xref: /netbsd-src/sys/kern/subr_autoconf.c (revision a7e090f70e491979434963c9a27df4020fe0a18b)
1 /* $NetBSD: subr_autoconf.c,v 1.204 2010/03/25 19:23:18 pooka Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.204 2010/03/25 19:23:18 pooka Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85 
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/devmon.h>
109 #include <sys/cpu.h>
110 #include <sys/sysctl.h>
111 
112 #include <sys/disk.h>
113 
114 #include <machine/limits.h>
115 
116 #if defined(__i386__) && defined(_KERNEL_OPT)
117 #include "opt_splash.h"
118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
119 #include <dev/splash/splash.h>
120 extern struct splash_progress *splash_progress_state;
121 #endif
122 #endif
123 
124 /*
125  * Autoconfiguration subroutines.
126  */
127 
128 /*
129  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
130  * devices and drivers are found via these tables.
131  */
132 extern struct cfdata cfdata[];
133 extern const short cfroots[];
134 
135 /*
136  * List of all cfdriver structures.  We use this to detect duplicates
137  * when other cfdrivers are loaded.
138  */
139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
140 extern struct cfdriver * const cfdriver_list_initial[];
141 
142 /*
143  * Initial list of cfattach's.
144  */
145 extern const struct cfattachinit cfattachinit[];
146 
147 /*
148  * List of cfdata tables.  We always have one such list -- the one
149  * built statically when the kernel was configured.
150  */
151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
152 static struct cftable initcftable;
153 
154 #define	ROOT ((device_t)NULL)
155 
156 struct matchinfo {
157 	cfsubmatch_t fn;
158 	struct	device *parent;
159 	const int *locs;
160 	void	*aux;
161 	struct	cfdata *match;
162 	int	pri;
163 };
164 
165 struct alldevs_foray {
166 	int			af_s;
167 	struct devicelist	af_garbage;
168 };
169 
170 static char *number(char *, int);
171 static void mapply(struct matchinfo *, cfdata_t);
172 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
173 static void config_devdelete(device_t);
174 static void config_devunlink(device_t, struct devicelist *);
175 static void config_makeroom(int, struct cfdriver *);
176 static void config_devlink(device_t);
177 static void config_alldevs_unlock(int);
178 static int config_alldevs_lock(void);
179 static void config_alldevs_enter(struct alldevs_foray *);
180 static void config_alldevs_exit(struct alldevs_foray *);
181 
182 static void config_collect_garbage(struct devicelist *);
183 static void config_dump_garbage(struct devicelist *);
184 
185 static void pmflock_debug(device_t, const char *, int);
186 
187 static device_t deviter_next1(deviter_t *);
188 static void deviter_reinit(deviter_t *);
189 
190 struct deferred_config {
191 	TAILQ_ENTRY(deferred_config) dc_queue;
192 	device_t dc_dev;
193 	void (*dc_func)(device_t);
194 };
195 
196 TAILQ_HEAD(deferred_config_head, deferred_config);
197 
198 struct deferred_config_head deferred_config_queue =
199 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
200 struct deferred_config_head interrupt_config_queue =
201 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
202 int interrupt_config_threads = 8;
203 
204 static void config_process_deferred(struct deferred_config_head *, device_t);
205 
206 /* Hooks to finalize configuration once all real devices have been found. */
207 struct finalize_hook {
208 	TAILQ_ENTRY(finalize_hook) f_list;
209 	int (*f_func)(device_t);
210 	device_t f_dev;
211 };
212 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
213 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
214 static int config_finalize_done;
215 
216 /* list of all devices */
217 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
218 static kmutex_t alldevs_mtx;
219 static volatile bool alldevs_garbage = false;
220 static volatile devgen_t alldevs_gen = 1;
221 static volatile int alldevs_nread = 0;
222 static volatile int alldevs_nwrite = 0;
223 
224 static int config_pending;		/* semaphore for mountroot */
225 static kmutex_t config_misc_lock;
226 static kcondvar_t config_misc_cv;
227 
228 static int detachall = 0;
229 
230 #define	STREQ(s1, s2)			\
231 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
232 
233 static bool config_initialized = false;	/* config_init() has been called. */
234 
235 static int config_do_twiddle;
236 static callout_t config_twiddle_ch;
237 
238 static void sysctl_detach_setup(struct sysctllog **);
239 
240 typedef int (*cfdriver_fn)(struct cfdriver *);
241 static int
242 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
243 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
244 	const char *style, bool dopanic)
245 {
246 	void (*pr)(const char *, ...) = dopanic ? panic : printf;
247 	int i = 0, error = 0, e2;
248 
249 	for (i = 0; cfdriverv[i] != NULL; i++) {
250 		if ((error = drv_do(cfdriverv[i])) != 0) {
251 			pr("configure: `%s' driver %s failed: %d",
252 			    cfdriverv[i]->cd_name, style, error);
253 			goto bad;
254 		}
255 	}
256 
257 	KASSERT(error == 0);
258 	return 0;
259 
260  bad:
261 	printf("\n");
262 	for (i--; i >= 0; i--) {
263 		e2 = drv_undo(cfdriverv[i]);
264 		KASSERT(e2 == 0);
265 	}
266 
267 	return error;
268 }
269 
270 typedef int (*cfattach_fn)(const char *, struct cfattach *);
271 static int
272 frob_cfattachvec(const struct cfattachinit *cfattachv,
273 	cfattach_fn att_do, cfattach_fn att_undo,
274 	const char *style, bool dopanic)
275 {
276 	const struct cfattachinit *cfai = NULL;
277 	void (*pr)(const char *, ...) = dopanic ? panic : printf;
278 	int j = 0, error = 0, e2;
279 
280 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
281 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
282 			if ((error = att_do(cfai->cfai_name,
283 			    cfai->cfai_list[j]) != 0)) {
284 				pr("configure: attachment `%s' "
285 				    "of `%s' driver %s failed: %d",
286 				    cfai->cfai_list[j]->ca_name,
287 				    cfai->cfai_name, style, error);
288 				goto bad;
289 			}
290 		}
291 	}
292 
293 	KASSERT(error == 0);
294 	return 0;
295 
296  bad:
297 	/*
298 	 * Rollback in reverse order.  dunno if super-important, but
299 	 * do that anyway.  Although the code looks a little like
300 	 * someone did a little integration (in the math sense).
301 	 */
302 	printf("\n");
303 	if (cfai) {
304 		bool last;
305 
306 		for (last = false; last == false; ) {
307 			if (cfai == &cfattachv[0])
308 				last = true;
309 			for (j--; j >= 0; j--) {
310 				e2 = att_undo(cfai->cfai_name,
311 				    cfai->cfai_list[j]);
312 				KASSERT(e2 == 0);
313 			}
314 			if (!last) {
315 				cfai--;
316 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
317 					;
318 			}
319 		}
320 	}
321 
322 	return error;
323 }
324 
325 /*
326  * Initialize the autoconfiguration data structures.  Normally this
327  * is done by configure(), but some platforms need to do this very
328  * early (to e.g. initialize the console).
329  */
330 void
331 config_init(void)
332 {
333 
334 	KASSERT(config_initialized == false);
335 
336 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
337 
338 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
339 	cv_init(&config_misc_cv, "cfgmisc");
340 
341 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
342 
343 	frob_cfdrivervec(cfdriver_list_initial,
344 	    config_cfdriver_attach, NULL, "bootstrap", true);
345 	frob_cfattachvec(cfattachinit,
346 	    config_cfattach_attach, NULL, "bootstrap", true);
347 
348 	initcftable.ct_cfdata = cfdata;
349 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
350 
351 	config_initialized = true;
352 }
353 
354 /*
355  * Init or fini drivers and attachments.  Either all or none
356  * are processed (via rollback).  It would be nice if this were
357  * atomic to outside consumers, but with the current state of
358  * locking ...
359  */
360 int
361 config_init_component(struct cfdriver * const *cfdriverv,
362 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
363 {
364 	int error;
365 
366 	if ((error = frob_cfdrivervec(cfdriverv,
367 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
368 		return error;
369 	if ((error = frob_cfattachvec(cfattachv,
370 	    config_cfattach_attach, config_cfattach_detach,
371 	    "init", false)) != 0) {
372 		frob_cfdrivervec(cfdriverv,
373 	            config_cfdriver_detach, NULL, "init rollback", true);
374 		return error;
375 	}
376 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
377 		frob_cfattachvec(cfattachv,
378 		    config_cfattach_detach, NULL, "init rollback", true);
379 		frob_cfdrivervec(cfdriverv,
380 	            config_cfdriver_detach, NULL, "init rollback", true);
381 		return error;
382 	}
383 
384 	return 0;
385 }
386 
387 int
388 config_fini_component(struct cfdriver * const *cfdriverv,
389 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
390 {
391 	int error;
392 
393 	if ((error = config_cfdata_detach(cfdatav)) != 0)
394 		return error;
395 	if ((error = frob_cfattachvec(cfattachv,
396 	    config_cfattach_detach, config_cfattach_attach,
397 	    "fini", false)) != 0) {
398 		if (config_cfdata_attach(cfdatav, 0) != 0)
399 			panic("config_cfdata fini rollback failed");
400 		return error;
401 	}
402 	if ((error = frob_cfdrivervec(cfdriverv,
403 	    config_cfdriver_detach, config_cfdriver_attach,
404 	    "fini", false)) != 0) {
405 		frob_cfattachvec(cfattachv,
406 	            config_cfattach_attach, NULL, "fini rollback", true);
407 		if (config_cfdata_attach(cfdatav, 0) != 0)
408 			panic("config_cfdata fini rollback failed");
409 		return error;
410 	}
411 
412 	return 0;
413 }
414 
415 void
416 config_init_mi(void)
417 {
418 
419 	if (!config_initialized)
420 		config_init();
421 
422 	sysctl_detach_setup(NULL);
423 }
424 
425 void
426 config_deferred(device_t dev)
427 {
428 	config_process_deferred(&deferred_config_queue, dev);
429 	config_process_deferred(&interrupt_config_queue, dev);
430 }
431 
432 static void
433 config_interrupts_thread(void *cookie)
434 {
435 	struct deferred_config *dc;
436 
437 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
438 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
439 		(*dc->dc_func)(dc->dc_dev);
440 		kmem_free(dc, sizeof(*dc));
441 		config_pending_decr();
442 	}
443 	kthread_exit(0);
444 }
445 
446 void
447 config_create_interruptthreads()
448 {
449 	int i;
450 
451 	for (i = 0; i < interrupt_config_threads; i++) {
452 		(void)kthread_create(PRI_NONE, 0, NULL,
453 		    config_interrupts_thread, NULL, NULL, "config");
454 	}
455 }
456 
457 /*
458  * Announce device attach/detach to userland listeners.
459  */
460 static void
461 devmon_report_device(device_t dev, bool isattach)
462 {
463 #if NDRVCTL > 0
464 	prop_dictionary_t ev;
465 	const char *parent;
466 	const char *what;
467 	device_t pdev = device_parent(dev);
468 
469 	ev = prop_dictionary_create();
470 	if (ev == NULL)
471 		return;
472 
473 	what = (isattach ? "device-attach" : "device-detach");
474 	parent = (pdev == NULL ? "root" : device_xname(pdev));
475 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
476 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
477 		prop_object_release(ev);
478 		return;
479 	}
480 
481 	devmon_insert(what, ev);
482 #endif
483 }
484 
485 /*
486  * Add a cfdriver to the system.
487  */
488 int
489 config_cfdriver_attach(struct cfdriver *cd)
490 {
491 	struct cfdriver *lcd;
492 
493 	/* Make sure this driver isn't already in the system. */
494 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
495 		if (STREQ(lcd->cd_name, cd->cd_name))
496 			return EEXIST;
497 	}
498 
499 	LIST_INIT(&cd->cd_attach);
500 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
501 
502 	return 0;
503 }
504 
505 /*
506  * Remove a cfdriver from the system.
507  */
508 int
509 config_cfdriver_detach(struct cfdriver *cd)
510 {
511 	struct alldevs_foray af;
512 	int i, rc = 0;
513 
514 	config_alldevs_enter(&af);
515 	/* Make sure there are no active instances. */
516 	for (i = 0; i < cd->cd_ndevs; i++) {
517 		if (cd->cd_devs[i] != NULL) {
518 			rc = EBUSY;
519 			break;
520 		}
521 	}
522 	config_alldevs_exit(&af);
523 
524 	if (rc != 0)
525 		return rc;
526 
527 	/* ...and no attachments loaded. */
528 	if (LIST_EMPTY(&cd->cd_attach) == 0)
529 		return EBUSY;
530 
531 	LIST_REMOVE(cd, cd_list);
532 
533 	KASSERT(cd->cd_devs == NULL);
534 
535 	return 0;
536 }
537 
538 /*
539  * Look up a cfdriver by name.
540  */
541 struct cfdriver *
542 config_cfdriver_lookup(const char *name)
543 {
544 	struct cfdriver *cd;
545 
546 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
547 		if (STREQ(cd->cd_name, name))
548 			return cd;
549 	}
550 
551 	return NULL;
552 }
553 
554 /*
555  * Add a cfattach to the specified driver.
556  */
557 int
558 config_cfattach_attach(const char *driver, struct cfattach *ca)
559 {
560 	struct cfattach *lca;
561 	struct cfdriver *cd;
562 
563 	cd = config_cfdriver_lookup(driver);
564 	if (cd == NULL)
565 		return ESRCH;
566 
567 	/* Make sure this attachment isn't already on this driver. */
568 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
569 		if (STREQ(lca->ca_name, ca->ca_name))
570 			return EEXIST;
571 	}
572 
573 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
574 
575 	return 0;
576 }
577 
578 /*
579  * Remove a cfattach from the specified driver.
580  */
581 int
582 config_cfattach_detach(const char *driver, struct cfattach *ca)
583 {
584 	struct alldevs_foray af;
585 	struct cfdriver *cd;
586 	device_t dev;
587 	int i, rc = 0;
588 
589 	cd = config_cfdriver_lookup(driver);
590 	if (cd == NULL)
591 		return ESRCH;
592 
593 	config_alldevs_enter(&af);
594 	/* Make sure there are no active instances. */
595 	for (i = 0; i < cd->cd_ndevs; i++) {
596 		if ((dev = cd->cd_devs[i]) == NULL)
597 			continue;
598 		if (dev->dv_cfattach == ca) {
599 			rc = EBUSY;
600 			break;
601 		}
602 	}
603 	config_alldevs_exit(&af);
604 
605 	if (rc != 0)
606 		return rc;
607 
608 	LIST_REMOVE(ca, ca_list);
609 
610 	return 0;
611 }
612 
613 /*
614  * Look up a cfattach by name.
615  */
616 static struct cfattach *
617 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
618 {
619 	struct cfattach *ca;
620 
621 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
622 		if (STREQ(ca->ca_name, atname))
623 			return ca;
624 	}
625 
626 	return NULL;
627 }
628 
629 /*
630  * Look up a cfattach by driver/attachment name.
631  */
632 struct cfattach *
633 config_cfattach_lookup(const char *name, const char *atname)
634 {
635 	struct cfdriver *cd;
636 
637 	cd = config_cfdriver_lookup(name);
638 	if (cd == NULL)
639 		return NULL;
640 
641 	return config_cfattach_lookup_cd(cd, atname);
642 }
643 
644 /*
645  * Apply the matching function and choose the best.  This is used
646  * a few times and we want to keep the code small.
647  */
648 static void
649 mapply(struct matchinfo *m, cfdata_t cf)
650 {
651 	int pri;
652 
653 	if (m->fn != NULL) {
654 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
655 	} else {
656 		pri = config_match(m->parent, cf, m->aux);
657 	}
658 	if (pri > m->pri) {
659 		m->match = cf;
660 		m->pri = pri;
661 	}
662 }
663 
664 int
665 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
666 {
667 	const struct cfiattrdata *ci;
668 	const struct cflocdesc *cl;
669 	int nlocs, i;
670 
671 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
672 	KASSERT(ci);
673 	nlocs = ci->ci_loclen;
674 	KASSERT(!nlocs || locs);
675 	for (i = 0; i < nlocs; i++) {
676 		cl = &ci->ci_locdesc[i];
677 		/* !cld_defaultstr means no default value */
678 		if ((!(cl->cld_defaultstr)
679 		     || (cf->cf_loc[i] != cl->cld_default))
680 		    && cf->cf_loc[i] != locs[i])
681 			return 0;
682 	}
683 
684 	return config_match(parent, cf, aux);
685 }
686 
687 /*
688  * Helper function: check whether the driver supports the interface attribute
689  * and return its descriptor structure.
690  */
691 static const struct cfiattrdata *
692 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
693 {
694 	const struct cfiattrdata * const *cpp;
695 
696 	if (cd->cd_attrs == NULL)
697 		return 0;
698 
699 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
700 		if (STREQ((*cpp)->ci_name, ia)) {
701 			/* Match. */
702 			return *cpp;
703 		}
704 	}
705 	return 0;
706 }
707 
708 /*
709  * Lookup an interface attribute description by name.
710  * If the driver is given, consider only its supported attributes.
711  */
712 const struct cfiattrdata *
713 cfiattr_lookup(const char *name, const struct cfdriver *cd)
714 {
715 	const struct cfdriver *d;
716 	const struct cfiattrdata *ia;
717 
718 	if (cd)
719 		return cfdriver_get_iattr(cd, name);
720 
721 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
722 		ia = cfdriver_get_iattr(d, name);
723 		if (ia)
724 			return ia;
725 	}
726 	return 0;
727 }
728 
729 /*
730  * Determine if `parent' is a potential parent for a device spec based
731  * on `cfp'.
732  */
733 static int
734 cfparent_match(const device_t parent, const struct cfparent *cfp)
735 {
736 	struct cfdriver *pcd;
737 
738 	/* We don't match root nodes here. */
739 	if (cfp == NULL)
740 		return 0;
741 
742 	pcd = parent->dv_cfdriver;
743 	KASSERT(pcd != NULL);
744 
745 	/*
746 	 * First, ensure this parent has the correct interface
747 	 * attribute.
748 	 */
749 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
750 		return 0;
751 
752 	/*
753 	 * If no specific parent device instance was specified (i.e.
754 	 * we're attaching to the attribute only), we're done!
755 	 */
756 	if (cfp->cfp_parent == NULL)
757 		return 1;
758 
759 	/*
760 	 * Check the parent device's name.
761 	 */
762 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
763 		return 0;	/* not the same parent */
764 
765 	/*
766 	 * Make sure the unit number matches.
767 	 */
768 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
769 	    cfp->cfp_unit == parent->dv_unit)
770 		return 1;
771 
772 	/* Unit numbers don't match. */
773 	return 0;
774 }
775 
776 /*
777  * Helper for config_cfdata_attach(): check all devices whether it could be
778  * parent any attachment in the config data table passed, and rescan.
779  */
780 static void
781 rescan_with_cfdata(const struct cfdata *cf)
782 {
783 	device_t d;
784 	const struct cfdata *cf1;
785 	deviter_t di;
786 
787 
788 	/*
789 	 * "alldevs" is likely longer than a modules's cfdata, so make it
790 	 * the outer loop.
791 	 */
792 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
793 
794 		if (!(d->dv_cfattach->ca_rescan))
795 			continue;
796 
797 		for (cf1 = cf; cf1->cf_name; cf1++) {
798 
799 			if (!cfparent_match(d, cf1->cf_pspec))
800 				continue;
801 
802 			(*d->dv_cfattach->ca_rescan)(d,
803 				cfdata_ifattr(cf1), cf1->cf_loc);
804 		}
805 	}
806 	deviter_release(&di);
807 }
808 
809 /*
810  * Attach a supplemental config data table and rescan potential
811  * parent devices if required.
812  */
813 int
814 config_cfdata_attach(cfdata_t cf, int scannow)
815 {
816 	struct cftable *ct;
817 
818 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
819 	ct->ct_cfdata = cf;
820 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
821 
822 	if (scannow)
823 		rescan_with_cfdata(cf);
824 
825 	return 0;
826 }
827 
828 /*
829  * Helper for config_cfdata_detach: check whether a device is
830  * found through any attachment in the config data table.
831  */
832 static int
833 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
834 {
835 	const struct cfdata *cf1;
836 
837 	for (cf1 = cf; cf1->cf_name; cf1++)
838 		if (d->dv_cfdata == cf1)
839 			return 1;
840 
841 	return 0;
842 }
843 
844 /*
845  * Detach a supplemental config data table. Detach all devices found
846  * through that table (and thus keeping references to it) before.
847  */
848 int
849 config_cfdata_detach(cfdata_t cf)
850 {
851 	device_t d;
852 	int error = 0;
853 	struct cftable *ct;
854 	deviter_t di;
855 
856 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
857 	     d = deviter_next(&di)) {
858 		if (!dev_in_cfdata(d, cf))
859 			continue;
860 		if ((error = config_detach(d, 0)) != 0)
861 			break;
862 	}
863 	deviter_release(&di);
864 	if (error) {
865 		aprint_error_dev(d, "unable to detach instance\n");
866 		return error;
867 	}
868 
869 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
870 		if (ct->ct_cfdata == cf) {
871 			TAILQ_REMOVE(&allcftables, ct, ct_list);
872 			kmem_free(ct, sizeof(*ct));
873 			return 0;
874 		}
875 	}
876 
877 	/* not found -- shouldn't happen */
878 	return EINVAL;
879 }
880 
881 /*
882  * Invoke the "match" routine for a cfdata entry on behalf of
883  * an external caller, usually a "submatch" routine.
884  */
885 int
886 config_match(device_t parent, cfdata_t cf, void *aux)
887 {
888 	struct cfattach *ca;
889 
890 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
891 	if (ca == NULL) {
892 		/* No attachment for this entry, oh well. */
893 		return 0;
894 	}
895 
896 	return (*ca->ca_match)(parent, cf, aux);
897 }
898 
899 /*
900  * Iterate over all potential children of some device, calling the given
901  * function (default being the child's match function) for each one.
902  * Nonzero returns are matches; the highest value returned is considered
903  * the best match.  Return the `found child' if we got a match, or NULL
904  * otherwise.  The `aux' pointer is simply passed on through.
905  *
906  * Note that this function is designed so that it can be used to apply
907  * an arbitrary function to all potential children (its return value
908  * can be ignored).
909  */
910 cfdata_t
911 config_search_loc(cfsubmatch_t fn, device_t parent,
912 		  const char *ifattr, const int *locs, void *aux)
913 {
914 	struct cftable *ct;
915 	cfdata_t cf;
916 	struct matchinfo m;
917 
918 	KASSERT(config_initialized);
919 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
920 
921 	m.fn = fn;
922 	m.parent = parent;
923 	m.locs = locs;
924 	m.aux = aux;
925 	m.match = NULL;
926 	m.pri = 0;
927 
928 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
929 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
930 
931 			/* We don't match root nodes here. */
932 			if (!cf->cf_pspec)
933 				continue;
934 
935 			/*
936 			 * Skip cf if no longer eligible, otherwise scan
937 			 * through parents for one matching `parent', and
938 			 * try match function.
939 			 */
940 			if (cf->cf_fstate == FSTATE_FOUND)
941 				continue;
942 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
943 			    cf->cf_fstate == FSTATE_DSTAR)
944 				continue;
945 
946 			/*
947 			 * If an interface attribute was specified,
948 			 * consider only children which attach to
949 			 * that attribute.
950 			 */
951 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
952 				continue;
953 
954 			if (cfparent_match(parent, cf->cf_pspec))
955 				mapply(&m, cf);
956 		}
957 	}
958 	return m.match;
959 }
960 
961 cfdata_t
962 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
963     void *aux)
964 {
965 
966 	return config_search_loc(fn, parent, ifattr, NULL, aux);
967 }
968 
969 /*
970  * Find the given root device.
971  * This is much like config_search, but there is no parent.
972  * Don't bother with multiple cfdata tables; the root node
973  * must always be in the initial table.
974  */
975 cfdata_t
976 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
977 {
978 	cfdata_t cf;
979 	const short *p;
980 	struct matchinfo m;
981 
982 	m.fn = fn;
983 	m.parent = ROOT;
984 	m.aux = aux;
985 	m.match = NULL;
986 	m.pri = 0;
987 	m.locs = 0;
988 	/*
989 	 * Look at root entries for matching name.  We do not bother
990 	 * with found-state here since only one root should ever be
991 	 * searched (and it must be done first).
992 	 */
993 	for (p = cfroots; *p >= 0; p++) {
994 		cf = &cfdata[*p];
995 		if (strcmp(cf->cf_name, rootname) == 0)
996 			mapply(&m, cf);
997 	}
998 	return m.match;
999 }
1000 
1001 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1002 
1003 /*
1004  * The given `aux' argument describes a device that has been found
1005  * on the given parent, but not necessarily configured.  Locate the
1006  * configuration data for that device (using the submatch function
1007  * provided, or using candidates' cd_match configuration driver
1008  * functions) and attach it, and return true.  If the device was
1009  * not configured, call the given `print' function and return 0.
1010  */
1011 device_t
1012 config_found_sm_loc(device_t parent,
1013 		const char *ifattr, const int *locs, void *aux,
1014 		cfprint_t print, cfsubmatch_t submatch)
1015 {
1016 	cfdata_t cf;
1017 
1018 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1019 	if (splash_progress_state)
1020 		splash_progress_update(splash_progress_state);
1021 #endif
1022 
1023 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1024 		return(config_attach_loc(parent, cf, locs, aux, print));
1025 	if (print) {
1026 		if (config_do_twiddle && cold)
1027 			twiddle();
1028 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1029 	}
1030 
1031 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1032 	if (splash_progress_state)
1033 		splash_progress_update(splash_progress_state);
1034 #endif
1035 
1036 	return NULL;
1037 }
1038 
1039 device_t
1040 config_found_ia(device_t parent, const char *ifattr, void *aux,
1041     cfprint_t print)
1042 {
1043 
1044 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1045 }
1046 
1047 device_t
1048 config_found(device_t parent, void *aux, cfprint_t print)
1049 {
1050 
1051 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1052 }
1053 
1054 /*
1055  * As above, but for root devices.
1056  */
1057 device_t
1058 config_rootfound(const char *rootname, void *aux)
1059 {
1060 	cfdata_t cf;
1061 
1062 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1063 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1064 	aprint_error("root device %s not configured\n", rootname);
1065 	return NULL;
1066 }
1067 
1068 /* just like sprintf(buf, "%d") except that it works from the end */
1069 static char *
1070 number(char *ep, int n)
1071 {
1072 
1073 	*--ep = 0;
1074 	while (n >= 10) {
1075 		*--ep = (n % 10) + '0';
1076 		n /= 10;
1077 	}
1078 	*--ep = n + '0';
1079 	return ep;
1080 }
1081 
1082 /*
1083  * Expand the size of the cd_devs array if necessary.
1084  *
1085  * The caller must hold alldevs_mtx. config_makeroom() may release and
1086  * re-acquire alldevs_mtx, so callers should re-check conditions such
1087  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1088  * returns.
1089  */
1090 static void
1091 config_makeroom(int n, struct cfdriver *cd)
1092 {
1093 	int old, new;
1094 	device_t *osp, *nsp;
1095 
1096 	alldevs_nwrite++;
1097 
1098 	for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1099 		;
1100 
1101 	while (n >= cd->cd_ndevs) {
1102 		/*
1103 		 * Need to expand the array.
1104 		 */
1105 		old = cd->cd_ndevs;
1106 		osp = cd->cd_devs;
1107 
1108 		/* Release alldevs_mtx around allocation, which may
1109 		 * sleep.
1110 		 */
1111 		mutex_exit(&alldevs_mtx);
1112 		nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1113 		if (nsp == NULL)
1114 			panic("%s: could not expand cd_devs", __func__);
1115 		mutex_enter(&alldevs_mtx);
1116 
1117 		/* If another thread moved the array while we did
1118 		 * not hold alldevs_mtx, try again.
1119 		 */
1120 		if (cd->cd_devs != osp) {
1121 			kmem_free(nsp, sizeof(device_t[new]));
1122 			continue;
1123 		}
1124 
1125 		memset(nsp + old, 0, sizeof(device_t[new - old]));
1126 		if (old != 0)
1127 			memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1128 
1129 		cd->cd_ndevs = new;
1130 		cd->cd_devs = nsp;
1131 		if (old != 0)
1132 			kmem_free(osp, sizeof(device_t[old]));
1133 	}
1134 	alldevs_nwrite--;
1135 }
1136 
1137 /*
1138  * Put dev into the devices list.
1139  */
1140 static void
1141 config_devlink(device_t dev)
1142 {
1143 	int s;
1144 
1145 	s = config_alldevs_lock();
1146 
1147 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1148 
1149 	dev->dv_add_gen = alldevs_gen;
1150 	/* It is safe to add a device to the tail of the list while
1151 	 * readers and writers are in the list.
1152 	 */
1153 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1154 	config_alldevs_unlock(s);
1155 }
1156 
1157 static void
1158 config_devfree(device_t dev)
1159 {
1160 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1161 
1162 	if (dev->dv_cfattach->ca_devsize > 0)
1163 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1164 	if (priv)
1165 		kmem_free(dev, sizeof(*dev));
1166 }
1167 
1168 /*
1169  * Caller must hold alldevs_mtx.
1170  */
1171 static void
1172 config_devunlink(device_t dev, struct devicelist *garbage)
1173 {
1174 	struct device_garbage *dg = &dev->dv_garbage;
1175 	cfdriver_t cd = device_cfdriver(dev);
1176 	int i;
1177 
1178 	KASSERT(mutex_owned(&alldevs_mtx));
1179 
1180  	/* Unlink from device list.  Link to garbage list. */
1181 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1182 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1183 
1184 	/* Remove from cfdriver's array. */
1185 	cd->cd_devs[dev->dv_unit] = NULL;
1186 
1187 	/*
1188 	 * If the device now has no units in use, unlink its softc array.
1189 	 */
1190 	for (i = 0; i < cd->cd_ndevs; i++) {
1191 		if (cd->cd_devs[i] != NULL)
1192 			break;
1193 	}
1194 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1195 	if (i == cd->cd_ndevs) {
1196 		dg->dg_ndevs = cd->cd_ndevs;
1197 		dg->dg_devs = cd->cd_devs;
1198 		cd->cd_devs = NULL;
1199 		cd->cd_ndevs = 0;
1200 	}
1201 }
1202 
1203 static void
1204 config_devdelete(device_t dev)
1205 {
1206 	struct device_garbage *dg = &dev->dv_garbage;
1207 	device_lock_t dvl = device_getlock(dev);
1208 
1209 	if (dg->dg_devs != NULL)
1210 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1211 
1212 	cv_destroy(&dvl->dvl_cv);
1213 	mutex_destroy(&dvl->dvl_mtx);
1214 
1215 	KASSERT(dev->dv_properties != NULL);
1216 	prop_object_release(dev->dv_properties);
1217 
1218 	if (dev->dv_activity_handlers)
1219 		panic("%s with registered handlers", __func__);
1220 
1221 	if (dev->dv_locators) {
1222 		size_t amount = *--dev->dv_locators;
1223 		kmem_free(dev->dv_locators, amount);
1224 	}
1225 
1226 	config_devfree(dev);
1227 }
1228 
1229 static int
1230 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1231 {
1232 	int unit;
1233 
1234 	if (cf->cf_fstate == FSTATE_STAR) {
1235 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1236 			if (cd->cd_devs[unit] == NULL)
1237 				break;
1238 		/*
1239 		 * unit is now the unit of the first NULL device pointer,
1240 		 * or max(cd->cd_ndevs,cf->cf_unit).
1241 		 */
1242 	} else {
1243 		unit = cf->cf_unit;
1244 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1245 			unit = -1;
1246 	}
1247 	return unit;
1248 }
1249 
1250 static int
1251 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1252 {
1253 	struct alldevs_foray af;
1254 	int unit;
1255 
1256 	config_alldevs_enter(&af);
1257 	for (;;) {
1258 		unit = config_unit_nextfree(cd, cf);
1259 		if (unit == -1)
1260 			break;
1261 		if (unit < cd->cd_ndevs) {
1262 			cd->cd_devs[unit] = dev;
1263 			dev->dv_unit = unit;
1264 			break;
1265 		}
1266 		config_makeroom(unit, cd);
1267 	}
1268 	config_alldevs_exit(&af);
1269 
1270 	return unit;
1271 }
1272 
1273 static device_t
1274 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1275 {
1276 	cfdriver_t cd;
1277 	cfattach_t ca;
1278 	size_t lname, lunit;
1279 	const char *xunit;
1280 	int myunit;
1281 	char num[10];
1282 	device_t dev;
1283 	void *dev_private;
1284 	const struct cfiattrdata *ia;
1285 	device_lock_t dvl;
1286 
1287 	cd = config_cfdriver_lookup(cf->cf_name);
1288 	if (cd == NULL)
1289 		return NULL;
1290 
1291 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1292 	if (ca == NULL)
1293 		return NULL;
1294 
1295 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1296 	    ca->ca_devsize < sizeof(struct device))
1297 		panic("config_devalloc: %s", cf->cf_atname);
1298 
1299 	/* get memory for all device vars */
1300 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1301 	if (ca->ca_devsize > 0) {
1302 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1303 		if (dev_private == NULL)
1304 			panic("config_devalloc: memory allocation for device softc failed");
1305 	} else {
1306 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1307 		dev_private = NULL;
1308 	}
1309 
1310 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1311 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1312 	} else {
1313 		dev = dev_private;
1314 	}
1315 	if (dev == NULL)
1316 		panic("config_devalloc: memory allocation for device_t failed");
1317 
1318 	dev->dv_class = cd->cd_class;
1319 	dev->dv_cfdata = cf;
1320 	dev->dv_cfdriver = cd;
1321 	dev->dv_cfattach = ca;
1322 	dev->dv_activity_count = 0;
1323 	dev->dv_activity_handlers = NULL;
1324 	dev->dv_private = dev_private;
1325 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1326 
1327 	myunit = config_unit_alloc(dev, cd, cf);
1328 	if (myunit == -1) {
1329 		config_devfree(dev);
1330 		return NULL;
1331 	}
1332 
1333 	/* compute length of name and decimal expansion of unit number */
1334 	lname = strlen(cd->cd_name);
1335 	xunit = number(&num[sizeof(num)], myunit);
1336 	lunit = &num[sizeof(num)] - xunit;
1337 	if (lname + lunit > sizeof(dev->dv_xname))
1338 		panic("config_devalloc: device name too long");
1339 
1340 	dvl = device_getlock(dev);
1341 
1342 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1343 	cv_init(&dvl->dvl_cv, "pmfsusp");
1344 
1345 	memcpy(dev->dv_xname, cd->cd_name, lname);
1346 	memcpy(dev->dv_xname + lname, xunit, lunit);
1347 	dev->dv_parent = parent;
1348 	if (parent != NULL)
1349 		dev->dv_depth = parent->dv_depth + 1;
1350 	else
1351 		dev->dv_depth = 0;
1352 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1353 	if (locs) {
1354 		KASSERT(parent); /* no locators at root */
1355 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1356 		dev->dv_locators =
1357 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1358 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1359 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1360 	}
1361 	dev->dv_properties = prop_dictionary_create();
1362 	KASSERT(dev->dv_properties != NULL);
1363 
1364 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1365 	    "device-driver", dev->dv_cfdriver->cd_name);
1366 	prop_dictionary_set_uint16(dev->dv_properties,
1367 	    "device-unit", dev->dv_unit);
1368 
1369 	return dev;
1370 }
1371 
1372 /*
1373  * Attach a found device.
1374  */
1375 device_t
1376 config_attach_loc(device_t parent, cfdata_t cf,
1377 	const int *locs, void *aux, cfprint_t print)
1378 {
1379 	device_t dev;
1380 	struct cftable *ct;
1381 	const char *drvname;
1382 
1383 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1384 	if (splash_progress_state)
1385 		splash_progress_update(splash_progress_state);
1386 #endif
1387 
1388 	dev = config_devalloc(parent, cf, locs);
1389 	if (!dev)
1390 		panic("config_attach: allocation of device softc failed");
1391 
1392 	/* XXX redundant - see below? */
1393 	if (cf->cf_fstate != FSTATE_STAR) {
1394 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1395 		cf->cf_fstate = FSTATE_FOUND;
1396 	}
1397 
1398 	config_devlink(dev);
1399 
1400 	if (config_do_twiddle && cold)
1401 		twiddle();
1402 	else
1403 		aprint_naive("Found ");
1404 	/*
1405 	 * We want the next two printfs for normal, verbose, and quiet,
1406 	 * but not silent (in which case, we're twiddling, instead).
1407 	 */
1408 	if (parent == ROOT) {
1409 		aprint_naive("%s (root)", device_xname(dev));
1410 		aprint_normal("%s (root)", device_xname(dev));
1411 	} else {
1412 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1413 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1414 		if (print)
1415 			(void) (*print)(aux, NULL);
1416 	}
1417 
1418 	/*
1419 	 * Before attaching, clobber any unfound devices that are
1420 	 * otherwise identical.
1421 	 * XXX code above is redundant?
1422 	 */
1423 	drvname = dev->dv_cfdriver->cd_name;
1424 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1425 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1426 			if (STREQ(cf->cf_name, drvname) &&
1427 			    cf->cf_unit == dev->dv_unit) {
1428 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1429 					cf->cf_fstate = FSTATE_FOUND;
1430 			}
1431 		}
1432 	}
1433 #ifdef __HAVE_DEVICE_REGISTER
1434 	device_register(dev, aux);
1435 #endif
1436 
1437 	/* Let userland know */
1438 	devmon_report_device(dev, true);
1439 
1440 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1441 	if (splash_progress_state)
1442 		splash_progress_update(splash_progress_state);
1443 #endif
1444 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1445 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1446 	if (splash_progress_state)
1447 		splash_progress_update(splash_progress_state);
1448 #endif
1449 
1450 	if (!device_pmf_is_registered(dev))
1451 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1452 
1453 	config_process_deferred(&deferred_config_queue, dev);
1454 
1455 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG
1456 	device_register_post_config(dev, aux);
1457 #endif
1458 	return dev;
1459 }
1460 
1461 device_t
1462 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1463 {
1464 
1465 	return config_attach_loc(parent, cf, NULL, aux, print);
1466 }
1467 
1468 /*
1469  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1470  * way are silently inserted into the device tree, and their children
1471  * attached.
1472  *
1473  * Note that because pseudo-devices are attached silently, any information
1474  * the attach routine wishes to print should be prefixed with the device
1475  * name by the attach routine.
1476  */
1477 device_t
1478 config_attach_pseudo(cfdata_t cf)
1479 {
1480 	device_t dev;
1481 
1482 	dev = config_devalloc(ROOT, cf, NULL);
1483 	if (!dev)
1484 		return NULL;
1485 
1486 	/* XXX mark busy in cfdata */
1487 
1488 	if (cf->cf_fstate != FSTATE_STAR) {
1489 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1490 		cf->cf_fstate = FSTATE_FOUND;
1491 	}
1492 
1493 	config_devlink(dev);
1494 
1495 #if 0	/* XXXJRT not yet */
1496 #ifdef __HAVE_DEVICE_REGISTER
1497 	device_register(dev, NULL);	/* like a root node */
1498 #endif
1499 #endif
1500 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1501 	config_process_deferred(&deferred_config_queue, dev);
1502 	return dev;
1503 }
1504 
1505 /*
1506  * Caller must hold alldevs_mtx.
1507  */
1508 static void
1509 config_collect_garbage(struct devicelist *garbage)
1510 {
1511 	device_t dv;
1512 
1513 	KASSERT(!cpu_intr_p());
1514 	KASSERT(!cpu_softintr_p());
1515 	KASSERT(mutex_owned(&alldevs_mtx));
1516 
1517 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1518 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1519 			if (dv->dv_del_gen != 0)
1520 				break;
1521 		}
1522 		if (dv == NULL) {
1523 			alldevs_garbage = false;
1524 			break;
1525 		}
1526 		config_devunlink(dv, garbage);
1527 	}
1528 	KASSERT(mutex_owned(&alldevs_mtx));
1529 }
1530 
1531 static void
1532 config_dump_garbage(struct devicelist *garbage)
1533 {
1534 	device_t dv;
1535 
1536 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1537 		TAILQ_REMOVE(garbage, dv, dv_list);
1538 		config_devdelete(dv);
1539 	}
1540 }
1541 
1542 /*
1543  * Detach a device.  Optionally forced (e.g. because of hardware
1544  * removal) and quiet.  Returns zero if successful, non-zero
1545  * (an error code) otherwise.
1546  *
1547  * Note that this code wants to be run from a process context, so
1548  * that the detach can sleep to allow processes which have a device
1549  * open to run and unwind their stacks.
1550  */
1551 int
1552 config_detach(device_t dev, int flags)
1553 {
1554 	struct alldevs_foray af;
1555 	struct cftable *ct;
1556 	cfdata_t cf;
1557 	const struct cfattach *ca;
1558 	struct cfdriver *cd;
1559 #ifdef DIAGNOSTIC
1560 	device_t d;
1561 #endif
1562 	int rv = 0, s;
1563 
1564 #ifdef DIAGNOSTIC
1565 	cf = dev->dv_cfdata;
1566 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1567 	    cf->cf_fstate != FSTATE_STAR)
1568 		panic("config_detach: %s: bad device fstate %d",
1569 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1570 #endif
1571 	cd = dev->dv_cfdriver;
1572 	KASSERT(cd != NULL);
1573 
1574 	ca = dev->dv_cfattach;
1575 	KASSERT(ca != NULL);
1576 
1577 	s = config_alldevs_lock();
1578 	if (dev->dv_del_gen != 0) {
1579 		config_alldevs_unlock(s);
1580 #ifdef DIAGNOSTIC
1581 		printf("%s: %s is already detached\n", __func__,
1582 		    device_xname(dev));
1583 #endif /* DIAGNOSTIC */
1584 		return ENOENT;
1585 	}
1586 	alldevs_nwrite++;
1587 	config_alldevs_unlock(s);
1588 
1589 	if (!detachall &&
1590 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1591 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1592 		rv = EOPNOTSUPP;
1593 	} else if (ca->ca_detach != NULL) {
1594 		rv = (*ca->ca_detach)(dev, flags);
1595 	} else
1596 		rv = EOPNOTSUPP;
1597 
1598 	/*
1599 	 * If it was not possible to detach the device, then we either
1600 	 * panic() (for the forced but failed case), or return an error.
1601 	 *
1602 	 * If it was possible to detach the device, ensure that the
1603 	 * device is deactivated.
1604 	 */
1605 	if (rv == 0)
1606 		dev->dv_flags &= ~DVF_ACTIVE;
1607 	else if ((flags & DETACH_FORCE) == 0)
1608 		goto out;
1609 	else {
1610 		panic("config_detach: forced detach of %s failed (%d)",
1611 		    device_xname(dev), rv);
1612 	}
1613 
1614 	/*
1615 	 * The device has now been successfully detached.
1616 	 */
1617 
1618 	/* Let userland know */
1619 	devmon_report_device(dev, false);
1620 
1621 #ifdef DIAGNOSTIC
1622 	/*
1623 	 * Sanity: If you're successfully detached, you should have no
1624 	 * children.  (Note that because children must be attached
1625 	 * after parents, we only need to search the latter part of
1626 	 * the list.)
1627 	 */
1628 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1629 	    d = TAILQ_NEXT(d, dv_list)) {
1630 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1631 			printf("config_detach: detached device %s"
1632 			    " has children %s\n", device_xname(dev), device_xname(d));
1633 			panic("config_detach");
1634 		}
1635 	}
1636 #endif
1637 
1638 	/* notify the parent that the child is gone */
1639 	if (dev->dv_parent) {
1640 		device_t p = dev->dv_parent;
1641 		if (p->dv_cfattach->ca_childdetached)
1642 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1643 	}
1644 
1645 	/*
1646 	 * Mark cfdata to show that the unit can be reused, if possible.
1647 	 */
1648 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1649 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1650 			if (STREQ(cf->cf_name, cd->cd_name)) {
1651 				if (cf->cf_fstate == FSTATE_FOUND &&
1652 				    cf->cf_unit == dev->dv_unit)
1653 					cf->cf_fstate = FSTATE_NOTFOUND;
1654 			}
1655 		}
1656 	}
1657 
1658 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1659 		aprint_normal_dev(dev, "detached\n");
1660 
1661 out:
1662 	config_alldevs_enter(&af);
1663 	KASSERT(alldevs_nwrite != 0);
1664 	--alldevs_nwrite;
1665 	if (rv == 0 && dev->dv_del_gen == 0)
1666 		config_devunlink(dev, &af.af_garbage);
1667 	config_alldevs_exit(&af);
1668 
1669 	return rv;
1670 }
1671 
1672 int
1673 config_detach_children(device_t parent, int flags)
1674 {
1675 	device_t dv;
1676 	deviter_t di;
1677 	int error = 0;
1678 
1679 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1680 	     dv = deviter_next(&di)) {
1681 		if (device_parent(dv) != parent)
1682 			continue;
1683 		if ((error = config_detach(dv, flags)) != 0)
1684 			break;
1685 	}
1686 	deviter_release(&di);
1687 	return error;
1688 }
1689 
1690 device_t
1691 shutdown_first(struct shutdown_state *s)
1692 {
1693 	if (!s->initialized) {
1694 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1695 		s->initialized = true;
1696 	}
1697 	return shutdown_next(s);
1698 }
1699 
1700 device_t
1701 shutdown_next(struct shutdown_state *s)
1702 {
1703 	device_t dv;
1704 
1705 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1706 		;
1707 
1708 	if (dv == NULL)
1709 		s->initialized = false;
1710 
1711 	return dv;
1712 }
1713 
1714 bool
1715 config_detach_all(int how)
1716 {
1717 	static struct shutdown_state s;
1718 	device_t curdev;
1719 	bool progress = false;
1720 
1721 	if ((how & RB_NOSYNC) != 0)
1722 		return false;
1723 
1724 	for (curdev = shutdown_first(&s); curdev != NULL;
1725 	     curdev = shutdown_next(&s)) {
1726 		aprint_debug(" detaching %s, ", device_xname(curdev));
1727 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1728 			progress = true;
1729 			aprint_debug("success.");
1730 		} else
1731 			aprint_debug("failed.");
1732 	}
1733 	return progress;
1734 }
1735 
1736 static bool
1737 device_is_ancestor_of(device_t ancestor, device_t descendant)
1738 {
1739 	device_t dv;
1740 
1741 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1742 		if (device_parent(dv) == ancestor)
1743 			return true;
1744 	}
1745 	return false;
1746 }
1747 
1748 int
1749 config_deactivate(device_t dev)
1750 {
1751 	deviter_t di;
1752 	const struct cfattach *ca;
1753 	device_t descendant;
1754 	int s, rv = 0, oflags;
1755 
1756 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1757 	     descendant != NULL;
1758 	     descendant = deviter_next(&di)) {
1759 		if (dev != descendant &&
1760 		    !device_is_ancestor_of(dev, descendant))
1761 			continue;
1762 
1763 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1764 			continue;
1765 
1766 		ca = descendant->dv_cfattach;
1767 		oflags = descendant->dv_flags;
1768 
1769 		descendant->dv_flags &= ~DVF_ACTIVE;
1770 		if (ca->ca_activate == NULL)
1771 			continue;
1772 		s = splhigh();
1773 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1774 		splx(s);
1775 		if (rv != 0)
1776 			descendant->dv_flags = oflags;
1777 	}
1778 	deviter_release(&di);
1779 	return rv;
1780 }
1781 
1782 /*
1783  * Defer the configuration of the specified device until all
1784  * of its parent's devices have been attached.
1785  */
1786 void
1787 config_defer(device_t dev, void (*func)(device_t))
1788 {
1789 	struct deferred_config *dc;
1790 
1791 	if (dev->dv_parent == NULL)
1792 		panic("config_defer: can't defer config of a root device");
1793 
1794 #ifdef DIAGNOSTIC
1795 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1796 		if (dc->dc_dev == dev)
1797 			panic("config_defer: deferred twice");
1798 	}
1799 #endif
1800 
1801 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1802 	if (dc == NULL)
1803 		panic("config_defer: unable to allocate callback");
1804 
1805 	dc->dc_dev = dev;
1806 	dc->dc_func = func;
1807 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1808 	config_pending_incr();
1809 }
1810 
1811 /*
1812  * Defer some autoconfiguration for a device until after interrupts
1813  * are enabled.
1814  */
1815 void
1816 config_interrupts(device_t dev, void (*func)(device_t))
1817 {
1818 	struct deferred_config *dc;
1819 
1820 	/*
1821 	 * If interrupts are enabled, callback now.
1822 	 */
1823 	if (cold == 0) {
1824 		(*func)(dev);
1825 		return;
1826 	}
1827 
1828 #ifdef DIAGNOSTIC
1829 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1830 		if (dc->dc_dev == dev)
1831 			panic("config_interrupts: deferred twice");
1832 	}
1833 #endif
1834 
1835 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1836 	if (dc == NULL)
1837 		panic("config_interrupts: unable to allocate callback");
1838 
1839 	dc->dc_dev = dev;
1840 	dc->dc_func = func;
1841 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1842 	config_pending_incr();
1843 }
1844 
1845 /*
1846  * Process a deferred configuration queue.
1847  */
1848 static void
1849 config_process_deferred(struct deferred_config_head *queue,
1850     device_t parent)
1851 {
1852 	struct deferred_config *dc, *ndc;
1853 
1854 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1855 		ndc = TAILQ_NEXT(dc, dc_queue);
1856 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1857 			TAILQ_REMOVE(queue, dc, dc_queue);
1858 			(*dc->dc_func)(dc->dc_dev);
1859 			kmem_free(dc, sizeof(*dc));
1860 			config_pending_decr();
1861 		}
1862 	}
1863 }
1864 
1865 /*
1866  * Manipulate the config_pending semaphore.
1867  */
1868 void
1869 config_pending_incr(void)
1870 {
1871 
1872 	mutex_enter(&config_misc_lock);
1873 	config_pending++;
1874 	mutex_exit(&config_misc_lock);
1875 }
1876 
1877 void
1878 config_pending_decr(void)
1879 {
1880 
1881 #ifdef DIAGNOSTIC
1882 	if (config_pending == 0)
1883 		panic("config_pending_decr: config_pending == 0");
1884 #endif
1885 	mutex_enter(&config_misc_lock);
1886 	config_pending--;
1887 	if (config_pending == 0)
1888 		cv_broadcast(&config_misc_cv);
1889 	mutex_exit(&config_misc_lock);
1890 }
1891 
1892 /*
1893  * Register a "finalization" routine.  Finalization routines are
1894  * called iteratively once all real devices have been found during
1895  * autoconfiguration, for as long as any one finalizer has done
1896  * any work.
1897  */
1898 int
1899 config_finalize_register(device_t dev, int (*fn)(device_t))
1900 {
1901 	struct finalize_hook *f;
1902 
1903 	/*
1904 	 * If finalization has already been done, invoke the
1905 	 * callback function now.
1906 	 */
1907 	if (config_finalize_done) {
1908 		while ((*fn)(dev) != 0)
1909 			/* loop */ ;
1910 	}
1911 
1912 	/* Ensure this isn't already on the list. */
1913 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1914 		if (f->f_func == fn && f->f_dev == dev)
1915 			return EEXIST;
1916 	}
1917 
1918 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
1919 	f->f_func = fn;
1920 	f->f_dev = dev;
1921 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1922 
1923 	return 0;
1924 }
1925 
1926 void
1927 config_finalize(void)
1928 {
1929 	struct finalize_hook *f;
1930 	struct pdevinit *pdev;
1931 	extern struct pdevinit pdevinit[];
1932 	int errcnt, rv;
1933 
1934 	/*
1935 	 * Now that device driver threads have been created, wait for
1936 	 * them to finish any deferred autoconfiguration.
1937 	 */
1938 	mutex_enter(&config_misc_lock);
1939 	while (config_pending != 0)
1940 		cv_wait(&config_misc_cv, &config_misc_lock);
1941 	mutex_exit(&config_misc_lock);
1942 
1943 	KERNEL_LOCK(1, NULL);
1944 
1945 	/* Attach pseudo-devices. */
1946 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1947 		(*pdev->pdev_attach)(pdev->pdev_count);
1948 
1949 	/* Run the hooks until none of them does any work. */
1950 	do {
1951 		rv = 0;
1952 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1953 			rv |= (*f->f_func)(f->f_dev);
1954 	} while (rv != 0);
1955 
1956 	config_finalize_done = 1;
1957 
1958 	/* Now free all the hooks. */
1959 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1960 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1961 		kmem_free(f, sizeof(*f));
1962 	}
1963 
1964 	KERNEL_UNLOCK_ONE(NULL);
1965 
1966 	errcnt = aprint_get_error_count();
1967 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1968 	    (boothowto & AB_VERBOSE) == 0) {
1969 		mutex_enter(&config_misc_lock);
1970 		if (config_do_twiddle) {
1971 			config_do_twiddle = 0;
1972 			printf_nolog(" done.\n");
1973 		}
1974 		mutex_exit(&config_misc_lock);
1975 		if (errcnt != 0) {
1976 			printf("WARNING: %d error%s while detecting hardware; "
1977 			    "check system log.\n", errcnt,
1978 			    errcnt == 1 ? "" : "s");
1979 		}
1980 	}
1981 }
1982 
1983 void
1984 config_twiddle_init()
1985 {
1986 
1987 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1988 		config_do_twiddle = 1;
1989 	}
1990 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1991 }
1992 
1993 void
1994 config_twiddle_fn(void *cookie)
1995 {
1996 
1997 	mutex_enter(&config_misc_lock);
1998 	if (config_do_twiddle) {
1999 		twiddle();
2000 		callout_schedule(&config_twiddle_ch, mstohz(100));
2001 	}
2002 	mutex_exit(&config_misc_lock);
2003 }
2004 
2005 static int
2006 config_alldevs_lock(void)
2007 {
2008 	int s;
2009 
2010 	s = splhigh();
2011 	mutex_enter(&alldevs_mtx);
2012 	return s;
2013 }
2014 
2015 static void
2016 config_alldevs_enter(struct alldevs_foray *af)
2017 {
2018 	TAILQ_INIT(&af->af_garbage);
2019 	af->af_s = config_alldevs_lock();
2020 	config_collect_garbage(&af->af_garbage);
2021 }
2022 
2023 static void
2024 config_alldevs_exit(struct alldevs_foray *af)
2025 {
2026 	config_alldevs_unlock(af->af_s);
2027 	config_dump_garbage(&af->af_garbage);
2028 }
2029 
2030 static void
2031 config_alldevs_unlock(int s)
2032 {
2033 	mutex_exit(&alldevs_mtx);
2034 	splx(s);
2035 }
2036 
2037 /*
2038  * device_lookup:
2039  *
2040  *	Look up a device instance for a given driver.
2041  */
2042 device_t
2043 device_lookup(cfdriver_t cd, int unit)
2044 {
2045 	device_t dv;
2046 	int s;
2047 
2048 	s = config_alldevs_lock();
2049 	KASSERT(mutex_owned(&alldevs_mtx));
2050 	if (unit < 0 || unit >= cd->cd_ndevs)
2051 		dv = NULL;
2052 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2053 		dv = NULL;
2054 	config_alldevs_unlock(s);
2055 
2056 	return dv;
2057 }
2058 
2059 /*
2060  * device_lookup_private:
2061  *
2062  *	Look up a softc instance for a given driver.
2063  */
2064 void *
2065 device_lookup_private(cfdriver_t cd, int unit)
2066 {
2067 
2068 	return device_private(device_lookup(cd, unit));
2069 }
2070 
2071 /*
2072  * device_find_by_xname:
2073  *
2074  *	Returns the device of the given name or NULL if it doesn't exist.
2075  */
2076 device_t
2077 device_find_by_xname(const char *name)
2078 {
2079 	device_t dv;
2080 	deviter_t di;
2081 
2082 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2083 		if (strcmp(device_xname(dv), name) == 0)
2084 			break;
2085 	}
2086 	deviter_release(&di);
2087 
2088 	return dv;
2089 }
2090 
2091 /*
2092  * device_find_by_driver_unit:
2093  *
2094  *	Returns the device of the given driver name and unit or
2095  *	NULL if it doesn't exist.
2096  */
2097 device_t
2098 device_find_by_driver_unit(const char *name, int unit)
2099 {
2100 	struct cfdriver *cd;
2101 
2102 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2103 		return NULL;
2104 	return device_lookup(cd, unit);
2105 }
2106 
2107 /*
2108  * Power management related functions.
2109  */
2110 
2111 bool
2112 device_pmf_is_registered(device_t dev)
2113 {
2114 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2115 }
2116 
2117 bool
2118 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2119 {
2120 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2121 		return true;
2122 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2123 		return false;
2124 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2125 	    dev->dv_driver_suspend != NULL &&
2126 	    !(*dev->dv_driver_suspend)(dev, qual))
2127 		return false;
2128 
2129 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2130 	return true;
2131 }
2132 
2133 bool
2134 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2135 {
2136 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2137 		return true;
2138 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2139 		return false;
2140 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2141 	    dev->dv_driver_resume != NULL &&
2142 	    !(*dev->dv_driver_resume)(dev, qual))
2143 		return false;
2144 
2145 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2146 	return true;
2147 }
2148 
2149 bool
2150 device_pmf_driver_shutdown(device_t dev, int how)
2151 {
2152 
2153 	if (*dev->dv_driver_shutdown != NULL &&
2154 	    !(*dev->dv_driver_shutdown)(dev, how))
2155 		return false;
2156 	return true;
2157 }
2158 
2159 bool
2160 device_pmf_driver_register(device_t dev,
2161     bool (*suspend)(device_t, const pmf_qual_t *),
2162     bool (*resume)(device_t, const pmf_qual_t *),
2163     bool (*shutdown)(device_t, int))
2164 {
2165 	dev->dv_driver_suspend = suspend;
2166 	dev->dv_driver_resume = resume;
2167 	dev->dv_driver_shutdown = shutdown;
2168 	dev->dv_flags |= DVF_POWER_HANDLERS;
2169 	return true;
2170 }
2171 
2172 static const char *
2173 curlwp_name(void)
2174 {
2175 	if (curlwp->l_name != NULL)
2176 		return curlwp->l_name;
2177 	else
2178 		return curlwp->l_proc->p_comm;
2179 }
2180 
2181 void
2182 device_pmf_driver_deregister(device_t dev)
2183 {
2184 	device_lock_t dvl = device_getlock(dev);
2185 
2186 	dev->dv_driver_suspend = NULL;
2187 	dev->dv_driver_resume = NULL;
2188 
2189 	mutex_enter(&dvl->dvl_mtx);
2190 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2191 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2192 		/* Wake a thread that waits for the lock.  That
2193 		 * thread will fail to acquire the lock, and then
2194 		 * it will wake the next thread that waits for the
2195 		 * lock, or else it will wake us.
2196 		 */
2197 		cv_signal(&dvl->dvl_cv);
2198 		pmflock_debug(dev, __func__, __LINE__);
2199 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2200 		pmflock_debug(dev, __func__, __LINE__);
2201 	}
2202 	mutex_exit(&dvl->dvl_mtx);
2203 }
2204 
2205 bool
2206 device_pmf_driver_child_register(device_t dev)
2207 {
2208 	device_t parent = device_parent(dev);
2209 
2210 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2211 		return true;
2212 	return (*parent->dv_driver_child_register)(dev);
2213 }
2214 
2215 void
2216 device_pmf_driver_set_child_register(device_t dev,
2217     bool (*child_register)(device_t))
2218 {
2219 	dev->dv_driver_child_register = child_register;
2220 }
2221 
2222 static void
2223 pmflock_debug(device_t dev, const char *func, int line)
2224 {
2225 	device_lock_t dvl = device_getlock(dev);
2226 
2227 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2228 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2229 	    dev->dv_flags);
2230 }
2231 
2232 static bool
2233 device_pmf_lock1(device_t dev)
2234 {
2235 	device_lock_t dvl = device_getlock(dev);
2236 
2237 	while (device_pmf_is_registered(dev) &&
2238 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2239 		dvl->dvl_nwait++;
2240 		pmflock_debug(dev, __func__, __LINE__);
2241 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2242 		pmflock_debug(dev, __func__, __LINE__);
2243 		dvl->dvl_nwait--;
2244 	}
2245 	if (!device_pmf_is_registered(dev)) {
2246 		pmflock_debug(dev, __func__, __LINE__);
2247 		/* We could not acquire the lock, but some other thread may
2248 		 * wait for it, also.  Wake that thread.
2249 		 */
2250 		cv_signal(&dvl->dvl_cv);
2251 		return false;
2252 	}
2253 	dvl->dvl_nlock++;
2254 	dvl->dvl_holder = curlwp;
2255 	pmflock_debug(dev, __func__, __LINE__);
2256 	return true;
2257 }
2258 
2259 bool
2260 device_pmf_lock(device_t dev)
2261 {
2262 	bool rc;
2263 	device_lock_t dvl = device_getlock(dev);
2264 
2265 	mutex_enter(&dvl->dvl_mtx);
2266 	rc = device_pmf_lock1(dev);
2267 	mutex_exit(&dvl->dvl_mtx);
2268 
2269 	return rc;
2270 }
2271 
2272 void
2273 device_pmf_unlock(device_t dev)
2274 {
2275 	device_lock_t dvl = device_getlock(dev);
2276 
2277 	KASSERT(dvl->dvl_nlock > 0);
2278 	mutex_enter(&dvl->dvl_mtx);
2279 	if (--dvl->dvl_nlock == 0)
2280 		dvl->dvl_holder = NULL;
2281 	cv_signal(&dvl->dvl_cv);
2282 	pmflock_debug(dev, __func__, __LINE__);
2283 	mutex_exit(&dvl->dvl_mtx);
2284 }
2285 
2286 device_lock_t
2287 device_getlock(device_t dev)
2288 {
2289 	return &dev->dv_lock;
2290 }
2291 
2292 void *
2293 device_pmf_bus_private(device_t dev)
2294 {
2295 	return dev->dv_bus_private;
2296 }
2297 
2298 bool
2299 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2300 {
2301 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2302 		return true;
2303 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2304 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2305 		return false;
2306 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2307 	    dev->dv_bus_suspend != NULL &&
2308 	    !(*dev->dv_bus_suspend)(dev, qual))
2309 		return false;
2310 
2311 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2312 	return true;
2313 }
2314 
2315 bool
2316 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2317 {
2318 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2319 		return true;
2320 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2321 	    dev->dv_bus_resume != NULL &&
2322 	    !(*dev->dv_bus_resume)(dev, qual))
2323 		return false;
2324 
2325 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2326 	return true;
2327 }
2328 
2329 bool
2330 device_pmf_bus_shutdown(device_t dev, int how)
2331 {
2332 
2333 	if (*dev->dv_bus_shutdown != NULL &&
2334 	    !(*dev->dv_bus_shutdown)(dev, how))
2335 		return false;
2336 	return true;
2337 }
2338 
2339 void
2340 device_pmf_bus_register(device_t dev, void *priv,
2341     bool (*suspend)(device_t, const pmf_qual_t *),
2342     bool (*resume)(device_t, const pmf_qual_t *),
2343     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2344 {
2345 	dev->dv_bus_private = priv;
2346 	dev->dv_bus_resume = resume;
2347 	dev->dv_bus_suspend = suspend;
2348 	dev->dv_bus_shutdown = shutdown;
2349 	dev->dv_bus_deregister = deregister;
2350 }
2351 
2352 void
2353 device_pmf_bus_deregister(device_t dev)
2354 {
2355 	if (dev->dv_bus_deregister == NULL)
2356 		return;
2357 	(*dev->dv_bus_deregister)(dev);
2358 	dev->dv_bus_private = NULL;
2359 	dev->dv_bus_suspend = NULL;
2360 	dev->dv_bus_resume = NULL;
2361 	dev->dv_bus_deregister = NULL;
2362 }
2363 
2364 void *
2365 device_pmf_class_private(device_t dev)
2366 {
2367 	return dev->dv_class_private;
2368 }
2369 
2370 bool
2371 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2372 {
2373 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2374 		return true;
2375 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2376 	    dev->dv_class_suspend != NULL &&
2377 	    !(*dev->dv_class_suspend)(dev, qual))
2378 		return false;
2379 
2380 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2381 	return true;
2382 }
2383 
2384 bool
2385 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2386 {
2387 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2388 		return true;
2389 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2390 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2391 		return false;
2392 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2393 	    dev->dv_class_resume != NULL &&
2394 	    !(*dev->dv_class_resume)(dev, qual))
2395 		return false;
2396 
2397 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2398 	return true;
2399 }
2400 
2401 void
2402 device_pmf_class_register(device_t dev, void *priv,
2403     bool (*suspend)(device_t, const pmf_qual_t *),
2404     bool (*resume)(device_t, const pmf_qual_t *),
2405     void (*deregister)(device_t))
2406 {
2407 	dev->dv_class_private = priv;
2408 	dev->dv_class_suspend = suspend;
2409 	dev->dv_class_resume = resume;
2410 	dev->dv_class_deregister = deregister;
2411 }
2412 
2413 void
2414 device_pmf_class_deregister(device_t dev)
2415 {
2416 	if (dev->dv_class_deregister == NULL)
2417 		return;
2418 	(*dev->dv_class_deregister)(dev);
2419 	dev->dv_class_private = NULL;
2420 	dev->dv_class_suspend = NULL;
2421 	dev->dv_class_resume = NULL;
2422 	dev->dv_class_deregister = NULL;
2423 }
2424 
2425 bool
2426 device_active(device_t dev, devactive_t type)
2427 {
2428 	size_t i;
2429 
2430 	if (dev->dv_activity_count == 0)
2431 		return false;
2432 
2433 	for (i = 0; i < dev->dv_activity_count; ++i) {
2434 		if (dev->dv_activity_handlers[i] == NULL)
2435 			break;
2436 		(*dev->dv_activity_handlers[i])(dev, type);
2437 	}
2438 
2439 	return true;
2440 }
2441 
2442 bool
2443 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2444 {
2445 	void (**new_handlers)(device_t, devactive_t);
2446 	void (**old_handlers)(device_t, devactive_t);
2447 	size_t i, old_size, new_size;
2448 	int s;
2449 
2450 	old_handlers = dev->dv_activity_handlers;
2451 	old_size = dev->dv_activity_count;
2452 
2453 	for (i = 0; i < old_size; ++i) {
2454 		KASSERT(old_handlers[i] != handler);
2455 		if (old_handlers[i] == NULL) {
2456 			old_handlers[i] = handler;
2457 			return true;
2458 		}
2459 	}
2460 
2461 	new_size = old_size + 4;
2462 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2463 
2464 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2465 	new_handlers[old_size] = handler;
2466 	memset(new_handlers + old_size + 1, 0,
2467 	    sizeof(int [new_size - (old_size+1)]));
2468 
2469 	s = splhigh();
2470 	dev->dv_activity_count = new_size;
2471 	dev->dv_activity_handlers = new_handlers;
2472 	splx(s);
2473 
2474 	if (old_handlers != NULL)
2475 		kmem_free(old_handlers, sizeof(void * [old_size]));
2476 
2477 	return true;
2478 }
2479 
2480 void
2481 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2482 {
2483 	void (**old_handlers)(device_t, devactive_t);
2484 	size_t i, old_size;
2485 	int s;
2486 
2487 	old_handlers = dev->dv_activity_handlers;
2488 	old_size = dev->dv_activity_count;
2489 
2490 	for (i = 0; i < old_size; ++i) {
2491 		if (old_handlers[i] == handler)
2492 			break;
2493 		if (old_handlers[i] == NULL)
2494 			return; /* XXX panic? */
2495 	}
2496 
2497 	if (i == old_size)
2498 		return; /* XXX panic? */
2499 
2500 	for (; i < old_size - 1; ++i) {
2501 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2502 			continue;
2503 
2504 		if (i == 0) {
2505 			s = splhigh();
2506 			dev->dv_activity_count = 0;
2507 			dev->dv_activity_handlers = NULL;
2508 			splx(s);
2509 			kmem_free(old_handlers, sizeof(void *[old_size]));
2510 		}
2511 		return;
2512 	}
2513 	old_handlers[i] = NULL;
2514 }
2515 
2516 /* Return true iff the device_t `dev' exists at generation `gen'. */
2517 static bool
2518 device_exists_at(device_t dv, devgen_t gen)
2519 {
2520 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2521 	    dv->dv_add_gen <= gen;
2522 }
2523 
2524 static bool
2525 deviter_visits(const deviter_t *di, device_t dv)
2526 {
2527 	return device_exists_at(dv, di->di_gen);
2528 }
2529 
2530 /*
2531  * Device Iteration
2532  *
2533  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2534  *     each device_t's in the device tree.
2535  *
2536  * deviter_init(di, flags): initialize the device iterator `di'
2537  *     to "walk" the device tree.  deviter_next(di) will return
2538  *     the first device_t in the device tree, or NULL if there are
2539  *     no devices.
2540  *
2541  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2542  *     caller intends to modify the device tree by calling
2543  *     config_detach(9) on devices in the order that the iterator
2544  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2545  *     nearest the "root" of the device tree to be returned, first;
2546  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2547  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2548  *     indicating both that deviter_init() should not respect any
2549  *     locks on the device tree, and that deviter_next(di) may run
2550  *     in more than one LWP before the walk has finished.
2551  *
2552  *     Only one DEVITER_F_RW iterator may be in the device tree at
2553  *     once.
2554  *
2555  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2556  *
2557  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2558  *     DEVITER_F_LEAVES_FIRST are used in combination.
2559  *
2560  * deviter_first(di, flags): initialize the device iterator `di'
2561  *     and return the first device_t in the device tree, or NULL
2562  *     if there are no devices.  The statement
2563  *
2564  *         dv = deviter_first(di);
2565  *
2566  *     is shorthand for
2567  *
2568  *         deviter_init(di);
2569  *         dv = deviter_next(di);
2570  *
2571  * deviter_next(di): return the next device_t in the device tree,
2572  *     or NULL if there are no more devices.  deviter_next(di)
2573  *     is undefined if `di' was not initialized with deviter_init() or
2574  *     deviter_first().
2575  *
2576  * deviter_release(di): stops iteration (subsequent calls to
2577  *     deviter_next() will return NULL), releases any locks and
2578  *     resources held by the device iterator.
2579  *
2580  * Device iteration does not return device_t's in any particular
2581  * order.  An iterator will never return the same device_t twice.
2582  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2583  * is called repeatedly on the same `di', it will eventually return
2584  * NULL.  It is ok to attach/detach devices during device iteration.
2585  */
2586 void
2587 deviter_init(deviter_t *di, deviter_flags_t flags)
2588 {
2589 	device_t dv;
2590 	int s;
2591 
2592 	memset(di, 0, sizeof(*di));
2593 
2594 	s = config_alldevs_lock();
2595 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2596 		flags |= DEVITER_F_RW;
2597 
2598 	if ((flags & DEVITER_F_RW) != 0)
2599 		alldevs_nwrite++;
2600 	else
2601 		alldevs_nread++;
2602 	di->di_gen = alldevs_gen++;
2603 	config_alldevs_unlock(s);
2604 
2605 	di->di_flags = flags;
2606 
2607 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2608 	case DEVITER_F_LEAVES_FIRST:
2609 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2610 			if (!deviter_visits(di, dv))
2611 				continue;
2612 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2613 		}
2614 		break;
2615 	case DEVITER_F_ROOT_FIRST:
2616 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2617 			if (!deviter_visits(di, dv))
2618 				continue;
2619 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2620 		}
2621 		break;
2622 	default:
2623 		break;
2624 	}
2625 
2626 	deviter_reinit(di);
2627 }
2628 
2629 static void
2630 deviter_reinit(deviter_t *di)
2631 {
2632 	if ((di->di_flags & DEVITER_F_RW) != 0)
2633 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2634 	else
2635 		di->di_prev = TAILQ_FIRST(&alldevs);
2636 }
2637 
2638 device_t
2639 deviter_first(deviter_t *di, deviter_flags_t flags)
2640 {
2641 	deviter_init(di, flags);
2642 	return deviter_next(di);
2643 }
2644 
2645 static device_t
2646 deviter_next2(deviter_t *di)
2647 {
2648 	device_t dv;
2649 
2650 	dv = di->di_prev;
2651 
2652 	if (dv == NULL)
2653 		return NULL;
2654 
2655 	if ((di->di_flags & DEVITER_F_RW) != 0)
2656 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2657 	else
2658 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2659 
2660 	return dv;
2661 }
2662 
2663 static device_t
2664 deviter_next1(deviter_t *di)
2665 {
2666 	device_t dv;
2667 
2668 	do {
2669 		dv = deviter_next2(di);
2670 	} while (dv != NULL && !deviter_visits(di, dv));
2671 
2672 	return dv;
2673 }
2674 
2675 device_t
2676 deviter_next(deviter_t *di)
2677 {
2678 	device_t dv = NULL;
2679 
2680 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2681 	case 0:
2682 		return deviter_next1(di);
2683 	case DEVITER_F_LEAVES_FIRST:
2684 		while (di->di_curdepth >= 0) {
2685 			if ((dv = deviter_next1(di)) == NULL) {
2686 				di->di_curdepth--;
2687 				deviter_reinit(di);
2688 			} else if (dv->dv_depth == di->di_curdepth)
2689 				break;
2690 		}
2691 		return dv;
2692 	case DEVITER_F_ROOT_FIRST:
2693 		while (di->di_curdepth <= di->di_maxdepth) {
2694 			if ((dv = deviter_next1(di)) == NULL) {
2695 				di->di_curdepth++;
2696 				deviter_reinit(di);
2697 			} else if (dv->dv_depth == di->di_curdepth)
2698 				break;
2699 		}
2700 		return dv;
2701 	default:
2702 		return NULL;
2703 	}
2704 }
2705 
2706 void
2707 deviter_release(deviter_t *di)
2708 {
2709 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2710 	int s;
2711 
2712 	s = config_alldevs_lock();
2713 	if (rw)
2714 		--alldevs_nwrite;
2715 	else
2716 		--alldevs_nread;
2717 	/* XXX wake a garbage-collection thread */
2718 	config_alldevs_unlock(s);
2719 }
2720 
2721 const char *
2722 cfdata_ifattr(const struct cfdata *cf)
2723 {
2724 	return cf->cf_pspec->cfp_iattr;
2725 }
2726 
2727 bool
2728 ifattr_match(const char *snull, const char *t)
2729 {
2730 	return (snull == NULL) || strcmp(snull, t) == 0;
2731 }
2732 
2733 void
2734 null_childdetached(device_t self, device_t child)
2735 {
2736 	/* do nothing */
2737 }
2738 
2739 static void
2740 sysctl_detach_setup(struct sysctllog **clog)
2741 {
2742 	const struct sysctlnode *node = NULL;
2743 
2744 	sysctl_createv(clog, 0, NULL, &node,
2745 		CTLFLAG_PERMANENT,
2746 		CTLTYPE_NODE, "kern", NULL,
2747 		NULL, 0, NULL, 0,
2748 		CTL_KERN, CTL_EOL);
2749 
2750 	if (node == NULL)
2751 		return;
2752 
2753 	sysctl_createv(clog, 0, &node, NULL,
2754 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2755 		CTLTYPE_INT, "detachall",
2756 		SYSCTL_DESCR("Detach all devices at shutdown"),
2757 		NULL, 0, &detachall, 0,
2758 		CTL_CREATE, CTL_EOL);
2759 }
2760