1 /* $NetBSD: subr_autoconf.c,v 1.241 2016/03/28 09:50:40 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.241 2016/03/28 09:50:40 skrll Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/disklabel.h> 90 #include <sys/conf.h> 91 #include <sys/kauth.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 111 #include <sys/disk.h> 112 113 #include <sys/rndsource.h> 114 115 #include <machine/limits.h> 116 117 /* 118 * Autoconfiguration subroutines. 119 */ 120 121 /* 122 * Device autoconfiguration timings are mixed into the entropy pool. 123 */ 124 extern krndsource_t rnd_autoconf_source; 125 126 /* 127 * ioconf.c exports exactly two names: cfdata and cfroots. All system 128 * devices and drivers are found via these tables. 129 */ 130 extern struct cfdata cfdata[]; 131 extern const short cfroots[]; 132 133 /* 134 * List of all cfdriver structures. We use this to detect duplicates 135 * when other cfdrivers are loaded. 136 */ 137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 138 extern struct cfdriver * const cfdriver_list_initial[]; 139 140 /* 141 * Initial list of cfattach's. 142 */ 143 extern const struct cfattachinit cfattachinit[]; 144 145 /* 146 * List of cfdata tables. We always have one such list -- the one 147 * built statically when the kernel was configured. 148 */ 149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 150 static struct cftable initcftable; 151 152 #define ROOT ((device_t)NULL) 153 154 struct matchinfo { 155 cfsubmatch_t fn; 156 device_t parent; 157 const int *locs; 158 void *aux; 159 struct cfdata *match; 160 int pri; 161 }; 162 163 struct alldevs_foray { 164 int af_s; 165 struct devicelist af_garbage; 166 }; 167 168 static char *number(char *, int); 169 static void mapply(struct matchinfo *, cfdata_t); 170 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 171 static void config_devdelete(device_t); 172 static void config_devunlink(device_t, struct devicelist *); 173 static void config_makeroom(int, struct cfdriver *); 174 static void config_devlink(device_t); 175 static void config_alldevs_enter(struct alldevs_foray *); 176 static void config_alldevs_exit(struct alldevs_foray *); 177 static void config_add_attrib_dict(device_t); 178 179 static void config_collect_garbage(struct devicelist *); 180 static void config_dump_garbage(struct devicelist *); 181 182 static void pmflock_debug(device_t, const char *, int); 183 184 static device_t deviter_next1(deviter_t *); 185 static void deviter_reinit(deviter_t *); 186 187 struct deferred_config { 188 TAILQ_ENTRY(deferred_config) dc_queue; 189 device_t dc_dev; 190 void (*dc_func)(device_t); 191 }; 192 193 TAILQ_HEAD(deferred_config_head, deferred_config); 194 195 struct deferred_config_head deferred_config_queue = 196 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 197 struct deferred_config_head interrupt_config_queue = 198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 199 int interrupt_config_threads = 8; 200 struct deferred_config_head mountroot_config_queue = 201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 202 int mountroot_config_threads = 2; 203 static lwp_t **mountroot_config_lwpids; 204 static size_t mountroot_config_lwpids_size; 205 static bool root_is_mounted = false; 206 207 static void config_process_deferred(struct deferred_config_head *, device_t); 208 209 /* Hooks to finalize configuration once all real devices have been found. */ 210 struct finalize_hook { 211 TAILQ_ENTRY(finalize_hook) f_list; 212 int (*f_func)(device_t); 213 device_t f_dev; 214 }; 215 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 216 TAILQ_HEAD_INITIALIZER(config_finalize_list); 217 static int config_finalize_done; 218 219 /* list of all devices */ 220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 221 static kmutex_t alldevs_mtx; 222 static volatile bool alldevs_garbage = false; 223 static volatile devgen_t alldevs_gen = 1; 224 static volatile int alldevs_nread = 0; 225 static volatile int alldevs_nwrite = 0; 226 227 static int config_pending; /* semaphore for mountroot */ 228 static kmutex_t config_misc_lock; 229 static kcondvar_t config_misc_cv; 230 231 static bool detachall = false; 232 233 #define STREQ(s1, s2) \ 234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 235 236 static bool config_initialized = false; /* config_init() has been called. */ 237 238 static int config_do_twiddle; 239 static callout_t config_twiddle_ch; 240 241 static void sysctl_detach_setup(struct sysctllog **); 242 243 int no_devmon_insert(const char *, prop_dictionary_t); 244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; 245 246 typedef int (*cfdriver_fn)(struct cfdriver *); 247 static int 248 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 249 cfdriver_fn drv_do, cfdriver_fn drv_undo, 250 const char *style, bool dopanic) 251 { 252 void (*pr)(const char *, ...) __printflike(1, 2) = 253 dopanic ? panic : printf; 254 int i, error = 0, e2 __diagused; 255 256 for (i = 0; cfdriverv[i] != NULL; i++) { 257 if ((error = drv_do(cfdriverv[i])) != 0) { 258 pr("configure: `%s' driver %s failed: %d", 259 cfdriverv[i]->cd_name, style, error); 260 goto bad; 261 } 262 } 263 264 KASSERT(error == 0); 265 return 0; 266 267 bad: 268 printf("\n"); 269 for (i--; i >= 0; i--) { 270 e2 = drv_undo(cfdriverv[i]); 271 KASSERT(e2 == 0); 272 } 273 274 return error; 275 } 276 277 typedef int (*cfattach_fn)(const char *, struct cfattach *); 278 static int 279 frob_cfattachvec(const struct cfattachinit *cfattachv, 280 cfattach_fn att_do, cfattach_fn att_undo, 281 const char *style, bool dopanic) 282 { 283 const struct cfattachinit *cfai = NULL; 284 void (*pr)(const char *, ...) __printflike(1, 2) = 285 dopanic ? panic : printf; 286 int j = 0, error = 0, e2 __diagused; 287 288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 289 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 290 if ((error = att_do(cfai->cfai_name, 291 cfai->cfai_list[j])) != 0) { 292 pr("configure: attachment `%s' " 293 "of `%s' driver %s failed: %d", 294 cfai->cfai_list[j]->ca_name, 295 cfai->cfai_name, style, error); 296 goto bad; 297 } 298 } 299 } 300 301 KASSERT(error == 0); 302 return 0; 303 304 bad: 305 /* 306 * Rollback in reverse order. dunno if super-important, but 307 * do that anyway. Although the code looks a little like 308 * someone did a little integration (in the math sense). 309 */ 310 printf("\n"); 311 if (cfai) { 312 bool last; 313 314 for (last = false; last == false; ) { 315 if (cfai == &cfattachv[0]) 316 last = true; 317 for (j--; j >= 0; j--) { 318 e2 = att_undo(cfai->cfai_name, 319 cfai->cfai_list[j]); 320 KASSERT(e2 == 0); 321 } 322 if (!last) { 323 cfai--; 324 for (j = 0; cfai->cfai_list[j] != NULL; j++) 325 ; 326 } 327 } 328 } 329 330 return error; 331 } 332 333 /* 334 * Initialize the autoconfiguration data structures. Normally this 335 * is done by configure(), but some platforms need to do this very 336 * early (to e.g. initialize the console). 337 */ 338 void 339 config_init(void) 340 { 341 342 KASSERT(config_initialized == false); 343 344 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM); 345 346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 347 cv_init(&config_misc_cv, "cfgmisc"); 348 349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 350 351 frob_cfdrivervec(cfdriver_list_initial, 352 config_cfdriver_attach, NULL, "bootstrap", true); 353 frob_cfattachvec(cfattachinit, 354 config_cfattach_attach, NULL, "bootstrap", true); 355 356 initcftable.ct_cfdata = cfdata; 357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 358 359 config_initialized = true; 360 } 361 362 /* 363 * Init or fini drivers and attachments. Either all or none 364 * are processed (via rollback). It would be nice if this were 365 * atomic to outside consumers, but with the current state of 366 * locking ... 367 */ 368 int 369 config_init_component(struct cfdriver * const *cfdriverv, 370 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 371 { 372 int error; 373 374 if ((error = frob_cfdrivervec(cfdriverv, 375 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 376 return error; 377 if ((error = frob_cfattachvec(cfattachv, 378 config_cfattach_attach, config_cfattach_detach, 379 "init", false)) != 0) { 380 frob_cfdrivervec(cfdriverv, 381 config_cfdriver_detach, NULL, "init rollback", true); 382 return error; 383 } 384 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 385 frob_cfattachvec(cfattachv, 386 config_cfattach_detach, NULL, "init rollback", true); 387 frob_cfdrivervec(cfdriverv, 388 config_cfdriver_detach, NULL, "init rollback", true); 389 return error; 390 } 391 392 return 0; 393 } 394 395 int 396 config_fini_component(struct cfdriver * const *cfdriverv, 397 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 398 { 399 int error; 400 401 if ((error = config_cfdata_detach(cfdatav)) != 0) 402 return error; 403 if ((error = frob_cfattachvec(cfattachv, 404 config_cfattach_detach, config_cfattach_attach, 405 "fini", false)) != 0) { 406 if (config_cfdata_attach(cfdatav, 0) != 0) 407 panic("config_cfdata fini rollback failed"); 408 return error; 409 } 410 if ((error = frob_cfdrivervec(cfdriverv, 411 config_cfdriver_detach, config_cfdriver_attach, 412 "fini", false)) != 0) { 413 frob_cfattachvec(cfattachv, 414 config_cfattach_attach, NULL, "fini rollback", true); 415 if (config_cfdata_attach(cfdatav, 0) != 0) 416 panic("config_cfdata fini rollback failed"); 417 return error; 418 } 419 420 return 0; 421 } 422 423 void 424 config_init_mi(void) 425 { 426 427 if (!config_initialized) 428 config_init(); 429 430 sysctl_detach_setup(NULL); 431 } 432 433 void 434 config_deferred(device_t dev) 435 { 436 config_process_deferred(&deferred_config_queue, dev); 437 config_process_deferred(&interrupt_config_queue, dev); 438 config_process_deferred(&mountroot_config_queue, dev); 439 } 440 441 static void 442 config_interrupts_thread(void *cookie) 443 { 444 struct deferred_config *dc; 445 446 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 447 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 448 (*dc->dc_func)(dc->dc_dev); 449 config_pending_decr(dc->dc_dev); 450 kmem_free(dc, sizeof(*dc)); 451 } 452 kthread_exit(0); 453 } 454 455 void 456 config_create_interruptthreads(void) 457 { 458 int i; 459 460 for (i = 0; i < interrupt_config_threads; i++) { 461 (void)kthread_create(PRI_NONE, 0, NULL, 462 config_interrupts_thread, NULL, NULL, "configintr"); 463 } 464 } 465 466 static void 467 config_mountroot_thread(void *cookie) 468 { 469 struct deferred_config *dc; 470 471 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 472 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 473 (*dc->dc_func)(dc->dc_dev); 474 kmem_free(dc, sizeof(*dc)); 475 } 476 kthread_exit(0); 477 } 478 479 void 480 config_create_mountrootthreads(void) 481 { 482 int i; 483 484 if (!root_is_mounted) 485 root_is_mounted = true; 486 487 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * 488 mountroot_config_threads; 489 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, 490 KM_NOSLEEP); 491 KASSERT(mountroot_config_lwpids); 492 for (i = 0; i < mountroot_config_threads; i++) { 493 mountroot_config_lwpids[i] = 0; 494 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL, 495 config_mountroot_thread, NULL, 496 &mountroot_config_lwpids[i], 497 "configroot"); 498 } 499 } 500 501 void 502 config_finalize_mountroot(void) 503 { 504 int i, error; 505 506 for (i = 0; i < mountroot_config_threads; i++) { 507 if (mountroot_config_lwpids[i] == 0) 508 continue; 509 510 error = kthread_join(mountroot_config_lwpids[i]); 511 if (error) 512 printf("%s: thread %x joined with error %d\n", 513 __func__, i, error); 514 } 515 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); 516 } 517 518 /* 519 * Announce device attach/detach to userland listeners. 520 */ 521 522 int 523 no_devmon_insert(const char *name, prop_dictionary_t p) 524 { 525 526 return ENODEV; 527 } 528 529 static void 530 devmon_report_device(device_t dev, bool isattach) 531 { 532 prop_dictionary_t ev; 533 const char *parent; 534 const char *what; 535 device_t pdev = device_parent(dev); 536 537 /* If currently no drvctl device, just return */ 538 if (devmon_insert_vec == no_devmon_insert) 539 return; 540 541 ev = prop_dictionary_create(); 542 if (ev == NULL) 543 return; 544 545 what = (isattach ? "device-attach" : "device-detach"); 546 parent = (pdev == NULL ? "root" : device_xname(pdev)); 547 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 548 !prop_dictionary_set_cstring(ev, "parent", parent)) { 549 prop_object_release(ev); 550 return; 551 } 552 553 if ((*devmon_insert_vec)(what, ev) != 0) 554 prop_object_release(ev); 555 } 556 557 /* 558 * Add a cfdriver to the system. 559 */ 560 int 561 config_cfdriver_attach(struct cfdriver *cd) 562 { 563 struct cfdriver *lcd; 564 565 /* Make sure this driver isn't already in the system. */ 566 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 567 if (STREQ(lcd->cd_name, cd->cd_name)) 568 return EEXIST; 569 } 570 571 LIST_INIT(&cd->cd_attach); 572 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 573 574 return 0; 575 } 576 577 /* 578 * Remove a cfdriver from the system. 579 */ 580 int 581 config_cfdriver_detach(struct cfdriver *cd) 582 { 583 struct alldevs_foray af; 584 int i, rc = 0; 585 586 config_alldevs_enter(&af); 587 /* Make sure there are no active instances. */ 588 for (i = 0; i < cd->cd_ndevs; i++) { 589 if (cd->cd_devs[i] != NULL) { 590 rc = EBUSY; 591 break; 592 } 593 } 594 config_alldevs_exit(&af); 595 596 if (rc != 0) 597 return rc; 598 599 /* ...and no attachments loaded. */ 600 if (LIST_EMPTY(&cd->cd_attach) == 0) 601 return EBUSY; 602 603 LIST_REMOVE(cd, cd_list); 604 605 KASSERT(cd->cd_devs == NULL); 606 607 return 0; 608 } 609 610 /* 611 * Look up a cfdriver by name. 612 */ 613 struct cfdriver * 614 config_cfdriver_lookup(const char *name) 615 { 616 struct cfdriver *cd; 617 618 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 619 if (STREQ(cd->cd_name, name)) 620 return cd; 621 } 622 623 return NULL; 624 } 625 626 /* 627 * Add a cfattach to the specified driver. 628 */ 629 int 630 config_cfattach_attach(const char *driver, struct cfattach *ca) 631 { 632 struct cfattach *lca; 633 struct cfdriver *cd; 634 635 cd = config_cfdriver_lookup(driver); 636 if (cd == NULL) 637 return ESRCH; 638 639 /* Make sure this attachment isn't already on this driver. */ 640 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 641 if (STREQ(lca->ca_name, ca->ca_name)) 642 return EEXIST; 643 } 644 645 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 646 647 return 0; 648 } 649 650 /* 651 * Remove a cfattach from the specified driver. 652 */ 653 int 654 config_cfattach_detach(const char *driver, struct cfattach *ca) 655 { 656 struct alldevs_foray af; 657 struct cfdriver *cd; 658 device_t dev; 659 int i, rc = 0; 660 661 cd = config_cfdriver_lookup(driver); 662 if (cd == NULL) 663 return ESRCH; 664 665 config_alldevs_enter(&af); 666 /* Make sure there are no active instances. */ 667 for (i = 0; i < cd->cd_ndevs; i++) { 668 if ((dev = cd->cd_devs[i]) == NULL) 669 continue; 670 if (dev->dv_cfattach == ca) { 671 rc = EBUSY; 672 break; 673 } 674 } 675 config_alldevs_exit(&af); 676 677 if (rc != 0) 678 return rc; 679 680 LIST_REMOVE(ca, ca_list); 681 682 return 0; 683 } 684 685 /* 686 * Look up a cfattach by name. 687 */ 688 static struct cfattach * 689 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 690 { 691 struct cfattach *ca; 692 693 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 694 if (STREQ(ca->ca_name, atname)) 695 return ca; 696 } 697 698 return NULL; 699 } 700 701 /* 702 * Look up a cfattach by driver/attachment name. 703 */ 704 struct cfattach * 705 config_cfattach_lookup(const char *name, const char *atname) 706 { 707 struct cfdriver *cd; 708 709 cd = config_cfdriver_lookup(name); 710 if (cd == NULL) 711 return NULL; 712 713 return config_cfattach_lookup_cd(cd, atname); 714 } 715 716 /* 717 * Apply the matching function and choose the best. This is used 718 * a few times and we want to keep the code small. 719 */ 720 static void 721 mapply(struct matchinfo *m, cfdata_t cf) 722 { 723 int pri; 724 725 if (m->fn != NULL) { 726 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 727 } else { 728 pri = config_match(m->parent, cf, m->aux); 729 } 730 if (pri > m->pri) { 731 m->match = cf; 732 m->pri = pri; 733 } 734 } 735 736 int 737 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 738 { 739 const struct cfiattrdata *ci; 740 const struct cflocdesc *cl; 741 int nlocs, i; 742 743 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 744 KASSERT(ci); 745 nlocs = ci->ci_loclen; 746 KASSERT(!nlocs || locs); 747 for (i = 0; i < nlocs; i++) { 748 cl = &ci->ci_locdesc[i]; 749 if (cl->cld_defaultstr != NULL && 750 cf->cf_loc[i] == cl->cld_default) 751 continue; 752 if (cf->cf_loc[i] == locs[i]) 753 continue; 754 return 0; 755 } 756 757 return config_match(parent, cf, aux); 758 } 759 760 /* 761 * Helper function: check whether the driver supports the interface attribute 762 * and return its descriptor structure. 763 */ 764 static const struct cfiattrdata * 765 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 766 { 767 const struct cfiattrdata * const *cpp; 768 769 if (cd->cd_attrs == NULL) 770 return 0; 771 772 for (cpp = cd->cd_attrs; *cpp; cpp++) { 773 if (STREQ((*cpp)->ci_name, ia)) { 774 /* Match. */ 775 return *cpp; 776 } 777 } 778 return 0; 779 } 780 781 /* 782 * Lookup an interface attribute description by name. 783 * If the driver is given, consider only its supported attributes. 784 */ 785 const struct cfiattrdata * 786 cfiattr_lookup(const char *name, const struct cfdriver *cd) 787 { 788 const struct cfdriver *d; 789 const struct cfiattrdata *ia; 790 791 if (cd) 792 return cfdriver_get_iattr(cd, name); 793 794 LIST_FOREACH(d, &allcfdrivers, cd_list) { 795 ia = cfdriver_get_iattr(d, name); 796 if (ia) 797 return ia; 798 } 799 return 0; 800 } 801 802 /* 803 * Determine if `parent' is a potential parent for a device spec based 804 * on `cfp'. 805 */ 806 static int 807 cfparent_match(const device_t parent, const struct cfparent *cfp) 808 { 809 struct cfdriver *pcd; 810 811 /* We don't match root nodes here. */ 812 if (cfp == NULL) 813 return 0; 814 815 pcd = parent->dv_cfdriver; 816 KASSERT(pcd != NULL); 817 818 /* 819 * First, ensure this parent has the correct interface 820 * attribute. 821 */ 822 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 823 return 0; 824 825 /* 826 * If no specific parent device instance was specified (i.e. 827 * we're attaching to the attribute only), we're done! 828 */ 829 if (cfp->cfp_parent == NULL) 830 return 1; 831 832 /* 833 * Check the parent device's name. 834 */ 835 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 836 return 0; /* not the same parent */ 837 838 /* 839 * Make sure the unit number matches. 840 */ 841 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 842 cfp->cfp_unit == parent->dv_unit) 843 return 1; 844 845 /* Unit numbers don't match. */ 846 return 0; 847 } 848 849 /* 850 * Helper for config_cfdata_attach(): check all devices whether it could be 851 * parent any attachment in the config data table passed, and rescan. 852 */ 853 static void 854 rescan_with_cfdata(const struct cfdata *cf) 855 { 856 device_t d; 857 const struct cfdata *cf1; 858 deviter_t di; 859 860 861 /* 862 * "alldevs" is likely longer than a modules's cfdata, so make it 863 * the outer loop. 864 */ 865 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 866 867 if (!(d->dv_cfattach->ca_rescan)) 868 continue; 869 870 for (cf1 = cf; cf1->cf_name; cf1++) { 871 872 if (!cfparent_match(d, cf1->cf_pspec)) 873 continue; 874 875 (*d->dv_cfattach->ca_rescan)(d, 876 cfdata_ifattr(cf1), cf1->cf_loc); 877 878 config_deferred(d); 879 } 880 } 881 deviter_release(&di); 882 } 883 884 /* 885 * Attach a supplemental config data table and rescan potential 886 * parent devices if required. 887 */ 888 int 889 config_cfdata_attach(cfdata_t cf, int scannow) 890 { 891 struct cftable *ct; 892 893 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 894 ct->ct_cfdata = cf; 895 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 896 897 if (scannow) 898 rescan_with_cfdata(cf); 899 900 return 0; 901 } 902 903 /* 904 * Helper for config_cfdata_detach: check whether a device is 905 * found through any attachment in the config data table. 906 */ 907 static int 908 dev_in_cfdata(device_t d, cfdata_t cf) 909 { 910 const struct cfdata *cf1; 911 912 for (cf1 = cf; cf1->cf_name; cf1++) 913 if (d->dv_cfdata == cf1) 914 return 1; 915 916 return 0; 917 } 918 919 /* 920 * Detach a supplemental config data table. Detach all devices found 921 * through that table (and thus keeping references to it) before. 922 */ 923 int 924 config_cfdata_detach(cfdata_t cf) 925 { 926 device_t d; 927 int error = 0; 928 struct cftable *ct; 929 deviter_t di; 930 931 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 932 d = deviter_next(&di)) { 933 if (!dev_in_cfdata(d, cf)) 934 continue; 935 if ((error = config_detach(d, 0)) != 0) 936 break; 937 } 938 deviter_release(&di); 939 if (error) { 940 aprint_error_dev(d, "unable to detach instance\n"); 941 return error; 942 } 943 944 TAILQ_FOREACH(ct, &allcftables, ct_list) { 945 if (ct->ct_cfdata == cf) { 946 TAILQ_REMOVE(&allcftables, ct, ct_list); 947 kmem_free(ct, sizeof(*ct)); 948 return 0; 949 } 950 } 951 952 /* not found -- shouldn't happen */ 953 return EINVAL; 954 } 955 956 /* 957 * Invoke the "match" routine for a cfdata entry on behalf of 958 * an external caller, usually a "submatch" routine. 959 */ 960 int 961 config_match(device_t parent, cfdata_t cf, void *aux) 962 { 963 struct cfattach *ca; 964 965 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 966 if (ca == NULL) { 967 /* No attachment for this entry, oh well. */ 968 return 0; 969 } 970 971 return (*ca->ca_match)(parent, cf, aux); 972 } 973 974 /* 975 * Iterate over all potential children of some device, calling the given 976 * function (default being the child's match function) for each one. 977 * Nonzero returns are matches; the highest value returned is considered 978 * the best match. Return the `found child' if we got a match, or NULL 979 * otherwise. The `aux' pointer is simply passed on through. 980 * 981 * Note that this function is designed so that it can be used to apply 982 * an arbitrary function to all potential children (its return value 983 * can be ignored). 984 */ 985 cfdata_t 986 config_search_loc(cfsubmatch_t fn, device_t parent, 987 const char *ifattr, const int *locs, void *aux) 988 { 989 struct cftable *ct; 990 cfdata_t cf; 991 struct matchinfo m; 992 993 KASSERT(config_initialized); 994 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 995 996 m.fn = fn; 997 m.parent = parent; 998 m.locs = locs; 999 m.aux = aux; 1000 m.match = NULL; 1001 m.pri = 0; 1002 1003 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1004 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1005 1006 /* We don't match root nodes here. */ 1007 if (!cf->cf_pspec) 1008 continue; 1009 1010 /* 1011 * Skip cf if no longer eligible, otherwise scan 1012 * through parents for one matching `parent', and 1013 * try match function. 1014 */ 1015 if (cf->cf_fstate == FSTATE_FOUND) 1016 continue; 1017 if (cf->cf_fstate == FSTATE_DNOTFOUND || 1018 cf->cf_fstate == FSTATE_DSTAR) 1019 continue; 1020 1021 /* 1022 * If an interface attribute was specified, 1023 * consider only children which attach to 1024 * that attribute. 1025 */ 1026 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 1027 continue; 1028 1029 if (cfparent_match(parent, cf->cf_pspec)) 1030 mapply(&m, cf); 1031 } 1032 } 1033 return m.match; 1034 } 1035 1036 cfdata_t 1037 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 1038 void *aux) 1039 { 1040 1041 return config_search_loc(fn, parent, ifattr, NULL, aux); 1042 } 1043 1044 /* 1045 * Find the given root device. 1046 * This is much like config_search, but there is no parent. 1047 * Don't bother with multiple cfdata tables; the root node 1048 * must always be in the initial table. 1049 */ 1050 cfdata_t 1051 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1052 { 1053 cfdata_t cf; 1054 const short *p; 1055 struct matchinfo m; 1056 1057 m.fn = fn; 1058 m.parent = ROOT; 1059 m.aux = aux; 1060 m.match = NULL; 1061 m.pri = 0; 1062 m.locs = 0; 1063 /* 1064 * Look at root entries for matching name. We do not bother 1065 * with found-state here since only one root should ever be 1066 * searched (and it must be done first). 1067 */ 1068 for (p = cfroots; *p >= 0; p++) { 1069 cf = &cfdata[*p]; 1070 if (strcmp(cf->cf_name, rootname) == 0) 1071 mapply(&m, cf); 1072 } 1073 return m.match; 1074 } 1075 1076 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1077 1078 /* 1079 * The given `aux' argument describes a device that has been found 1080 * on the given parent, but not necessarily configured. Locate the 1081 * configuration data for that device (using the submatch function 1082 * provided, or using candidates' cd_match configuration driver 1083 * functions) and attach it, and return its device_t. If the device was 1084 * not configured, call the given `print' function and return NULL. 1085 */ 1086 device_t 1087 config_found_sm_loc(device_t parent, 1088 const char *ifattr, const int *locs, void *aux, 1089 cfprint_t print, cfsubmatch_t submatch) 1090 { 1091 cfdata_t cf; 1092 1093 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1094 return(config_attach_loc(parent, cf, locs, aux, print)); 1095 if (print) { 1096 if (config_do_twiddle && cold) 1097 twiddle(); 1098 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1099 } 1100 1101 /* 1102 * This has the effect of mixing in a single timestamp to the 1103 * entropy pool. Experiments indicate the estimator will almost 1104 * always attribute one bit of entropy to this sample; analysis 1105 * of device attach/detach timestamps on FreeBSD indicates 4 1106 * bits of entropy/sample so this seems appropriately conservative. 1107 */ 1108 rnd_add_uint32(&rnd_autoconf_source, 0); 1109 return NULL; 1110 } 1111 1112 device_t 1113 config_found_ia(device_t parent, const char *ifattr, void *aux, 1114 cfprint_t print) 1115 { 1116 1117 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1118 } 1119 1120 device_t 1121 config_found(device_t parent, void *aux, cfprint_t print) 1122 { 1123 1124 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1125 } 1126 1127 /* 1128 * As above, but for root devices. 1129 */ 1130 device_t 1131 config_rootfound(const char *rootname, void *aux) 1132 { 1133 cfdata_t cf; 1134 1135 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1136 return config_attach(ROOT, cf, aux, NULL); 1137 aprint_error("root device %s not configured\n", rootname); 1138 return NULL; 1139 } 1140 1141 /* just like sprintf(buf, "%d") except that it works from the end */ 1142 static char * 1143 number(char *ep, int n) 1144 { 1145 1146 *--ep = 0; 1147 while (n >= 10) { 1148 *--ep = (n % 10) + '0'; 1149 n /= 10; 1150 } 1151 *--ep = n + '0'; 1152 return ep; 1153 } 1154 1155 /* 1156 * Expand the size of the cd_devs array if necessary. 1157 * 1158 * The caller must hold alldevs_mtx. config_makeroom() may release and 1159 * re-acquire alldevs_mtx, so callers should re-check conditions such 1160 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1161 * returns. 1162 */ 1163 static void 1164 config_makeroom(int n, struct cfdriver *cd) 1165 { 1166 int ondevs, nndevs; 1167 device_t *osp, *nsp; 1168 1169 alldevs_nwrite++; 1170 1171 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1172 ; 1173 1174 while (n >= cd->cd_ndevs) { 1175 /* 1176 * Need to expand the array. 1177 */ 1178 ondevs = cd->cd_ndevs; 1179 osp = cd->cd_devs; 1180 1181 /* Release alldevs_mtx around allocation, which may 1182 * sleep. 1183 */ 1184 mutex_exit(&alldevs_mtx); 1185 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP); 1186 if (nsp == NULL) 1187 panic("%s: could not expand cd_devs", __func__); 1188 mutex_enter(&alldevs_mtx); 1189 1190 /* If another thread moved the array while we did 1191 * not hold alldevs_mtx, try again. 1192 */ 1193 if (cd->cd_devs != osp) { 1194 mutex_exit(&alldevs_mtx); 1195 kmem_free(nsp, sizeof(device_t[nndevs])); 1196 mutex_enter(&alldevs_mtx); 1197 continue; 1198 } 1199 1200 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs])); 1201 if (ondevs != 0) 1202 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs])); 1203 1204 cd->cd_ndevs = nndevs; 1205 cd->cd_devs = nsp; 1206 if (ondevs != 0) { 1207 mutex_exit(&alldevs_mtx); 1208 kmem_free(osp, sizeof(device_t[ondevs])); 1209 mutex_enter(&alldevs_mtx); 1210 } 1211 } 1212 alldevs_nwrite--; 1213 } 1214 1215 /* 1216 * Put dev into the devices list. 1217 */ 1218 static void 1219 config_devlink(device_t dev) 1220 { 1221 1222 mutex_enter(&alldevs_mtx); 1223 1224 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1225 1226 dev->dv_add_gen = alldevs_gen; 1227 /* It is safe to add a device to the tail of the list while 1228 * readers and writers are in the list. 1229 */ 1230 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1231 mutex_exit(&alldevs_mtx); 1232 } 1233 1234 static void 1235 config_devfree(device_t dev) 1236 { 1237 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1238 1239 if (dev->dv_cfattach->ca_devsize > 0) 1240 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1241 if (priv) 1242 kmem_free(dev, sizeof(*dev)); 1243 } 1244 1245 /* 1246 * Caller must hold alldevs_mtx. 1247 */ 1248 static void 1249 config_devunlink(device_t dev, struct devicelist *garbage) 1250 { 1251 struct device_garbage *dg = &dev->dv_garbage; 1252 cfdriver_t cd = device_cfdriver(dev); 1253 int i; 1254 1255 KASSERT(mutex_owned(&alldevs_mtx)); 1256 1257 /* Unlink from device list. Link to garbage list. */ 1258 TAILQ_REMOVE(&alldevs, dev, dv_list); 1259 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1260 1261 /* Remove from cfdriver's array. */ 1262 cd->cd_devs[dev->dv_unit] = NULL; 1263 1264 /* 1265 * If the device now has no units in use, unlink its softc array. 1266 */ 1267 for (i = 0; i < cd->cd_ndevs; i++) { 1268 if (cd->cd_devs[i] != NULL) 1269 break; 1270 } 1271 /* Nothing found. Unlink, now. Deallocate, later. */ 1272 if (i == cd->cd_ndevs) { 1273 dg->dg_ndevs = cd->cd_ndevs; 1274 dg->dg_devs = cd->cd_devs; 1275 cd->cd_devs = NULL; 1276 cd->cd_ndevs = 0; 1277 } 1278 } 1279 1280 static void 1281 config_devdelete(device_t dev) 1282 { 1283 struct device_garbage *dg = &dev->dv_garbage; 1284 device_lock_t dvl = device_getlock(dev); 1285 1286 if (dg->dg_devs != NULL) 1287 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1288 1289 cv_destroy(&dvl->dvl_cv); 1290 mutex_destroy(&dvl->dvl_mtx); 1291 1292 KASSERT(dev->dv_properties != NULL); 1293 prop_object_release(dev->dv_properties); 1294 1295 if (dev->dv_activity_handlers) 1296 panic("%s with registered handlers", __func__); 1297 1298 if (dev->dv_locators) { 1299 size_t amount = *--dev->dv_locators; 1300 kmem_free(dev->dv_locators, amount); 1301 } 1302 1303 config_devfree(dev); 1304 } 1305 1306 static int 1307 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1308 { 1309 int unit; 1310 1311 if (cf->cf_fstate == FSTATE_STAR) { 1312 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1313 if (cd->cd_devs[unit] == NULL) 1314 break; 1315 /* 1316 * unit is now the unit of the first NULL device pointer, 1317 * or max(cd->cd_ndevs,cf->cf_unit). 1318 */ 1319 } else { 1320 unit = cf->cf_unit; 1321 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1322 unit = -1; 1323 } 1324 return unit; 1325 } 1326 1327 static int 1328 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1329 { 1330 struct alldevs_foray af; 1331 int unit; 1332 1333 config_alldevs_enter(&af); 1334 for (;;) { 1335 unit = config_unit_nextfree(cd, cf); 1336 if (unit == -1) 1337 break; 1338 if (unit < cd->cd_ndevs) { 1339 cd->cd_devs[unit] = dev; 1340 dev->dv_unit = unit; 1341 break; 1342 } 1343 config_makeroom(unit, cd); 1344 } 1345 config_alldevs_exit(&af); 1346 1347 return unit; 1348 } 1349 1350 static device_t 1351 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1352 { 1353 cfdriver_t cd; 1354 cfattach_t ca; 1355 size_t lname, lunit; 1356 const char *xunit; 1357 int myunit; 1358 char num[10]; 1359 device_t dev; 1360 void *dev_private; 1361 const struct cfiattrdata *ia; 1362 device_lock_t dvl; 1363 1364 cd = config_cfdriver_lookup(cf->cf_name); 1365 if (cd == NULL) 1366 return NULL; 1367 1368 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1369 if (ca == NULL) 1370 return NULL; 1371 1372 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1373 ca->ca_devsize < sizeof(struct device)) 1374 panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname, 1375 ca->ca_devsize, sizeof(struct device)); 1376 1377 /* get memory for all device vars */ 1378 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1379 if (ca->ca_devsize > 0) { 1380 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1381 if (dev_private == NULL) 1382 panic("config_devalloc: memory allocation for device softc failed"); 1383 } else { 1384 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1385 dev_private = NULL; 1386 } 1387 1388 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1389 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1390 } else { 1391 dev = dev_private; 1392 #ifdef DIAGNOSTIC 1393 printf("%s has not been converted to device_t\n", cd->cd_name); 1394 #endif 1395 } 1396 if (dev == NULL) 1397 panic("config_devalloc: memory allocation for device_t failed"); 1398 1399 dev->dv_class = cd->cd_class; 1400 dev->dv_cfdata = cf; 1401 dev->dv_cfdriver = cd; 1402 dev->dv_cfattach = ca; 1403 dev->dv_activity_count = 0; 1404 dev->dv_activity_handlers = NULL; 1405 dev->dv_private = dev_private; 1406 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1407 1408 myunit = config_unit_alloc(dev, cd, cf); 1409 if (myunit == -1) { 1410 config_devfree(dev); 1411 return NULL; 1412 } 1413 1414 /* compute length of name and decimal expansion of unit number */ 1415 lname = strlen(cd->cd_name); 1416 xunit = number(&num[sizeof(num)], myunit); 1417 lunit = &num[sizeof(num)] - xunit; 1418 if (lname + lunit > sizeof(dev->dv_xname)) 1419 panic("config_devalloc: device name too long"); 1420 1421 dvl = device_getlock(dev); 1422 1423 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1424 cv_init(&dvl->dvl_cv, "pmfsusp"); 1425 1426 memcpy(dev->dv_xname, cd->cd_name, lname); 1427 memcpy(dev->dv_xname + lname, xunit, lunit); 1428 dev->dv_parent = parent; 1429 if (parent != NULL) 1430 dev->dv_depth = parent->dv_depth + 1; 1431 else 1432 dev->dv_depth = 0; 1433 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1434 if (locs) { 1435 KASSERT(parent); /* no locators at root */ 1436 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1437 dev->dv_locators = 1438 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1439 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1440 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1441 } 1442 dev->dv_properties = prop_dictionary_create(); 1443 KASSERT(dev->dv_properties != NULL); 1444 1445 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1446 "device-driver", dev->dv_cfdriver->cd_name); 1447 prop_dictionary_set_uint16(dev->dv_properties, 1448 "device-unit", dev->dv_unit); 1449 if (parent != NULL) { 1450 prop_dictionary_set_cstring(dev->dv_properties, 1451 "device-parent", device_xname(parent)); 1452 } 1453 1454 if (dev->dv_cfdriver->cd_attrs != NULL) 1455 config_add_attrib_dict(dev); 1456 1457 return dev; 1458 } 1459 1460 /* 1461 * Create an array of device attach attributes and add it 1462 * to the device's dv_properties dictionary. 1463 * 1464 * <key>interface-attributes</key> 1465 * <array> 1466 * <dict> 1467 * <key>attribute-name</key> 1468 * <string>foo</string> 1469 * <key>locators</key> 1470 * <array> 1471 * <dict> 1472 * <key>loc-name</key> 1473 * <string>foo-loc1</string> 1474 * </dict> 1475 * <dict> 1476 * <key>loc-name</key> 1477 * <string>foo-loc2</string> 1478 * <key>default</key> 1479 * <string>foo-loc2-default</string> 1480 * </dict> 1481 * ... 1482 * </array> 1483 * </dict> 1484 * ... 1485 * </array> 1486 */ 1487 1488 static void 1489 config_add_attrib_dict(device_t dev) 1490 { 1491 int i, j; 1492 const struct cfiattrdata *ci; 1493 prop_dictionary_t attr_dict, loc_dict; 1494 prop_array_t attr_array, loc_array; 1495 1496 if ((attr_array = prop_array_create()) == NULL) 1497 return; 1498 1499 for (i = 0; ; i++) { 1500 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1501 break; 1502 if ((attr_dict = prop_dictionary_create()) == NULL) 1503 break; 1504 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name", 1505 ci->ci_name); 1506 1507 /* Create an array of the locator names and defaults */ 1508 1509 if (ci->ci_loclen != 0 && 1510 (loc_array = prop_array_create()) != NULL) { 1511 for (j = 0; j < ci->ci_loclen; j++) { 1512 loc_dict = prop_dictionary_create(); 1513 if (loc_dict == NULL) 1514 continue; 1515 prop_dictionary_set_cstring_nocopy(loc_dict, 1516 "loc-name", ci->ci_locdesc[j].cld_name); 1517 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1518 prop_dictionary_set_cstring_nocopy( 1519 loc_dict, "default", 1520 ci->ci_locdesc[j].cld_defaultstr); 1521 prop_array_set(loc_array, j, loc_dict); 1522 prop_object_release(loc_dict); 1523 } 1524 prop_dictionary_set_and_rel(attr_dict, "locators", 1525 loc_array); 1526 } 1527 prop_array_add(attr_array, attr_dict); 1528 prop_object_release(attr_dict); 1529 } 1530 if (i == 0) 1531 prop_object_release(attr_array); 1532 else 1533 prop_dictionary_set_and_rel(dev->dv_properties, 1534 "interface-attributes", attr_array); 1535 1536 return; 1537 } 1538 1539 /* 1540 * Attach a found device. 1541 */ 1542 device_t 1543 config_attach_loc(device_t parent, cfdata_t cf, 1544 const int *locs, void *aux, cfprint_t print) 1545 { 1546 device_t dev; 1547 struct cftable *ct; 1548 const char *drvname; 1549 1550 dev = config_devalloc(parent, cf, locs); 1551 if (!dev) 1552 panic("config_attach: allocation of device softc failed"); 1553 1554 /* XXX redundant - see below? */ 1555 if (cf->cf_fstate != FSTATE_STAR) { 1556 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1557 cf->cf_fstate = FSTATE_FOUND; 1558 } 1559 1560 config_devlink(dev); 1561 1562 if (config_do_twiddle && cold) 1563 twiddle(); 1564 else 1565 aprint_naive("Found "); 1566 /* 1567 * We want the next two printfs for normal, verbose, and quiet, 1568 * but not silent (in which case, we're twiddling, instead). 1569 */ 1570 if (parent == ROOT) { 1571 aprint_naive("%s (root)", device_xname(dev)); 1572 aprint_normal("%s (root)", device_xname(dev)); 1573 } else { 1574 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1575 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1576 if (print) 1577 (void) (*print)(aux, NULL); 1578 } 1579 1580 /* 1581 * Before attaching, clobber any unfound devices that are 1582 * otherwise identical. 1583 * XXX code above is redundant? 1584 */ 1585 drvname = dev->dv_cfdriver->cd_name; 1586 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1587 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1588 if (STREQ(cf->cf_name, drvname) && 1589 cf->cf_unit == dev->dv_unit) { 1590 if (cf->cf_fstate == FSTATE_NOTFOUND) 1591 cf->cf_fstate = FSTATE_FOUND; 1592 } 1593 } 1594 } 1595 device_register(dev, aux); 1596 1597 /* Let userland know */ 1598 devmon_report_device(dev, true); 1599 1600 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1601 1602 if (!device_pmf_is_registered(dev)) 1603 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1604 1605 config_process_deferred(&deferred_config_queue, dev); 1606 1607 device_register_post_config(dev, aux); 1608 return dev; 1609 } 1610 1611 device_t 1612 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1613 { 1614 1615 return config_attach_loc(parent, cf, NULL, aux, print); 1616 } 1617 1618 /* 1619 * As above, but for pseudo-devices. Pseudo-devices attached in this 1620 * way are silently inserted into the device tree, and their children 1621 * attached. 1622 * 1623 * Note that because pseudo-devices are attached silently, any information 1624 * the attach routine wishes to print should be prefixed with the device 1625 * name by the attach routine. 1626 */ 1627 device_t 1628 config_attach_pseudo(cfdata_t cf) 1629 { 1630 device_t dev; 1631 1632 dev = config_devalloc(ROOT, cf, NULL); 1633 if (!dev) 1634 return NULL; 1635 1636 /* XXX mark busy in cfdata */ 1637 1638 if (cf->cf_fstate != FSTATE_STAR) { 1639 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1640 cf->cf_fstate = FSTATE_FOUND; 1641 } 1642 1643 config_devlink(dev); 1644 1645 #if 0 /* XXXJRT not yet */ 1646 device_register(dev, NULL); /* like a root node */ 1647 #endif 1648 1649 /* Let userland know */ 1650 devmon_report_device(dev, true); 1651 1652 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1653 1654 config_process_deferred(&deferred_config_queue, dev); 1655 return dev; 1656 } 1657 1658 /* 1659 * Caller must hold alldevs_mtx. 1660 */ 1661 static void 1662 config_collect_garbage(struct devicelist *garbage) 1663 { 1664 device_t dv; 1665 1666 KASSERT(!cpu_intr_p()); 1667 KASSERT(!cpu_softintr_p()); 1668 KASSERT(mutex_owned(&alldevs_mtx)); 1669 1670 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1671 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1672 if (dv->dv_del_gen != 0) 1673 break; 1674 } 1675 if (dv == NULL) { 1676 alldevs_garbage = false; 1677 break; 1678 } 1679 config_devunlink(dv, garbage); 1680 } 1681 KASSERT(mutex_owned(&alldevs_mtx)); 1682 } 1683 1684 static void 1685 config_dump_garbage(struct devicelist *garbage) 1686 { 1687 device_t dv; 1688 1689 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1690 TAILQ_REMOVE(garbage, dv, dv_list); 1691 config_devdelete(dv); 1692 } 1693 } 1694 1695 /* 1696 * Detach a device. Optionally forced (e.g. because of hardware 1697 * removal) and quiet. Returns zero if successful, non-zero 1698 * (an error code) otherwise. 1699 * 1700 * Note that this code wants to be run from a process context, so 1701 * that the detach can sleep to allow processes which have a device 1702 * open to run and unwind their stacks. 1703 */ 1704 int 1705 config_detach(device_t dev, int flags) 1706 { 1707 struct alldevs_foray af; 1708 struct cftable *ct; 1709 cfdata_t cf; 1710 const struct cfattach *ca; 1711 struct cfdriver *cd; 1712 #ifdef DIAGNOSTIC 1713 device_t d; 1714 #endif 1715 int rv = 0; 1716 1717 #ifdef DIAGNOSTIC 1718 cf = dev->dv_cfdata; 1719 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1720 cf->cf_fstate != FSTATE_STAR) 1721 panic("config_detach: %s: bad device fstate %d", 1722 device_xname(dev), cf ? cf->cf_fstate : -1); 1723 #endif 1724 cd = dev->dv_cfdriver; 1725 KASSERT(cd != NULL); 1726 1727 ca = dev->dv_cfattach; 1728 KASSERT(ca != NULL); 1729 1730 mutex_enter(&alldevs_mtx); 1731 if (dev->dv_del_gen != 0) { 1732 mutex_exit(&alldevs_mtx); 1733 #ifdef DIAGNOSTIC 1734 printf("%s: %s is already detached\n", __func__, 1735 device_xname(dev)); 1736 #endif /* DIAGNOSTIC */ 1737 return ENOENT; 1738 } 1739 alldevs_nwrite++; 1740 mutex_exit(&alldevs_mtx); 1741 1742 if (!detachall && 1743 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1744 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1745 rv = EOPNOTSUPP; 1746 } else if (ca->ca_detach != NULL) { 1747 rv = (*ca->ca_detach)(dev, flags); 1748 } else 1749 rv = EOPNOTSUPP; 1750 1751 /* 1752 * If it was not possible to detach the device, then we either 1753 * panic() (for the forced but failed case), or return an error. 1754 * 1755 * If it was possible to detach the device, ensure that the 1756 * device is deactivated. 1757 */ 1758 if (rv == 0) 1759 dev->dv_flags &= ~DVF_ACTIVE; 1760 else if ((flags & DETACH_FORCE) == 0) 1761 goto out; 1762 else { 1763 panic("config_detach: forced detach of %s failed (%d)", 1764 device_xname(dev), rv); 1765 } 1766 1767 /* 1768 * The device has now been successfully detached. 1769 */ 1770 1771 /* Let userland know */ 1772 devmon_report_device(dev, false); 1773 1774 #ifdef DIAGNOSTIC 1775 /* 1776 * Sanity: If you're successfully detached, you should have no 1777 * children. (Note that because children must be attached 1778 * after parents, we only need to search the latter part of 1779 * the list.) 1780 */ 1781 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1782 d = TAILQ_NEXT(d, dv_list)) { 1783 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1784 printf("config_detach: detached device %s" 1785 " has children %s\n", device_xname(dev), device_xname(d)); 1786 panic("config_detach"); 1787 } 1788 } 1789 #endif 1790 1791 /* notify the parent that the child is gone */ 1792 if (dev->dv_parent) { 1793 device_t p = dev->dv_parent; 1794 if (p->dv_cfattach->ca_childdetached) 1795 (*p->dv_cfattach->ca_childdetached)(p, dev); 1796 } 1797 1798 /* 1799 * Mark cfdata to show that the unit can be reused, if possible. 1800 */ 1801 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1802 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1803 if (STREQ(cf->cf_name, cd->cd_name)) { 1804 if (cf->cf_fstate == FSTATE_FOUND && 1805 cf->cf_unit == dev->dv_unit) 1806 cf->cf_fstate = FSTATE_NOTFOUND; 1807 } 1808 } 1809 } 1810 1811 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1812 aprint_normal_dev(dev, "detached\n"); 1813 1814 out: 1815 config_alldevs_enter(&af); 1816 KASSERT(alldevs_nwrite != 0); 1817 --alldevs_nwrite; 1818 if (rv == 0 && dev->dv_del_gen == 0) { 1819 if (alldevs_nwrite == 0 && alldevs_nread == 0) 1820 config_devunlink(dev, &af.af_garbage); 1821 else { 1822 dev->dv_del_gen = alldevs_gen; 1823 alldevs_garbage = true; 1824 } 1825 } 1826 config_alldevs_exit(&af); 1827 1828 return rv; 1829 } 1830 1831 int 1832 config_detach_children(device_t parent, int flags) 1833 { 1834 device_t dv; 1835 deviter_t di; 1836 int error = 0; 1837 1838 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1839 dv = deviter_next(&di)) { 1840 if (device_parent(dv) != parent) 1841 continue; 1842 if ((error = config_detach(dv, flags)) != 0) 1843 break; 1844 } 1845 deviter_release(&di); 1846 return error; 1847 } 1848 1849 device_t 1850 shutdown_first(struct shutdown_state *s) 1851 { 1852 if (!s->initialized) { 1853 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1854 s->initialized = true; 1855 } 1856 return shutdown_next(s); 1857 } 1858 1859 device_t 1860 shutdown_next(struct shutdown_state *s) 1861 { 1862 device_t dv; 1863 1864 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1865 ; 1866 1867 if (dv == NULL) 1868 s->initialized = false; 1869 1870 return dv; 1871 } 1872 1873 bool 1874 config_detach_all(int how) 1875 { 1876 static struct shutdown_state s; 1877 device_t curdev; 1878 bool progress = false; 1879 1880 if ((how & (RB_NOSYNC|RB_DUMP)) != 0) 1881 return false; 1882 1883 for (curdev = shutdown_first(&s); curdev != NULL; 1884 curdev = shutdown_next(&s)) { 1885 aprint_debug(" detaching %s, ", device_xname(curdev)); 1886 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1887 progress = true; 1888 aprint_debug("success."); 1889 } else 1890 aprint_debug("failed."); 1891 } 1892 return progress; 1893 } 1894 1895 static bool 1896 device_is_ancestor_of(device_t ancestor, device_t descendant) 1897 { 1898 device_t dv; 1899 1900 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1901 if (device_parent(dv) == ancestor) 1902 return true; 1903 } 1904 return false; 1905 } 1906 1907 int 1908 config_deactivate(device_t dev) 1909 { 1910 deviter_t di; 1911 const struct cfattach *ca; 1912 device_t descendant; 1913 int s, rv = 0, oflags; 1914 1915 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1916 descendant != NULL; 1917 descendant = deviter_next(&di)) { 1918 if (dev != descendant && 1919 !device_is_ancestor_of(dev, descendant)) 1920 continue; 1921 1922 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1923 continue; 1924 1925 ca = descendant->dv_cfattach; 1926 oflags = descendant->dv_flags; 1927 1928 descendant->dv_flags &= ~DVF_ACTIVE; 1929 if (ca->ca_activate == NULL) 1930 continue; 1931 s = splhigh(); 1932 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1933 splx(s); 1934 if (rv != 0) 1935 descendant->dv_flags = oflags; 1936 } 1937 deviter_release(&di); 1938 return rv; 1939 } 1940 1941 /* 1942 * Defer the configuration of the specified device until all 1943 * of its parent's devices have been attached. 1944 */ 1945 void 1946 config_defer(device_t dev, void (*func)(device_t)) 1947 { 1948 struct deferred_config *dc; 1949 1950 if (dev->dv_parent == NULL) 1951 panic("config_defer: can't defer config of a root device"); 1952 1953 #ifdef DIAGNOSTIC 1954 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1955 if (dc->dc_dev == dev) 1956 panic("config_defer: deferred twice"); 1957 } 1958 #endif 1959 1960 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1961 if (dc == NULL) 1962 panic("config_defer: unable to allocate callback"); 1963 1964 dc->dc_dev = dev; 1965 dc->dc_func = func; 1966 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1967 config_pending_incr(dev); 1968 } 1969 1970 /* 1971 * Defer some autoconfiguration for a device until after interrupts 1972 * are enabled. 1973 */ 1974 void 1975 config_interrupts(device_t dev, void (*func)(device_t)) 1976 { 1977 struct deferred_config *dc; 1978 1979 /* 1980 * If interrupts are enabled, callback now. 1981 */ 1982 if (cold == 0) { 1983 (*func)(dev); 1984 return; 1985 } 1986 1987 #ifdef DIAGNOSTIC 1988 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1989 if (dc->dc_dev == dev) 1990 panic("config_interrupts: deferred twice"); 1991 } 1992 #endif 1993 1994 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1995 if (dc == NULL) 1996 panic("config_interrupts: unable to allocate callback"); 1997 1998 dc->dc_dev = dev; 1999 dc->dc_func = func; 2000 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 2001 config_pending_incr(dev); 2002 } 2003 2004 /* 2005 * Defer some autoconfiguration for a device until after root file system 2006 * is mounted (to load firmware etc). 2007 */ 2008 void 2009 config_mountroot(device_t dev, void (*func)(device_t)) 2010 { 2011 struct deferred_config *dc; 2012 2013 /* 2014 * If root file system is mounted, callback now. 2015 */ 2016 if (root_is_mounted) { 2017 (*func)(dev); 2018 return; 2019 } 2020 2021 #ifdef DIAGNOSTIC 2022 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) { 2023 if (dc->dc_dev == dev) 2024 panic("%s: deferred twice", __func__); 2025 } 2026 #endif 2027 2028 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2029 if (dc == NULL) 2030 panic("%s: unable to allocate callback", __func__); 2031 2032 dc->dc_dev = dev; 2033 dc->dc_func = func; 2034 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 2035 } 2036 2037 /* 2038 * Process a deferred configuration queue. 2039 */ 2040 static void 2041 config_process_deferred(struct deferred_config_head *queue, 2042 device_t parent) 2043 { 2044 struct deferred_config *dc, *ndc; 2045 2046 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 2047 ndc = TAILQ_NEXT(dc, dc_queue); 2048 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2049 TAILQ_REMOVE(queue, dc, dc_queue); 2050 (*dc->dc_func)(dc->dc_dev); 2051 config_pending_decr(dc->dc_dev); 2052 kmem_free(dc, sizeof(*dc)); 2053 } 2054 } 2055 } 2056 2057 /* 2058 * Manipulate the config_pending semaphore. 2059 */ 2060 void 2061 config_pending_incr(device_t dev) 2062 { 2063 2064 mutex_enter(&config_misc_lock); 2065 config_pending++; 2066 #ifdef DEBUG_AUTOCONF 2067 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2068 #endif 2069 mutex_exit(&config_misc_lock); 2070 } 2071 2072 void 2073 config_pending_decr(device_t dev) 2074 { 2075 2076 #ifdef DIAGNOSTIC 2077 if (config_pending == 0) 2078 panic("config_pending_decr: config_pending == 0"); 2079 #endif 2080 mutex_enter(&config_misc_lock); 2081 config_pending--; 2082 #ifdef DEBUG_AUTOCONF 2083 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2084 #endif 2085 if (config_pending == 0) 2086 cv_broadcast(&config_misc_cv); 2087 mutex_exit(&config_misc_lock); 2088 } 2089 2090 /* 2091 * Register a "finalization" routine. Finalization routines are 2092 * called iteratively once all real devices have been found during 2093 * autoconfiguration, for as long as any one finalizer has done 2094 * any work. 2095 */ 2096 int 2097 config_finalize_register(device_t dev, int (*fn)(device_t)) 2098 { 2099 struct finalize_hook *f; 2100 2101 /* 2102 * If finalization has already been done, invoke the 2103 * callback function now. 2104 */ 2105 if (config_finalize_done) { 2106 while ((*fn)(dev) != 0) 2107 /* loop */ ; 2108 return 0; 2109 } 2110 2111 /* Ensure this isn't already on the list. */ 2112 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2113 if (f->f_func == fn && f->f_dev == dev) 2114 return EEXIST; 2115 } 2116 2117 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2118 f->f_func = fn; 2119 f->f_dev = dev; 2120 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2121 2122 return 0; 2123 } 2124 2125 void 2126 config_finalize(void) 2127 { 2128 struct finalize_hook *f; 2129 struct pdevinit *pdev; 2130 extern struct pdevinit pdevinit[]; 2131 int errcnt, rv; 2132 2133 /* 2134 * Now that device driver threads have been created, wait for 2135 * them to finish any deferred autoconfiguration. 2136 */ 2137 mutex_enter(&config_misc_lock); 2138 while (config_pending != 0) 2139 cv_wait(&config_misc_cv, &config_misc_lock); 2140 mutex_exit(&config_misc_lock); 2141 2142 KERNEL_LOCK(1, NULL); 2143 2144 /* Attach pseudo-devices. */ 2145 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2146 (*pdev->pdev_attach)(pdev->pdev_count); 2147 2148 /* Run the hooks until none of them does any work. */ 2149 do { 2150 rv = 0; 2151 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2152 rv |= (*f->f_func)(f->f_dev); 2153 } while (rv != 0); 2154 2155 config_finalize_done = 1; 2156 2157 /* Now free all the hooks. */ 2158 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2159 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2160 kmem_free(f, sizeof(*f)); 2161 } 2162 2163 KERNEL_UNLOCK_ONE(NULL); 2164 2165 errcnt = aprint_get_error_count(); 2166 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2167 (boothowto & AB_VERBOSE) == 0) { 2168 mutex_enter(&config_misc_lock); 2169 if (config_do_twiddle) { 2170 config_do_twiddle = 0; 2171 printf_nolog(" done.\n"); 2172 } 2173 mutex_exit(&config_misc_lock); 2174 if (errcnt != 0) { 2175 printf("WARNING: %d error%s while detecting hardware; " 2176 "check system log.\n", errcnt, 2177 errcnt == 1 ? "" : "s"); 2178 } 2179 } 2180 } 2181 2182 void 2183 config_twiddle_init(void) 2184 { 2185 2186 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2187 config_do_twiddle = 1; 2188 } 2189 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2190 } 2191 2192 void 2193 config_twiddle_fn(void *cookie) 2194 { 2195 2196 mutex_enter(&config_misc_lock); 2197 if (config_do_twiddle) { 2198 twiddle(); 2199 callout_schedule(&config_twiddle_ch, mstohz(100)); 2200 } 2201 mutex_exit(&config_misc_lock); 2202 } 2203 2204 static void 2205 config_alldevs_enter(struct alldevs_foray *af) 2206 { 2207 TAILQ_INIT(&af->af_garbage); 2208 mutex_enter(&alldevs_mtx); 2209 config_collect_garbage(&af->af_garbage); 2210 } 2211 2212 static void 2213 config_alldevs_exit(struct alldevs_foray *af) 2214 { 2215 mutex_exit(&alldevs_mtx); 2216 config_dump_garbage(&af->af_garbage); 2217 } 2218 2219 /* 2220 * device_lookup: 2221 * 2222 * Look up a device instance for a given driver. 2223 */ 2224 device_t 2225 device_lookup(cfdriver_t cd, int unit) 2226 { 2227 device_t dv; 2228 2229 mutex_enter(&alldevs_mtx); 2230 if (unit < 0 || unit >= cd->cd_ndevs) 2231 dv = NULL; 2232 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2233 dv = NULL; 2234 mutex_exit(&alldevs_mtx); 2235 2236 return dv; 2237 } 2238 2239 /* 2240 * device_lookup_private: 2241 * 2242 * Look up a softc instance for a given driver. 2243 */ 2244 void * 2245 device_lookup_private(cfdriver_t cd, int unit) 2246 { 2247 2248 return device_private(device_lookup(cd, unit)); 2249 } 2250 2251 /* 2252 * device_find_by_xname: 2253 * 2254 * Returns the device of the given name or NULL if it doesn't exist. 2255 */ 2256 device_t 2257 device_find_by_xname(const char *name) 2258 { 2259 device_t dv; 2260 deviter_t di; 2261 2262 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2263 if (strcmp(device_xname(dv), name) == 0) 2264 break; 2265 } 2266 deviter_release(&di); 2267 2268 return dv; 2269 } 2270 2271 /* 2272 * device_find_by_driver_unit: 2273 * 2274 * Returns the device of the given driver name and unit or 2275 * NULL if it doesn't exist. 2276 */ 2277 device_t 2278 device_find_by_driver_unit(const char *name, int unit) 2279 { 2280 struct cfdriver *cd; 2281 2282 if ((cd = config_cfdriver_lookup(name)) == NULL) 2283 return NULL; 2284 return device_lookup(cd, unit); 2285 } 2286 2287 /* 2288 * Power management related functions. 2289 */ 2290 2291 bool 2292 device_pmf_is_registered(device_t dev) 2293 { 2294 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2295 } 2296 2297 bool 2298 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2299 { 2300 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2301 return true; 2302 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2303 return false; 2304 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2305 dev->dv_driver_suspend != NULL && 2306 !(*dev->dv_driver_suspend)(dev, qual)) 2307 return false; 2308 2309 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2310 return true; 2311 } 2312 2313 bool 2314 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2315 { 2316 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2317 return true; 2318 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2319 return false; 2320 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2321 dev->dv_driver_resume != NULL && 2322 !(*dev->dv_driver_resume)(dev, qual)) 2323 return false; 2324 2325 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2326 return true; 2327 } 2328 2329 bool 2330 device_pmf_driver_shutdown(device_t dev, int how) 2331 { 2332 2333 if (*dev->dv_driver_shutdown != NULL && 2334 !(*dev->dv_driver_shutdown)(dev, how)) 2335 return false; 2336 return true; 2337 } 2338 2339 bool 2340 device_pmf_driver_register(device_t dev, 2341 bool (*suspend)(device_t, const pmf_qual_t *), 2342 bool (*resume)(device_t, const pmf_qual_t *), 2343 bool (*shutdown)(device_t, int)) 2344 { 2345 dev->dv_driver_suspend = suspend; 2346 dev->dv_driver_resume = resume; 2347 dev->dv_driver_shutdown = shutdown; 2348 dev->dv_flags |= DVF_POWER_HANDLERS; 2349 return true; 2350 } 2351 2352 static const char * 2353 curlwp_name(void) 2354 { 2355 if (curlwp->l_name != NULL) 2356 return curlwp->l_name; 2357 else 2358 return curlwp->l_proc->p_comm; 2359 } 2360 2361 void 2362 device_pmf_driver_deregister(device_t dev) 2363 { 2364 device_lock_t dvl = device_getlock(dev); 2365 2366 dev->dv_driver_suspend = NULL; 2367 dev->dv_driver_resume = NULL; 2368 2369 mutex_enter(&dvl->dvl_mtx); 2370 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2371 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2372 /* Wake a thread that waits for the lock. That 2373 * thread will fail to acquire the lock, and then 2374 * it will wake the next thread that waits for the 2375 * lock, or else it will wake us. 2376 */ 2377 cv_signal(&dvl->dvl_cv); 2378 pmflock_debug(dev, __func__, __LINE__); 2379 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2380 pmflock_debug(dev, __func__, __LINE__); 2381 } 2382 mutex_exit(&dvl->dvl_mtx); 2383 } 2384 2385 bool 2386 device_pmf_driver_child_register(device_t dev) 2387 { 2388 device_t parent = device_parent(dev); 2389 2390 if (parent == NULL || parent->dv_driver_child_register == NULL) 2391 return true; 2392 return (*parent->dv_driver_child_register)(dev); 2393 } 2394 2395 void 2396 device_pmf_driver_set_child_register(device_t dev, 2397 bool (*child_register)(device_t)) 2398 { 2399 dev->dv_driver_child_register = child_register; 2400 } 2401 2402 static void 2403 pmflock_debug(device_t dev, const char *func, int line) 2404 { 2405 device_lock_t dvl = device_getlock(dev); 2406 2407 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2408 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2409 dev->dv_flags); 2410 } 2411 2412 static bool 2413 device_pmf_lock1(device_t dev) 2414 { 2415 device_lock_t dvl = device_getlock(dev); 2416 2417 while (device_pmf_is_registered(dev) && 2418 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2419 dvl->dvl_nwait++; 2420 pmflock_debug(dev, __func__, __LINE__); 2421 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2422 pmflock_debug(dev, __func__, __LINE__); 2423 dvl->dvl_nwait--; 2424 } 2425 if (!device_pmf_is_registered(dev)) { 2426 pmflock_debug(dev, __func__, __LINE__); 2427 /* We could not acquire the lock, but some other thread may 2428 * wait for it, also. Wake that thread. 2429 */ 2430 cv_signal(&dvl->dvl_cv); 2431 return false; 2432 } 2433 dvl->dvl_nlock++; 2434 dvl->dvl_holder = curlwp; 2435 pmflock_debug(dev, __func__, __LINE__); 2436 return true; 2437 } 2438 2439 bool 2440 device_pmf_lock(device_t dev) 2441 { 2442 bool rc; 2443 device_lock_t dvl = device_getlock(dev); 2444 2445 mutex_enter(&dvl->dvl_mtx); 2446 rc = device_pmf_lock1(dev); 2447 mutex_exit(&dvl->dvl_mtx); 2448 2449 return rc; 2450 } 2451 2452 void 2453 device_pmf_unlock(device_t dev) 2454 { 2455 device_lock_t dvl = device_getlock(dev); 2456 2457 KASSERT(dvl->dvl_nlock > 0); 2458 mutex_enter(&dvl->dvl_mtx); 2459 if (--dvl->dvl_nlock == 0) 2460 dvl->dvl_holder = NULL; 2461 cv_signal(&dvl->dvl_cv); 2462 pmflock_debug(dev, __func__, __LINE__); 2463 mutex_exit(&dvl->dvl_mtx); 2464 } 2465 2466 device_lock_t 2467 device_getlock(device_t dev) 2468 { 2469 return &dev->dv_lock; 2470 } 2471 2472 void * 2473 device_pmf_bus_private(device_t dev) 2474 { 2475 return dev->dv_bus_private; 2476 } 2477 2478 bool 2479 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2480 { 2481 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2482 return true; 2483 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2484 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2485 return false; 2486 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2487 dev->dv_bus_suspend != NULL && 2488 !(*dev->dv_bus_suspend)(dev, qual)) 2489 return false; 2490 2491 dev->dv_flags |= DVF_BUS_SUSPENDED; 2492 return true; 2493 } 2494 2495 bool 2496 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2497 { 2498 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2499 return true; 2500 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2501 dev->dv_bus_resume != NULL && 2502 !(*dev->dv_bus_resume)(dev, qual)) 2503 return false; 2504 2505 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2506 return true; 2507 } 2508 2509 bool 2510 device_pmf_bus_shutdown(device_t dev, int how) 2511 { 2512 2513 if (*dev->dv_bus_shutdown != NULL && 2514 !(*dev->dv_bus_shutdown)(dev, how)) 2515 return false; 2516 return true; 2517 } 2518 2519 void 2520 device_pmf_bus_register(device_t dev, void *priv, 2521 bool (*suspend)(device_t, const pmf_qual_t *), 2522 bool (*resume)(device_t, const pmf_qual_t *), 2523 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2524 { 2525 dev->dv_bus_private = priv; 2526 dev->dv_bus_resume = resume; 2527 dev->dv_bus_suspend = suspend; 2528 dev->dv_bus_shutdown = shutdown; 2529 dev->dv_bus_deregister = deregister; 2530 } 2531 2532 void 2533 device_pmf_bus_deregister(device_t dev) 2534 { 2535 if (dev->dv_bus_deregister == NULL) 2536 return; 2537 (*dev->dv_bus_deregister)(dev); 2538 dev->dv_bus_private = NULL; 2539 dev->dv_bus_suspend = NULL; 2540 dev->dv_bus_resume = NULL; 2541 dev->dv_bus_deregister = NULL; 2542 } 2543 2544 void * 2545 device_pmf_class_private(device_t dev) 2546 { 2547 return dev->dv_class_private; 2548 } 2549 2550 bool 2551 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2552 { 2553 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2554 return true; 2555 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2556 dev->dv_class_suspend != NULL && 2557 !(*dev->dv_class_suspend)(dev, qual)) 2558 return false; 2559 2560 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2561 return true; 2562 } 2563 2564 bool 2565 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2566 { 2567 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2568 return true; 2569 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2570 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2571 return false; 2572 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2573 dev->dv_class_resume != NULL && 2574 !(*dev->dv_class_resume)(dev, qual)) 2575 return false; 2576 2577 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2578 return true; 2579 } 2580 2581 void 2582 device_pmf_class_register(device_t dev, void *priv, 2583 bool (*suspend)(device_t, const pmf_qual_t *), 2584 bool (*resume)(device_t, const pmf_qual_t *), 2585 void (*deregister)(device_t)) 2586 { 2587 dev->dv_class_private = priv; 2588 dev->dv_class_suspend = suspend; 2589 dev->dv_class_resume = resume; 2590 dev->dv_class_deregister = deregister; 2591 } 2592 2593 void 2594 device_pmf_class_deregister(device_t dev) 2595 { 2596 if (dev->dv_class_deregister == NULL) 2597 return; 2598 (*dev->dv_class_deregister)(dev); 2599 dev->dv_class_private = NULL; 2600 dev->dv_class_suspend = NULL; 2601 dev->dv_class_resume = NULL; 2602 dev->dv_class_deregister = NULL; 2603 } 2604 2605 bool 2606 device_active(device_t dev, devactive_t type) 2607 { 2608 size_t i; 2609 2610 if (dev->dv_activity_count == 0) 2611 return false; 2612 2613 for (i = 0; i < dev->dv_activity_count; ++i) { 2614 if (dev->dv_activity_handlers[i] == NULL) 2615 break; 2616 (*dev->dv_activity_handlers[i])(dev, type); 2617 } 2618 2619 return true; 2620 } 2621 2622 bool 2623 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2624 { 2625 void (**new_handlers)(device_t, devactive_t); 2626 void (**old_handlers)(device_t, devactive_t); 2627 size_t i, old_size, new_size; 2628 int s; 2629 2630 old_handlers = dev->dv_activity_handlers; 2631 old_size = dev->dv_activity_count; 2632 2633 KASSERT(old_size == 0 || old_handlers != NULL); 2634 2635 for (i = 0; i < old_size; ++i) { 2636 KASSERT(old_handlers[i] != handler); 2637 if (old_handlers[i] == NULL) { 2638 old_handlers[i] = handler; 2639 return true; 2640 } 2641 } 2642 2643 new_size = old_size + 4; 2644 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2645 2646 for (i = 0; i < old_size; ++i) 2647 new_handlers[i] = old_handlers[i]; 2648 new_handlers[old_size] = handler; 2649 for (i = old_size+1; i < new_size; ++i) 2650 new_handlers[i] = NULL; 2651 2652 s = splhigh(); 2653 dev->dv_activity_count = new_size; 2654 dev->dv_activity_handlers = new_handlers; 2655 splx(s); 2656 2657 if (old_size > 0) 2658 kmem_free(old_handlers, sizeof(void * [old_size])); 2659 2660 return true; 2661 } 2662 2663 void 2664 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2665 { 2666 void (**old_handlers)(device_t, devactive_t); 2667 size_t i, old_size; 2668 int s; 2669 2670 old_handlers = dev->dv_activity_handlers; 2671 old_size = dev->dv_activity_count; 2672 2673 for (i = 0; i < old_size; ++i) { 2674 if (old_handlers[i] == handler) 2675 break; 2676 if (old_handlers[i] == NULL) 2677 return; /* XXX panic? */ 2678 } 2679 2680 if (i == old_size) 2681 return; /* XXX panic? */ 2682 2683 for (; i < old_size - 1; ++i) { 2684 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2685 continue; 2686 2687 if (i == 0) { 2688 s = splhigh(); 2689 dev->dv_activity_count = 0; 2690 dev->dv_activity_handlers = NULL; 2691 splx(s); 2692 kmem_free(old_handlers, sizeof(void *[old_size])); 2693 } 2694 return; 2695 } 2696 old_handlers[i] = NULL; 2697 } 2698 2699 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2700 static bool 2701 device_exists_at(device_t dv, devgen_t gen) 2702 { 2703 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2704 dv->dv_add_gen <= gen; 2705 } 2706 2707 static bool 2708 deviter_visits(const deviter_t *di, device_t dv) 2709 { 2710 return device_exists_at(dv, di->di_gen); 2711 } 2712 2713 /* 2714 * Device Iteration 2715 * 2716 * deviter_t: a device iterator. Holds state for a "walk" visiting 2717 * each device_t's in the device tree. 2718 * 2719 * deviter_init(di, flags): initialize the device iterator `di' 2720 * to "walk" the device tree. deviter_next(di) will return 2721 * the first device_t in the device tree, or NULL if there are 2722 * no devices. 2723 * 2724 * `flags' is one or more of DEVITER_F_RW, indicating that the 2725 * caller intends to modify the device tree by calling 2726 * config_detach(9) on devices in the order that the iterator 2727 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2728 * nearest the "root" of the device tree to be returned, first; 2729 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2730 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2731 * indicating both that deviter_init() should not respect any 2732 * locks on the device tree, and that deviter_next(di) may run 2733 * in more than one LWP before the walk has finished. 2734 * 2735 * Only one DEVITER_F_RW iterator may be in the device tree at 2736 * once. 2737 * 2738 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2739 * 2740 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2741 * DEVITER_F_LEAVES_FIRST are used in combination. 2742 * 2743 * deviter_first(di, flags): initialize the device iterator `di' 2744 * and return the first device_t in the device tree, or NULL 2745 * if there are no devices. The statement 2746 * 2747 * dv = deviter_first(di); 2748 * 2749 * is shorthand for 2750 * 2751 * deviter_init(di); 2752 * dv = deviter_next(di); 2753 * 2754 * deviter_next(di): return the next device_t in the device tree, 2755 * or NULL if there are no more devices. deviter_next(di) 2756 * is undefined if `di' was not initialized with deviter_init() or 2757 * deviter_first(). 2758 * 2759 * deviter_release(di): stops iteration (subsequent calls to 2760 * deviter_next() will return NULL), releases any locks and 2761 * resources held by the device iterator. 2762 * 2763 * Device iteration does not return device_t's in any particular 2764 * order. An iterator will never return the same device_t twice. 2765 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2766 * is called repeatedly on the same `di', it will eventually return 2767 * NULL. It is ok to attach/detach devices during device iteration. 2768 */ 2769 void 2770 deviter_init(deviter_t *di, deviter_flags_t flags) 2771 { 2772 device_t dv; 2773 2774 memset(di, 0, sizeof(*di)); 2775 2776 mutex_enter(&alldevs_mtx); 2777 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2778 flags |= DEVITER_F_RW; 2779 2780 if ((flags & DEVITER_F_RW) != 0) 2781 alldevs_nwrite++; 2782 else 2783 alldevs_nread++; 2784 di->di_gen = alldevs_gen++; 2785 mutex_exit(&alldevs_mtx); 2786 2787 di->di_flags = flags; 2788 2789 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2790 case DEVITER_F_LEAVES_FIRST: 2791 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2792 if (!deviter_visits(di, dv)) 2793 continue; 2794 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2795 } 2796 break; 2797 case DEVITER_F_ROOT_FIRST: 2798 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2799 if (!deviter_visits(di, dv)) 2800 continue; 2801 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2802 } 2803 break; 2804 default: 2805 break; 2806 } 2807 2808 deviter_reinit(di); 2809 } 2810 2811 static void 2812 deviter_reinit(deviter_t *di) 2813 { 2814 if ((di->di_flags & DEVITER_F_RW) != 0) 2815 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2816 else 2817 di->di_prev = TAILQ_FIRST(&alldevs); 2818 } 2819 2820 device_t 2821 deviter_first(deviter_t *di, deviter_flags_t flags) 2822 { 2823 deviter_init(di, flags); 2824 return deviter_next(di); 2825 } 2826 2827 static device_t 2828 deviter_next2(deviter_t *di) 2829 { 2830 device_t dv; 2831 2832 dv = di->di_prev; 2833 2834 if (dv == NULL) 2835 return NULL; 2836 2837 if ((di->di_flags & DEVITER_F_RW) != 0) 2838 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2839 else 2840 di->di_prev = TAILQ_NEXT(dv, dv_list); 2841 2842 return dv; 2843 } 2844 2845 static device_t 2846 deviter_next1(deviter_t *di) 2847 { 2848 device_t dv; 2849 2850 do { 2851 dv = deviter_next2(di); 2852 } while (dv != NULL && !deviter_visits(di, dv)); 2853 2854 return dv; 2855 } 2856 2857 device_t 2858 deviter_next(deviter_t *di) 2859 { 2860 device_t dv = NULL; 2861 2862 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2863 case 0: 2864 return deviter_next1(di); 2865 case DEVITER_F_LEAVES_FIRST: 2866 while (di->di_curdepth >= 0) { 2867 if ((dv = deviter_next1(di)) == NULL) { 2868 di->di_curdepth--; 2869 deviter_reinit(di); 2870 } else if (dv->dv_depth == di->di_curdepth) 2871 break; 2872 } 2873 return dv; 2874 case DEVITER_F_ROOT_FIRST: 2875 while (di->di_curdepth <= di->di_maxdepth) { 2876 if ((dv = deviter_next1(di)) == NULL) { 2877 di->di_curdepth++; 2878 deviter_reinit(di); 2879 } else if (dv->dv_depth == di->di_curdepth) 2880 break; 2881 } 2882 return dv; 2883 default: 2884 return NULL; 2885 } 2886 } 2887 2888 void 2889 deviter_release(deviter_t *di) 2890 { 2891 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2892 2893 mutex_enter(&alldevs_mtx); 2894 if (rw) 2895 --alldevs_nwrite; 2896 else 2897 --alldevs_nread; 2898 /* XXX wake a garbage-collection thread */ 2899 mutex_exit(&alldevs_mtx); 2900 } 2901 2902 const char * 2903 cfdata_ifattr(const struct cfdata *cf) 2904 { 2905 return cf->cf_pspec->cfp_iattr; 2906 } 2907 2908 bool 2909 ifattr_match(const char *snull, const char *t) 2910 { 2911 return (snull == NULL) || strcmp(snull, t) == 0; 2912 } 2913 2914 void 2915 null_childdetached(device_t self, device_t child) 2916 { 2917 /* do nothing */ 2918 } 2919 2920 static void 2921 sysctl_detach_setup(struct sysctllog **clog) 2922 { 2923 2924 sysctl_createv(clog, 0, NULL, NULL, 2925 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2926 CTLTYPE_BOOL, "detachall", 2927 SYSCTL_DESCR("Detach all devices at shutdown"), 2928 NULL, 0, &detachall, 0, 2929 CTL_KERN, CTL_CREATE, CTL_EOL); 2930 } 2931