xref: /netbsd-src/sys/kern/subr_autoconf.c (revision 9aa0541bdf64142d9a27c2cf274394d60182818f)
1 /* $NetBSD: subr_autoconf.c,v 1.220 2011/08/31 18:31:02 plunky Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.220 2011/08/31 18:31:02 plunky Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <machine/limits.h>
114 
115 /*
116  * Autoconfiguration subroutines.
117  */
118 
119 /*
120  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
121  * devices and drivers are found via these tables.
122  */
123 extern struct cfdata cfdata[];
124 extern const short cfroots[];
125 
126 /*
127  * List of all cfdriver structures.  We use this to detect duplicates
128  * when other cfdrivers are loaded.
129  */
130 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
131 extern struct cfdriver * const cfdriver_list_initial[];
132 
133 /*
134  * Initial list of cfattach's.
135  */
136 extern const struct cfattachinit cfattachinit[];
137 
138 /*
139  * List of cfdata tables.  We always have one such list -- the one
140  * built statically when the kernel was configured.
141  */
142 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
143 static struct cftable initcftable;
144 
145 #define	ROOT ((device_t)NULL)
146 
147 struct matchinfo {
148 	cfsubmatch_t fn;
149 	struct	device *parent;
150 	const int *locs;
151 	void	*aux;
152 	struct	cfdata *match;
153 	int	pri;
154 };
155 
156 struct alldevs_foray {
157 	int			af_s;
158 	struct devicelist	af_garbage;
159 };
160 
161 static char *number(char *, int);
162 static void mapply(struct matchinfo *, cfdata_t);
163 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
164 static void config_devdelete(device_t);
165 static void config_devunlink(device_t, struct devicelist *);
166 static void config_makeroom(int, struct cfdriver *);
167 static void config_devlink(device_t);
168 static void config_alldevs_unlock(int);
169 static int config_alldevs_lock(void);
170 static void config_alldevs_enter(struct alldevs_foray *);
171 static void config_alldevs_exit(struct alldevs_foray *);
172 
173 static void config_collect_garbage(struct devicelist *);
174 static void config_dump_garbage(struct devicelist *);
175 
176 static void pmflock_debug(device_t, const char *, int);
177 
178 static device_t deviter_next1(deviter_t *);
179 static void deviter_reinit(deviter_t *);
180 
181 struct deferred_config {
182 	TAILQ_ENTRY(deferred_config) dc_queue;
183 	device_t dc_dev;
184 	void (*dc_func)(device_t);
185 };
186 
187 TAILQ_HEAD(deferred_config_head, deferred_config);
188 
189 struct deferred_config_head deferred_config_queue =
190 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
191 struct deferred_config_head interrupt_config_queue =
192 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
193 int interrupt_config_threads = 8;
194 struct deferred_config_head mountroot_config_queue =
195 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
196 int mountroot_config_threads = 2;
197 static bool root_is_mounted = false;
198 
199 static void config_process_deferred(struct deferred_config_head *, device_t);
200 
201 /* Hooks to finalize configuration once all real devices have been found. */
202 struct finalize_hook {
203 	TAILQ_ENTRY(finalize_hook) f_list;
204 	int (*f_func)(device_t);
205 	device_t f_dev;
206 };
207 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
208 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
209 static int config_finalize_done;
210 
211 /* list of all devices */
212 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
213 static kmutex_t alldevs_mtx;
214 static volatile bool alldevs_garbage = false;
215 static volatile devgen_t alldevs_gen = 1;
216 static volatile int alldevs_nread = 0;
217 static volatile int alldevs_nwrite = 0;
218 
219 static int config_pending;		/* semaphore for mountroot */
220 static kmutex_t config_misc_lock;
221 static kcondvar_t config_misc_cv;
222 
223 static bool detachall = false;
224 
225 #define	STREQ(s1, s2)			\
226 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
227 
228 static bool config_initialized = false;	/* config_init() has been called. */
229 
230 static int config_do_twiddle;
231 static callout_t config_twiddle_ch;
232 
233 static void sysctl_detach_setup(struct sysctllog **);
234 
235 typedef int (*cfdriver_fn)(struct cfdriver *);
236 static int
237 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
238 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
239 	const char *style, bool dopanic)
240 {
241 	void (*pr)(const char *, ...) = dopanic ? panic : printf;
242 	int i = 0, error = 0, e2;
243 
244 	for (i = 0; cfdriverv[i] != NULL; i++) {
245 		if ((error = drv_do(cfdriverv[i])) != 0) {
246 			pr("configure: `%s' driver %s failed: %d",
247 			    cfdriverv[i]->cd_name, style, error);
248 			goto bad;
249 		}
250 	}
251 
252 	KASSERT(error == 0);
253 	return 0;
254 
255  bad:
256 	printf("\n");
257 	for (i--; i >= 0; i--) {
258 		e2 = drv_undo(cfdriverv[i]);
259 		KASSERT(e2 == 0);
260 	}
261 
262 	return error;
263 }
264 
265 typedef int (*cfattach_fn)(const char *, struct cfattach *);
266 static int
267 frob_cfattachvec(const struct cfattachinit *cfattachv,
268 	cfattach_fn att_do, cfattach_fn att_undo,
269 	const char *style, bool dopanic)
270 {
271 	const struct cfattachinit *cfai = NULL;
272 	void (*pr)(const char *, ...) = dopanic ? panic : printf;
273 	int j = 0, error = 0, e2;
274 
275 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
276 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
277 			if ((error = att_do(cfai->cfai_name,
278 			    cfai->cfai_list[j])) != 0) {
279 				pr("configure: attachment `%s' "
280 				    "of `%s' driver %s failed: %d",
281 				    cfai->cfai_list[j]->ca_name,
282 				    cfai->cfai_name, style, error);
283 				goto bad;
284 			}
285 		}
286 	}
287 
288 	KASSERT(error == 0);
289 	return 0;
290 
291  bad:
292 	/*
293 	 * Rollback in reverse order.  dunno if super-important, but
294 	 * do that anyway.  Although the code looks a little like
295 	 * someone did a little integration (in the math sense).
296 	 */
297 	printf("\n");
298 	if (cfai) {
299 		bool last;
300 
301 		for (last = false; last == false; ) {
302 			if (cfai == &cfattachv[0])
303 				last = true;
304 			for (j--; j >= 0; j--) {
305 				e2 = att_undo(cfai->cfai_name,
306 				    cfai->cfai_list[j]);
307 				KASSERT(e2 == 0);
308 			}
309 			if (!last) {
310 				cfai--;
311 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
312 					;
313 			}
314 		}
315 	}
316 
317 	return error;
318 }
319 
320 /*
321  * Initialize the autoconfiguration data structures.  Normally this
322  * is done by configure(), but some platforms need to do this very
323  * early (to e.g. initialize the console).
324  */
325 void
326 config_init(void)
327 {
328 
329 	KASSERT(config_initialized == false);
330 
331 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
332 
333 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
334 	cv_init(&config_misc_cv, "cfgmisc");
335 
336 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
337 
338 	frob_cfdrivervec(cfdriver_list_initial,
339 	    config_cfdriver_attach, NULL, "bootstrap", true);
340 	frob_cfattachvec(cfattachinit,
341 	    config_cfattach_attach, NULL, "bootstrap", true);
342 
343 	initcftable.ct_cfdata = cfdata;
344 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
345 
346 	config_initialized = true;
347 }
348 
349 /*
350  * Init or fini drivers and attachments.  Either all or none
351  * are processed (via rollback).  It would be nice if this were
352  * atomic to outside consumers, but with the current state of
353  * locking ...
354  */
355 int
356 config_init_component(struct cfdriver * const *cfdriverv,
357 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
358 {
359 	int error;
360 
361 	if ((error = frob_cfdrivervec(cfdriverv,
362 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
363 		return error;
364 	if ((error = frob_cfattachvec(cfattachv,
365 	    config_cfattach_attach, config_cfattach_detach,
366 	    "init", false)) != 0) {
367 		frob_cfdrivervec(cfdriverv,
368 	            config_cfdriver_detach, NULL, "init rollback", true);
369 		return error;
370 	}
371 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
372 		frob_cfattachvec(cfattachv,
373 		    config_cfattach_detach, NULL, "init rollback", true);
374 		frob_cfdrivervec(cfdriverv,
375 	            config_cfdriver_detach, NULL, "init rollback", true);
376 		return error;
377 	}
378 
379 	return 0;
380 }
381 
382 int
383 config_fini_component(struct cfdriver * const *cfdriverv,
384 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
385 {
386 	int error;
387 
388 	if ((error = config_cfdata_detach(cfdatav)) != 0)
389 		return error;
390 	if ((error = frob_cfattachvec(cfattachv,
391 	    config_cfattach_detach, config_cfattach_attach,
392 	    "fini", false)) != 0) {
393 		if (config_cfdata_attach(cfdatav, 0) != 0)
394 			panic("config_cfdata fini rollback failed");
395 		return error;
396 	}
397 	if ((error = frob_cfdrivervec(cfdriverv,
398 	    config_cfdriver_detach, config_cfdriver_attach,
399 	    "fini", false)) != 0) {
400 		frob_cfattachvec(cfattachv,
401 	            config_cfattach_attach, NULL, "fini rollback", true);
402 		if (config_cfdata_attach(cfdatav, 0) != 0)
403 			panic("config_cfdata fini rollback failed");
404 		return error;
405 	}
406 
407 	return 0;
408 }
409 
410 void
411 config_init_mi(void)
412 {
413 
414 	if (!config_initialized)
415 		config_init();
416 
417 	sysctl_detach_setup(NULL);
418 }
419 
420 void
421 config_deferred(device_t dev)
422 {
423 	config_process_deferred(&deferred_config_queue, dev);
424 	config_process_deferred(&interrupt_config_queue, dev);
425 	config_process_deferred(&mountroot_config_queue, dev);
426 }
427 
428 static void
429 config_interrupts_thread(void *cookie)
430 {
431 	struct deferred_config *dc;
432 
433 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
434 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
435 		(*dc->dc_func)(dc->dc_dev);
436 		kmem_free(dc, sizeof(*dc));
437 		config_pending_decr();
438 	}
439 	kthread_exit(0);
440 }
441 
442 void
443 config_create_interruptthreads()
444 {
445 	int i;
446 
447 	for (i = 0; i < interrupt_config_threads; i++) {
448 		(void)kthread_create(PRI_NONE, 0, NULL,
449 		    config_interrupts_thread, NULL, NULL, "config");
450 	}
451 }
452 
453 static void
454 config_mountroot_thread(void *cookie)
455 {
456 	struct deferred_config *dc;
457 
458 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
459 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
460 		(*dc->dc_func)(dc->dc_dev);
461 		kmem_free(dc, sizeof(*dc));
462 	}
463 	kthread_exit(0);
464 }
465 
466 void
467 config_create_mountrootthreads()
468 {
469 	int i;
470 
471 	if (!root_is_mounted)
472 		root_is_mounted = true;
473 
474 	for (i = 0; i < mountroot_config_threads; i++) {
475 		(void)kthread_create(PRI_NONE, 0, NULL,
476 		    config_mountroot_thread, NULL, NULL, "config");
477 	}
478 }
479 
480 /*
481  * Announce device attach/detach to userland listeners.
482  */
483 static void
484 devmon_report_device(device_t dev, bool isattach)
485 {
486 #if NDRVCTL > 0
487 	prop_dictionary_t ev;
488 	const char *parent;
489 	const char *what;
490 	device_t pdev = device_parent(dev);
491 
492 	ev = prop_dictionary_create();
493 	if (ev == NULL)
494 		return;
495 
496 	what = (isattach ? "device-attach" : "device-detach");
497 	parent = (pdev == NULL ? "root" : device_xname(pdev));
498 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
499 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
500 		prop_object_release(ev);
501 		return;
502 	}
503 
504 	devmon_insert(what, ev);
505 #endif
506 }
507 
508 /*
509  * Add a cfdriver to the system.
510  */
511 int
512 config_cfdriver_attach(struct cfdriver *cd)
513 {
514 	struct cfdriver *lcd;
515 
516 	/* Make sure this driver isn't already in the system. */
517 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
518 		if (STREQ(lcd->cd_name, cd->cd_name))
519 			return EEXIST;
520 	}
521 
522 	LIST_INIT(&cd->cd_attach);
523 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
524 
525 	return 0;
526 }
527 
528 /*
529  * Remove a cfdriver from the system.
530  */
531 int
532 config_cfdriver_detach(struct cfdriver *cd)
533 {
534 	struct alldevs_foray af;
535 	int i, rc = 0;
536 
537 	config_alldevs_enter(&af);
538 	/* Make sure there are no active instances. */
539 	for (i = 0; i < cd->cd_ndevs; i++) {
540 		if (cd->cd_devs[i] != NULL) {
541 			rc = EBUSY;
542 			break;
543 		}
544 	}
545 	config_alldevs_exit(&af);
546 
547 	if (rc != 0)
548 		return rc;
549 
550 	/* ...and no attachments loaded. */
551 	if (LIST_EMPTY(&cd->cd_attach) == 0)
552 		return EBUSY;
553 
554 	LIST_REMOVE(cd, cd_list);
555 
556 	KASSERT(cd->cd_devs == NULL);
557 
558 	return 0;
559 }
560 
561 /*
562  * Look up a cfdriver by name.
563  */
564 struct cfdriver *
565 config_cfdriver_lookup(const char *name)
566 {
567 	struct cfdriver *cd;
568 
569 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
570 		if (STREQ(cd->cd_name, name))
571 			return cd;
572 	}
573 
574 	return NULL;
575 }
576 
577 /*
578  * Add a cfattach to the specified driver.
579  */
580 int
581 config_cfattach_attach(const char *driver, struct cfattach *ca)
582 {
583 	struct cfattach *lca;
584 	struct cfdriver *cd;
585 
586 	cd = config_cfdriver_lookup(driver);
587 	if (cd == NULL)
588 		return ESRCH;
589 
590 	/* Make sure this attachment isn't already on this driver. */
591 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
592 		if (STREQ(lca->ca_name, ca->ca_name))
593 			return EEXIST;
594 	}
595 
596 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
597 
598 	return 0;
599 }
600 
601 /*
602  * Remove a cfattach from the specified driver.
603  */
604 int
605 config_cfattach_detach(const char *driver, struct cfattach *ca)
606 {
607 	struct alldevs_foray af;
608 	struct cfdriver *cd;
609 	device_t dev;
610 	int i, rc = 0;
611 
612 	cd = config_cfdriver_lookup(driver);
613 	if (cd == NULL)
614 		return ESRCH;
615 
616 	config_alldevs_enter(&af);
617 	/* Make sure there are no active instances. */
618 	for (i = 0; i < cd->cd_ndevs; i++) {
619 		if ((dev = cd->cd_devs[i]) == NULL)
620 			continue;
621 		if (dev->dv_cfattach == ca) {
622 			rc = EBUSY;
623 			break;
624 		}
625 	}
626 	config_alldevs_exit(&af);
627 
628 	if (rc != 0)
629 		return rc;
630 
631 	LIST_REMOVE(ca, ca_list);
632 
633 	return 0;
634 }
635 
636 /*
637  * Look up a cfattach by name.
638  */
639 static struct cfattach *
640 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
641 {
642 	struct cfattach *ca;
643 
644 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
645 		if (STREQ(ca->ca_name, atname))
646 			return ca;
647 	}
648 
649 	return NULL;
650 }
651 
652 /*
653  * Look up a cfattach by driver/attachment name.
654  */
655 struct cfattach *
656 config_cfattach_lookup(const char *name, const char *atname)
657 {
658 	struct cfdriver *cd;
659 
660 	cd = config_cfdriver_lookup(name);
661 	if (cd == NULL)
662 		return NULL;
663 
664 	return config_cfattach_lookup_cd(cd, atname);
665 }
666 
667 /*
668  * Apply the matching function and choose the best.  This is used
669  * a few times and we want to keep the code small.
670  */
671 static void
672 mapply(struct matchinfo *m, cfdata_t cf)
673 {
674 	int pri;
675 
676 	if (m->fn != NULL) {
677 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
678 	} else {
679 		pri = config_match(m->parent, cf, m->aux);
680 	}
681 	if (pri > m->pri) {
682 		m->match = cf;
683 		m->pri = pri;
684 	}
685 }
686 
687 int
688 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
689 {
690 	const struct cfiattrdata *ci;
691 	const struct cflocdesc *cl;
692 	int nlocs, i;
693 
694 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
695 	KASSERT(ci);
696 	nlocs = ci->ci_loclen;
697 	KASSERT(!nlocs || locs);
698 	for (i = 0; i < nlocs; i++) {
699 		cl = &ci->ci_locdesc[i];
700 		/* !cld_defaultstr means no default value */
701 		if ((!(cl->cld_defaultstr)
702 		     || (cf->cf_loc[i] != cl->cld_default))
703 		    && cf->cf_loc[i] != locs[i])
704 			return 0;
705 	}
706 
707 	return config_match(parent, cf, aux);
708 }
709 
710 /*
711  * Helper function: check whether the driver supports the interface attribute
712  * and return its descriptor structure.
713  */
714 static const struct cfiattrdata *
715 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
716 {
717 	const struct cfiattrdata * const *cpp;
718 
719 	if (cd->cd_attrs == NULL)
720 		return 0;
721 
722 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
723 		if (STREQ((*cpp)->ci_name, ia)) {
724 			/* Match. */
725 			return *cpp;
726 		}
727 	}
728 	return 0;
729 }
730 
731 /*
732  * Lookup an interface attribute description by name.
733  * If the driver is given, consider only its supported attributes.
734  */
735 const struct cfiattrdata *
736 cfiattr_lookup(const char *name, const struct cfdriver *cd)
737 {
738 	const struct cfdriver *d;
739 	const struct cfiattrdata *ia;
740 
741 	if (cd)
742 		return cfdriver_get_iattr(cd, name);
743 
744 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
745 		ia = cfdriver_get_iattr(d, name);
746 		if (ia)
747 			return ia;
748 	}
749 	return 0;
750 }
751 
752 /*
753  * Determine if `parent' is a potential parent for a device spec based
754  * on `cfp'.
755  */
756 static int
757 cfparent_match(const device_t parent, const struct cfparent *cfp)
758 {
759 	struct cfdriver *pcd;
760 
761 	/* We don't match root nodes here. */
762 	if (cfp == NULL)
763 		return 0;
764 
765 	pcd = parent->dv_cfdriver;
766 	KASSERT(pcd != NULL);
767 
768 	/*
769 	 * First, ensure this parent has the correct interface
770 	 * attribute.
771 	 */
772 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
773 		return 0;
774 
775 	/*
776 	 * If no specific parent device instance was specified (i.e.
777 	 * we're attaching to the attribute only), we're done!
778 	 */
779 	if (cfp->cfp_parent == NULL)
780 		return 1;
781 
782 	/*
783 	 * Check the parent device's name.
784 	 */
785 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
786 		return 0;	/* not the same parent */
787 
788 	/*
789 	 * Make sure the unit number matches.
790 	 */
791 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
792 	    cfp->cfp_unit == parent->dv_unit)
793 		return 1;
794 
795 	/* Unit numbers don't match. */
796 	return 0;
797 }
798 
799 /*
800  * Helper for config_cfdata_attach(): check all devices whether it could be
801  * parent any attachment in the config data table passed, and rescan.
802  */
803 static void
804 rescan_with_cfdata(const struct cfdata *cf)
805 {
806 	device_t d;
807 	const struct cfdata *cf1;
808 	deviter_t di;
809 
810 
811 	/*
812 	 * "alldevs" is likely longer than a modules's cfdata, so make it
813 	 * the outer loop.
814 	 */
815 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
816 
817 		if (!(d->dv_cfattach->ca_rescan))
818 			continue;
819 
820 		for (cf1 = cf; cf1->cf_name; cf1++) {
821 
822 			if (!cfparent_match(d, cf1->cf_pspec))
823 				continue;
824 
825 			(*d->dv_cfattach->ca_rescan)(d,
826 				cfdata_ifattr(cf1), cf1->cf_loc);
827 
828 			config_deferred(d);
829 		}
830 	}
831 	deviter_release(&di);
832 }
833 
834 /*
835  * Attach a supplemental config data table and rescan potential
836  * parent devices if required.
837  */
838 int
839 config_cfdata_attach(cfdata_t cf, int scannow)
840 {
841 	struct cftable *ct;
842 
843 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
844 	ct->ct_cfdata = cf;
845 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
846 
847 	if (scannow)
848 		rescan_with_cfdata(cf);
849 
850 	return 0;
851 }
852 
853 /*
854  * Helper for config_cfdata_detach: check whether a device is
855  * found through any attachment in the config data table.
856  */
857 static int
858 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
859 {
860 	const struct cfdata *cf1;
861 
862 	for (cf1 = cf; cf1->cf_name; cf1++)
863 		if (d->dv_cfdata == cf1)
864 			return 1;
865 
866 	return 0;
867 }
868 
869 /*
870  * Detach a supplemental config data table. Detach all devices found
871  * through that table (and thus keeping references to it) before.
872  */
873 int
874 config_cfdata_detach(cfdata_t cf)
875 {
876 	device_t d;
877 	int error = 0;
878 	struct cftable *ct;
879 	deviter_t di;
880 
881 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
882 	     d = deviter_next(&di)) {
883 		if (!dev_in_cfdata(d, cf))
884 			continue;
885 		if ((error = config_detach(d, 0)) != 0)
886 			break;
887 	}
888 	deviter_release(&di);
889 	if (error) {
890 		aprint_error_dev(d, "unable to detach instance\n");
891 		return error;
892 	}
893 
894 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
895 		if (ct->ct_cfdata == cf) {
896 			TAILQ_REMOVE(&allcftables, ct, ct_list);
897 			kmem_free(ct, sizeof(*ct));
898 			return 0;
899 		}
900 	}
901 
902 	/* not found -- shouldn't happen */
903 	return EINVAL;
904 }
905 
906 /*
907  * Invoke the "match" routine for a cfdata entry on behalf of
908  * an external caller, usually a "submatch" routine.
909  */
910 int
911 config_match(device_t parent, cfdata_t cf, void *aux)
912 {
913 	struct cfattach *ca;
914 
915 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
916 	if (ca == NULL) {
917 		/* No attachment for this entry, oh well. */
918 		return 0;
919 	}
920 
921 	return (*ca->ca_match)(parent, cf, aux);
922 }
923 
924 /*
925  * Iterate over all potential children of some device, calling the given
926  * function (default being the child's match function) for each one.
927  * Nonzero returns are matches; the highest value returned is considered
928  * the best match.  Return the `found child' if we got a match, or NULL
929  * otherwise.  The `aux' pointer is simply passed on through.
930  *
931  * Note that this function is designed so that it can be used to apply
932  * an arbitrary function to all potential children (its return value
933  * can be ignored).
934  */
935 cfdata_t
936 config_search_loc(cfsubmatch_t fn, device_t parent,
937 		  const char *ifattr, const int *locs, void *aux)
938 {
939 	struct cftable *ct;
940 	cfdata_t cf;
941 	struct matchinfo m;
942 
943 	KASSERT(config_initialized);
944 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
945 
946 	m.fn = fn;
947 	m.parent = parent;
948 	m.locs = locs;
949 	m.aux = aux;
950 	m.match = NULL;
951 	m.pri = 0;
952 
953 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
954 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
955 
956 			/* We don't match root nodes here. */
957 			if (!cf->cf_pspec)
958 				continue;
959 
960 			/*
961 			 * Skip cf if no longer eligible, otherwise scan
962 			 * through parents for one matching `parent', and
963 			 * try match function.
964 			 */
965 			if (cf->cf_fstate == FSTATE_FOUND)
966 				continue;
967 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
968 			    cf->cf_fstate == FSTATE_DSTAR)
969 				continue;
970 
971 			/*
972 			 * If an interface attribute was specified,
973 			 * consider only children which attach to
974 			 * that attribute.
975 			 */
976 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
977 				continue;
978 
979 			if (cfparent_match(parent, cf->cf_pspec))
980 				mapply(&m, cf);
981 		}
982 	}
983 	return m.match;
984 }
985 
986 cfdata_t
987 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
988     void *aux)
989 {
990 
991 	return config_search_loc(fn, parent, ifattr, NULL, aux);
992 }
993 
994 /*
995  * Find the given root device.
996  * This is much like config_search, but there is no parent.
997  * Don't bother with multiple cfdata tables; the root node
998  * must always be in the initial table.
999  */
1000 cfdata_t
1001 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1002 {
1003 	cfdata_t cf;
1004 	const short *p;
1005 	struct matchinfo m;
1006 
1007 	m.fn = fn;
1008 	m.parent = ROOT;
1009 	m.aux = aux;
1010 	m.match = NULL;
1011 	m.pri = 0;
1012 	m.locs = 0;
1013 	/*
1014 	 * Look at root entries for matching name.  We do not bother
1015 	 * with found-state here since only one root should ever be
1016 	 * searched (and it must be done first).
1017 	 */
1018 	for (p = cfroots; *p >= 0; p++) {
1019 		cf = &cfdata[*p];
1020 		if (strcmp(cf->cf_name, rootname) == 0)
1021 			mapply(&m, cf);
1022 	}
1023 	return m.match;
1024 }
1025 
1026 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1027 
1028 /*
1029  * The given `aux' argument describes a device that has been found
1030  * on the given parent, but not necessarily configured.  Locate the
1031  * configuration data for that device (using the submatch function
1032  * provided, or using candidates' cd_match configuration driver
1033  * functions) and attach it, and return its device_t.  If the device was
1034  * not configured, call the given `print' function and return NULL.
1035  */
1036 device_t
1037 config_found_sm_loc(device_t parent,
1038 		const char *ifattr, const int *locs, void *aux,
1039 		cfprint_t print, cfsubmatch_t submatch)
1040 {
1041 	cfdata_t cf;
1042 
1043 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1044 		return(config_attach_loc(parent, cf, locs, aux, print));
1045 	if (print) {
1046 		if (config_do_twiddle && cold)
1047 			twiddle();
1048 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1049 	}
1050 
1051 	return NULL;
1052 }
1053 
1054 device_t
1055 config_found_ia(device_t parent, const char *ifattr, void *aux,
1056     cfprint_t print)
1057 {
1058 
1059 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1060 }
1061 
1062 device_t
1063 config_found(device_t parent, void *aux, cfprint_t print)
1064 {
1065 
1066 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1067 }
1068 
1069 /*
1070  * As above, but for root devices.
1071  */
1072 device_t
1073 config_rootfound(const char *rootname, void *aux)
1074 {
1075 	cfdata_t cf;
1076 
1077 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1078 		return config_attach(ROOT, cf, aux, NULL);
1079 	aprint_error("root device %s not configured\n", rootname);
1080 	return NULL;
1081 }
1082 
1083 /* just like sprintf(buf, "%d") except that it works from the end */
1084 static char *
1085 number(char *ep, int n)
1086 {
1087 
1088 	*--ep = 0;
1089 	while (n >= 10) {
1090 		*--ep = (n % 10) + '0';
1091 		n /= 10;
1092 	}
1093 	*--ep = n + '0';
1094 	return ep;
1095 }
1096 
1097 /*
1098  * Expand the size of the cd_devs array if necessary.
1099  *
1100  * The caller must hold alldevs_mtx. config_makeroom() may release and
1101  * re-acquire alldevs_mtx, so callers should re-check conditions such
1102  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1103  * returns.
1104  */
1105 static void
1106 config_makeroom(int n, struct cfdriver *cd)
1107 {
1108 	int old, new;
1109 	device_t *osp, *nsp;
1110 
1111 	alldevs_nwrite++;
1112 
1113 	for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1114 		;
1115 
1116 	while (n >= cd->cd_ndevs) {
1117 		/*
1118 		 * Need to expand the array.
1119 		 */
1120 		old = cd->cd_ndevs;
1121 		osp = cd->cd_devs;
1122 
1123 		/* Release alldevs_mtx around allocation, which may
1124 		 * sleep.
1125 		 */
1126 		mutex_exit(&alldevs_mtx);
1127 		nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1128 		if (nsp == NULL)
1129 			panic("%s: could not expand cd_devs", __func__);
1130 		mutex_enter(&alldevs_mtx);
1131 
1132 		/* If another thread moved the array while we did
1133 		 * not hold alldevs_mtx, try again.
1134 		 */
1135 		if (cd->cd_devs != osp) {
1136 			mutex_exit(&alldevs_mtx);
1137 			kmem_free(nsp, sizeof(device_t[new]));
1138 			mutex_enter(&alldevs_mtx);
1139 			continue;
1140 		}
1141 
1142 		memset(nsp + old, 0, sizeof(device_t[new - old]));
1143 		if (old != 0)
1144 			memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1145 
1146 		cd->cd_ndevs = new;
1147 		cd->cd_devs = nsp;
1148 		if (old != 0) {
1149 			mutex_exit(&alldevs_mtx);
1150 			kmem_free(osp, sizeof(device_t[old]));
1151 			mutex_enter(&alldevs_mtx);
1152 		}
1153 	}
1154 	alldevs_nwrite--;
1155 }
1156 
1157 /*
1158  * Put dev into the devices list.
1159  */
1160 static void
1161 config_devlink(device_t dev)
1162 {
1163 	int s;
1164 
1165 	s = config_alldevs_lock();
1166 
1167 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1168 
1169 	dev->dv_add_gen = alldevs_gen;
1170 	/* It is safe to add a device to the tail of the list while
1171 	 * readers and writers are in the list.
1172 	 */
1173 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1174 	config_alldevs_unlock(s);
1175 }
1176 
1177 static void
1178 config_devfree(device_t dev)
1179 {
1180 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1181 
1182 	if (dev->dv_cfattach->ca_devsize > 0)
1183 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1184 	if (priv)
1185 		kmem_free(dev, sizeof(*dev));
1186 }
1187 
1188 /*
1189  * Caller must hold alldevs_mtx.
1190  */
1191 static void
1192 config_devunlink(device_t dev, struct devicelist *garbage)
1193 {
1194 	struct device_garbage *dg = &dev->dv_garbage;
1195 	cfdriver_t cd = device_cfdriver(dev);
1196 	int i;
1197 
1198 	KASSERT(mutex_owned(&alldevs_mtx));
1199 
1200  	/* Unlink from device list.  Link to garbage list. */
1201 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1202 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1203 
1204 	/* Remove from cfdriver's array. */
1205 	cd->cd_devs[dev->dv_unit] = NULL;
1206 
1207 	/*
1208 	 * If the device now has no units in use, unlink its softc array.
1209 	 */
1210 	for (i = 0; i < cd->cd_ndevs; i++) {
1211 		if (cd->cd_devs[i] != NULL)
1212 			break;
1213 	}
1214 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1215 	if (i == cd->cd_ndevs) {
1216 		dg->dg_ndevs = cd->cd_ndevs;
1217 		dg->dg_devs = cd->cd_devs;
1218 		cd->cd_devs = NULL;
1219 		cd->cd_ndevs = 0;
1220 	}
1221 }
1222 
1223 static void
1224 config_devdelete(device_t dev)
1225 {
1226 	struct device_garbage *dg = &dev->dv_garbage;
1227 	device_lock_t dvl = device_getlock(dev);
1228 
1229 	if (dg->dg_devs != NULL)
1230 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1231 
1232 	cv_destroy(&dvl->dvl_cv);
1233 	mutex_destroy(&dvl->dvl_mtx);
1234 
1235 	KASSERT(dev->dv_properties != NULL);
1236 	prop_object_release(dev->dv_properties);
1237 
1238 	if (dev->dv_activity_handlers)
1239 		panic("%s with registered handlers", __func__);
1240 
1241 	if (dev->dv_locators) {
1242 		size_t amount = *--dev->dv_locators;
1243 		kmem_free(dev->dv_locators, amount);
1244 	}
1245 
1246 	config_devfree(dev);
1247 }
1248 
1249 static int
1250 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1251 {
1252 	int unit;
1253 
1254 	if (cf->cf_fstate == FSTATE_STAR) {
1255 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1256 			if (cd->cd_devs[unit] == NULL)
1257 				break;
1258 		/*
1259 		 * unit is now the unit of the first NULL device pointer,
1260 		 * or max(cd->cd_ndevs,cf->cf_unit).
1261 		 */
1262 	} else {
1263 		unit = cf->cf_unit;
1264 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1265 			unit = -1;
1266 	}
1267 	return unit;
1268 }
1269 
1270 static int
1271 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1272 {
1273 	struct alldevs_foray af;
1274 	int unit;
1275 
1276 	config_alldevs_enter(&af);
1277 	for (;;) {
1278 		unit = config_unit_nextfree(cd, cf);
1279 		if (unit == -1)
1280 			break;
1281 		if (unit < cd->cd_ndevs) {
1282 			cd->cd_devs[unit] = dev;
1283 			dev->dv_unit = unit;
1284 			break;
1285 		}
1286 		config_makeroom(unit, cd);
1287 	}
1288 	config_alldevs_exit(&af);
1289 
1290 	return unit;
1291 }
1292 
1293 static device_t
1294 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1295 {
1296 	cfdriver_t cd;
1297 	cfattach_t ca;
1298 	size_t lname, lunit;
1299 	const char *xunit;
1300 	int myunit;
1301 	char num[10];
1302 	device_t dev;
1303 	void *dev_private;
1304 	const struct cfiattrdata *ia;
1305 	device_lock_t dvl;
1306 
1307 	cd = config_cfdriver_lookup(cf->cf_name);
1308 	if (cd == NULL)
1309 		return NULL;
1310 
1311 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1312 	if (ca == NULL)
1313 		return NULL;
1314 
1315 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1316 	    ca->ca_devsize < sizeof(struct device))
1317 		panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname,
1318 		    ca->ca_devsize, sizeof(struct device));
1319 
1320 	/* get memory for all device vars */
1321 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1322 	if (ca->ca_devsize > 0) {
1323 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1324 		if (dev_private == NULL)
1325 			panic("config_devalloc: memory allocation for device softc failed");
1326 	} else {
1327 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1328 		dev_private = NULL;
1329 	}
1330 
1331 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1332 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1333 	} else {
1334 		dev = dev_private;
1335 #ifdef DIAGNOSTIC
1336 		printf("%s has not been converted to device_t\n", cd->cd_name);
1337 #endif
1338 	}
1339 	if (dev == NULL)
1340 		panic("config_devalloc: memory allocation for device_t failed");
1341 
1342 	dev->dv_class = cd->cd_class;
1343 	dev->dv_cfdata = cf;
1344 	dev->dv_cfdriver = cd;
1345 	dev->dv_cfattach = ca;
1346 	dev->dv_activity_count = 0;
1347 	dev->dv_activity_handlers = NULL;
1348 	dev->dv_private = dev_private;
1349 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1350 
1351 	myunit = config_unit_alloc(dev, cd, cf);
1352 	if (myunit == -1) {
1353 		config_devfree(dev);
1354 		return NULL;
1355 	}
1356 
1357 	/* compute length of name and decimal expansion of unit number */
1358 	lname = strlen(cd->cd_name);
1359 	xunit = number(&num[sizeof(num)], myunit);
1360 	lunit = &num[sizeof(num)] - xunit;
1361 	if (lname + lunit > sizeof(dev->dv_xname))
1362 		panic("config_devalloc: device name too long");
1363 
1364 	dvl = device_getlock(dev);
1365 
1366 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1367 	cv_init(&dvl->dvl_cv, "pmfsusp");
1368 
1369 	memcpy(dev->dv_xname, cd->cd_name, lname);
1370 	memcpy(dev->dv_xname + lname, xunit, lunit);
1371 	dev->dv_parent = parent;
1372 	if (parent != NULL)
1373 		dev->dv_depth = parent->dv_depth + 1;
1374 	else
1375 		dev->dv_depth = 0;
1376 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1377 	if (locs) {
1378 		KASSERT(parent); /* no locators at root */
1379 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1380 		dev->dv_locators =
1381 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1382 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1383 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1384 	}
1385 	dev->dv_properties = prop_dictionary_create();
1386 	KASSERT(dev->dv_properties != NULL);
1387 
1388 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1389 	    "device-driver", dev->dv_cfdriver->cd_name);
1390 	prop_dictionary_set_uint16(dev->dv_properties,
1391 	    "device-unit", dev->dv_unit);
1392 
1393 	return dev;
1394 }
1395 
1396 /*
1397  * Attach a found device.
1398  */
1399 device_t
1400 config_attach_loc(device_t parent, cfdata_t cf,
1401 	const int *locs, void *aux, cfprint_t print)
1402 {
1403 	device_t dev;
1404 	struct cftable *ct;
1405 	const char *drvname;
1406 
1407 	dev = config_devalloc(parent, cf, locs);
1408 	if (!dev)
1409 		panic("config_attach: allocation of device softc failed");
1410 
1411 	/* XXX redundant - see below? */
1412 	if (cf->cf_fstate != FSTATE_STAR) {
1413 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1414 		cf->cf_fstate = FSTATE_FOUND;
1415 	}
1416 
1417 	config_devlink(dev);
1418 
1419 	if (config_do_twiddle && cold)
1420 		twiddle();
1421 	else
1422 		aprint_naive("Found ");
1423 	/*
1424 	 * We want the next two printfs for normal, verbose, and quiet,
1425 	 * but not silent (in which case, we're twiddling, instead).
1426 	 */
1427 	if (parent == ROOT) {
1428 		aprint_naive("%s (root)", device_xname(dev));
1429 		aprint_normal("%s (root)", device_xname(dev));
1430 	} else {
1431 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1432 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1433 		if (print)
1434 			(void) (*print)(aux, NULL);
1435 	}
1436 
1437 	/*
1438 	 * Before attaching, clobber any unfound devices that are
1439 	 * otherwise identical.
1440 	 * XXX code above is redundant?
1441 	 */
1442 	drvname = dev->dv_cfdriver->cd_name;
1443 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1444 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1445 			if (STREQ(cf->cf_name, drvname) &&
1446 			    cf->cf_unit == dev->dv_unit) {
1447 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1448 					cf->cf_fstate = FSTATE_FOUND;
1449 			}
1450 		}
1451 	}
1452 	device_register(dev, aux);
1453 
1454 	/* Let userland know */
1455 	devmon_report_device(dev, true);
1456 
1457 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1458 
1459 	if (!device_pmf_is_registered(dev))
1460 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1461 
1462 	config_process_deferred(&deferred_config_queue, dev);
1463 
1464 	device_register_post_config(dev, aux);
1465 	return dev;
1466 }
1467 
1468 device_t
1469 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1470 {
1471 
1472 	return config_attach_loc(parent, cf, NULL, aux, print);
1473 }
1474 
1475 /*
1476  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1477  * way are silently inserted into the device tree, and their children
1478  * attached.
1479  *
1480  * Note that because pseudo-devices are attached silently, any information
1481  * the attach routine wishes to print should be prefixed with the device
1482  * name by the attach routine.
1483  */
1484 device_t
1485 config_attach_pseudo(cfdata_t cf)
1486 {
1487 	device_t dev;
1488 
1489 	dev = config_devalloc(ROOT, cf, NULL);
1490 	if (!dev)
1491 		return NULL;
1492 
1493 	/* XXX mark busy in cfdata */
1494 
1495 	if (cf->cf_fstate != FSTATE_STAR) {
1496 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1497 		cf->cf_fstate = FSTATE_FOUND;
1498 	}
1499 
1500 	config_devlink(dev);
1501 
1502 #if 0	/* XXXJRT not yet */
1503 	device_register(dev, NULL);	/* like a root node */
1504 #endif
1505 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1506 	config_process_deferred(&deferred_config_queue, dev);
1507 	return dev;
1508 }
1509 
1510 /*
1511  * Caller must hold alldevs_mtx.
1512  */
1513 static void
1514 config_collect_garbage(struct devicelist *garbage)
1515 {
1516 	device_t dv;
1517 
1518 	KASSERT(!cpu_intr_p());
1519 	KASSERT(!cpu_softintr_p());
1520 	KASSERT(mutex_owned(&alldevs_mtx));
1521 
1522 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1523 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1524 			if (dv->dv_del_gen != 0)
1525 				break;
1526 		}
1527 		if (dv == NULL) {
1528 			alldevs_garbage = false;
1529 			break;
1530 		}
1531 		config_devunlink(dv, garbage);
1532 	}
1533 	KASSERT(mutex_owned(&alldevs_mtx));
1534 }
1535 
1536 static void
1537 config_dump_garbage(struct devicelist *garbage)
1538 {
1539 	device_t dv;
1540 
1541 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1542 		TAILQ_REMOVE(garbage, dv, dv_list);
1543 		config_devdelete(dv);
1544 	}
1545 }
1546 
1547 /*
1548  * Detach a device.  Optionally forced (e.g. because of hardware
1549  * removal) and quiet.  Returns zero if successful, non-zero
1550  * (an error code) otherwise.
1551  *
1552  * Note that this code wants to be run from a process context, so
1553  * that the detach can sleep to allow processes which have a device
1554  * open to run and unwind their stacks.
1555  */
1556 int
1557 config_detach(device_t dev, int flags)
1558 {
1559 	struct alldevs_foray af;
1560 	struct cftable *ct;
1561 	cfdata_t cf;
1562 	const struct cfattach *ca;
1563 	struct cfdriver *cd;
1564 #ifdef DIAGNOSTIC
1565 	device_t d;
1566 #endif
1567 	int rv = 0, s;
1568 
1569 #ifdef DIAGNOSTIC
1570 	cf = dev->dv_cfdata;
1571 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1572 	    cf->cf_fstate != FSTATE_STAR)
1573 		panic("config_detach: %s: bad device fstate %d",
1574 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1575 #endif
1576 	cd = dev->dv_cfdriver;
1577 	KASSERT(cd != NULL);
1578 
1579 	ca = dev->dv_cfattach;
1580 	KASSERT(ca != NULL);
1581 
1582 	s = config_alldevs_lock();
1583 	if (dev->dv_del_gen != 0) {
1584 		config_alldevs_unlock(s);
1585 #ifdef DIAGNOSTIC
1586 		printf("%s: %s is already detached\n", __func__,
1587 		    device_xname(dev));
1588 #endif /* DIAGNOSTIC */
1589 		return ENOENT;
1590 	}
1591 	alldevs_nwrite++;
1592 	config_alldevs_unlock(s);
1593 
1594 	if (!detachall &&
1595 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1596 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1597 		rv = EOPNOTSUPP;
1598 	} else if (ca->ca_detach != NULL) {
1599 		rv = (*ca->ca_detach)(dev, flags);
1600 	} else
1601 		rv = EOPNOTSUPP;
1602 
1603 	/*
1604 	 * If it was not possible to detach the device, then we either
1605 	 * panic() (for the forced but failed case), or return an error.
1606 	 *
1607 	 * If it was possible to detach the device, ensure that the
1608 	 * device is deactivated.
1609 	 */
1610 	if (rv == 0)
1611 		dev->dv_flags &= ~DVF_ACTIVE;
1612 	else if ((flags & DETACH_FORCE) == 0)
1613 		goto out;
1614 	else {
1615 		panic("config_detach: forced detach of %s failed (%d)",
1616 		    device_xname(dev), rv);
1617 	}
1618 
1619 	/*
1620 	 * The device has now been successfully detached.
1621 	 */
1622 
1623 	/* Let userland know */
1624 	devmon_report_device(dev, false);
1625 
1626 #ifdef DIAGNOSTIC
1627 	/*
1628 	 * Sanity: If you're successfully detached, you should have no
1629 	 * children.  (Note that because children must be attached
1630 	 * after parents, we only need to search the latter part of
1631 	 * the list.)
1632 	 */
1633 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1634 	    d = TAILQ_NEXT(d, dv_list)) {
1635 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1636 			printf("config_detach: detached device %s"
1637 			    " has children %s\n", device_xname(dev), device_xname(d));
1638 			panic("config_detach");
1639 		}
1640 	}
1641 #endif
1642 
1643 	/* notify the parent that the child is gone */
1644 	if (dev->dv_parent) {
1645 		device_t p = dev->dv_parent;
1646 		if (p->dv_cfattach->ca_childdetached)
1647 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1648 	}
1649 
1650 	/*
1651 	 * Mark cfdata to show that the unit can be reused, if possible.
1652 	 */
1653 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1654 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1655 			if (STREQ(cf->cf_name, cd->cd_name)) {
1656 				if (cf->cf_fstate == FSTATE_FOUND &&
1657 				    cf->cf_unit == dev->dv_unit)
1658 					cf->cf_fstate = FSTATE_NOTFOUND;
1659 			}
1660 		}
1661 	}
1662 
1663 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1664 		aprint_normal_dev(dev, "detached\n");
1665 
1666 out:
1667 	config_alldevs_enter(&af);
1668 	KASSERT(alldevs_nwrite != 0);
1669 	--alldevs_nwrite;
1670 	if (rv == 0 && dev->dv_del_gen == 0) {
1671 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
1672 			config_devunlink(dev, &af.af_garbage);
1673 		else {
1674 			dev->dv_del_gen = alldevs_gen;
1675 			alldevs_garbage = true;
1676 		}
1677 	}
1678 	config_alldevs_exit(&af);
1679 
1680 	return rv;
1681 }
1682 
1683 int
1684 config_detach_children(device_t parent, int flags)
1685 {
1686 	device_t dv;
1687 	deviter_t di;
1688 	int error = 0;
1689 
1690 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1691 	     dv = deviter_next(&di)) {
1692 		if (device_parent(dv) != parent)
1693 			continue;
1694 		if ((error = config_detach(dv, flags)) != 0)
1695 			break;
1696 	}
1697 	deviter_release(&di);
1698 	return error;
1699 }
1700 
1701 device_t
1702 shutdown_first(struct shutdown_state *s)
1703 {
1704 	if (!s->initialized) {
1705 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1706 		s->initialized = true;
1707 	}
1708 	return shutdown_next(s);
1709 }
1710 
1711 device_t
1712 shutdown_next(struct shutdown_state *s)
1713 {
1714 	device_t dv;
1715 
1716 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1717 		;
1718 
1719 	if (dv == NULL)
1720 		s->initialized = false;
1721 
1722 	return dv;
1723 }
1724 
1725 bool
1726 config_detach_all(int how)
1727 {
1728 	static struct shutdown_state s;
1729 	device_t curdev;
1730 	bool progress = false;
1731 
1732 	if ((how & RB_NOSYNC) != 0)
1733 		return false;
1734 
1735 	for (curdev = shutdown_first(&s); curdev != NULL;
1736 	     curdev = shutdown_next(&s)) {
1737 		aprint_debug(" detaching %s, ", device_xname(curdev));
1738 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1739 			progress = true;
1740 			aprint_debug("success.");
1741 		} else
1742 			aprint_debug("failed.");
1743 	}
1744 	return progress;
1745 }
1746 
1747 static bool
1748 device_is_ancestor_of(device_t ancestor, device_t descendant)
1749 {
1750 	device_t dv;
1751 
1752 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1753 		if (device_parent(dv) == ancestor)
1754 			return true;
1755 	}
1756 	return false;
1757 }
1758 
1759 int
1760 config_deactivate(device_t dev)
1761 {
1762 	deviter_t di;
1763 	const struct cfattach *ca;
1764 	device_t descendant;
1765 	int s, rv = 0, oflags;
1766 
1767 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1768 	     descendant != NULL;
1769 	     descendant = deviter_next(&di)) {
1770 		if (dev != descendant &&
1771 		    !device_is_ancestor_of(dev, descendant))
1772 			continue;
1773 
1774 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1775 			continue;
1776 
1777 		ca = descendant->dv_cfattach;
1778 		oflags = descendant->dv_flags;
1779 
1780 		descendant->dv_flags &= ~DVF_ACTIVE;
1781 		if (ca->ca_activate == NULL)
1782 			continue;
1783 		s = splhigh();
1784 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1785 		splx(s);
1786 		if (rv != 0)
1787 			descendant->dv_flags = oflags;
1788 	}
1789 	deviter_release(&di);
1790 	return rv;
1791 }
1792 
1793 /*
1794  * Defer the configuration of the specified device until all
1795  * of its parent's devices have been attached.
1796  */
1797 void
1798 config_defer(device_t dev, void (*func)(device_t))
1799 {
1800 	struct deferred_config *dc;
1801 
1802 	if (dev->dv_parent == NULL)
1803 		panic("config_defer: can't defer config of a root device");
1804 
1805 #ifdef DIAGNOSTIC
1806 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1807 		if (dc->dc_dev == dev)
1808 			panic("config_defer: deferred twice");
1809 	}
1810 #endif
1811 
1812 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1813 	if (dc == NULL)
1814 		panic("config_defer: unable to allocate callback");
1815 
1816 	dc->dc_dev = dev;
1817 	dc->dc_func = func;
1818 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1819 	config_pending_incr();
1820 }
1821 
1822 /*
1823  * Defer some autoconfiguration for a device until after interrupts
1824  * are enabled.
1825  */
1826 void
1827 config_interrupts(device_t dev, void (*func)(device_t))
1828 {
1829 	struct deferred_config *dc;
1830 
1831 	/*
1832 	 * If interrupts are enabled, callback now.
1833 	 */
1834 	if (cold == 0) {
1835 		(*func)(dev);
1836 		return;
1837 	}
1838 
1839 #ifdef DIAGNOSTIC
1840 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1841 		if (dc->dc_dev == dev)
1842 			panic("config_interrupts: deferred twice");
1843 	}
1844 #endif
1845 
1846 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1847 	if (dc == NULL)
1848 		panic("config_interrupts: unable to allocate callback");
1849 
1850 	dc->dc_dev = dev;
1851 	dc->dc_func = func;
1852 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1853 	config_pending_incr();
1854 }
1855 
1856 /*
1857  * Defer some autoconfiguration for a device until after root file system
1858  * is mounted (to load firmware etc).
1859  */
1860 void
1861 config_mountroot(device_t dev, void (*func)(device_t))
1862 {
1863 	struct deferred_config *dc;
1864 
1865 	/*
1866 	 * If root file system is mounted, callback now.
1867 	 */
1868 	if (root_is_mounted) {
1869 		(*func)(dev);
1870 		return;
1871 	}
1872 
1873 #ifdef DIAGNOSTIC
1874 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1875 		if (dc->dc_dev == dev)
1876 			panic("%s: deferred twice", __func__);
1877 	}
1878 #endif
1879 
1880 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1881 	if (dc == NULL)
1882 		panic("%s: unable to allocate callback", __func__);
1883 
1884 	dc->dc_dev = dev;
1885 	dc->dc_func = func;
1886 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1887 }
1888 
1889 /*
1890  * Process a deferred configuration queue.
1891  */
1892 static void
1893 config_process_deferred(struct deferred_config_head *queue,
1894     device_t parent)
1895 {
1896 	struct deferred_config *dc, *ndc;
1897 
1898 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1899 		ndc = TAILQ_NEXT(dc, dc_queue);
1900 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1901 			TAILQ_REMOVE(queue, dc, dc_queue);
1902 			(*dc->dc_func)(dc->dc_dev);
1903 			kmem_free(dc, sizeof(*dc));
1904 			config_pending_decr();
1905 		}
1906 	}
1907 }
1908 
1909 /*
1910  * Manipulate the config_pending semaphore.
1911  */
1912 void
1913 config_pending_incr(void)
1914 {
1915 
1916 	mutex_enter(&config_misc_lock);
1917 	config_pending++;
1918 	mutex_exit(&config_misc_lock);
1919 }
1920 
1921 void
1922 config_pending_decr(void)
1923 {
1924 
1925 #ifdef DIAGNOSTIC
1926 	if (config_pending == 0)
1927 		panic("config_pending_decr: config_pending == 0");
1928 #endif
1929 	mutex_enter(&config_misc_lock);
1930 	config_pending--;
1931 	if (config_pending == 0)
1932 		cv_broadcast(&config_misc_cv);
1933 	mutex_exit(&config_misc_lock);
1934 }
1935 
1936 /*
1937  * Register a "finalization" routine.  Finalization routines are
1938  * called iteratively once all real devices have been found during
1939  * autoconfiguration, for as long as any one finalizer has done
1940  * any work.
1941  */
1942 int
1943 config_finalize_register(device_t dev, int (*fn)(device_t))
1944 {
1945 	struct finalize_hook *f;
1946 
1947 	/*
1948 	 * If finalization has already been done, invoke the
1949 	 * callback function now.
1950 	 */
1951 	if (config_finalize_done) {
1952 		while ((*fn)(dev) != 0)
1953 			/* loop */ ;
1954 	}
1955 
1956 	/* Ensure this isn't already on the list. */
1957 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1958 		if (f->f_func == fn && f->f_dev == dev)
1959 			return EEXIST;
1960 	}
1961 
1962 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
1963 	f->f_func = fn;
1964 	f->f_dev = dev;
1965 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1966 
1967 	return 0;
1968 }
1969 
1970 void
1971 config_finalize(void)
1972 {
1973 	struct finalize_hook *f;
1974 	struct pdevinit *pdev;
1975 	extern struct pdevinit pdevinit[];
1976 	int errcnt, rv;
1977 
1978 	/*
1979 	 * Now that device driver threads have been created, wait for
1980 	 * them to finish any deferred autoconfiguration.
1981 	 */
1982 	mutex_enter(&config_misc_lock);
1983 	while (config_pending != 0)
1984 		cv_wait(&config_misc_cv, &config_misc_lock);
1985 	mutex_exit(&config_misc_lock);
1986 
1987 	KERNEL_LOCK(1, NULL);
1988 
1989 	/* Attach pseudo-devices. */
1990 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1991 		(*pdev->pdev_attach)(pdev->pdev_count);
1992 
1993 	/* Run the hooks until none of them does any work. */
1994 	do {
1995 		rv = 0;
1996 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1997 			rv |= (*f->f_func)(f->f_dev);
1998 	} while (rv != 0);
1999 
2000 	config_finalize_done = 1;
2001 
2002 	/* Now free all the hooks. */
2003 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2004 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2005 		kmem_free(f, sizeof(*f));
2006 	}
2007 
2008 	KERNEL_UNLOCK_ONE(NULL);
2009 
2010 	errcnt = aprint_get_error_count();
2011 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2012 	    (boothowto & AB_VERBOSE) == 0) {
2013 		mutex_enter(&config_misc_lock);
2014 		if (config_do_twiddle) {
2015 			config_do_twiddle = 0;
2016 			printf_nolog(" done.\n");
2017 		}
2018 		mutex_exit(&config_misc_lock);
2019 		if (errcnt != 0) {
2020 			printf("WARNING: %d error%s while detecting hardware; "
2021 			    "check system log.\n", errcnt,
2022 			    errcnt == 1 ? "" : "s");
2023 		}
2024 	}
2025 }
2026 
2027 void
2028 config_twiddle_init()
2029 {
2030 
2031 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2032 		config_do_twiddle = 1;
2033 	}
2034 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2035 }
2036 
2037 void
2038 config_twiddle_fn(void *cookie)
2039 {
2040 
2041 	mutex_enter(&config_misc_lock);
2042 	if (config_do_twiddle) {
2043 		twiddle();
2044 		callout_schedule(&config_twiddle_ch, mstohz(100));
2045 	}
2046 	mutex_exit(&config_misc_lock);
2047 }
2048 
2049 static int
2050 config_alldevs_lock(void)
2051 {
2052 	mutex_enter(&alldevs_mtx);
2053 	return 0;
2054 }
2055 
2056 static void
2057 config_alldevs_enter(struct alldevs_foray *af)
2058 {
2059 	TAILQ_INIT(&af->af_garbage);
2060 	af->af_s = config_alldevs_lock();
2061 	config_collect_garbage(&af->af_garbage);
2062 }
2063 
2064 static void
2065 config_alldevs_exit(struct alldevs_foray *af)
2066 {
2067 	config_alldevs_unlock(af->af_s);
2068 	config_dump_garbage(&af->af_garbage);
2069 }
2070 
2071 /*ARGSUSED*/
2072 static void
2073 config_alldevs_unlock(int s)
2074 {
2075 	mutex_exit(&alldevs_mtx);
2076 }
2077 
2078 /*
2079  * device_lookup:
2080  *
2081  *	Look up a device instance for a given driver.
2082  */
2083 device_t
2084 device_lookup(cfdriver_t cd, int unit)
2085 {
2086 	device_t dv;
2087 	int s;
2088 
2089 	s = config_alldevs_lock();
2090 	KASSERT(mutex_owned(&alldevs_mtx));
2091 	if (unit < 0 || unit >= cd->cd_ndevs)
2092 		dv = NULL;
2093 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2094 		dv = NULL;
2095 	config_alldevs_unlock(s);
2096 
2097 	return dv;
2098 }
2099 
2100 /*
2101  * device_lookup_private:
2102  *
2103  *	Look up a softc instance for a given driver.
2104  */
2105 void *
2106 device_lookup_private(cfdriver_t cd, int unit)
2107 {
2108 
2109 	return device_private(device_lookup(cd, unit));
2110 }
2111 
2112 /*
2113  * device_find_by_xname:
2114  *
2115  *	Returns the device of the given name or NULL if it doesn't exist.
2116  */
2117 device_t
2118 device_find_by_xname(const char *name)
2119 {
2120 	device_t dv;
2121 	deviter_t di;
2122 
2123 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2124 		if (strcmp(device_xname(dv), name) == 0)
2125 			break;
2126 	}
2127 	deviter_release(&di);
2128 
2129 	return dv;
2130 }
2131 
2132 /*
2133  * device_find_by_driver_unit:
2134  *
2135  *	Returns the device of the given driver name and unit or
2136  *	NULL if it doesn't exist.
2137  */
2138 device_t
2139 device_find_by_driver_unit(const char *name, int unit)
2140 {
2141 	struct cfdriver *cd;
2142 
2143 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2144 		return NULL;
2145 	return device_lookup(cd, unit);
2146 }
2147 
2148 /*
2149  * Power management related functions.
2150  */
2151 
2152 bool
2153 device_pmf_is_registered(device_t dev)
2154 {
2155 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2156 }
2157 
2158 bool
2159 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2160 {
2161 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2162 		return true;
2163 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2164 		return false;
2165 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2166 	    dev->dv_driver_suspend != NULL &&
2167 	    !(*dev->dv_driver_suspend)(dev, qual))
2168 		return false;
2169 
2170 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2171 	return true;
2172 }
2173 
2174 bool
2175 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2176 {
2177 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2178 		return true;
2179 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2180 		return false;
2181 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2182 	    dev->dv_driver_resume != NULL &&
2183 	    !(*dev->dv_driver_resume)(dev, qual))
2184 		return false;
2185 
2186 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2187 	return true;
2188 }
2189 
2190 bool
2191 device_pmf_driver_shutdown(device_t dev, int how)
2192 {
2193 
2194 	if (*dev->dv_driver_shutdown != NULL &&
2195 	    !(*dev->dv_driver_shutdown)(dev, how))
2196 		return false;
2197 	return true;
2198 }
2199 
2200 bool
2201 device_pmf_driver_register(device_t dev,
2202     bool (*suspend)(device_t, const pmf_qual_t *),
2203     bool (*resume)(device_t, const pmf_qual_t *),
2204     bool (*shutdown)(device_t, int))
2205 {
2206 	dev->dv_driver_suspend = suspend;
2207 	dev->dv_driver_resume = resume;
2208 	dev->dv_driver_shutdown = shutdown;
2209 	dev->dv_flags |= DVF_POWER_HANDLERS;
2210 	return true;
2211 }
2212 
2213 static const char *
2214 curlwp_name(void)
2215 {
2216 	if (curlwp->l_name != NULL)
2217 		return curlwp->l_name;
2218 	else
2219 		return curlwp->l_proc->p_comm;
2220 }
2221 
2222 void
2223 device_pmf_driver_deregister(device_t dev)
2224 {
2225 	device_lock_t dvl = device_getlock(dev);
2226 
2227 	dev->dv_driver_suspend = NULL;
2228 	dev->dv_driver_resume = NULL;
2229 
2230 	mutex_enter(&dvl->dvl_mtx);
2231 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2232 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2233 		/* Wake a thread that waits for the lock.  That
2234 		 * thread will fail to acquire the lock, and then
2235 		 * it will wake the next thread that waits for the
2236 		 * lock, or else it will wake us.
2237 		 */
2238 		cv_signal(&dvl->dvl_cv);
2239 		pmflock_debug(dev, __func__, __LINE__);
2240 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2241 		pmflock_debug(dev, __func__, __LINE__);
2242 	}
2243 	mutex_exit(&dvl->dvl_mtx);
2244 }
2245 
2246 bool
2247 device_pmf_driver_child_register(device_t dev)
2248 {
2249 	device_t parent = device_parent(dev);
2250 
2251 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2252 		return true;
2253 	return (*parent->dv_driver_child_register)(dev);
2254 }
2255 
2256 void
2257 device_pmf_driver_set_child_register(device_t dev,
2258     bool (*child_register)(device_t))
2259 {
2260 	dev->dv_driver_child_register = child_register;
2261 }
2262 
2263 static void
2264 pmflock_debug(device_t dev, const char *func, int line)
2265 {
2266 	device_lock_t dvl = device_getlock(dev);
2267 
2268 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2269 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2270 	    dev->dv_flags);
2271 }
2272 
2273 static bool
2274 device_pmf_lock1(device_t dev)
2275 {
2276 	device_lock_t dvl = device_getlock(dev);
2277 
2278 	while (device_pmf_is_registered(dev) &&
2279 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2280 		dvl->dvl_nwait++;
2281 		pmflock_debug(dev, __func__, __LINE__);
2282 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2283 		pmflock_debug(dev, __func__, __LINE__);
2284 		dvl->dvl_nwait--;
2285 	}
2286 	if (!device_pmf_is_registered(dev)) {
2287 		pmflock_debug(dev, __func__, __LINE__);
2288 		/* We could not acquire the lock, but some other thread may
2289 		 * wait for it, also.  Wake that thread.
2290 		 */
2291 		cv_signal(&dvl->dvl_cv);
2292 		return false;
2293 	}
2294 	dvl->dvl_nlock++;
2295 	dvl->dvl_holder = curlwp;
2296 	pmflock_debug(dev, __func__, __LINE__);
2297 	return true;
2298 }
2299 
2300 bool
2301 device_pmf_lock(device_t dev)
2302 {
2303 	bool rc;
2304 	device_lock_t dvl = device_getlock(dev);
2305 
2306 	mutex_enter(&dvl->dvl_mtx);
2307 	rc = device_pmf_lock1(dev);
2308 	mutex_exit(&dvl->dvl_mtx);
2309 
2310 	return rc;
2311 }
2312 
2313 void
2314 device_pmf_unlock(device_t dev)
2315 {
2316 	device_lock_t dvl = device_getlock(dev);
2317 
2318 	KASSERT(dvl->dvl_nlock > 0);
2319 	mutex_enter(&dvl->dvl_mtx);
2320 	if (--dvl->dvl_nlock == 0)
2321 		dvl->dvl_holder = NULL;
2322 	cv_signal(&dvl->dvl_cv);
2323 	pmflock_debug(dev, __func__, __LINE__);
2324 	mutex_exit(&dvl->dvl_mtx);
2325 }
2326 
2327 device_lock_t
2328 device_getlock(device_t dev)
2329 {
2330 	return &dev->dv_lock;
2331 }
2332 
2333 void *
2334 device_pmf_bus_private(device_t dev)
2335 {
2336 	return dev->dv_bus_private;
2337 }
2338 
2339 bool
2340 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2341 {
2342 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2343 		return true;
2344 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2345 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2346 		return false;
2347 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2348 	    dev->dv_bus_suspend != NULL &&
2349 	    !(*dev->dv_bus_suspend)(dev, qual))
2350 		return false;
2351 
2352 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2353 	return true;
2354 }
2355 
2356 bool
2357 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2358 {
2359 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2360 		return true;
2361 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2362 	    dev->dv_bus_resume != NULL &&
2363 	    !(*dev->dv_bus_resume)(dev, qual))
2364 		return false;
2365 
2366 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2367 	return true;
2368 }
2369 
2370 bool
2371 device_pmf_bus_shutdown(device_t dev, int how)
2372 {
2373 
2374 	if (*dev->dv_bus_shutdown != NULL &&
2375 	    !(*dev->dv_bus_shutdown)(dev, how))
2376 		return false;
2377 	return true;
2378 }
2379 
2380 void
2381 device_pmf_bus_register(device_t dev, void *priv,
2382     bool (*suspend)(device_t, const pmf_qual_t *),
2383     bool (*resume)(device_t, const pmf_qual_t *),
2384     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2385 {
2386 	dev->dv_bus_private = priv;
2387 	dev->dv_bus_resume = resume;
2388 	dev->dv_bus_suspend = suspend;
2389 	dev->dv_bus_shutdown = shutdown;
2390 	dev->dv_bus_deregister = deregister;
2391 }
2392 
2393 void
2394 device_pmf_bus_deregister(device_t dev)
2395 {
2396 	if (dev->dv_bus_deregister == NULL)
2397 		return;
2398 	(*dev->dv_bus_deregister)(dev);
2399 	dev->dv_bus_private = NULL;
2400 	dev->dv_bus_suspend = NULL;
2401 	dev->dv_bus_resume = NULL;
2402 	dev->dv_bus_deregister = NULL;
2403 }
2404 
2405 void *
2406 device_pmf_class_private(device_t dev)
2407 {
2408 	return dev->dv_class_private;
2409 }
2410 
2411 bool
2412 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2413 {
2414 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2415 		return true;
2416 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2417 	    dev->dv_class_suspend != NULL &&
2418 	    !(*dev->dv_class_suspend)(dev, qual))
2419 		return false;
2420 
2421 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2422 	return true;
2423 }
2424 
2425 bool
2426 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2427 {
2428 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2429 		return true;
2430 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2431 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2432 		return false;
2433 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2434 	    dev->dv_class_resume != NULL &&
2435 	    !(*dev->dv_class_resume)(dev, qual))
2436 		return false;
2437 
2438 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2439 	return true;
2440 }
2441 
2442 void
2443 device_pmf_class_register(device_t dev, void *priv,
2444     bool (*suspend)(device_t, const pmf_qual_t *),
2445     bool (*resume)(device_t, const pmf_qual_t *),
2446     void (*deregister)(device_t))
2447 {
2448 	dev->dv_class_private = priv;
2449 	dev->dv_class_suspend = suspend;
2450 	dev->dv_class_resume = resume;
2451 	dev->dv_class_deregister = deregister;
2452 }
2453 
2454 void
2455 device_pmf_class_deregister(device_t dev)
2456 {
2457 	if (dev->dv_class_deregister == NULL)
2458 		return;
2459 	(*dev->dv_class_deregister)(dev);
2460 	dev->dv_class_private = NULL;
2461 	dev->dv_class_suspend = NULL;
2462 	dev->dv_class_resume = NULL;
2463 	dev->dv_class_deregister = NULL;
2464 }
2465 
2466 bool
2467 device_active(device_t dev, devactive_t type)
2468 {
2469 	size_t i;
2470 
2471 	if (dev->dv_activity_count == 0)
2472 		return false;
2473 
2474 	for (i = 0; i < dev->dv_activity_count; ++i) {
2475 		if (dev->dv_activity_handlers[i] == NULL)
2476 			break;
2477 		(*dev->dv_activity_handlers[i])(dev, type);
2478 	}
2479 
2480 	return true;
2481 }
2482 
2483 bool
2484 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2485 {
2486 	void (**new_handlers)(device_t, devactive_t);
2487 	void (**old_handlers)(device_t, devactive_t);
2488 	size_t i, old_size, new_size;
2489 	int s;
2490 
2491 	old_handlers = dev->dv_activity_handlers;
2492 	old_size = dev->dv_activity_count;
2493 
2494 	for (i = 0; i < old_size; ++i) {
2495 		KASSERT(old_handlers[i] != handler);
2496 		if (old_handlers[i] == NULL) {
2497 			old_handlers[i] = handler;
2498 			return true;
2499 		}
2500 	}
2501 
2502 	new_size = old_size + 4;
2503 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2504 
2505 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2506 	new_handlers[old_size] = handler;
2507 	memset(new_handlers + old_size + 1, 0,
2508 	    sizeof(int [new_size - (old_size+1)]));
2509 
2510 	s = splhigh();
2511 	dev->dv_activity_count = new_size;
2512 	dev->dv_activity_handlers = new_handlers;
2513 	splx(s);
2514 
2515 	if (old_handlers != NULL)
2516 		kmem_free(old_handlers, sizeof(void * [old_size]));
2517 
2518 	return true;
2519 }
2520 
2521 void
2522 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2523 {
2524 	void (**old_handlers)(device_t, devactive_t);
2525 	size_t i, old_size;
2526 	int s;
2527 
2528 	old_handlers = dev->dv_activity_handlers;
2529 	old_size = dev->dv_activity_count;
2530 
2531 	for (i = 0; i < old_size; ++i) {
2532 		if (old_handlers[i] == handler)
2533 			break;
2534 		if (old_handlers[i] == NULL)
2535 			return; /* XXX panic? */
2536 	}
2537 
2538 	if (i == old_size)
2539 		return; /* XXX panic? */
2540 
2541 	for (; i < old_size - 1; ++i) {
2542 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2543 			continue;
2544 
2545 		if (i == 0) {
2546 			s = splhigh();
2547 			dev->dv_activity_count = 0;
2548 			dev->dv_activity_handlers = NULL;
2549 			splx(s);
2550 			kmem_free(old_handlers, sizeof(void *[old_size]));
2551 		}
2552 		return;
2553 	}
2554 	old_handlers[i] = NULL;
2555 }
2556 
2557 /* Return true iff the device_t `dev' exists at generation `gen'. */
2558 static bool
2559 device_exists_at(device_t dv, devgen_t gen)
2560 {
2561 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2562 	    dv->dv_add_gen <= gen;
2563 }
2564 
2565 static bool
2566 deviter_visits(const deviter_t *di, device_t dv)
2567 {
2568 	return device_exists_at(dv, di->di_gen);
2569 }
2570 
2571 /*
2572  * Device Iteration
2573  *
2574  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2575  *     each device_t's in the device tree.
2576  *
2577  * deviter_init(di, flags): initialize the device iterator `di'
2578  *     to "walk" the device tree.  deviter_next(di) will return
2579  *     the first device_t in the device tree, or NULL if there are
2580  *     no devices.
2581  *
2582  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2583  *     caller intends to modify the device tree by calling
2584  *     config_detach(9) on devices in the order that the iterator
2585  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2586  *     nearest the "root" of the device tree to be returned, first;
2587  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2588  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2589  *     indicating both that deviter_init() should not respect any
2590  *     locks on the device tree, and that deviter_next(di) may run
2591  *     in more than one LWP before the walk has finished.
2592  *
2593  *     Only one DEVITER_F_RW iterator may be in the device tree at
2594  *     once.
2595  *
2596  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2597  *
2598  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2599  *     DEVITER_F_LEAVES_FIRST are used in combination.
2600  *
2601  * deviter_first(di, flags): initialize the device iterator `di'
2602  *     and return the first device_t in the device tree, or NULL
2603  *     if there are no devices.  The statement
2604  *
2605  *         dv = deviter_first(di);
2606  *
2607  *     is shorthand for
2608  *
2609  *         deviter_init(di);
2610  *         dv = deviter_next(di);
2611  *
2612  * deviter_next(di): return the next device_t in the device tree,
2613  *     or NULL if there are no more devices.  deviter_next(di)
2614  *     is undefined if `di' was not initialized with deviter_init() or
2615  *     deviter_first().
2616  *
2617  * deviter_release(di): stops iteration (subsequent calls to
2618  *     deviter_next() will return NULL), releases any locks and
2619  *     resources held by the device iterator.
2620  *
2621  * Device iteration does not return device_t's in any particular
2622  * order.  An iterator will never return the same device_t twice.
2623  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2624  * is called repeatedly on the same `di', it will eventually return
2625  * NULL.  It is ok to attach/detach devices during device iteration.
2626  */
2627 void
2628 deviter_init(deviter_t *di, deviter_flags_t flags)
2629 {
2630 	device_t dv;
2631 	int s;
2632 
2633 	memset(di, 0, sizeof(*di));
2634 
2635 	s = config_alldevs_lock();
2636 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2637 		flags |= DEVITER_F_RW;
2638 
2639 	if ((flags & DEVITER_F_RW) != 0)
2640 		alldevs_nwrite++;
2641 	else
2642 		alldevs_nread++;
2643 	di->di_gen = alldevs_gen++;
2644 	config_alldevs_unlock(s);
2645 
2646 	di->di_flags = flags;
2647 
2648 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2649 	case DEVITER_F_LEAVES_FIRST:
2650 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2651 			if (!deviter_visits(di, dv))
2652 				continue;
2653 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2654 		}
2655 		break;
2656 	case DEVITER_F_ROOT_FIRST:
2657 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2658 			if (!deviter_visits(di, dv))
2659 				continue;
2660 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2661 		}
2662 		break;
2663 	default:
2664 		break;
2665 	}
2666 
2667 	deviter_reinit(di);
2668 }
2669 
2670 static void
2671 deviter_reinit(deviter_t *di)
2672 {
2673 	if ((di->di_flags & DEVITER_F_RW) != 0)
2674 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2675 	else
2676 		di->di_prev = TAILQ_FIRST(&alldevs);
2677 }
2678 
2679 device_t
2680 deviter_first(deviter_t *di, deviter_flags_t flags)
2681 {
2682 	deviter_init(di, flags);
2683 	return deviter_next(di);
2684 }
2685 
2686 static device_t
2687 deviter_next2(deviter_t *di)
2688 {
2689 	device_t dv;
2690 
2691 	dv = di->di_prev;
2692 
2693 	if (dv == NULL)
2694 		return NULL;
2695 
2696 	if ((di->di_flags & DEVITER_F_RW) != 0)
2697 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2698 	else
2699 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2700 
2701 	return dv;
2702 }
2703 
2704 static device_t
2705 deviter_next1(deviter_t *di)
2706 {
2707 	device_t dv;
2708 
2709 	do {
2710 		dv = deviter_next2(di);
2711 	} while (dv != NULL && !deviter_visits(di, dv));
2712 
2713 	return dv;
2714 }
2715 
2716 device_t
2717 deviter_next(deviter_t *di)
2718 {
2719 	device_t dv = NULL;
2720 
2721 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2722 	case 0:
2723 		return deviter_next1(di);
2724 	case DEVITER_F_LEAVES_FIRST:
2725 		while (di->di_curdepth >= 0) {
2726 			if ((dv = deviter_next1(di)) == NULL) {
2727 				di->di_curdepth--;
2728 				deviter_reinit(di);
2729 			} else if (dv->dv_depth == di->di_curdepth)
2730 				break;
2731 		}
2732 		return dv;
2733 	case DEVITER_F_ROOT_FIRST:
2734 		while (di->di_curdepth <= di->di_maxdepth) {
2735 			if ((dv = deviter_next1(di)) == NULL) {
2736 				di->di_curdepth++;
2737 				deviter_reinit(di);
2738 			} else if (dv->dv_depth == di->di_curdepth)
2739 				break;
2740 		}
2741 		return dv;
2742 	default:
2743 		return NULL;
2744 	}
2745 }
2746 
2747 void
2748 deviter_release(deviter_t *di)
2749 {
2750 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2751 	int s;
2752 
2753 	s = config_alldevs_lock();
2754 	if (rw)
2755 		--alldevs_nwrite;
2756 	else
2757 		--alldevs_nread;
2758 	/* XXX wake a garbage-collection thread */
2759 	config_alldevs_unlock(s);
2760 }
2761 
2762 const char *
2763 cfdata_ifattr(const struct cfdata *cf)
2764 {
2765 	return cf->cf_pspec->cfp_iattr;
2766 }
2767 
2768 bool
2769 ifattr_match(const char *snull, const char *t)
2770 {
2771 	return (snull == NULL) || strcmp(snull, t) == 0;
2772 }
2773 
2774 void
2775 null_childdetached(device_t self, device_t child)
2776 {
2777 	/* do nothing */
2778 }
2779 
2780 static void
2781 sysctl_detach_setup(struct sysctllog **clog)
2782 {
2783 	const struct sysctlnode *node = NULL;
2784 
2785 	sysctl_createv(clog, 0, NULL, &node,
2786 		CTLFLAG_PERMANENT,
2787 		CTLTYPE_NODE, "kern", NULL,
2788 		NULL, 0, NULL, 0,
2789 		CTL_KERN, CTL_EOL);
2790 
2791 	if (node == NULL)
2792 		return;
2793 
2794 	sysctl_createv(clog, 0, &node, NULL,
2795 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2796 		CTLTYPE_BOOL, "detachall",
2797 		SYSCTL_DESCR("Detach all devices at shutdown"),
2798 		NULL, 0, &detachall, 0,
2799 		CTL_CREATE, CTL_EOL);
2800 }
2801