1 /* $NetBSD: subr_autoconf.c,v 1.209 2010/08/16 17:29:52 jruoho Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.209 2010/08/16 17:29:52 jruoho Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/device.h> 88 #include <sys/disklabel.h> 89 #include <sys/conf.h> 90 #include <sys/kauth.h> 91 #include <sys/malloc.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 111 #include <sys/disk.h> 112 113 #include <machine/limits.h> 114 115 #if defined(__i386__) && defined(_KERNEL_OPT) 116 #include "opt_splash.h" 117 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 118 #include <dev/splash/splash.h> 119 extern struct splash_progress *splash_progress_state; 120 #endif 121 #endif 122 123 /* 124 * Autoconfiguration subroutines. 125 */ 126 127 /* 128 * ioconf.c exports exactly two names: cfdata and cfroots. All system 129 * devices and drivers are found via these tables. 130 */ 131 extern struct cfdata cfdata[]; 132 extern const short cfroots[]; 133 134 /* 135 * List of all cfdriver structures. We use this to detect duplicates 136 * when other cfdrivers are loaded. 137 */ 138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 139 extern struct cfdriver * const cfdriver_list_initial[]; 140 141 /* 142 * Initial list of cfattach's. 143 */ 144 extern const struct cfattachinit cfattachinit[]; 145 146 /* 147 * List of cfdata tables. We always have one such list -- the one 148 * built statically when the kernel was configured. 149 */ 150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 151 static struct cftable initcftable; 152 153 #define ROOT ((device_t)NULL) 154 155 struct matchinfo { 156 cfsubmatch_t fn; 157 struct device *parent; 158 const int *locs; 159 void *aux; 160 struct cfdata *match; 161 int pri; 162 }; 163 164 struct alldevs_foray { 165 int af_s; 166 struct devicelist af_garbage; 167 }; 168 169 static char *number(char *, int); 170 static void mapply(struct matchinfo *, cfdata_t); 171 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 172 static void config_devdelete(device_t); 173 static void config_devunlink(device_t, struct devicelist *); 174 static void config_makeroom(int, struct cfdriver *); 175 static void config_devlink(device_t); 176 static void config_alldevs_unlock(int); 177 static int config_alldevs_lock(void); 178 static void config_alldevs_enter(struct alldevs_foray *); 179 static void config_alldevs_exit(struct alldevs_foray *); 180 181 static void config_collect_garbage(struct devicelist *); 182 static void config_dump_garbage(struct devicelist *); 183 184 static void pmflock_debug(device_t, const char *, int); 185 186 static device_t deviter_next1(deviter_t *); 187 static void deviter_reinit(deviter_t *); 188 189 struct deferred_config { 190 TAILQ_ENTRY(deferred_config) dc_queue; 191 device_t dc_dev; 192 void (*dc_func)(device_t); 193 }; 194 195 TAILQ_HEAD(deferred_config_head, deferred_config); 196 197 struct deferred_config_head deferred_config_queue = 198 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 199 struct deferred_config_head interrupt_config_queue = 200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 201 int interrupt_config_threads = 8; 202 struct deferred_config_head mountroot_config_queue = 203 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 204 int mountroot_config_threads = 2; 205 static bool root_is_mounted = false; 206 207 static void config_process_deferred(struct deferred_config_head *, device_t); 208 209 /* Hooks to finalize configuration once all real devices have been found. */ 210 struct finalize_hook { 211 TAILQ_ENTRY(finalize_hook) f_list; 212 int (*f_func)(device_t); 213 device_t f_dev; 214 }; 215 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 216 TAILQ_HEAD_INITIALIZER(config_finalize_list); 217 static int config_finalize_done; 218 219 /* list of all devices */ 220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 221 static kmutex_t alldevs_mtx; 222 static volatile bool alldevs_garbage = false; 223 static volatile devgen_t alldevs_gen = 1; 224 static volatile int alldevs_nread = 0; 225 static volatile int alldevs_nwrite = 0; 226 227 static int config_pending; /* semaphore for mountroot */ 228 static kmutex_t config_misc_lock; 229 static kcondvar_t config_misc_cv; 230 231 static int detachall = 0; 232 233 #define STREQ(s1, s2) \ 234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 235 236 static bool config_initialized = false; /* config_init() has been called. */ 237 238 static int config_do_twiddle; 239 static callout_t config_twiddle_ch; 240 241 static void sysctl_detach_setup(struct sysctllog **); 242 243 typedef int (*cfdriver_fn)(struct cfdriver *); 244 static int 245 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 246 cfdriver_fn drv_do, cfdriver_fn drv_undo, 247 const char *style, bool dopanic) 248 { 249 void (*pr)(const char *, ...) = dopanic ? panic : printf; 250 int i = 0, error = 0, e2; 251 252 for (i = 0; cfdriverv[i] != NULL; i++) { 253 if ((error = drv_do(cfdriverv[i])) != 0) { 254 pr("configure: `%s' driver %s failed: %d", 255 cfdriverv[i]->cd_name, style, error); 256 goto bad; 257 } 258 } 259 260 KASSERT(error == 0); 261 return 0; 262 263 bad: 264 printf("\n"); 265 for (i--; i >= 0; i--) { 266 e2 = drv_undo(cfdriverv[i]); 267 KASSERT(e2 == 0); 268 } 269 270 return error; 271 } 272 273 typedef int (*cfattach_fn)(const char *, struct cfattach *); 274 static int 275 frob_cfattachvec(const struct cfattachinit *cfattachv, 276 cfattach_fn att_do, cfattach_fn att_undo, 277 const char *style, bool dopanic) 278 { 279 const struct cfattachinit *cfai = NULL; 280 void (*pr)(const char *, ...) = dopanic ? panic : printf; 281 int j = 0, error = 0, e2; 282 283 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 284 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 285 if ((error = att_do(cfai->cfai_name, 286 cfai->cfai_list[j]) != 0)) { 287 pr("configure: attachment `%s' " 288 "of `%s' driver %s failed: %d", 289 cfai->cfai_list[j]->ca_name, 290 cfai->cfai_name, style, error); 291 goto bad; 292 } 293 } 294 } 295 296 KASSERT(error == 0); 297 return 0; 298 299 bad: 300 /* 301 * Rollback in reverse order. dunno if super-important, but 302 * do that anyway. Although the code looks a little like 303 * someone did a little integration (in the math sense). 304 */ 305 printf("\n"); 306 if (cfai) { 307 bool last; 308 309 for (last = false; last == false; ) { 310 if (cfai == &cfattachv[0]) 311 last = true; 312 for (j--; j >= 0; j--) { 313 e2 = att_undo(cfai->cfai_name, 314 cfai->cfai_list[j]); 315 KASSERT(e2 == 0); 316 } 317 if (!last) { 318 cfai--; 319 for (j = 0; cfai->cfai_list[j] != NULL; j++) 320 ; 321 } 322 } 323 } 324 325 return error; 326 } 327 328 /* 329 * Initialize the autoconfiguration data structures. Normally this 330 * is done by configure(), but some platforms need to do this very 331 * early (to e.g. initialize the console). 332 */ 333 void 334 config_init(void) 335 { 336 337 KASSERT(config_initialized == false); 338 339 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM); 340 341 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 342 cv_init(&config_misc_cv, "cfgmisc"); 343 344 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 345 346 frob_cfdrivervec(cfdriver_list_initial, 347 config_cfdriver_attach, NULL, "bootstrap", true); 348 frob_cfattachvec(cfattachinit, 349 config_cfattach_attach, NULL, "bootstrap", true); 350 351 initcftable.ct_cfdata = cfdata; 352 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 353 354 config_initialized = true; 355 } 356 357 /* 358 * Init or fini drivers and attachments. Either all or none 359 * are processed (via rollback). It would be nice if this were 360 * atomic to outside consumers, but with the current state of 361 * locking ... 362 */ 363 int 364 config_init_component(struct cfdriver * const *cfdriverv, 365 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 366 { 367 int error; 368 369 if ((error = frob_cfdrivervec(cfdriverv, 370 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 371 return error; 372 if ((error = frob_cfattachvec(cfattachv, 373 config_cfattach_attach, config_cfattach_detach, 374 "init", false)) != 0) { 375 frob_cfdrivervec(cfdriverv, 376 config_cfdriver_detach, NULL, "init rollback", true); 377 return error; 378 } 379 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 380 frob_cfattachvec(cfattachv, 381 config_cfattach_detach, NULL, "init rollback", true); 382 frob_cfdrivervec(cfdriverv, 383 config_cfdriver_detach, NULL, "init rollback", true); 384 return error; 385 } 386 387 return 0; 388 } 389 390 int 391 config_fini_component(struct cfdriver * const *cfdriverv, 392 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 393 { 394 int error; 395 396 if ((error = config_cfdata_detach(cfdatav)) != 0) 397 return error; 398 if ((error = frob_cfattachvec(cfattachv, 399 config_cfattach_detach, config_cfattach_attach, 400 "fini", false)) != 0) { 401 if (config_cfdata_attach(cfdatav, 0) != 0) 402 panic("config_cfdata fini rollback failed"); 403 return error; 404 } 405 if ((error = frob_cfdrivervec(cfdriverv, 406 config_cfdriver_detach, config_cfdriver_attach, 407 "fini", false)) != 0) { 408 frob_cfattachvec(cfattachv, 409 config_cfattach_attach, NULL, "fini rollback", true); 410 if (config_cfdata_attach(cfdatav, 0) != 0) 411 panic("config_cfdata fini rollback failed"); 412 return error; 413 } 414 415 return 0; 416 } 417 418 void 419 config_init_mi(void) 420 { 421 422 if (!config_initialized) 423 config_init(); 424 425 sysctl_detach_setup(NULL); 426 } 427 428 void 429 config_deferred(device_t dev) 430 { 431 config_process_deferred(&deferred_config_queue, dev); 432 config_process_deferred(&interrupt_config_queue, dev); 433 config_process_deferred(&mountroot_config_queue, dev); 434 } 435 436 static void 437 config_interrupts_thread(void *cookie) 438 { 439 struct deferred_config *dc; 440 441 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 442 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 443 (*dc->dc_func)(dc->dc_dev); 444 kmem_free(dc, sizeof(*dc)); 445 config_pending_decr(); 446 } 447 kthread_exit(0); 448 } 449 450 void 451 config_create_interruptthreads() 452 { 453 int i; 454 455 for (i = 0; i < interrupt_config_threads; i++) { 456 (void)kthread_create(PRI_NONE, 0, NULL, 457 config_interrupts_thread, NULL, NULL, "config"); 458 } 459 } 460 461 static void 462 config_mountroot_thread(void *cookie) 463 { 464 struct deferred_config *dc; 465 466 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 467 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 468 (*dc->dc_func)(dc->dc_dev); 469 kmem_free(dc, sizeof(*dc)); 470 } 471 kthread_exit(0); 472 } 473 474 void 475 config_create_mountrootthreads() 476 { 477 int i; 478 479 if (!root_is_mounted) 480 root_is_mounted = true; 481 482 for (i = 0; i < mountroot_config_threads; i++) { 483 (void)kthread_create(PRI_NONE, 0, NULL, 484 config_mountroot_thread, NULL, NULL, "config"); 485 } 486 } 487 488 /* 489 * Announce device attach/detach to userland listeners. 490 */ 491 static void 492 devmon_report_device(device_t dev, bool isattach) 493 { 494 #if NDRVCTL > 0 495 prop_dictionary_t ev; 496 const char *parent; 497 const char *what; 498 device_t pdev = device_parent(dev); 499 500 ev = prop_dictionary_create(); 501 if (ev == NULL) 502 return; 503 504 what = (isattach ? "device-attach" : "device-detach"); 505 parent = (pdev == NULL ? "root" : device_xname(pdev)); 506 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 507 !prop_dictionary_set_cstring(ev, "parent", parent)) { 508 prop_object_release(ev); 509 return; 510 } 511 512 devmon_insert(what, ev); 513 #endif 514 } 515 516 /* 517 * Add a cfdriver to the system. 518 */ 519 int 520 config_cfdriver_attach(struct cfdriver *cd) 521 { 522 struct cfdriver *lcd; 523 524 /* Make sure this driver isn't already in the system. */ 525 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 526 if (STREQ(lcd->cd_name, cd->cd_name)) 527 return EEXIST; 528 } 529 530 LIST_INIT(&cd->cd_attach); 531 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 532 533 return 0; 534 } 535 536 /* 537 * Remove a cfdriver from the system. 538 */ 539 int 540 config_cfdriver_detach(struct cfdriver *cd) 541 { 542 struct alldevs_foray af; 543 int i, rc = 0; 544 545 config_alldevs_enter(&af); 546 /* Make sure there are no active instances. */ 547 for (i = 0; i < cd->cd_ndevs; i++) { 548 if (cd->cd_devs[i] != NULL) { 549 rc = EBUSY; 550 break; 551 } 552 } 553 config_alldevs_exit(&af); 554 555 if (rc != 0) 556 return rc; 557 558 /* ...and no attachments loaded. */ 559 if (LIST_EMPTY(&cd->cd_attach) == 0) 560 return EBUSY; 561 562 LIST_REMOVE(cd, cd_list); 563 564 KASSERT(cd->cd_devs == NULL); 565 566 return 0; 567 } 568 569 /* 570 * Look up a cfdriver by name. 571 */ 572 struct cfdriver * 573 config_cfdriver_lookup(const char *name) 574 { 575 struct cfdriver *cd; 576 577 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 578 if (STREQ(cd->cd_name, name)) 579 return cd; 580 } 581 582 return NULL; 583 } 584 585 /* 586 * Add a cfattach to the specified driver. 587 */ 588 int 589 config_cfattach_attach(const char *driver, struct cfattach *ca) 590 { 591 struct cfattach *lca; 592 struct cfdriver *cd; 593 594 cd = config_cfdriver_lookup(driver); 595 if (cd == NULL) 596 return ESRCH; 597 598 /* Make sure this attachment isn't already on this driver. */ 599 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 600 if (STREQ(lca->ca_name, ca->ca_name)) 601 return EEXIST; 602 } 603 604 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 605 606 return 0; 607 } 608 609 /* 610 * Remove a cfattach from the specified driver. 611 */ 612 int 613 config_cfattach_detach(const char *driver, struct cfattach *ca) 614 { 615 struct alldevs_foray af; 616 struct cfdriver *cd; 617 device_t dev; 618 int i, rc = 0; 619 620 cd = config_cfdriver_lookup(driver); 621 if (cd == NULL) 622 return ESRCH; 623 624 config_alldevs_enter(&af); 625 /* Make sure there are no active instances. */ 626 for (i = 0; i < cd->cd_ndevs; i++) { 627 if ((dev = cd->cd_devs[i]) == NULL) 628 continue; 629 if (dev->dv_cfattach == ca) { 630 rc = EBUSY; 631 break; 632 } 633 } 634 config_alldevs_exit(&af); 635 636 if (rc != 0) 637 return rc; 638 639 LIST_REMOVE(ca, ca_list); 640 641 return 0; 642 } 643 644 /* 645 * Look up a cfattach by name. 646 */ 647 static struct cfattach * 648 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 649 { 650 struct cfattach *ca; 651 652 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 653 if (STREQ(ca->ca_name, atname)) 654 return ca; 655 } 656 657 return NULL; 658 } 659 660 /* 661 * Look up a cfattach by driver/attachment name. 662 */ 663 struct cfattach * 664 config_cfattach_lookup(const char *name, const char *atname) 665 { 666 struct cfdriver *cd; 667 668 cd = config_cfdriver_lookup(name); 669 if (cd == NULL) 670 return NULL; 671 672 return config_cfattach_lookup_cd(cd, atname); 673 } 674 675 /* 676 * Apply the matching function and choose the best. This is used 677 * a few times and we want to keep the code small. 678 */ 679 static void 680 mapply(struct matchinfo *m, cfdata_t cf) 681 { 682 int pri; 683 684 if (m->fn != NULL) { 685 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 686 } else { 687 pri = config_match(m->parent, cf, m->aux); 688 } 689 if (pri > m->pri) { 690 m->match = cf; 691 m->pri = pri; 692 } 693 } 694 695 int 696 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 697 { 698 const struct cfiattrdata *ci; 699 const struct cflocdesc *cl; 700 int nlocs, i; 701 702 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 703 KASSERT(ci); 704 nlocs = ci->ci_loclen; 705 KASSERT(!nlocs || locs); 706 for (i = 0; i < nlocs; i++) { 707 cl = &ci->ci_locdesc[i]; 708 /* !cld_defaultstr means no default value */ 709 if ((!(cl->cld_defaultstr) 710 || (cf->cf_loc[i] != cl->cld_default)) 711 && cf->cf_loc[i] != locs[i]) 712 return 0; 713 } 714 715 return config_match(parent, cf, aux); 716 } 717 718 /* 719 * Helper function: check whether the driver supports the interface attribute 720 * and return its descriptor structure. 721 */ 722 static const struct cfiattrdata * 723 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 724 { 725 const struct cfiattrdata * const *cpp; 726 727 if (cd->cd_attrs == NULL) 728 return 0; 729 730 for (cpp = cd->cd_attrs; *cpp; cpp++) { 731 if (STREQ((*cpp)->ci_name, ia)) { 732 /* Match. */ 733 return *cpp; 734 } 735 } 736 return 0; 737 } 738 739 /* 740 * Lookup an interface attribute description by name. 741 * If the driver is given, consider only its supported attributes. 742 */ 743 const struct cfiattrdata * 744 cfiattr_lookup(const char *name, const struct cfdriver *cd) 745 { 746 const struct cfdriver *d; 747 const struct cfiattrdata *ia; 748 749 if (cd) 750 return cfdriver_get_iattr(cd, name); 751 752 LIST_FOREACH(d, &allcfdrivers, cd_list) { 753 ia = cfdriver_get_iattr(d, name); 754 if (ia) 755 return ia; 756 } 757 return 0; 758 } 759 760 /* 761 * Determine if `parent' is a potential parent for a device spec based 762 * on `cfp'. 763 */ 764 static int 765 cfparent_match(const device_t parent, const struct cfparent *cfp) 766 { 767 struct cfdriver *pcd; 768 769 /* We don't match root nodes here. */ 770 if (cfp == NULL) 771 return 0; 772 773 pcd = parent->dv_cfdriver; 774 KASSERT(pcd != NULL); 775 776 /* 777 * First, ensure this parent has the correct interface 778 * attribute. 779 */ 780 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 781 return 0; 782 783 /* 784 * If no specific parent device instance was specified (i.e. 785 * we're attaching to the attribute only), we're done! 786 */ 787 if (cfp->cfp_parent == NULL) 788 return 1; 789 790 /* 791 * Check the parent device's name. 792 */ 793 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 794 return 0; /* not the same parent */ 795 796 /* 797 * Make sure the unit number matches. 798 */ 799 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 800 cfp->cfp_unit == parent->dv_unit) 801 return 1; 802 803 /* Unit numbers don't match. */ 804 return 0; 805 } 806 807 /* 808 * Helper for config_cfdata_attach(): check all devices whether it could be 809 * parent any attachment in the config data table passed, and rescan. 810 */ 811 static void 812 rescan_with_cfdata(const struct cfdata *cf) 813 { 814 device_t d; 815 const struct cfdata *cf1; 816 deviter_t di; 817 818 819 /* 820 * "alldevs" is likely longer than a modules's cfdata, so make it 821 * the outer loop. 822 */ 823 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 824 825 if (!(d->dv_cfattach->ca_rescan)) 826 continue; 827 828 for (cf1 = cf; cf1->cf_name; cf1++) { 829 830 if (!cfparent_match(d, cf1->cf_pspec)) 831 continue; 832 833 (*d->dv_cfattach->ca_rescan)(d, 834 cfdata_ifattr(cf1), cf1->cf_loc); 835 836 config_deferred(d); 837 } 838 } 839 deviter_release(&di); 840 } 841 842 /* 843 * Attach a supplemental config data table and rescan potential 844 * parent devices if required. 845 */ 846 int 847 config_cfdata_attach(cfdata_t cf, int scannow) 848 { 849 struct cftable *ct; 850 851 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 852 ct->ct_cfdata = cf; 853 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 854 855 if (scannow) 856 rescan_with_cfdata(cf); 857 858 return 0; 859 } 860 861 /* 862 * Helper for config_cfdata_detach: check whether a device is 863 * found through any attachment in the config data table. 864 */ 865 static int 866 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 867 { 868 const struct cfdata *cf1; 869 870 for (cf1 = cf; cf1->cf_name; cf1++) 871 if (d->dv_cfdata == cf1) 872 return 1; 873 874 return 0; 875 } 876 877 /* 878 * Detach a supplemental config data table. Detach all devices found 879 * through that table (and thus keeping references to it) before. 880 */ 881 int 882 config_cfdata_detach(cfdata_t cf) 883 { 884 device_t d; 885 int error = 0; 886 struct cftable *ct; 887 deviter_t di; 888 889 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 890 d = deviter_next(&di)) { 891 if (!dev_in_cfdata(d, cf)) 892 continue; 893 if ((error = config_detach(d, 0)) != 0) 894 break; 895 } 896 deviter_release(&di); 897 if (error) { 898 aprint_error_dev(d, "unable to detach instance\n"); 899 return error; 900 } 901 902 TAILQ_FOREACH(ct, &allcftables, ct_list) { 903 if (ct->ct_cfdata == cf) { 904 TAILQ_REMOVE(&allcftables, ct, ct_list); 905 kmem_free(ct, sizeof(*ct)); 906 return 0; 907 } 908 } 909 910 /* not found -- shouldn't happen */ 911 return EINVAL; 912 } 913 914 /* 915 * Invoke the "match" routine for a cfdata entry on behalf of 916 * an external caller, usually a "submatch" routine. 917 */ 918 int 919 config_match(device_t parent, cfdata_t cf, void *aux) 920 { 921 struct cfattach *ca; 922 923 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 924 if (ca == NULL) { 925 /* No attachment for this entry, oh well. */ 926 return 0; 927 } 928 929 return (*ca->ca_match)(parent, cf, aux); 930 } 931 932 /* 933 * Iterate over all potential children of some device, calling the given 934 * function (default being the child's match function) for each one. 935 * Nonzero returns are matches; the highest value returned is considered 936 * the best match. Return the `found child' if we got a match, or NULL 937 * otherwise. The `aux' pointer is simply passed on through. 938 * 939 * Note that this function is designed so that it can be used to apply 940 * an arbitrary function to all potential children (its return value 941 * can be ignored). 942 */ 943 cfdata_t 944 config_search_loc(cfsubmatch_t fn, device_t parent, 945 const char *ifattr, const int *locs, void *aux) 946 { 947 struct cftable *ct; 948 cfdata_t cf; 949 struct matchinfo m; 950 951 KASSERT(config_initialized); 952 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 953 954 m.fn = fn; 955 m.parent = parent; 956 m.locs = locs; 957 m.aux = aux; 958 m.match = NULL; 959 m.pri = 0; 960 961 TAILQ_FOREACH(ct, &allcftables, ct_list) { 962 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 963 964 /* We don't match root nodes here. */ 965 if (!cf->cf_pspec) 966 continue; 967 968 /* 969 * Skip cf if no longer eligible, otherwise scan 970 * through parents for one matching `parent', and 971 * try match function. 972 */ 973 if (cf->cf_fstate == FSTATE_FOUND) 974 continue; 975 if (cf->cf_fstate == FSTATE_DNOTFOUND || 976 cf->cf_fstate == FSTATE_DSTAR) 977 continue; 978 979 /* 980 * If an interface attribute was specified, 981 * consider only children which attach to 982 * that attribute. 983 */ 984 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 985 continue; 986 987 if (cfparent_match(parent, cf->cf_pspec)) 988 mapply(&m, cf); 989 } 990 } 991 return m.match; 992 } 993 994 cfdata_t 995 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 996 void *aux) 997 { 998 999 return config_search_loc(fn, parent, ifattr, NULL, aux); 1000 } 1001 1002 /* 1003 * Find the given root device. 1004 * This is much like config_search, but there is no parent. 1005 * Don't bother with multiple cfdata tables; the root node 1006 * must always be in the initial table. 1007 */ 1008 cfdata_t 1009 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1010 { 1011 cfdata_t cf; 1012 const short *p; 1013 struct matchinfo m; 1014 1015 m.fn = fn; 1016 m.parent = ROOT; 1017 m.aux = aux; 1018 m.match = NULL; 1019 m.pri = 0; 1020 m.locs = 0; 1021 /* 1022 * Look at root entries for matching name. We do not bother 1023 * with found-state here since only one root should ever be 1024 * searched (and it must be done first). 1025 */ 1026 for (p = cfroots; *p >= 0; p++) { 1027 cf = &cfdata[*p]; 1028 if (strcmp(cf->cf_name, rootname) == 0) 1029 mapply(&m, cf); 1030 } 1031 return m.match; 1032 } 1033 1034 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1035 1036 /* 1037 * The given `aux' argument describes a device that has been found 1038 * on the given parent, but not necessarily configured. Locate the 1039 * configuration data for that device (using the submatch function 1040 * provided, or using candidates' cd_match configuration driver 1041 * functions) and attach it, and return true. If the device was 1042 * not configured, call the given `print' function and return 0. 1043 */ 1044 device_t 1045 config_found_sm_loc(device_t parent, 1046 const char *ifattr, const int *locs, void *aux, 1047 cfprint_t print, cfsubmatch_t submatch) 1048 { 1049 cfdata_t cf; 1050 1051 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1052 if (splash_progress_state) 1053 splash_progress_update(splash_progress_state); 1054 #endif 1055 1056 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1057 return(config_attach_loc(parent, cf, locs, aux, print)); 1058 if (print) { 1059 if (config_do_twiddle && cold) 1060 twiddle(); 1061 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1062 } 1063 1064 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1065 if (splash_progress_state) 1066 splash_progress_update(splash_progress_state); 1067 #endif 1068 1069 return NULL; 1070 } 1071 1072 device_t 1073 config_found_ia(device_t parent, const char *ifattr, void *aux, 1074 cfprint_t print) 1075 { 1076 1077 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1078 } 1079 1080 device_t 1081 config_found(device_t parent, void *aux, cfprint_t print) 1082 { 1083 1084 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1085 } 1086 1087 /* 1088 * As above, but for root devices. 1089 */ 1090 device_t 1091 config_rootfound(const char *rootname, void *aux) 1092 { 1093 cfdata_t cf; 1094 1095 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 1096 return config_attach(ROOT, cf, aux, (cfprint_t)NULL); 1097 aprint_error("root device %s not configured\n", rootname); 1098 return NULL; 1099 } 1100 1101 /* just like sprintf(buf, "%d") except that it works from the end */ 1102 static char * 1103 number(char *ep, int n) 1104 { 1105 1106 *--ep = 0; 1107 while (n >= 10) { 1108 *--ep = (n % 10) + '0'; 1109 n /= 10; 1110 } 1111 *--ep = n + '0'; 1112 return ep; 1113 } 1114 1115 /* 1116 * Expand the size of the cd_devs array if necessary. 1117 * 1118 * The caller must hold alldevs_mtx. config_makeroom() may release and 1119 * re-acquire alldevs_mtx, so callers should re-check conditions such 1120 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1121 * returns. 1122 */ 1123 static void 1124 config_makeroom(int n, struct cfdriver *cd) 1125 { 1126 int old, new; 1127 device_t *osp, *nsp; 1128 1129 alldevs_nwrite++; 1130 1131 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new) 1132 ; 1133 1134 while (n >= cd->cd_ndevs) { 1135 /* 1136 * Need to expand the array. 1137 */ 1138 old = cd->cd_ndevs; 1139 osp = cd->cd_devs; 1140 1141 /* Release alldevs_mtx around allocation, which may 1142 * sleep. 1143 */ 1144 mutex_exit(&alldevs_mtx); 1145 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP); 1146 if (nsp == NULL) 1147 panic("%s: could not expand cd_devs", __func__); 1148 mutex_enter(&alldevs_mtx); 1149 1150 /* If another thread moved the array while we did 1151 * not hold alldevs_mtx, try again. 1152 */ 1153 if (cd->cd_devs != osp) { 1154 mutex_exit(&alldevs_mtx); 1155 kmem_free(nsp, sizeof(device_t[new])); 1156 mutex_enter(&alldevs_mtx); 1157 continue; 1158 } 1159 1160 memset(nsp + old, 0, sizeof(device_t[new - old])); 1161 if (old != 0) 1162 memcpy(nsp, cd->cd_devs, sizeof(device_t[old])); 1163 1164 cd->cd_ndevs = new; 1165 cd->cd_devs = nsp; 1166 if (old != 0) { 1167 mutex_exit(&alldevs_mtx); 1168 kmem_free(osp, sizeof(device_t[old])); 1169 mutex_enter(&alldevs_mtx); 1170 } 1171 } 1172 alldevs_nwrite--; 1173 } 1174 1175 /* 1176 * Put dev into the devices list. 1177 */ 1178 static void 1179 config_devlink(device_t dev) 1180 { 1181 int s; 1182 1183 s = config_alldevs_lock(); 1184 1185 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1186 1187 dev->dv_add_gen = alldevs_gen; 1188 /* It is safe to add a device to the tail of the list while 1189 * readers and writers are in the list. 1190 */ 1191 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1192 config_alldevs_unlock(s); 1193 } 1194 1195 static void 1196 config_devfree(device_t dev) 1197 { 1198 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1199 1200 if (dev->dv_cfattach->ca_devsize > 0) 1201 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1202 if (priv) 1203 kmem_free(dev, sizeof(*dev)); 1204 } 1205 1206 /* 1207 * Caller must hold alldevs_mtx. 1208 */ 1209 static void 1210 config_devunlink(device_t dev, struct devicelist *garbage) 1211 { 1212 struct device_garbage *dg = &dev->dv_garbage; 1213 cfdriver_t cd = device_cfdriver(dev); 1214 int i; 1215 1216 KASSERT(mutex_owned(&alldevs_mtx)); 1217 1218 /* Unlink from device list. Link to garbage list. */ 1219 TAILQ_REMOVE(&alldevs, dev, dv_list); 1220 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1221 1222 /* Remove from cfdriver's array. */ 1223 cd->cd_devs[dev->dv_unit] = NULL; 1224 1225 /* 1226 * If the device now has no units in use, unlink its softc array. 1227 */ 1228 for (i = 0; i < cd->cd_ndevs; i++) { 1229 if (cd->cd_devs[i] != NULL) 1230 break; 1231 } 1232 /* Nothing found. Unlink, now. Deallocate, later. */ 1233 if (i == cd->cd_ndevs) { 1234 dg->dg_ndevs = cd->cd_ndevs; 1235 dg->dg_devs = cd->cd_devs; 1236 cd->cd_devs = NULL; 1237 cd->cd_ndevs = 0; 1238 } 1239 } 1240 1241 static void 1242 config_devdelete(device_t dev) 1243 { 1244 struct device_garbage *dg = &dev->dv_garbage; 1245 device_lock_t dvl = device_getlock(dev); 1246 1247 if (dg->dg_devs != NULL) 1248 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1249 1250 cv_destroy(&dvl->dvl_cv); 1251 mutex_destroy(&dvl->dvl_mtx); 1252 1253 KASSERT(dev->dv_properties != NULL); 1254 prop_object_release(dev->dv_properties); 1255 1256 if (dev->dv_activity_handlers) 1257 panic("%s with registered handlers", __func__); 1258 1259 if (dev->dv_locators) { 1260 size_t amount = *--dev->dv_locators; 1261 kmem_free(dev->dv_locators, amount); 1262 } 1263 1264 config_devfree(dev); 1265 } 1266 1267 static int 1268 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1269 { 1270 int unit; 1271 1272 if (cf->cf_fstate == FSTATE_STAR) { 1273 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1274 if (cd->cd_devs[unit] == NULL) 1275 break; 1276 /* 1277 * unit is now the unit of the first NULL device pointer, 1278 * or max(cd->cd_ndevs,cf->cf_unit). 1279 */ 1280 } else { 1281 unit = cf->cf_unit; 1282 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1283 unit = -1; 1284 } 1285 return unit; 1286 } 1287 1288 static int 1289 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1290 { 1291 struct alldevs_foray af; 1292 int unit; 1293 1294 config_alldevs_enter(&af); 1295 for (;;) { 1296 unit = config_unit_nextfree(cd, cf); 1297 if (unit == -1) 1298 break; 1299 if (unit < cd->cd_ndevs) { 1300 cd->cd_devs[unit] = dev; 1301 dev->dv_unit = unit; 1302 break; 1303 } 1304 config_makeroom(unit, cd); 1305 } 1306 config_alldevs_exit(&af); 1307 1308 return unit; 1309 } 1310 1311 static device_t 1312 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1313 { 1314 cfdriver_t cd; 1315 cfattach_t ca; 1316 size_t lname, lunit; 1317 const char *xunit; 1318 int myunit; 1319 char num[10]; 1320 device_t dev; 1321 void *dev_private; 1322 const struct cfiattrdata *ia; 1323 device_lock_t dvl; 1324 1325 cd = config_cfdriver_lookup(cf->cf_name); 1326 if (cd == NULL) 1327 return NULL; 1328 1329 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1330 if (ca == NULL) 1331 return NULL; 1332 1333 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1334 ca->ca_devsize < sizeof(struct device)) 1335 panic("config_devalloc: %s", cf->cf_atname); 1336 1337 /* get memory for all device vars */ 1338 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1339 if (ca->ca_devsize > 0) { 1340 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1341 if (dev_private == NULL) 1342 panic("config_devalloc: memory allocation for device softc failed"); 1343 } else { 1344 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1345 dev_private = NULL; 1346 } 1347 1348 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1349 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1350 } else { 1351 dev = dev_private; 1352 } 1353 if (dev == NULL) 1354 panic("config_devalloc: memory allocation for device_t failed"); 1355 1356 dev->dv_class = cd->cd_class; 1357 dev->dv_cfdata = cf; 1358 dev->dv_cfdriver = cd; 1359 dev->dv_cfattach = ca; 1360 dev->dv_activity_count = 0; 1361 dev->dv_activity_handlers = NULL; 1362 dev->dv_private = dev_private; 1363 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1364 1365 myunit = config_unit_alloc(dev, cd, cf); 1366 if (myunit == -1) { 1367 config_devfree(dev); 1368 return NULL; 1369 } 1370 1371 /* compute length of name and decimal expansion of unit number */ 1372 lname = strlen(cd->cd_name); 1373 xunit = number(&num[sizeof(num)], myunit); 1374 lunit = &num[sizeof(num)] - xunit; 1375 if (lname + lunit > sizeof(dev->dv_xname)) 1376 panic("config_devalloc: device name too long"); 1377 1378 dvl = device_getlock(dev); 1379 1380 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1381 cv_init(&dvl->dvl_cv, "pmfsusp"); 1382 1383 memcpy(dev->dv_xname, cd->cd_name, lname); 1384 memcpy(dev->dv_xname + lname, xunit, lunit); 1385 dev->dv_parent = parent; 1386 if (parent != NULL) 1387 dev->dv_depth = parent->dv_depth + 1; 1388 else 1389 dev->dv_depth = 0; 1390 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1391 if (locs) { 1392 KASSERT(parent); /* no locators at root */ 1393 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1394 dev->dv_locators = 1395 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1396 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1397 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1398 } 1399 dev->dv_properties = prop_dictionary_create(); 1400 KASSERT(dev->dv_properties != NULL); 1401 1402 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1403 "device-driver", dev->dv_cfdriver->cd_name); 1404 prop_dictionary_set_uint16(dev->dv_properties, 1405 "device-unit", dev->dv_unit); 1406 1407 return dev; 1408 } 1409 1410 /* 1411 * Attach a found device. 1412 */ 1413 device_t 1414 config_attach_loc(device_t parent, cfdata_t cf, 1415 const int *locs, void *aux, cfprint_t print) 1416 { 1417 device_t dev; 1418 struct cftable *ct; 1419 const char *drvname; 1420 1421 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1422 if (splash_progress_state) 1423 splash_progress_update(splash_progress_state); 1424 #endif 1425 1426 dev = config_devalloc(parent, cf, locs); 1427 if (!dev) 1428 panic("config_attach: allocation of device softc failed"); 1429 1430 /* XXX redundant - see below? */ 1431 if (cf->cf_fstate != FSTATE_STAR) { 1432 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1433 cf->cf_fstate = FSTATE_FOUND; 1434 } 1435 1436 config_devlink(dev); 1437 1438 if (config_do_twiddle && cold) 1439 twiddle(); 1440 else 1441 aprint_naive("Found "); 1442 /* 1443 * We want the next two printfs for normal, verbose, and quiet, 1444 * but not silent (in which case, we're twiddling, instead). 1445 */ 1446 if (parent == ROOT) { 1447 aprint_naive("%s (root)", device_xname(dev)); 1448 aprint_normal("%s (root)", device_xname(dev)); 1449 } else { 1450 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1451 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1452 if (print) 1453 (void) (*print)(aux, NULL); 1454 } 1455 1456 /* 1457 * Before attaching, clobber any unfound devices that are 1458 * otherwise identical. 1459 * XXX code above is redundant? 1460 */ 1461 drvname = dev->dv_cfdriver->cd_name; 1462 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1463 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1464 if (STREQ(cf->cf_name, drvname) && 1465 cf->cf_unit == dev->dv_unit) { 1466 if (cf->cf_fstate == FSTATE_NOTFOUND) 1467 cf->cf_fstate = FSTATE_FOUND; 1468 } 1469 } 1470 } 1471 #ifdef __HAVE_DEVICE_REGISTER 1472 device_register(dev, aux); 1473 #endif 1474 1475 /* Let userland know */ 1476 devmon_report_device(dev, true); 1477 1478 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1479 if (splash_progress_state) 1480 splash_progress_update(splash_progress_state); 1481 #endif 1482 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1483 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1484 if (splash_progress_state) 1485 splash_progress_update(splash_progress_state); 1486 #endif 1487 1488 if (!device_pmf_is_registered(dev)) 1489 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1490 1491 config_process_deferred(&deferred_config_queue, dev); 1492 1493 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG 1494 device_register_post_config(dev, aux); 1495 #endif 1496 return dev; 1497 } 1498 1499 device_t 1500 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1501 { 1502 1503 return config_attach_loc(parent, cf, NULL, aux, print); 1504 } 1505 1506 /* 1507 * As above, but for pseudo-devices. Pseudo-devices attached in this 1508 * way are silently inserted into the device tree, and their children 1509 * attached. 1510 * 1511 * Note that because pseudo-devices are attached silently, any information 1512 * the attach routine wishes to print should be prefixed with the device 1513 * name by the attach routine. 1514 */ 1515 device_t 1516 config_attach_pseudo(cfdata_t cf) 1517 { 1518 device_t dev; 1519 1520 dev = config_devalloc(ROOT, cf, NULL); 1521 if (!dev) 1522 return NULL; 1523 1524 /* XXX mark busy in cfdata */ 1525 1526 if (cf->cf_fstate != FSTATE_STAR) { 1527 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1528 cf->cf_fstate = FSTATE_FOUND; 1529 } 1530 1531 config_devlink(dev); 1532 1533 #if 0 /* XXXJRT not yet */ 1534 #ifdef __HAVE_DEVICE_REGISTER 1535 device_register(dev, NULL); /* like a root node */ 1536 #endif 1537 #endif 1538 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1539 config_process_deferred(&deferred_config_queue, dev); 1540 return dev; 1541 } 1542 1543 /* 1544 * Caller must hold alldevs_mtx. 1545 */ 1546 static void 1547 config_collect_garbage(struct devicelist *garbage) 1548 { 1549 device_t dv; 1550 1551 KASSERT(!cpu_intr_p()); 1552 KASSERT(!cpu_softintr_p()); 1553 KASSERT(mutex_owned(&alldevs_mtx)); 1554 1555 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1556 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1557 if (dv->dv_del_gen != 0) 1558 break; 1559 } 1560 if (dv == NULL) { 1561 alldevs_garbage = false; 1562 break; 1563 } 1564 config_devunlink(dv, garbage); 1565 } 1566 KASSERT(mutex_owned(&alldevs_mtx)); 1567 } 1568 1569 static void 1570 config_dump_garbage(struct devicelist *garbage) 1571 { 1572 device_t dv; 1573 1574 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1575 TAILQ_REMOVE(garbage, dv, dv_list); 1576 config_devdelete(dv); 1577 } 1578 } 1579 1580 /* 1581 * Detach a device. Optionally forced (e.g. because of hardware 1582 * removal) and quiet. Returns zero if successful, non-zero 1583 * (an error code) otherwise. 1584 * 1585 * Note that this code wants to be run from a process context, so 1586 * that the detach can sleep to allow processes which have a device 1587 * open to run and unwind their stacks. 1588 */ 1589 int 1590 config_detach(device_t dev, int flags) 1591 { 1592 struct alldevs_foray af; 1593 struct cftable *ct; 1594 cfdata_t cf; 1595 const struct cfattach *ca; 1596 struct cfdriver *cd; 1597 #ifdef DIAGNOSTIC 1598 device_t d; 1599 #endif 1600 int rv = 0, s; 1601 1602 #ifdef DIAGNOSTIC 1603 cf = dev->dv_cfdata; 1604 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1605 cf->cf_fstate != FSTATE_STAR) 1606 panic("config_detach: %s: bad device fstate %d", 1607 device_xname(dev), cf ? cf->cf_fstate : -1); 1608 #endif 1609 cd = dev->dv_cfdriver; 1610 KASSERT(cd != NULL); 1611 1612 ca = dev->dv_cfattach; 1613 KASSERT(ca != NULL); 1614 1615 s = config_alldevs_lock(); 1616 if (dev->dv_del_gen != 0) { 1617 config_alldevs_unlock(s); 1618 #ifdef DIAGNOSTIC 1619 printf("%s: %s is already detached\n", __func__, 1620 device_xname(dev)); 1621 #endif /* DIAGNOSTIC */ 1622 return ENOENT; 1623 } 1624 alldevs_nwrite++; 1625 config_alldevs_unlock(s); 1626 1627 if (!detachall && 1628 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1629 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1630 rv = EOPNOTSUPP; 1631 } else if (ca->ca_detach != NULL) { 1632 rv = (*ca->ca_detach)(dev, flags); 1633 } else 1634 rv = EOPNOTSUPP; 1635 1636 /* 1637 * If it was not possible to detach the device, then we either 1638 * panic() (for the forced but failed case), or return an error. 1639 * 1640 * If it was possible to detach the device, ensure that the 1641 * device is deactivated. 1642 */ 1643 if (rv == 0) 1644 dev->dv_flags &= ~DVF_ACTIVE; 1645 else if ((flags & DETACH_FORCE) == 0) 1646 goto out; 1647 else { 1648 panic("config_detach: forced detach of %s failed (%d)", 1649 device_xname(dev), rv); 1650 } 1651 1652 /* 1653 * The device has now been successfully detached. 1654 */ 1655 1656 /* Let userland know */ 1657 devmon_report_device(dev, false); 1658 1659 #ifdef DIAGNOSTIC 1660 /* 1661 * Sanity: If you're successfully detached, you should have no 1662 * children. (Note that because children must be attached 1663 * after parents, we only need to search the latter part of 1664 * the list.) 1665 */ 1666 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1667 d = TAILQ_NEXT(d, dv_list)) { 1668 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1669 printf("config_detach: detached device %s" 1670 " has children %s\n", device_xname(dev), device_xname(d)); 1671 panic("config_detach"); 1672 } 1673 } 1674 #endif 1675 1676 /* notify the parent that the child is gone */ 1677 if (dev->dv_parent) { 1678 device_t p = dev->dv_parent; 1679 if (p->dv_cfattach->ca_childdetached) 1680 (*p->dv_cfattach->ca_childdetached)(p, dev); 1681 } 1682 1683 /* 1684 * Mark cfdata to show that the unit can be reused, if possible. 1685 */ 1686 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1687 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1688 if (STREQ(cf->cf_name, cd->cd_name)) { 1689 if (cf->cf_fstate == FSTATE_FOUND && 1690 cf->cf_unit == dev->dv_unit) 1691 cf->cf_fstate = FSTATE_NOTFOUND; 1692 } 1693 } 1694 } 1695 1696 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1697 aprint_normal_dev(dev, "detached\n"); 1698 1699 out: 1700 config_alldevs_enter(&af); 1701 KASSERT(alldevs_nwrite != 0); 1702 --alldevs_nwrite; 1703 if (rv == 0 && dev->dv_del_gen == 0) 1704 config_devunlink(dev, &af.af_garbage); 1705 config_alldevs_exit(&af); 1706 1707 return rv; 1708 } 1709 1710 int 1711 config_detach_children(device_t parent, int flags) 1712 { 1713 device_t dv; 1714 deviter_t di; 1715 int error = 0; 1716 1717 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1718 dv = deviter_next(&di)) { 1719 if (device_parent(dv) != parent) 1720 continue; 1721 if ((error = config_detach(dv, flags)) != 0) 1722 break; 1723 } 1724 deviter_release(&di); 1725 return error; 1726 } 1727 1728 device_t 1729 shutdown_first(struct shutdown_state *s) 1730 { 1731 if (!s->initialized) { 1732 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1733 s->initialized = true; 1734 } 1735 return shutdown_next(s); 1736 } 1737 1738 device_t 1739 shutdown_next(struct shutdown_state *s) 1740 { 1741 device_t dv; 1742 1743 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1744 ; 1745 1746 if (dv == NULL) 1747 s->initialized = false; 1748 1749 return dv; 1750 } 1751 1752 bool 1753 config_detach_all(int how) 1754 { 1755 static struct shutdown_state s; 1756 device_t curdev; 1757 bool progress = false; 1758 1759 if ((how & RB_NOSYNC) != 0) 1760 return false; 1761 1762 for (curdev = shutdown_first(&s); curdev != NULL; 1763 curdev = shutdown_next(&s)) { 1764 aprint_debug(" detaching %s, ", device_xname(curdev)); 1765 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1766 progress = true; 1767 aprint_debug("success."); 1768 } else 1769 aprint_debug("failed."); 1770 } 1771 return progress; 1772 } 1773 1774 static bool 1775 device_is_ancestor_of(device_t ancestor, device_t descendant) 1776 { 1777 device_t dv; 1778 1779 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1780 if (device_parent(dv) == ancestor) 1781 return true; 1782 } 1783 return false; 1784 } 1785 1786 int 1787 config_deactivate(device_t dev) 1788 { 1789 deviter_t di; 1790 const struct cfattach *ca; 1791 device_t descendant; 1792 int s, rv = 0, oflags; 1793 1794 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1795 descendant != NULL; 1796 descendant = deviter_next(&di)) { 1797 if (dev != descendant && 1798 !device_is_ancestor_of(dev, descendant)) 1799 continue; 1800 1801 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1802 continue; 1803 1804 ca = descendant->dv_cfattach; 1805 oflags = descendant->dv_flags; 1806 1807 descendant->dv_flags &= ~DVF_ACTIVE; 1808 if (ca->ca_activate == NULL) 1809 continue; 1810 s = splhigh(); 1811 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1812 splx(s); 1813 if (rv != 0) 1814 descendant->dv_flags = oflags; 1815 } 1816 deviter_release(&di); 1817 return rv; 1818 } 1819 1820 /* 1821 * Defer the configuration of the specified device until all 1822 * of its parent's devices have been attached. 1823 */ 1824 void 1825 config_defer(device_t dev, void (*func)(device_t)) 1826 { 1827 struct deferred_config *dc; 1828 1829 if (dev->dv_parent == NULL) 1830 panic("config_defer: can't defer config of a root device"); 1831 1832 #ifdef DIAGNOSTIC 1833 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1834 if (dc->dc_dev == dev) 1835 panic("config_defer: deferred twice"); 1836 } 1837 #endif 1838 1839 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1840 if (dc == NULL) 1841 panic("config_defer: unable to allocate callback"); 1842 1843 dc->dc_dev = dev; 1844 dc->dc_func = func; 1845 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1846 config_pending_incr(); 1847 } 1848 1849 /* 1850 * Defer some autoconfiguration for a device until after interrupts 1851 * are enabled. 1852 */ 1853 void 1854 config_interrupts(device_t dev, void (*func)(device_t)) 1855 { 1856 struct deferred_config *dc; 1857 1858 /* 1859 * If interrupts are enabled, callback now. 1860 */ 1861 if (cold == 0) { 1862 (*func)(dev); 1863 return; 1864 } 1865 1866 #ifdef DIAGNOSTIC 1867 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1868 if (dc->dc_dev == dev) 1869 panic("config_interrupts: deferred twice"); 1870 } 1871 #endif 1872 1873 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1874 if (dc == NULL) 1875 panic("config_interrupts: unable to allocate callback"); 1876 1877 dc->dc_dev = dev; 1878 dc->dc_func = func; 1879 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1880 config_pending_incr(); 1881 } 1882 1883 /* 1884 * Defer some autoconfiguration for a device until after root file system 1885 * is mounted (to load firmware etc). 1886 */ 1887 void 1888 config_mountroot(device_t dev, void (*func)(device_t)) 1889 { 1890 struct deferred_config *dc; 1891 1892 /* 1893 * If root file system is mounted, callback now. 1894 */ 1895 if (root_is_mounted) { 1896 (*func)(dev); 1897 return; 1898 } 1899 1900 #ifdef DIAGNOSTIC 1901 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) { 1902 if (dc->dc_dev == dev) 1903 panic("%s: deferred twice", __func__); 1904 } 1905 #endif 1906 1907 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1908 if (dc == NULL) 1909 panic("%s: unable to allocate callback", __func__); 1910 1911 dc->dc_dev = dev; 1912 dc->dc_func = func; 1913 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 1914 } 1915 1916 /* 1917 * Process a deferred configuration queue. 1918 */ 1919 static void 1920 config_process_deferred(struct deferred_config_head *queue, 1921 device_t parent) 1922 { 1923 struct deferred_config *dc, *ndc; 1924 1925 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1926 ndc = TAILQ_NEXT(dc, dc_queue); 1927 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1928 TAILQ_REMOVE(queue, dc, dc_queue); 1929 (*dc->dc_func)(dc->dc_dev); 1930 kmem_free(dc, sizeof(*dc)); 1931 config_pending_decr(); 1932 } 1933 } 1934 } 1935 1936 /* 1937 * Manipulate the config_pending semaphore. 1938 */ 1939 void 1940 config_pending_incr(void) 1941 { 1942 1943 mutex_enter(&config_misc_lock); 1944 config_pending++; 1945 mutex_exit(&config_misc_lock); 1946 } 1947 1948 void 1949 config_pending_decr(void) 1950 { 1951 1952 #ifdef DIAGNOSTIC 1953 if (config_pending == 0) 1954 panic("config_pending_decr: config_pending == 0"); 1955 #endif 1956 mutex_enter(&config_misc_lock); 1957 config_pending--; 1958 if (config_pending == 0) 1959 cv_broadcast(&config_misc_cv); 1960 mutex_exit(&config_misc_lock); 1961 } 1962 1963 /* 1964 * Register a "finalization" routine. Finalization routines are 1965 * called iteratively once all real devices have been found during 1966 * autoconfiguration, for as long as any one finalizer has done 1967 * any work. 1968 */ 1969 int 1970 config_finalize_register(device_t dev, int (*fn)(device_t)) 1971 { 1972 struct finalize_hook *f; 1973 1974 /* 1975 * If finalization has already been done, invoke the 1976 * callback function now. 1977 */ 1978 if (config_finalize_done) { 1979 while ((*fn)(dev) != 0) 1980 /* loop */ ; 1981 } 1982 1983 /* Ensure this isn't already on the list. */ 1984 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1985 if (f->f_func == fn && f->f_dev == dev) 1986 return EEXIST; 1987 } 1988 1989 f = kmem_alloc(sizeof(*f), KM_SLEEP); 1990 f->f_func = fn; 1991 f->f_dev = dev; 1992 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1993 1994 return 0; 1995 } 1996 1997 void 1998 config_finalize(void) 1999 { 2000 struct finalize_hook *f; 2001 struct pdevinit *pdev; 2002 extern struct pdevinit pdevinit[]; 2003 int errcnt, rv; 2004 2005 /* 2006 * Now that device driver threads have been created, wait for 2007 * them to finish any deferred autoconfiguration. 2008 */ 2009 mutex_enter(&config_misc_lock); 2010 while (config_pending != 0) 2011 cv_wait(&config_misc_cv, &config_misc_lock); 2012 mutex_exit(&config_misc_lock); 2013 2014 KERNEL_LOCK(1, NULL); 2015 2016 /* Attach pseudo-devices. */ 2017 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2018 (*pdev->pdev_attach)(pdev->pdev_count); 2019 2020 /* Run the hooks until none of them does any work. */ 2021 do { 2022 rv = 0; 2023 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2024 rv |= (*f->f_func)(f->f_dev); 2025 } while (rv != 0); 2026 2027 config_finalize_done = 1; 2028 2029 /* Now free all the hooks. */ 2030 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2031 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2032 kmem_free(f, sizeof(*f)); 2033 } 2034 2035 KERNEL_UNLOCK_ONE(NULL); 2036 2037 errcnt = aprint_get_error_count(); 2038 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2039 (boothowto & AB_VERBOSE) == 0) { 2040 mutex_enter(&config_misc_lock); 2041 if (config_do_twiddle) { 2042 config_do_twiddle = 0; 2043 printf_nolog(" done.\n"); 2044 } 2045 mutex_exit(&config_misc_lock); 2046 if (errcnt != 0) { 2047 printf("WARNING: %d error%s while detecting hardware; " 2048 "check system log.\n", errcnt, 2049 errcnt == 1 ? "" : "s"); 2050 } 2051 } 2052 } 2053 2054 void 2055 config_twiddle_init() 2056 { 2057 2058 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2059 config_do_twiddle = 1; 2060 } 2061 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2062 } 2063 2064 void 2065 config_twiddle_fn(void *cookie) 2066 { 2067 2068 mutex_enter(&config_misc_lock); 2069 if (config_do_twiddle) { 2070 twiddle(); 2071 callout_schedule(&config_twiddle_ch, mstohz(100)); 2072 } 2073 mutex_exit(&config_misc_lock); 2074 } 2075 2076 static int 2077 config_alldevs_lock(void) 2078 { 2079 mutex_enter(&alldevs_mtx); 2080 return 0; 2081 } 2082 2083 static void 2084 config_alldevs_enter(struct alldevs_foray *af) 2085 { 2086 TAILQ_INIT(&af->af_garbage); 2087 af->af_s = config_alldevs_lock(); 2088 config_collect_garbage(&af->af_garbage); 2089 } 2090 2091 static void 2092 config_alldevs_exit(struct alldevs_foray *af) 2093 { 2094 config_alldevs_unlock(af->af_s); 2095 config_dump_garbage(&af->af_garbage); 2096 } 2097 2098 /*ARGSUSED*/ 2099 static void 2100 config_alldevs_unlock(int s) 2101 { 2102 mutex_exit(&alldevs_mtx); 2103 } 2104 2105 /* 2106 * device_lookup: 2107 * 2108 * Look up a device instance for a given driver. 2109 */ 2110 device_t 2111 device_lookup(cfdriver_t cd, int unit) 2112 { 2113 device_t dv; 2114 int s; 2115 2116 s = config_alldevs_lock(); 2117 KASSERT(mutex_owned(&alldevs_mtx)); 2118 if (unit < 0 || unit >= cd->cd_ndevs) 2119 dv = NULL; 2120 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2121 dv = NULL; 2122 config_alldevs_unlock(s); 2123 2124 return dv; 2125 } 2126 2127 /* 2128 * device_lookup_private: 2129 * 2130 * Look up a softc instance for a given driver. 2131 */ 2132 void * 2133 device_lookup_private(cfdriver_t cd, int unit) 2134 { 2135 2136 return device_private(device_lookup(cd, unit)); 2137 } 2138 2139 /* 2140 * device_find_by_xname: 2141 * 2142 * Returns the device of the given name or NULL if it doesn't exist. 2143 */ 2144 device_t 2145 device_find_by_xname(const char *name) 2146 { 2147 device_t dv; 2148 deviter_t di; 2149 2150 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2151 if (strcmp(device_xname(dv), name) == 0) 2152 break; 2153 } 2154 deviter_release(&di); 2155 2156 return dv; 2157 } 2158 2159 /* 2160 * device_find_by_driver_unit: 2161 * 2162 * Returns the device of the given driver name and unit or 2163 * NULL if it doesn't exist. 2164 */ 2165 device_t 2166 device_find_by_driver_unit(const char *name, int unit) 2167 { 2168 struct cfdriver *cd; 2169 2170 if ((cd = config_cfdriver_lookup(name)) == NULL) 2171 return NULL; 2172 return device_lookup(cd, unit); 2173 } 2174 2175 /* 2176 * Power management related functions. 2177 */ 2178 2179 bool 2180 device_pmf_is_registered(device_t dev) 2181 { 2182 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2183 } 2184 2185 bool 2186 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2187 { 2188 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2189 return true; 2190 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2191 return false; 2192 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2193 dev->dv_driver_suspend != NULL && 2194 !(*dev->dv_driver_suspend)(dev, qual)) 2195 return false; 2196 2197 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2198 return true; 2199 } 2200 2201 bool 2202 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2203 { 2204 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2205 return true; 2206 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2207 return false; 2208 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2209 dev->dv_driver_resume != NULL && 2210 !(*dev->dv_driver_resume)(dev, qual)) 2211 return false; 2212 2213 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2214 return true; 2215 } 2216 2217 bool 2218 device_pmf_driver_shutdown(device_t dev, int how) 2219 { 2220 2221 if (*dev->dv_driver_shutdown != NULL && 2222 !(*dev->dv_driver_shutdown)(dev, how)) 2223 return false; 2224 return true; 2225 } 2226 2227 bool 2228 device_pmf_driver_register(device_t dev, 2229 bool (*suspend)(device_t, const pmf_qual_t *), 2230 bool (*resume)(device_t, const pmf_qual_t *), 2231 bool (*shutdown)(device_t, int)) 2232 { 2233 dev->dv_driver_suspend = suspend; 2234 dev->dv_driver_resume = resume; 2235 dev->dv_driver_shutdown = shutdown; 2236 dev->dv_flags |= DVF_POWER_HANDLERS; 2237 return true; 2238 } 2239 2240 static const char * 2241 curlwp_name(void) 2242 { 2243 if (curlwp->l_name != NULL) 2244 return curlwp->l_name; 2245 else 2246 return curlwp->l_proc->p_comm; 2247 } 2248 2249 void 2250 device_pmf_driver_deregister(device_t dev) 2251 { 2252 device_lock_t dvl = device_getlock(dev); 2253 2254 dev->dv_driver_suspend = NULL; 2255 dev->dv_driver_resume = NULL; 2256 2257 mutex_enter(&dvl->dvl_mtx); 2258 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2259 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2260 /* Wake a thread that waits for the lock. That 2261 * thread will fail to acquire the lock, and then 2262 * it will wake the next thread that waits for the 2263 * lock, or else it will wake us. 2264 */ 2265 cv_signal(&dvl->dvl_cv); 2266 pmflock_debug(dev, __func__, __LINE__); 2267 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2268 pmflock_debug(dev, __func__, __LINE__); 2269 } 2270 mutex_exit(&dvl->dvl_mtx); 2271 } 2272 2273 bool 2274 device_pmf_driver_child_register(device_t dev) 2275 { 2276 device_t parent = device_parent(dev); 2277 2278 if (parent == NULL || parent->dv_driver_child_register == NULL) 2279 return true; 2280 return (*parent->dv_driver_child_register)(dev); 2281 } 2282 2283 void 2284 device_pmf_driver_set_child_register(device_t dev, 2285 bool (*child_register)(device_t)) 2286 { 2287 dev->dv_driver_child_register = child_register; 2288 } 2289 2290 static void 2291 pmflock_debug(device_t dev, const char *func, int line) 2292 { 2293 device_lock_t dvl = device_getlock(dev); 2294 2295 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2296 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2297 dev->dv_flags); 2298 } 2299 2300 static bool 2301 device_pmf_lock1(device_t dev) 2302 { 2303 device_lock_t dvl = device_getlock(dev); 2304 2305 while (device_pmf_is_registered(dev) && 2306 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2307 dvl->dvl_nwait++; 2308 pmflock_debug(dev, __func__, __LINE__); 2309 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2310 pmflock_debug(dev, __func__, __LINE__); 2311 dvl->dvl_nwait--; 2312 } 2313 if (!device_pmf_is_registered(dev)) { 2314 pmflock_debug(dev, __func__, __LINE__); 2315 /* We could not acquire the lock, but some other thread may 2316 * wait for it, also. Wake that thread. 2317 */ 2318 cv_signal(&dvl->dvl_cv); 2319 return false; 2320 } 2321 dvl->dvl_nlock++; 2322 dvl->dvl_holder = curlwp; 2323 pmflock_debug(dev, __func__, __LINE__); 2324 return true; 2325 } 2326 2327 bool 2328 device_pmf_lock(device_t dev) 2329 { 2330 bool rc; 2331 device_lock_t dvl = device_getlock(dev); 2332 2333 mutex_enter(&dvl->dvl_mtx); 2334 rc = device_pmf_lock1(dev); 2335 mutex_exit(&dvl->dvl_mtx); 2336 2337 return rc; 2338 } 2339 2340 void 2341 device_pmf_unlock(device_t dev) 2342 { 2343 device_lock_t dvl = device_getlock(dev); 2344 2345 KASSERT(dvl->dvl_nlock > 0); 2346 mutex_enter(&dvl->dvl_mtx); 2347 if (--dvl->dvl_nlock == 0) 2348 dvl->dvl_holder = NULL; 2349 cv_signal(&dvl->dvl_cv); 2350 pmflock_debug(dev, __func__, __LINE__); 2351 mutex_exit(&dvl->dvl_mtx); 2352 } 2353 2354 device_lock_t 2355 device_getlock(device_t dev) 2356 { 2357 return &dev->dv_lock; 2358 } 2359 2360 void * 2361 device_pmf_bus_private(device_t dev) 2362 { 2363 return dev->dv_bus_private; 2364 } 2365 2366 bool 2367 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2368 { 2369 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2370 return true; 2371 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2372 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2373 return false; 2374 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2375 dev->dv_bus_suspend != NULL && 2376 !(*dev->dv_bus_suspend)(dev, qual)) 2377 return false; 2378 2379 dev->dv_flags |= DVF_BUS_SUSPENDED; 2380 return true; 2381 } 2382 2383 bool 2384 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2385 { 2386 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2387 return true; 2388 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2389 dev->dv_bus_resume != NULL && 2390 !(*dev->dv_bus_resume)(dev, qual)) 2391 return false; 2392 2393 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2394 return true; 2395 } 2396 2397 bool 2398 device_pmf_bus_shutdown(device_t dev, int how) 2399 { 2400 2401 if (*dev->dv_bus_shutdown != NULL && 2402 !(*dev->dv_bus_shutdown)(dev, how)) 2403 return false; 2404 return true; 2405 } 2406 2407 void 2408 device_pmf_bus_register(device_t dev, void *priv, 2409 bool (*suspend)(device_t, const pmf_qual_t *), 2410 bool (*resume)(device_t, const pmf_qual_t *), 2411 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2412 { 2413 dev->dv_bus_private = priv; 2414 dev->dv_bus_resume = resume; 2415 dev->dv_bus_suspend = suspend; 2416 dev->dv_bus_shutdown = shutdown; 2417 dev->dv_bus_deregister = deregister; 2418 } 2419 2420 void 2421 device_pmf_bus_deregister(device_t dev) 2422 { 2423 if (dev->dv_bus_deregister == NULL) 2424 return; 2425 (*dev->dv_bus_deregister)(dev); 2426 dev->dv_bus_private = NULL; 2427 dev->dv_bus_suspend = NULL; 2428 dev->dv_bus_resume = NULL; 2429 dev->dv_bus_deregister = NULL; 2430 } 2431 2432 void * 2433 device_pmf_class_private(device_t dev) 2434 { 2435 return dev->dv_class_private; 2436 } 2437 2438 bool 2439 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2440 { 2441 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2442 return true; 2443 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2444 dev->dv_class_suspend != NULL && 2445 !(*dev->dv_class_suspend)(dev, qual)) 2446 return false; 2447 2448 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2449 return true; 2450 } 2451 2452 bool 2453 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2454 { 2455 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2456 return true; 2457 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2458 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2459 return false; 2460 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2461 dev->dv_class_resume != NULL && 2462 !(*dev->dv_class_resume)(dev, qual)) 2463 return false; 2464 2465 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2466 return true; 2467 } 2468 2469 void 2470 device_pmf_class_register(device_t dev, void *priv, 2471 bool (*suspend)(device_t, const pmf_qual_t *), 2472 bool (*resume)(device_t, const pmf_qual_t *), 2473 void (*deregister)(device_t)) 2474 { 2475 dev->dv_class_private = priv; 2476 dev->dv_class_suspend = suspend; 2477 dev->dv_class_resume = resume; 2478 dev->dv_class_deregister = deregister; 2479 } 2480 2481 void 2482 device_pmf_class_deregister(device_t dev) 2483 { 2484 if (dev->dv_class_deregister == NULL) 2485 return; 2486 (*dev->dv_class_deregister)(dev); 2487 dev->dv_class_private = NULL; 2488 dev->dv_class_suspend = NULL; 2489 dev->dv_class_resume = NULL; 2490 dev->dv_class_deregister = NULL; 2491 } 2492 2493 bool 2494 device_active(device_t dev, devactive_t type) 2495 { 2496 size_t i; 2497 2498 if (dev->dv_activity_count == 0) 2499 return false; 2500 2501 for (i = 0; i < dev->dv_activity_count; ++i) { 2502 if (dev->dv_activity_handlers[i] == NULL) 2503 break; 2504 (*dev->dv_activity_handlers[i])(dev, type); 2505 } 2506 2507 return true; 2508 } 2509 2510 bool 2511 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2512 { 2513 void (**new_handlers)(device_t, devactive_t); 2514 void (**old_handlers)(device_t, devactive_t); 2515 size_t i, old_size, new_size; 2516 int s; 2517 2518 old_handlers = dev->dv_activity_handlers; 2519 old_size = dev->dv_activity_count; 2520 2521 for (i = 0; i < old_size; ++i) { 2522 KASSERT(old_handlers[i] != handler); 2523 if (old_handlers[i] == NULL) { 2524 old_handlers[i] = handler; 2525 return true; 2526 } 2527 } 2528 2529 new_size = old_size + 4; 2530 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2531 2532 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2533 new_handlers[old_size] = handler; 2534 memset(new_handlers + old_size + 1, 0, 2535 sizeof(int [new_size - (old_size+1)])); 2536 2537 s = splhigh(); 2538 dev->dv_activity_count = new_size; 2539 dev->dv_activity_handlers = new_handlers; 2540 splx(s); 2541 2542 if (old_handlers != NULL) 2543 kmem_free(old_handlers, sizeof(void * [old_size])); 2544 2545 return true; 2546 } 2547 2548 void 2549 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2550 { 2551 void (**old_handlers)(device_t, devactive_t); 2552 size_t i, old_size; 2553 int s; 2554 2555 old_handlers = dev->dv_activity_handlers; 2556 old_size = dev->dv_activity_count; 2557 2558 for (i = 0; i < old_size; ++i) { 2559 if (old_handlers[i] == handler) 2560 break; 2561 if (old_handlers[i] == NULL) 2562 return; /* XXX panic? */ 2563 } 2564 2565 if (i == old_size) 2566 return; /* XXX panic? */ 2567 2568 for (; i < old_size - 1; ++i) { 2569 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2570 continue; 2571 2572 if (i == 0) { 2573 s = splhigh(); 2574 dev->dv_activity_count = 0; 2575 dev->dv_activity_handlers = NULL; 2576 splx(s); 2577 kmem_free(old_handlers, sizeof(void *[old_size])); 2578 } 2579 return; 2580 } 2581 old_handlers[i] = NULL; 2582 } 2583 2584 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2585 static bool 2586 device_exists_at(device_t dv, devgen_t gen) 2587 { 2588 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2589 dv->dv_add_gen <= gen; 2590 } 2591 2592 static bool 2593 deviter_visits(const deviter_t *di, device_t dv) 2594 { 2595 return device_exists_at(dv, di->di_gen); 2596 } 2597 2598 /* 2599 * Device Iteration 2600 * 2601 * deviter_t: a device iterator. Holds state for a "walk" visiting 2602 * each device_t's in the device tree. 2603 * 2604 * deviter_init(di, flags): initialize the device iterator `di' 2605 * to "walk" the device tree. deviter_next(di) will return 2606 * the first device_t in the device tree, or NULL if there are 2607 * no devices. 2608 * 2609 * `flags' is one or more of DEVITER_F_RW, indicating that the 2610 * caller intends to modify the device tree by calling 2611 * config_detach(9) on devices in the order that the iterator 2612 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2613 * nearest the "root" of the device tree to be returned, first; 2614 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2615 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2616 * indicating both that deviter_init() should not respect any 2617 * locks on the device tree, and that deviter_next(di) may run 2618 * in more than one LWP before the walk has finished. 2619 * 2620 * Only one DEVITER_F_RW iterator may be in the device tree at 2621 * once. 2622 * 2623 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2624 * 2625 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2626 * DEVITER_F_LEAVES_FIRST are used in combination. 2627 * 2628 * deviter_first(di, flags): initialize the device iterator `di' 2629 * and return the first device_t in the device tree, or NULL 2630 * if there are no devices. The statement 2631 * 2632 * dv = deviter_first(di); 2633 * 2634 * is shorthand for 2635 * 2636 * deviter_init(di); 2637 * dv = deviter_next(di); 2638 * 2639 * deviter_next(di): return the next device_t in the device tree, 2640 * or NULL if there are no more devices. deviter_next(di) 2641 * is undefined if `di' was not initialized with deviter_init() or 2642 * deviter_first(). 2643 * 2644 * deviter_release(di): stops iteration (subsequent calls to 2645 * deviter_next() will return NULL), releases any locks and 2646 * resources held by the device iterator. 2647 * 2648 * Device iteration does not return device_t's in any particular 2649 * order. An iterator will never return the same device_t twice. 2650 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2651 * is called repeatedly on the same `di', it will eventually return 2652 * NULL. It is ok to attach/detach devices during device iteration. 2653 */ 2654 void 2655 deviter_init(deviter_t *di, deviter_flags_t flags) 2656 { 2657 device_t dv; 2658 int s; 2659 2660 memset(di, 0, sizeof(*di)); 2661 2662 s = config_alldevs_lock(); 2663 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2664 flags |= DEVITER_F_RW; 2665 2666 if ((flags & DEVITER_F_RW) != 0) 2667 alldevs_nwrite++; 2668 else 2669 alldevs_nread++; 2670 di->di_gen = alldevs_gen++; 2671 config_alldevs_unlock(s); 2672 2673 di->di_flags = flags; 2674 2675 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2676 case DEVITER_F_LEAVES_FIRST: 2677 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2678 if (!deviter_visits(di, dv)) 2679 continue; 2680 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2681 } 2682 break; 2683 case DEVITER_F_ROOT_FIRST: 2684 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2685 if (!deviter_visits(di, dv)) 2686 continue; 2687 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2688 } 2689 break; 2690 default: 2691 break; 2692 } 2693 2694 deviter_reinit(di); 2695 } 2696 2697 static void 2698 deviter_reinit(deviter_t *di) 2699 { 2700 if ((di->di_flags & DEVITER_F_RW) != 0) 2701 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2702 else 2703 di->di_prev = TAILQ_FIRST(&alldevs); 2704 } 2705 2706 device_t 2707 deviter_first(deviter_t *di, deviter_flags_t flags) 2708 { 2709 deviter_init(di, flags); 2710 return deviter_next(di); 2711 } 2712 2713 static device_t 2714 deviter_next2(deviter_t *di) 2715 { 2716 device_t dv; 2717 2718 dv = di->di_prev; 2719 2720 if (dv == NULL) 2721 return NULL; 2722 2723 if ((di->di_flags & DEVITER_F_RW) != 0) 2724 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2725 else 2726 di->di_prev = TAILQ_NEXT(dv, dv_list); 2727 2728 return dv; 2729 } 2730 2731 static device_t 2732 deviter_next1(deviter_t *di) 2733 { 2734 device_t dv; 2735 2736 do { 2737 dv = deviter_next2(di); 2738 } while (dv != NULL && !deviter_visits(di, dv)); 2739 2740 return dv; 2741 } 2742 2743 device_t 2744 deviter_next(deviter_t *di) 2745 { 2746 device_t dv = NULL; 2747 2748 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2749 case 0: 2750 return deviter_next1(di); 2751 case DEVITER_F_LEAVES_FIRST: 2752 while (di->di_curdepth >= 0) { 2753 if ((dv = deviter_next1(di)) == NULL) { 2754 di->di_curdepth--; 2755 deviter_reinit(di); 2756 } else if (dv->dv_depth == di->di_curdepth) 2757 break; 2758 } 2759 return dv; 2760 case DEVITER_F_ROOT_FIRST: 2761 while (di->di_curdepth <= di->di_maxdepth) { 2762 if ((dv = deviter_next1(di)) == NULL) { 2763 di->di_curdepth++; 2764 deviter_reinit(di); 2765 } else if (dv->dv_depth == di->di_curdepth) 2766 break; 2767 } 2768 return dv; 2769 default: 2770 return NULL; 2771 } 2772 } 2773 2774 void 2775 deviter_release(deviter_t *di) 2776 { 2777 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2778 int s; 2779 2780 s = config_alldevs_lock(); 2781 if (rw) 2782 --alldevs_nwrite; 2783 else 2784 --alldevs_nread; 2785 /* XXX wake a garbage-collection thread */ 2786 config_alldevs_unlock(s); 2787 } 2788 2789 const char * 2790 cfdata_ifattr(const struct cfdata *cf) 2791 { 2792 return cf->cf_pspec->cfp_iattr; 2793 } 2794 2795 bool 2796 ifattr_match(const char *snull, const char *t) 2797 { 2798 return (snull == NULL) || strcmp(snull, t) == 0; 2799 } 2800 2801 void 2802 null_childdetached(device_t self, device_t child) 2803 { 2804 /* do nothing */ 2805 } 2806 2807 static void 2808 sysctl_detach_setup(struct sysctllog **clog) 2809 { 2810 const struct sysctlnode *node = NULL; 2811 2812 sysctl_createv(clog, 0, NULL, &node, 2813 CTLFLAG_PERMANENT, 2814 CTLTYPE_NODE, "kern", NULL, 2815 NULL, 0, NULL, 0, 2816 CTL_KERN, CTL_EOL); 2817 2818 if (node == NULL) 2819 return; 2820 2821 sysctl_createv(clog, 0, &node, NULL, 2822 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2823 CTLTYPE_BOOL, "detachall", 2824 SYSCTL_DESCR("Detach all devices at shutdown"), 2825 NULL, 0, &detachall, 0, 2826 CTL_CREATE, CTL_EOL); 2827 } 2828