfattach *
637 config_cfattach_lookup(const char *name, const char *atname)
638 {
639 	struct cfdriver *cd;
640 
641 	cd = config_cfdriver_lookup(name);
642 	if (cd == NULL)
643 		return (NULL);
644 
645 	return (config_cfattach_lookup_cd(cd, atname));
646 }
647 
648 /*
649  * Apply the matching function and choose the best.  This is used
650  * a few times and we want to keep the code small.
651  */
652 static void
653 mapply(struct matchinfo *m, cfdata_t cf)
654 {
655 	int pri;
656 
657 	if (m->fn != NULL) {
658 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
659 	} else {
660 		pri = config_match(m->parent, cf, m->aux);
661 	}
662 	if (pri > m->pri) {
663 		m->match = cf;
664 		m->pri = pri;
665 	}
666 }
667 
668 int
669 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
670 {
671 	const struct cfiattrdata *ci;
672 	const struct cflocdesc *cl;
673 	int nlocs, i;
674 
675 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
676 	KASSERT(ci);
677 	nlocs = ci->ci_loclen;
678 	KASSERT(!nlocs || locs);
679 	for (i = 0; i < nlocs; i++) {
680 		cl = &ci->ci_locdesc[i];
681 		/* !cld_defaultstr means no default value */
682 		if ((!(cl->cld_defaultstr)
683 		     || (cf->cf_loc[i] != cl->cld_default))
684 		    && cf->cf_loc[i] != locs[i])
685 			return (0);
686 	}
687 
688 	return (config_match(parent, cf, aux));
689 }
690 
691 /*
692  * Helper function: check whether the driver supports the interface attribute
693  * and return its descriptor structure.
694  */
695 static const struct cfiattrdata *
696 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
697 {
698 	const struct cfiattrdata * const *cpp;
699 
700 	if (cd->cd_attrs == NULL)
701 		return (0);
702 
703 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
704 		if (STREQ((*cpp)->ci_name, ia)) {
705 			/* Match. */
706 			return (*cpp);
707 		}
708 	}
709 	return (0);
710 }
711 
712 /*
713  * Lookup an interface attribute description by name.
714  * If the driver is given, consider only its supported attributes.
715  */
716 const struct cfiattrdata *
717 cfiattr_lookup(const char *name, const struct cfdriver *cd)
718 {
719 	const struct cfdriver *d;
720 	const struct cfiattrdata *ia;
721 
722 	if (cd)
723 		return (cfdriver_get_iattr(cd, name));
724 
725 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
726 		ia = cfdriver_get_iattr(d, name);
727 		if (ia)
728 			return (ia);
729 	}
730 	return (0);
731 }
732 
733 /*
734  * Determine if `parent' is a potential parent for a device spec based
735  * on `cfp'.
736  */
737 static int
738 cfparent_match(const device_t parent, const struct cfparent *cfp)
739 {
740 	struct cfdriver *pcd;
741 
742 	/* We don't match root nodes here. */
743 	if (cfp == NULL)
744 		return (0);
745 
746 	pcd = parent->dv_cfdriver;
747 	KASSERT(pcd != NULL);
748 
749 	/*
750 	 * First, ensure this parent has the correct interface
751 	 * attribute.
752 	 */
753 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
754 		return (0);
755 
756 	/*
757 	 * If no specific parent device instance was specified (i.e.
758 	 * we're attaching to the attribute only), we're done!
759 	 */
760 	if (cfp->cfp_parent == NULL)
761 		return (1);
762 
763 	/*
764 	 * Check the parent device's name.
765 	 */
766 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
767 		return (0);	/* not the same parent */
768 
769 	/*
770 	 * Make sure the unit number matches.
771 	 */
772 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
773 	    cfp->cfp_unit == parent->dv_unit)
774 		return (1);
775 
776 	/* Unit numbers don't match. */
777 	return (0);
778 }
779 
780 /*
781  * Helper for config_cfdata_attach(): check all devices whether it could be
782  * parent any attachment in the config data table passed, and rescan.
783  */
784 static void
785 rescan_with_cfdata(const struct cfdata *cf)
786 {
787 	device_t d;
788 	const struct cfdata *cf1;
789 	deviter_t di;
790 
791 
792 	/*
793 	 * "alldevs" is likely longer than a modules's cfdata, so make it
794 	 * the outer loop.
795 	 */
796 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
797 
798 		if (!(d->dv_cfattach->ca_rescan))
799 			continue;
800 
801 		for (cf1 = cf; cf1->cf_name; cf1++) {
802 
803 			if (!cfparent_match(d, cf1->cf_pspec))
804 				continue;
805 
806 			(*d->dv_cfattach->ca_rescan)(d,
807 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
808 		}
809 	}
810 	deviter_release(&di);
811 }
812 
813 /*
814  * Attach a supplemental config data table and rescan potential
815  * parent devices if required.
816  */
817 int
818 config_cfdata_attach(cfdata_t cf, int scannow)
819 {
820 	struct cftable *ct;
821 
822 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
823 	ct->ct_cfdata = cf;
824 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
825 
826 	if (scannow)
827 		rescan_with_cfdata(cf);
828 
829 	return (0);
830 }
831 
832 /*
833  * Helper for config_cfdata_detach: check whether a device is
834  * found through any attachment in the config data table.
835  */
836 static int
837 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
838 {
839 	const struct cfdata *cf1;
840 
841 	for (cf1 = cf; cf1->cf_name; cf1++)
842 		if (d->dv_cfdata == cf1)
843 			return (1);
844 
845 	return (0);
846 }
847 
848 /*
849  * Detach a supplemental config data table. Detach all devices found
850  * through that table (and thus keeping references to it) before.
851  */
852 int
853 config_cfdata_detach(cfdata_t cf)
854 {
855 	device_t d;
856 	int error = 0;
857 	struct cftable *ct;
858 	deviter_t di;
859 
860 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
861 	     d = deviter_next(&di)) {
862 		if (!dev_in_cfdata(d, cf))
863 			continue;
864 		if ((error = config_detach(d, 0)) != 0)
865 			break;
866 	}
867 	deviter_release(&di);
868 	if (error) {
869 		aprint_error_dev(d, "unable to detach instance\n");
870 		return error;
871 	}
872 
873 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
874 		if (ct->ct_cfdata == cf) {
875 			TAILQ_REMOVE(&allcftables, ct, ct_list);
876 			kmem_free(ct, sizeof(*ct));
877 			return (0);
878 		}
879 	}
880 
881 	/* not found -- shouldn't happen */
882 	return (EINVAL);
883 }
884 
885 /*
886  * Invoke the "match" routine for a cfdata entry on behalf of
887  * an external caller, usually a "submatch" routine.
888  */
889 int
890 config_match(device_t parent, cfdata_t cf, void *aux)
891 {
892 	struct cfattach *ca;
893 
894 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
895 	if (ca == NULL) {
896 		/* No attachment for this entry, oh well. */
897 		return (0);
898 	}
899 
900 	return ((*ca->ca_match)(parent, cf, aux));
901 }
902 
903 /*
904  * Iterate over all potential children of some device, calling the given
905  * function (default being the child's match function) for each one.
906  * Nonzero returns are matches; the highest value returned is considered
907  * the best match.  Return the `found child' if we got a match, or NULL
908  * otherwise.  The `aux' pointer is simply passed on through.
909  *
910  * Note that this function is designed so that it can be used to apply
911  * an arbitrary function to all potential children (its return value
912  * can be ignored).
913  */
914 cfdata_t
915 config_search_loc(cfsubmatch_t fn, device_t parent,
916 		  const char *ifattr, const int *locs, void *aux)
917 {
918 	struct cftable *ct;
919 	cfdata_t cf;
920 	struct matchinfo m;
921 
922 	KASSERT(config_initialized);
923 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
924 
925 	m.fn = fn;
926 	m.parent = parent;
927 	m.locs = locs;
928 	m.aux = aux;
929 	m.match = NULL;
930 	m.pri = 0;
931 
932 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
933 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
934 
935 			/* We don't match root nodes here. */
936 			if (!cf->cf_pspec)
937 				continue;
938 
939 			/*
940 			 * Skip cf if no longer eligible, otherwise scan
941 			 * through parents for one matching `parent', and
942 			 * try match function.
943 			 */
944 			if (cf->cf_fstate == FSTATE_FOUND)
945 				continue;
946 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
947 			    cf->cf_fstate == FSTATE_DSTAR)
948 				continue;
949 
950 			/*
951 			 * If an interface attribute was specified,
952 			 * consider only children which attach to
953 			 * that attribute.
954 			 */
955 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
956 				continue;
957 
958 			if (cfparent_match(parent, cf->cf_pspec))
959 				mapply(&m, cf);
960 		}
961 	}
962 	return (m.match);
963 }
964 
965 cfdata_t
966 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
967     void *aux)
968 {
969 
970 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
971 }
972 
973 /*
974  * Find the given root device.
975  * This is much like config_search, but there is no parent.
976  * Don't bother with multiple cfdata tables; the root node
977  * must always be in the initial table.
978  */
979 cfdata_t
980 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
981 {
982 	cfdata_t cf;
983 	const short *p;
984 	struct matchinfo m;
985 
986 	m.fn = fn;
987 	m.parent = ROOT;
988 	m.aux = aux;
989 	m.match = NULL;
990 	m.pri = 0;
991 	m.locs = 0;
992 	/*
993 	 * Look at root entries for matching name.  We do not bother
994 	 * with found-state here since only one root should ever be
995 	 * searched (and it must be done first).
996 	 */
997 	for (p = cfroots; *p >= 0; p++) {
998 		cf = &cfdata[*p];
999 		if (strcmp(cf->cf_name, rootname) == 0)
1000 			mapply(&m, cf);
1001 	}
1002 	return (m.match);
1003 }
1004 
1005 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1006 
1007 /*
1008  * The given `aux' argument describes a device that has been found
1009  * on the given parent, but not necessarily configured.  Locate the
1010  * configuration data for that device (using the submatch function
1011  * provided, or using candidates' cd_match configuration driver
1012  * functions) and attach it, and return true.  If the device was
1013  * not configured, call the given `print' function and return 0.
1014  */
1015 device_t
1016 config_found_sm_loc(device_t parent,
1017 		const char *ifattr, const int *locs, void *aux,
1018 		cfprint_t print, cfsubmatch_t submatch)
1019 {
1020 	cfdata_t cf;
1021 
1022 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1023 	if (splash_progress_state)
1024 		splash_progress_update(splash_progress_state);
1025 #endif
1026 
1027 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1028 		return(config_attach_loc(parent, cf, locs, aux, print));
1029 	if (print) {
1030 		if (config_do_twiddle)
1031 			twiddle();
1032 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1033 	}
1034 
1035 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1036 	if (splash_progress_state)
1037 		splash_progress_update(splash_progress_state);
1038 #endif
1039 
1040 	return (NULL);
1041 }
1042 
1043 device_t
1044 config_found_ia(device_t parent, const char *ifattr, void *aux,
1045     cfprint_t print)
1046 {
1047 
1048 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1049 }
1050 
1051 device_t
1052 config_found(device_t parent, void *aux, cfprint_t print)
1053 {
1054 
1055 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1056 }
1057 
1058 /*
1059  * As above, but for root devices.
1060  */
1061 device_t
1062 config_rootfound(const char *rootname, void *aux)
1063 {
1064 	cfdata_t cf;
1065 
1066 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1067 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1068 	aprint_error("root device %s not configured\n", rootname);
1069 	return (NULL);
1070 }
1071 
1072 /* just like sprintf(buf, "%d") except that it works from the end */
1073 static char *
1074 number(char *ep, int n)
1075 {
1076 
1077 	*--ep = 0;
1078 	while (n >= 10) {
1079 		*--ep = (n % 10) + '0';
1080 		n /= 10;
1081 	}
1082 	*--ep = n + '0';
1083 	return (ep);
1084 }
1085 
1086 /*
1087  * Expand the size of the cd_devs array if necessary.
1088  */
1089 static void
1090 config_makeroom(int n, struct cfdriver *cd)
1091 {
1092 	int old, new;
1093 	device_t *nsp;
1094 
1095 	if (n < cd->cd_ndevs)
1096 		return;
1097 
1098 	/*
1099 	 * Need to expand the array.
1100 	 */
1101 	old = cd->cd_ndevs;
1102 	if (old == 0)
1103 		new = 4;
1104 	else
1105 		new = old * 2;
1106 	while (new <= n)
1107 		new *= 2;
1108 	cd->cd_ndevs = new;
1109 	nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
1110 	if (nsp == NULL)
1111 		panic("config_attach: %sing dev array",
1112 		    old != 0 ? "expand" : "creat");
1113 	memset(nsp + old, 0, sizeof(device_t [new - old]));
1114 	if (old != 0) {
1115 		memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1116 		kmem_free(cd->cd_devs, sizeof(device_t [old]));
1117 	}
1118 	cd->cd_devs = nsp;
1119 }
1120 
1121 static void
1122 config_devlink(device_t dev)
1123 {
1124 	struct cfdriver *cd = dev->dv_cfdriver;
1125 
1126 	/* put this device in the devices array */
1127 	config_makeroom(dev->dv_unit, cd);
1128 	if (cd->cd_devs[dev->dv_unit])
1129 		panic("config_attach: duplicate %s", device_xname(dev));
1130 	cd->cd_devs[dev->dv_unit] = dev;
1131 
1132 	/* It is safe to add a device to the tail of the list while
1133 	 * readers are in the list, but not while a writer is in
1134 	 * the list.  Wait for any writer to complete.
1135 	 */
1136 	mutex_enter(&alldevs_mtx);
1137 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1138 		cv_wait(&alldevs_cv, &alldevs_mtx);
1139 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
1140 	cv_signal(&alldevs_cv);
1141 	mutex_exit(&alldevs_mtx);
1142 }
1143 
1144 static void
1145 config_devunlink(device_t dev)
1146 {
1147 	struct cfdriver *cd = dev->dv_cfdriver;
1148 	int i;
1149 
1150 	/* Unlink from device list. */
1151 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1152 
1153 	/* Remove from cfdriver's array. */
1154 	cd->cd_devs[dev->dv_unit] = NULL;
1155 
1156 	/*
1157 	 * If the device now has no units in use, deallocate its softc array.
1158 	 */
1159 	for (i = 0; i < cd->cd_ndevs; i++) {
1160 		if (cd->cd_devs[i] != NULL)
1161 			return;
1162 	}
1163 	/* nothing found; deallocate */
1164 	kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1165 	cd->cd_devs = NULL;
1166 	cd->cd_ndevs = 0;
1167 }
1168 
1169 static device_t
1170 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1171 {
1172 	struct cfdriver *cd;
1173 	struct cfattach *ca;
1174 	size_t lname, lunit;
1175 	const char *xunit;
1176 	int myunit;
1177 	char num[10];
1178 	device_t dev;
1179 	void *dev_private;
1180 	const struct cfiattrdata *ia;
1181 	device_lock_t dvl;
1182 
1183 	cd = config_cfdriver_lookup(cf->cf_name);
1184 	if (cd == NULL)
1185 		return (NULL);
1186 
1187 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1188 	if (ca == NULL)
1189 		return (NULL);
1190 
1191 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1192 	    ca->ca_devsize < sizeof(struct device))
1193 		panic("config_devalloc: %s", cf->cf_atname);
1194 
1195 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1196 	if (cf->cf_fstate == FSTATE_STAR) {
1197 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1198 			if (cd->cd_devs[myunit] == NULL)
1199 				break;
1200 		/*
1201 		 * myunit is now the unit of the first NULL device pointer,
1202 		 * or max(cd->cd_ndevs,cf->cf_unit).
1203 		 */
1204 	} else {
1205 		myunit = cf->cf_unit;
1206 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1207 			return (NULL);
1208 	}
1209 #else
1210 	myunit = cf->cf_unit;
1211 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1212 
1213 	/* compute length of name and decimal expansion of unit number */
1214 	lname = strlen(cd->cd_name);
1215 	xunit = number(&num[sizeof(num)], myunit);
1216 	lunit = &num[sizeof(num)] - xunit;
1217 	if (lname + lunit > sizeof(dev->dv_xname))
1218 		panic("config_devalloc: device name too long");
1219 
1220 	/* get memory for all device vars */
1221 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1222 	if (ca->ca_devsize > 0) {
1223 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1224 		if (dev_private == NULL)
1225 			panic("config_devalloc: memory allocation for device softc failed");
1226 	} else {
1227 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1228 		dev_private = NULL;
1229 	}
1230 
1231 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1232 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1233 	} else {
1234 		dev = dev_private;
1235 	}
1236 	if (dev == NULL)
1237 		panic("config_devalloc: memory allocation for device_t failed");
1238 
1239 	dvl = device_getlock(dev);
1240 
1241 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1242 	cv_init(&dvl->dvl_cv, "pmfsusp");
1243 
1244 	dev->dv_class = cd->cd_class;
1245 	dev->dv_cfdata = cf;
1246 	dev->dv_cfdriver = cd;
1247 	dev->dv_cfattach = ca;
1248 	dev->dv_unit = myunit;
1249 	dev->dv_activity_count = 0;
1250 	dev->dv_activity_handlers = NULL;
1251 	dev->dv_private = dev_private;
1252 	memcpy(dev->dv_xname, cd->cd_name, lname);
1253 	memcpy(dev->dv_xname + lname, xunit, lunit);
1254 	dev->dv_parent = parent;
1255 	if (parent != NULL)
1256 		dev->dv_depth = parent->dv_depth + 1;
1257 	else
1258 		dev->dv_depth = 0;
1259 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
1260 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
1261 	if (locs) {
1262 		KASSERT(parent); /* no locators at root */
1263 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1264 				    parent->dv_cfdriver);
1265 		dev->dv_locators =
1266 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1267 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1268 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1269 	}
1270 	dev->dv_properties = prop_dictionary_create();
1271 	KASSERT(dev->dv_properties != NULL);
1272 
1273 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1274 	    "device-driver", dev->dv_cfdriver->cd_name);
1275 	prop_dictionary_set_uint16(dev->dv_properties,
1276 	    "device-unit", dev->dv_unit);
1277 
1278 	return (dev);
1279 }
1280 
1281 static void
1282 config_devdealloc(device_t dev)
1283 {
1284 	device_lock_t dvl = device_getlock(dev);
1285 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1286 
1287 	cv_destroy(&dvl->dvl_cv);
1288 	mutex_destroy(&dvl->dvl_mtx);
1289 
1290 	KASSERT(dev->dv_properties != NULL);
1291 	prop_object_release(dev->dv_properties);
1292 
1293 	if (dev->dv_activity_handlers)
1294 		panic("config_devdealloc with registered handlers");
1295 
1296 	if (dev->dv_locators) {
1297 		size_t amount = *--dev->dv_locators;
1298 		kmem_free(dev->dv_locators, amount);
1299 	}
1300 
1301 	if (dev->dv_cfattach->ca_devsize > 0)
1302 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1303 	if (priv)
1304 		kmem_free(dev, sizeof(*dev));
1305 }
1306 
1307 /*
1308  * Attach a found device.
1309  */
1310 device_t
1311 config_attach_loc(device_t parent, cfdata_t cf,
1312 	const int *locs, void *aux, cfprint_t print)
1313 {
1314 	device_t dev;
1315 	struct cftable *ct;
1316 	const char *drvname;
1317 
1318 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1319 	if (splash_progress_state)
1320 		splash_progress_update(splash_progress_state);
1321 #endif
1322 
1323 	dev = config_devalloc(parent, cf, locs);
1324 	if (!dev)
1325 		panic("config_attach: allocation of device softc failed");
1326 
1327 	/* XXX redundant - see below? */
1328 	if (cf->cf_fstate != FSTATE_STAR) {
1329 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1330 		cf->cf_fstate = FSTATE_FOUND;
1331 	}
1332 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1333 	  else
1334 		cf->cf_unit++;
1335 #endif
1336 
1337 	config_devlink(dev);
1338 
1339 	if (config_do_twiddle)
1340 		twiddle();
1341 	else
1342 		aprint_naive("Found ");
1343 	/*
1344 	 * We want the next two printfs for normal, verbose, and quiet,
1345 	 * but not silent (in which case, we're twiddling, instead).
1346 	 */
1347 	if (parent == ROOT) {
1348 		aprint_naive("%s (root)", device_xname(dev));
1349 		aprint_normal("%s (root)", device_xname(dev));
1350 	} else {
1351 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1352 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1353 		if (print)
1354 			(void) (*print)(aux, NULL);
1355 	}
1356 
1357 	/*
1358 	 * Before attaching, clobber any unfound devices that are
1359 	 * otherwise identical.
1360 	 * XXX code above is redundant?
1361 	 */
1362 	drvname = dev->dv_cfdriver->cd_name;
1363 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1364 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1365 			if (STREQ(cf->cf_name, drvname) &&
1366 			    cf->cf_unit == dev->dv_unit) {
1367 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1368 					cf->cf_fstate = FSTATE_FOUND;
1369 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1370 				/*
1371 				 * Bump the unit number on all starred cfdata
1372 				 * entries for this device.
1373 				 */
1374 				if (cf->cf_fstate == FSTATE_STAR)
1375 					cf->cf_unit++;
1376 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1377 			}
1378 		}
1379 	}
1380 #ifdef __HAVE_DEVICE_REGISTER
1381 	device_register(dev, aux);
1382 #endif
1383 
1384 	/* Let userland know */
1385 	devmon_report_device(dev, true);
1386 
1387 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1388 	if (splash_progress_state)
1389 		splash_progress_update(splash_progress_state);
1390 #endif
1391 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1392 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1393 	if (splash_progress_state)
1394 		splash_progress_update(splash_progress_state);
1395 #endif
1396 
1397 	if (!device_pmf_is_registered(dev))
1398 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1399 
1400 	config_process_deferred(&deferred_config_queue, dev);
1401 	return (dev);
1402 }
1403 
1404 device_t
1405 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1406 {
1407 
1408 	return (config_attach_loc(parent, cf, NULL, aux, print));
1409 }
1410 
1411 /*
1412  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1413  * way are silently inserted into the device tree, and their children
1414  * attached.
1415  *
1416  * Note that because pseudo-devices are attached silently, any information
1417  * the attach routine wishes to print should be prefixed with the device
1418  * name by the attach routine.
1419  */
1420 device_t
1421 config_attach_pseudo(cfdata_t cf)
1422 {
1423 	device_t dev;
1424 
1425 	dev = config_devalloc(ROOT, cf, NULL);
1426 	if (!dev)
1427 		return (NULL);
1428 
1429 	/* XXX mark busy in cfdata */
1430 
1431 	if (cf->cf_fstate != FSTATE_STAR) {
1432 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1433 		cf->cf_fstate = FSTATE_FOUND;
1434 	}
1435 
1436 	config_devlink(dev);
1437 
1438 #if 0	/* XXXJRT not yet */
1439 #ifdef __HAVE_DEVICE_REGISTER
1440 	device_register(dev, NULL);	/* like a root node */
1441 #endif
1442 #endif
1443 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1444 	config_process_deferred(&deferred_config_queue, dev);
1445 	return (dev);
1446 }
1447 
1448 /*
1449  * Detach a device.  Optionally forced (e.g. because of hardware
1450  * removal) and quiet.  Returns zero if successful, non-zero
1451  * (an error code) otherwise.
1452  *
1453  * Note that this code wants to be run from a process context, so
1454  * that the detach can sleep to allow processes which have a device
1455  * open to run and unwind their stacks.
1456  */
1457 int
1458 config_detach(device_t dev, int flags)
1459 {
1460 	struct cftable *ct;
1461 	cfdata_t cf;
1462 	const struct cfattach *ca;
1463 	struct cfdriver *cd;
1464 #ifdef DIAGNOSTIC
1465 	device_t d;
1466 #endif
1467 	int rv = 0;
1468 
1469 #ifdef DIAGNOSTIC
1470 	cf = dev->dv_cfdata;
1471 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1472 	    cf->cf_fstate != FSTATE_STAR)
1473 		panic("config_detach: %s: bad device fstate %d",
1474 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1475 #endif
1476 	cd = dev->dv_cfdriver;
1477 	KASSERT(cd != NULL);
1478 
1479 	ca = dev->dv_cfattach;
1480 	KASSERT(ca != NULL);
1481 
1482 	KASSERT(curlwp != NULL);
1483 	mutex_enter(&alldevs_mtx);
1484 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1485 		;
1486 	else while (alldevs_nread != 0 ||
1487 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1488 		cv_wait(&alldevs_cv, &alldevs_mtx);
1489 	if (alldevs_nwrite++ == 0)
1490 		alldevs_writer = curlwp;
1491 	mutex_exit(&alldevs_mtx);
1492 
1493 	/*
1494 	 * Ensure the device is deactivated.  If the device doesn't
1495 	 * have an activation entry point, we allow DVF_ACTIVE to
1496 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
1497 	 * device is busy, and the detach fails.
1498 	 */
1499 	if (!detachall &&
1500 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1501 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1502 		rv = EBUSY;	/* XXX EOPNOTSUPP? */
1503 	} else if (ca->ca_activate != NULL)
1504 		rv = config_deactivate(dev);
1505 
1506 	/*
1507 	 * Try to detach the device.  If that's not possible, then
1508 	 * we either panic() (for the forced but failed case), or
1509 	 * return an error.
1510 	 */
1511 	if (rv == 0) {
1512 		if (ca->ca_detach != NULL)
1513 			rv = (*ca->ca_detach)(dev, flags);
1514 		else
1515 			rv = EOPNOTSUPP;
1516 	}
1517 	if (rv != 0) {
1518 		if ((flags & DETACH_FORCE) == 0)
1519 			goto out;
1520 		else
1521 			panic("config_detach: forced detach of %s failed (%d)",
1522 			    device_xname(dev), rv);
1523 	}
1524 
1525 	dev->dv_flags &= ~DVF_ACTIVE;
1526 
1527 	/*
1528 	 * The device has now been successfully detached.
1529 	 */
1530 
1531 	/* Let userland know */
1532 	devmon_report_device(dev, false);
1533 
1534 #ifdef DIAGNOSTIC
1535 	/*
1536 	 * Sanity: If you're successfully detached, you should have no
1537 	 * children.  (Note that because children must be attached
1538 	 * after parents, we only need to search the latter part of
1539 	 * the list.)
1540 	 */
1541 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1542 	    d = TAILQ_NEXT(d, dv_list)) {
1543 		if (d->dv_parent == dev) {
1544 			printf("config_detach: detached device %s"
1545 			    " has children %s\n", device_xname(dev), device_xname(d));
1546 			panic("config_detach");
1547 		}
1548 	}
1549 #endif
1550 
1551 	/* notify the parent that the child is gone */
1552 	if (dev->dv_parent) {
1553 		device_t p = dev->dv_parent;
1554 		if (p->dv_cfattach->ca_childdetached)
1555 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1556 	}
1557 
1558 	/*
1559 	 * Mark cfdata to show that the unit can be reused, if possible.
1560 	 */
1561 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1562 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1563 			if (STREQ(cf->cf_name, cd->cd_name)) {
1564 				if (cf->cf_fstate == FSTATE_FOUND &&
1565 				    cf->cf_unit == dev->dv_unit)
1566 					cf->cf_fstate = FSTATE_NOTFOUND;
1567 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1568 				/*
1569 				 * Note that we can only re-use a starred
1570 				 * unit number if the unit being detached
1571 				 * had the last assigned unit number.
1572 				 */
1573 				if (cf->cf_fstate == FSTATE_STAR &&
1574 				    cf->cf_unit == dev->dv_unit + 1)
1575 					cf->cf_unit--;
1576 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1577 			}
1578 		}
1579 	}
1580 
1581 	config_devunlink(dev);
1582 
1583 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1584 		aprint_normal_dev(dev, "detached\n");
1585 
1586 	config_devdealloc(dev);
1587 
1588 out:
1589 	mutex_enter(&alldevs_mtx);
1590 	if (--alldevs_nwrite == 0)
1591 		alldevs_writer = NULL;
1592 	cv_signal(&alldevs_cv);
1593 	mutex_exit(&alldevs_mtx);
1594 	return rv;
1595 }
1596 
1597 int
1598 config_detach_children(device_t parent, int flags)
1599 {
1600 	device_t dv;
1601 	deviter_t di;
1602 	int error = 0;
1603 
1604 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1605 	     dv = deviter_next(&di)) {
1606 		if (device_parent(dv) != parent)
1607 			continue;
1608 		if ((error = config_detach(dv, flags)) != 0)
1609 			break;
1610 	}
1611 	deviter_release(&di);
1612 	return error;
1613 }
1614 
1615 int
1616 config_activate(device_t dev)
1617 {
1618 	const struct cfattach *ca = dev->dv_cfattach;
1619 	int rv = 0, oflags = dev->dv_flags;
1620 
1621 	if (ca->ca_activate == NULL)
1622 		return (EOPNOTSUPP);
1623 
1624 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1625 		dev->dv_flags |= DVF_ACTIVE;
1626 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1627 		if (rv)
1628 			dev->dv_flags = oflags;
1629 	}
1630 	return (rv);
1631 }
1632 
1633 int
1634 config_deactivate(device_t dev)
1635 {
1636 	const struct cfattach *ca = dev->dv_cfattach;
1637 	int rv = 0, oflags = dev->dv_flags;
1638 
1639 	if (ca->ca_activate == NULL)
1640 		return (EOPNOTSUPP);
1641 
1642 	if (dev->dv_flags & DVF_ACTIVE) {
1643 		dev->dv_flags &= ~DVF_ACTIVE;
1644 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1645 		if (rv)
1646 			dev->dv_flags = oflags;
1647 	}
1648 	return (rv);
1649 }
1650 
1651 /*
1652  * Defer the configuration of the specified device until all
1653  * of its parent's devices have been attached.
1654  */
1655 void
1656 config_defer(device_t dev, void (*func)(device_t))
1657 {
1658 	struct deferred_config *dc;
1659 
1660 	if (dev->dv_parent == NULL)
1661 		panic("config_defer: can't defer config of a root device");
1662 
1663 #ifdef DIAGNOSTIC
1664 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1665 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1666 		if (dc->dc_dev == dev)
1667 			panic("config_defer: deferred twice");
1668 	}
1669 #endif
1670 
1671 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1672 	if (dc == NULL)
1673 		panic("config_defer: unable to allocate callback");
1674 
1675 	dc->dc_dev = dev;
1676 	dc->dc_func = func;
1677 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1678 	config_pending_incr();
1679 }
1680 
1681 /*
1682  * Defer some autoconfiguration for a device until after interrupts
1683  * are enabled.
1684  */
1685 void
1686 config_interrupts(device_t dev, void (*func)(device_t))
1687 {
1688 	struct deferred_config *dc;
1689 
1690 	/*
1691 	 * If interrupts are enabled, callback now.
1692 	 */
1693 	if (cold == 0) {
1694 		(*func)(dev);
1695 		return;
1696 	}
1697 
1698 #ifdef DIAGNOSTIC
1699 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1700 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1701 		if (dc->dc_dev == dev)
1702 			panic("config_interrupts: deferred twice");
1703 	}
1704 #endif
1705 
1706 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1707 	if (dc == NULL)
1708 		panic("config_interrupts: unable to allocate callback");
1709 
1710 	dc->dc_dev = dev;
1711 	dc->dc_func = func;
1712 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1713 	config_pending_incr();
1714 }
1715 
1716 /*
1717  * Process a deferred configuration queue.
1718  */
1719 static void
1720 config_process_deferred(struct deferred_config_head *queue,
1721     device_t parent)
1722 {
1723 	struct deferred_config *dc, *ndc;
1724 
1725 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1726 		ndc = TAILQ_NEXT(dc, dc_queue);
1727 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1728 			TAILQ_REMOVE(queue, dc, dc_queue);
1729 			(*dc->dc_func)(dc->dc_dev);
1730 			kmem_free(dc, sizeof(*dc));
1731 			config_pending_decr();
1732 		}
1733 	}
1734 }
1735 
1736 /*
1737  * Manipulate the config_pending semaphore.
1738  */
1739 void
1740 config_pending_incr(void)
1741 {
1742 
1743 	mutex_enter(&config_misc_lock);
1744 	config_pending++;
1745 	mutex_exit(&config_misc_lock);
1746 }
1747 
1748 void
1749 config_pending_decr(void)
1750 {
1751 
1752 #ifdef DIAGNOSTIC
1753 	if (config_pending == 0)
1754 		panic("config_pending_decr: config_pending == 0");
1755 #endif
1756 	mutex_enter(&config_misc_lock);
1757 	config_pending--;
1758 	if (config_pending == 0)
1759 		cv_broadcast(&config_misc_cv);
1760 	mutex_exit(&config_misc_lock);
1761 }
1762 
1763 /*
1764  * Register a "finalization" routine.  Finalization routines are
1765  * called iteratively once all real devices have been found during
1766  * autoconfiguration, for as long as any one finalizer has done
1767  * any work.
1768  */
1769 int
1770 config_finalize_register(device_t dev, int (*fn)(device_t))
1771 {
1772 	struct finalize_hook *f;
1773 
1774 	/*
1775 	 * If finalization has already been done, invoke the
1776 	 * callback function now.
1777 	 */
1778 	if (config_finalize_done) {
1779 		while ((*fn)(dev) != 0)
1780 			/* loop */ ;
1781 	}
1782 
1783 	/* Ensure this isn't already on the list. */
1784 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1785 		if (f->f_func == fn && f->f_dev == dev)
1786 			return (EEXIST);
1787 	}
1788 
1789 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
1790 	f->f_func = fn;
1791 	f->f_dev = dev;
1792 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1793 
1794 	return (0);
1795 }
1796 
1797 void
1798 config_finalize(void)
1799 {
1800 	struct finalize_hook *f;
1801 	struct pdevinit *pdev;
1802 	extern struct pdevinit pdevinit[];
1803 	int errcnt, rv;
1804 
1805 	/*
1806 	 * Now that device driver threads have been created, wait for
1807 	 * them to finish any deferred autoconfiguration.
1808 	 */
1809 	mutex_enter(&config_misc_lock);
1810 	while (config_pending != 0)
1811 		cv_wait(&config_misc_cv, &config_misc_lock);
1812 	mutex_exit(&config_misc_lock);
1813 
1814 	KERNEL_LOCK(1, NULL);
1815 
1816 	/* Attach pseudo-devices. */
1817 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1818 		(*pdev->pdev_attach)(pdev->pdev_count);
1819 
1820 	/* Run the hooks until none of them does any work. */
1821 	do {
1822 		rv = 0;
1823 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1824 			rv |= (*f->f_func)(f->f_dev);
1825 	} while (rv != 0);
1826 
1827 	config_finalize_done = 1;
1828 
1829 	/* Now free all the hooks. */
1830 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1831 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1832 		kmem_free(f, sizeof(*f));
1833 	}
1834 
1835 	KERNEL_UNLOCK_ONE(NULL);
1836 
1837 	errcnt = aprint_get_error_count();
1838 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1839 	    (boothowto & AB_VERBOSE) == 0) {
1840 		if (config_do_twiddle) {
1841 			config_do_twiddle = 0;
1842 			printf_nolog(" done.\n");
1843 		}
1844 		if (errcnt != 0) {
1845 			printf("WARNING: %d error%s while detecting hardware; "
1846 			    "check system log.\n", errcnt,
1847 			    errcnt == 1 ? "" : "s");
1848 		}
1849 	}
1850 }
1851 
1852 /*
1853  * device_lookup:
1854  *
1855  *	Look up a device instance for a given driver.
1856  */
1857 device_t
1858 device_lookup(cfdriver_t cd, int unit)
1859 {
1860 
1861 	if (unit < 0 || unit >= cd->cd_ndevs)
1862 		return (NULL);
1863 
1864 	return (cd->cd_devs[unit]);
1865 }
1866 
1867 /*
1868  * device_lookup:
1869  *
1870  *	Look up a device instance for a given driver.
1871  */
1872 void *
1873 device_lookup_private(cfdriver_t cd, int unit)
1874 {
1875 	device_t dv;
1876 
1877 	if (unit < 0 || unit >= cd->cd_ndevs)
1878 		return NULL;
1879 
1880 	if ((dv = cd->cd_devs[unit]) == NULL)
1881 		return NULL;
1882 
1883 	return dv->dv_private;
1884 }
1885 
1886 /*
1887  * Accessor functions for the device_t type.
1888  */
1889 devclass_t
1890 device_class(device_t dev)
1891 {
1892 
1893 	return (dev->dv_class);
1894 }
1895 
1896 cfdata_t
1897 device_cfdata(device_t dev)
1898 {
1899 
1900 	return (dev->dv_cfdata);
1901 }
1902 
1903 cfdriver_t
1904 device_cfdriver(device_t dev)
1905 {
1906 
1907 	return (dev->dv_cfdriver);
1908 }
1909 
1910 cfattach_t
1911 device_cfattach(device_t dev)
1912 {
1913 
1914 	return (dev->dv_cfattach);
1915 }
1916 
1917 int
1918 device_unit(device_t dev)
1919 {
1920 
1921 	return (dev->dv_unit);
1922 }
1923 
1924 const char *
1925 device_xname(device_t dev)
1926 {
1927 
1928 	return (dev->dv_xname);
1929 }
1930 
1931 device_t
1932 device_parent(device_t dev)
1933 {
1934 
1935 	return (dev->dv_parent);
1936 }
1937 
1938 bool
1939 device_is_active(device_t dev)
1940 {
1941 	int active_flags;
1942 
1943 	active_flags = DVF_ACTIVE;
1944 	active_flags |= DVF_CLASS_SUSPENDED;
1945 	active_flags |= DVF_DRIVER_SUSPENDED;
1946 	active_flags |= DVF_BUS_SUSPENDED;
1947 
1948 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1949 }
1950 
1951 bool
1952 device_is_enabled(device_t dev)
1953 {
1954 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1955 }
1956 
1957 bool
1958 device_has_power(device_t dev)
1959 {
1960 	int active_flags;
1961 
1962 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1963 
1964 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1965 }
1966 
1967 int
1968 device_locator(device_t dev, u_int locnum)
1969 {
1970 
1971 	KASSERT(dev->dv_locators != NULL);
1972 	return (dev->dv_locators[locnum]);
1973 }
1974 
1975 void *
1976 device_private(device_t dev)
1977 {
1978 
1979 	/*
1980 	 * The reason why device_private(NULL) is allowed is to simplify the
1981 	 * work of a lot of userspace request handlers (i.e., c/bdev
1982 	 * handlers) which grab cfdriver_t->cd_units[n].
1983 	 * It avoids having them test for it to be NULL and only then calling
1984 	 * device_private.
1985 	 */
1986 	return dev == NULL ? NULL : dev->dv_private;
1987 }
1988 
1989 prop_dictionary_t
1990 device_properties(device_t dev)
1991 {
1992 
1993 	return (dev->dv_properties);
1994 }
1995 
1996 /*
1997  * device_is_a:
1998  *
1999  *	Returns true if the device is an instance of the specified
2000  *	driver.
2001  */
2002 bool
2003 device_is_a(device_t dev, const char *dname)
2004 {
2005 
2006 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
2007 }
2008 
2009 /*
2010  * device_find_by_xname:
2011  *
2012  *	Returns the device of the given name or NULL if it doesn't exist.
2013  */
2014 device_t
2015 device_find_by_xname(const char *name)
2016 {
2017 	device_t dv;
2018 	deviter_t di;
2019 
2020 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2021 		if (strcmp(device_xname(dv), name) == 0)
2022 			break;
2023 	}
2024 	deviter_release(&di);
2025 
2026 	return dv;
2027 }
2028 
2029 /*
2030  * device_find_by_driver_unit:
2031  *
2032  *	Returns the device of the given driver name and unit or
2033  *	NULL if it doesn't exist.
2034  */
2035 device_t
2036 device_find_by_driver_unit(const char *name, int unit)
2037 {
2038 	struct cfdriver *cd;
2039 
2040 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2041 		return NULL;
2042 	return device_lookup(cd, unit);
2043 }
2044 
2045 /*
2046  * Power management related functions.
2047  */
2048 
2049 bool
2050 device_pmf_is_registered(device_t dev)
2051 {
2052 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2053 }
2054 
2055 bool
2056 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2057 {
2058 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2059 		return true;
2060 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2061 		return false;
2062 	if (*dev->dv_driver_suspend != NULL &&
2063 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2064 		return false;
2065 
2066 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2067 	return true;
2068 }
2069 
2070 bool
2071 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2072 {
2073 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2074 		return true;
2075 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2076 		return false;
2077 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2078 		return false;
2079 	if (*dev->dv_driver_resume != NULL &&
2080 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2081 		return false;
2082 
2083 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2084 	return true;
2085 }
2086 
2087 bool
2088 device_pmf_driver_shutdown(device_t dev, int how)
2089 {
2090 
2091 	if (*dev->dv_driver_shutdown != NULL &&
2092 	    !(*dev->dv_driver_shutdown)(dev, how))
2093 		return false;
2094 	return true;
2095 }
2096 
2097 bool
2098 device_pmf_driver_register(device_t dev,
2099     bool (*suspend)(device_t PMF_FN_PROTO),
2100     bool (*resume)(device_t PMF_FN_PROTO),
2101     bool (*shutdown)(device_t, int))
2102 {
2103 	dev->dv_driver_suspend = suspend;
2104 	dev->dv_driver_resume = resume;
2105 	dev->dv_driver_shutdown = shutdown;
2106 	dev->dv_flags |= DVF_POWER_HANDLERS;
2107 	return true;
2108 }
2109 
2110 static const char *
2111 curlwp_name(void)
2112 {
2113 	if (curlwp->l_name != NULL)
2114 		return curlwp->l_name;
2115 	else
2116 		return curlwp->l_proc->p_comm;
2117 }
2118 
2119 void
2120 device_pmf_driver_deregister(device_t dev)
2121 {
2122 	device_lock_t dvl = device_getlock(dev);
2123 
2124 	dev->dv_driver_suspend = NULL;
2125 	dev->dv_driver_resume = NULL;
2126 
2127 	mutex_enter(&dvl->dvl_mtx);
2128 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2129 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2130 		/* Wake a thread that waits for the lock.  That
2131 		 * thread will fail to acquire the lock, and then
2132 		 * it will wake the next thread that waits for the
2133 		 * lock, or else it will wake us.
2134 		 */
2135 		cv_signal(&dvl->dvl_cv);
2136 		pmflock_debug(dev, __func__, __LINE__);
2137 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2138 		pmflock_debug(dev, __func__, __LINE__);
2139 	}
2140 	mutex_exit(&dvl->dvl_mtx);
2141 }
2142 
2143 bool
2144 device_pmf_driver_child_register(device_t dev)
2145 {
2146 	device_t parent = device_parent(dev);
2147 
2148 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2149 		return true;
2150 	return (*parent->dv_driver_child_register)(dev);
2151 }
2152 
2153 void
2154 device_pmf_driver_set_child_register(device_t dev,
2155     bool (*child_register)(device_t))
2156 {
2157 	dev->dv_driver_child_register = child_register;
2158 }
2159 
2160 void
2161 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2162 {
2163 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2164 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2165 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2166 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2167 }
2168 
2169 bool
2170 device_is_self_suspended(device_t dev)
2171 {
2172 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2173 }
2174 
2175 void
2176 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2177 {
2178 	bool self = (flags & PMF_F_SELF) != 0;
2179 
2180 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2181 
2182 	if (!self)
2183 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2184 	else if (device_is_active(dev))
2185 		dev->dv_flags |= DVF_SELF_SUSPENDED;
2186 
2187 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2188 }
2189 
2190 static void
2191 pmflock_debug(device_t dev, const char *func, int line)
2192 {
2193 	device_lock_t dvl = device_getlock(dev);
2194 
2195 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2196 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2197 	    dev->dv_flags);
2198 }
2199 
2200 static void
2201 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2202 {
2203 	device_lock_t dvl = device_getlock(dev);
2204 
2205 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x "
2206 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2207 	    dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL);
2208 }
2209 
2210 static bool
2211 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2212 {
2213 	device_lock_t dvl = device_getlock(dev);
2214 
2215 	while (device_pmf_is_registered(dev) &&
2216 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2217 		dvl->dvl_nwait++;
2218 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2219 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2220 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2221 		dvl->dvl_nwait--;
2222 	}
2223 	if (!device_pmf_is_registered(dev)) {
2224 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2225 		/* We could not acquire the lock, but some other thread may
2226 		 * wait for it, also.  Wake that thread.
2227 		 */
2228 		cv_signal(&dvl->dvl_cv);
2229 		return false;
2230 	}
2231 	dvl->dvl_nlock++;
2232 	dvl->dvl_holder = curlwp;
2233 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2234 	return true;
2235 }
2236 
2237 bool
2238 device_pmf_lock(device_t dev PMF_FN_ARGS)
2239 {
2240 	bool rc;
2241 	device_lock_t dvl = device_getlock(dev);
2242 
2243 	mutex_enter(&dvl->dvl_mtx);
2244 	rc = device_pmf_lock1(dev PMF_FN_CALL);
2245 	mutex_exit(&dvl->dvl_mtx);
2246 
2247 	return rc;
2248 }
2249 
2250 void
2251 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2252 {
2253 	device_lock_t dvl = device_getlock(dev);
2254 
2255 	KASSERT(dvl->dvl_nlock > 0);
2256 	mutex_enter(&dvl->dvl_mtx);
2257 	if (--dvl->dvl_nlock == 0)
2258 		dvl->dvl_holder = NULL;
2259 	cv_signal(&dvl->dvl_cv);
2260 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2261 	mutex_exit(&dvl->dvl_mtx);
2262 }
2263 
2264 device_lock_t
2265 device_getlock(device_t dev)
2266 {
2267 	return &dev->dv_lock;
2268 }
2269 
2270 void *
2271 device_pmf_bus_private(device_t dev)
2272 {
2273 	return dev->dv_bus_private;
2274 }
2275 
2276 bool
2277 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2278 {
2279 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2280 		return true;
2281 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2282 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2283 		return false;
2284 	if (*dev->dv_bus_suspend != NULL &&
2285 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2286 		return false;
2287 
2288 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2289 	return true;
2290 }
2291 
2292 bool
2293 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2294 {
2295 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2296 		return true;
2297 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2298 		return false;
2299 	if (*dev->dv_bus_resume != NULL &&
2300 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2301 		return false;
2302 
2303 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2304 	return true;
2305 }
2306 
2307 bool
2308 device_pmf_bus_shutdown(device_t dev, int how)
2309 {
2310 
2311 	if (*dev->dv_bus_shutdown != NULL &&
2312 	    !(*dev->dv_bus_shutdown)(dev, how))
2313 		return false;
2314 	return true;
2315 }
2316 
2317 void
2318 device_pmf_bus_register(device_t dev, void *priv,
2319     bool (*suspend)(device_t PMF_FN_PROTO),
2320     bool (*resume)(device_t PMF_FN_PROTO),
2321     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2322 {
2323 	dev->dv_bus_private = priv;
2324 	dev->dv_bus_resume = resume;
2325 	dev->dv_bus_suspend = suspend;
2326 	dev->dv_bus_shutdown = shutdown;
2327 	dev->dv_bus_deregister = deregister;
2328 }
2329 
2330 void
2331 device_pmf_bus_deregister(device_t dev)
2332 {
2333 	if (dev->dv_bus_deregister == NULL)
2334 		return;
2335 	(*dev->dv_bus_deregister)(dev);
2336 	dev->dv_bus_private = NULL;
2337 	dev->dv_bus_suspend = NULL;
2338 	dev->dv_bus_resume = NULL;
2339 	dev->dv_bus_deregister = NULL;
2340 }
2341 
2342 void *
2343 device_pmf_class_private(device_t dev)
2344 {
2345 	return dev->dv_class_private;
2346 }
2347 
2348 bool
2349 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2350 {
2351 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2352 		return true;
2353 	if (*dev->dv_class_suspend != NULL &&
2354 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2355 		return false;
2356 
2357 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2358 	return true;
2359 }
2360 
2361 bool
2362 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2363 {
2364 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2365 		return true;
2366 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2367 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2368 		return false;
2369 	if (*dev->dv_class_resume != NULL &&
2370 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2371 		return false;
2372 
2373 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2374 	return true;
2375 }
2376 
2377 void
2378 device_pmf_class_register(device_t dev, void *priv,
2379     bool (*suspend)(device_t PMF_FN_PROTO),
2380     bool (*resume)(device_t PMF_FN_PROTO),
2381     void (*deregister)(device_t))
2382 {
2383 	dev->dv_class_private = priv;
2384 	dev->dv_class_suspend = suspend;
2385 	dev->dv_class_resume = resume;
2386 	dev->dv_class_deregister = deregister;
2387 }
2388 
2389 void
2390 device_pmf_class_deregister(device_t dev)
2391 {
2392 	if (dev->dv_class_deregister == NULL)
2393 		return;
2394 	(*dev->dv_class_deregister)(dev);
2395 	dev->dv_class_private = NULL;
2396 	dev->dv_class_suspend = NULL;
2397 	dev->dv_class_resume = NULL;
2398 	dev->dv_class_deregister = NULL;
2399 }
2400 
2401 bool
2402 device_active(device_t dev, devactive_t type)
2403 {
2404 	size_t i;
2405 
2406 	if (dev->dv_activity_count == 0)
2407 		return false;
2408 
2409 	for (i = 0; i < dev->dv_activity_count; ++i) {
2410 		if (dev->dv_activity_handlers[i] == NULL)
2411 			break;
2412 		(*dev->dv_activity_handlers[i])(dev, type);
2413 	}
2414 
2415 	return true;
2416 }
2417 
2418 bool
2419 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2420 {
2421 	void (**new_handlers)(device_t, devactive_t);
2422 	void (**old_handlers)(device_t, devactive_t);
2423 	size_t i, old_size, new_size;
2424 	int s;
2425 
2426 	old_handlers = dev->dv_activity_handlers;
2427 	old_size = dev->dv_activity_count;
2428 
2429 	for (i = 0; i < old_size; ++i) {
2430 		KASSERT(old_handlers[i] != handler);
2431 		if (old_handlers[i] == NULL) {
2432 			old_handlers[i] = handler;
2433 			return true;
2434 		}
2435 	}
2436 
2437 	new_size = old_size + 4;
2438 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2439 
2440 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2441 	new_handlers[old_size] = handler;
2442 	memset(new_handlers + old_size + 1, 0,
2443 	    sizeof(int [new_size - (old_size+1)]));
2444 
2445 	s = splhigh();
2446 	dev->dv_activity_count = new_size;
2447 	dev->dv_activity_handlers = new_handlers;
2448 	splx(s);
2449 
2450 	if (old_handlers != NULL)
2451 		kmem_free(old_handlers, sizeof(void * [old_size]));
2452 
2453 	return true;
2454 }
2455 
2456 void
2457 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2458 {
2459 	void (**old_handlers)(device_t, devactive_t);
2460 	size_t i, old_size;
2461 	int s;
2462 
2463 	old_handlers = dev->dv_activity_handlers;
2464 	old_size = dev->dv_activity_count;
2465 
2466 	for (i = 0; i < old_size; ++i) {
2467 		if (old_handlers[i] == handler)
2468 			break;
2469 		if (old_handlers[i] == NULL)
2470 			return; /* XXX panic? */
2471 	}
2472 
2473 	if (i == old_size)
2474 		return; /* XXX panic? */
2475 
2476 	for (; i < old_size - 1; ++i) {
2477 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2478 			continue;
2479 
2480 		if (i == 0) {
2481 			s = splhigh();
2482 			dev->dv_activity_count = 0;
2483 			dev->dv_activity_handlers = NULL;
2484 			splx(s);
2485 			kmem_free(old_handlers, sizeof(void *[old_size]));
2486 		}
2487 		return;
2488 	}
2489 	old_handlers[i] = NULL;
2490 }
2491 
2492 /*
2493  * Device Iteration
2494  *
2495  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2496  *     each device_t's in the device tree.
2497  *
2498  * deviter_init(di, flags): initialize the device iterator `di'
2499  *     to "walk" the device tree.  deviter_next(di) will return
2500  *     the first device_t in the device tree, or NULL if there are
2501  *     no devices.
2502  *
2503  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2504  *     caller intends to modify the device tree by calling
2505  *     config_detach(9) on devices in the order that the iterator
2506  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2507  *     nearest the "root" of the device tree to be returned, first;
2508  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2509  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2510  *     indicating both that deviter_init() should not respect any
2511  *     locks on the device tree, and that deviter_next(di) may run
2512  *     in more than one LWP before the walk has finished.
2513  *
2514  *     Only one DEVITER_F_RW iterator may be in the device tree at
2515  *     once.
2516  *
2517  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2518  *
2519  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2520  *     DEVITER_F_LEAVES_FIRST are used in combination.
2521  *
2522  * deviter_first(di, flags): initialize the device iterator `di'
2523  *     and return the first device_t in the device tree, or NULL
2524  *     if there are no devices.  The statement
2525  *
2526  *         dv = deviter_first(di);
2527  *
2528  *     is shorthand for
2529  *
2530  *         deviter_init(di);
2531  *         dv = deviter_next(di);
2532  *
2533  * deviter_next(di): return the next device_t in the device tree,
2534  *     or NULL if there are no more devices.  deviter_next(di)
2535  *     is undefined if `di' was not initialized with deviter_init() or
2536  *     deviter_first().
2537  *
2538  * deviter_release(di): stops iteration (subsequent calls to
2539  *     deviter_next() will return NULL), releases any locks and
2540  *     resources held by the device iterator.
2541  *
2542  * Device iteration does not return device_t's in any particular
2543  * order.  An iterator will never return the same device_t twice.
2544  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2545  * is called repeatedly on the same `di', it will eventually return
2546  * NULL.  It is ok to attach/detach devices during device iteration.
2547  */
2548 void
2549 deviter_init(deviter_t *di, deviter_flags_t flags)
2550 {
2551 	device_t dv;
2552 	bool rw;
2553 
2554 	mutex_enter(&alldevs_mtx);
2555 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2556 		flags |= DEVITER_F_RW;
2557 		alldevs_nwrite++;
2558 		alldevs_writer = NULL;
2559 		alldevs_nread = 0;
2560 	} else {
2561 		rw = (flags & DEVITER_F_RW) != 0;
2562 
2563 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2564 			;
2565 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2566 		       (rw && alldevs_nread != 0))
2567 			cv_wait(&alldevs_cv, &alldevs_mtx);
2568 
2569 		if (rw) {
2570 			if (alldevs_nwrite++ == 0)
2571 				alldevs_writer = curlwp;
2572 		} else
2573 			alldevs_nread++;
2574 	}
2575 	mutex_exit(&alldevs_mtx);
2576 
2577 	memset(di, 0, sizeof(*di));
2578 
2579 	di->di_flags = flags;
2580 
2581 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2582 	case DEVITER_F_LEAVES_FIRST:
2583 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2584 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2585 		break;
2586 	case DEVITER_F_ROOT_FIRST:
2587 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2588 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2589 		break;
2590 	default:
2591 		break;
2592 	}
2593 
2594 	deviter_reinit(di);
2595 }
2596 
2597 static void
2598 deviter_reinit(deviter_t *di)
2599 {
2600 	if ((di->di_flags & DEVITER_F_RW) != 0)
2601 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2602 	else
2603 		di->di_prev = TAILQ_FIRST(&alldevs);
2604 }
2605 
2606 device_t
2607 deviter_first(deviter_t *di, deviter_flags_t flags)
2608 {
2609 	deviter_init(di, flags);
2610 	return deviter_next(di);
2611 }
2612 
2613 static device_t
2614 deviter_next1(deviter_t *di)
2615 {
2616 	device_t dv;
2617 
2618 	dv = di->di_prev;
2619 
2620 	if (dv == NULL)
2621 		;
2622 	else if ((di->di_flags & DEVITER_F_RW) != 0)
2623 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2624 	else
2625 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2626 
2627 	return dv;
2628 }
2629 
2630 device_t
2631 deviter_next(deviter_t *di)
2632 {
2633 	device_t dv = NULL;
2634 
2635 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2636 	case 0:
2637 		return deviter_next1(di);
2638 	case DEVITER_F_LEAVES_FIRST:
2639 		while (di->di_curdepth >= 0) {
2640 			if ((dv = deviter_next1(di)) == NULL) {
2641 				di->di_curdepth--;
2642 				deviter_reinit(di);
2643 			} else if (dv->dv_depth == di->di_curdepth)
2644 				break;
2645 		}
2646 		return dv;
2647 	case DEVITER_F_ROOT_FIRST:
2648 		while (di->di_curdepth <= di->di_maxdepth) {
2649 			if ((dv = deviter_next1(di)) == NULL) {
2650 				di->di_curdepth++;
2651 				deviter_reinit(di);
2652 			} else if (dv->dv_depth == di->di_curdepth)
2653 				break;
2654 		}
2655 		return dv;
2656 	default:
2657 		return NULL;
2658 	}
2659 }
2660 
2661 void
2662 deviter_release(deviter_t *di)
2663 {
2664 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2665 
2666 	mutex_enter(&alldevs_mtx);
2667 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2668 		--alldevs_nwrite;
2669 	else {
2670 
2671 		if (rw) {
2672 			if (--alldevs_nwrite == 0)
2673 				alldevs_writer = NULL;
2674 		} else
2675 			--alldevs_nread;
2676 
2677 		cv_signal(&alldevs_cv);
2678 	}
2679 	mutex_exit(&alldevs_mtx);
2680 }
2681 
2682 SYSCTL_SETUP(sysctl_detach_setup, "sysctl detach setup")
2683 {
2684 	const struct sysctlnode *node = NULL;
2685 
2686 	sysctl_createv(clog, 0, NULL, &node,
2687 		CTLFLAG_PERMANENT,
2688 		CTLTYPE_NODE, "kern", NULL,
2689 		NULL, 0, NULL, 0,
2690 		CTL_KERN, CTL_EOL);
2691 
2692 	if (node == NULL)
2693 		return;
2694 
2695 	sysctl_createv(clog, 0, &node, NULL,
2696 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2697 		CTLTYPE_INT, "detachall",
2698 		SYSCTL_DESCR("Detach all devices at shutdown"),
2699 		NULL, 0, &detachall, 0,
2700 		CTL_CREATE, CTL_EOL);
2701 }
2702