xref: /netbsd-src/sys/kern/subr_autoconf.c (revision 7e30e94394d0994ab9534f68a8f91665045c91ce)
1 /* $NetBSD: subr_autoconf.c,v 1.252 2017/03/20 01:24:06 riastradh Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.252 2017/03/20 01:24:06 riastradh Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <sys/rndsource.h>
114 
115 #include <machine/limits.h>
116 
117 /*
118  * Autoconfiguration subroutines.
119  */
120 
121 /*
122  * Device autoconfiguration timings are mixed into the entropy pool.
123  */
124 extern krndsource_t rnd_autoconf_source;
125 
126 /*
127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
128  * devices and drivers are found via these tables.
129  */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132 
133 /*
134  * List of all cfdriver structures.  We use this to detect duplicates
135  * when other cfdrivers are loaded.
136  */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139 
140 /*
141  * Initial list of cfattach's.
142  */
143 extern const struct cfattachinit cfattachinit[];
144 
145 /*
146  * List of cfdata tables.  We always have one such list -- the one
147  * built statically when the kernel was configured.
148  */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151 
152 #define	ROOT ((device_t)NULL)
153 
154 struct matchinfo {
155 	cfsubmatch_t fn;
156 	device_t parent;
157 	const int *locs;
158 	void	*aux;
159 	struct	cfdata *match;
160 	int	pri;
161 };
162 
163 struct alldevs_foray {
164 	int			af_s;
165 	struct devicelist	af_garbage;
166 };
167 
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178 
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181 
182 static void pmflock_debug(device_t, const char *, int);
183 
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186 
187 struct deferred_config {
188 	TAILQ_ENTRY(deferred_config) dc_queue;
189 	device_t dc_dev;
190 	void (*dc_func)(device_t);
191 };
192 
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194 
195 struct deferred_config_head deferred_config_queue =
196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 struct deferred_config_head interrupt_config_queue =
198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 int interrupt_config_threads = 8;
200 struct deferred_config_head mountroot_config_queue =
201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 static bool root_is_mounted = false;
206 
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208 
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 	TAILQ_ENTRY(finalize_hook) f_list;
212 	int (*f_func)(device_t);
213 	device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218 
219 /* list of all devices */
220 static struct {
221 	kmutex_t		lock;
222 	struct devicelist	list;
223 	devgen_t		gen;
224 	int			nread;
225 	int			nwrite;
226 	bool			garbage;
227 } alldevs __cacheline_aligned = {
228 	.list = TAILQ_HEAD_INITIALIZER(alldevs.list),
229 	.gen = 1,
230 	.nread = 0,
231 	.nwrite = 0,
232 	.garbage = false,
233 };
234 
235 static int config_pending;		/* semaphore for mountroot */
236 static kmutex_t config_misc_lock;
237 static kcondvar_t config_misc_cv;
238 
239 static bool detachall = false;
240 
241 #define	STREQ(s1, s2)			\
242 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
243 
244 static bool config_initialized = false;	/* config_init() has been called. */
245 
246 static int config_do_twiddle;
247 static callout_t config_twiddle_ch;
248 
249 static void sysctl_detach_setup(struct sysctllog **);
250 
251 int no_devmon_insert(const char *, prop_dictionary_t);
252 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
253 
254 typedef int (*cfdriver_fn)(struct cfdriver *);
255 static int
256 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
257 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
258 	const char *style, bool dopanic)
259 {
260 	void (*pr)(const char *, ...) __printflike(1, 2) =
261 	    dopanic ? panic : printf;
262 	int i, error = 0, e2 __diagused;
263 
264 	for (i = 0; cfdriverv[i] != NULL; i++) {
265 		if ((error = drv_do(cfdriverv[i])) != 0) {
266 			pr("configure: `%s' driver %s failed: %d",
267 			    cfdriverv[i]->cd_name, style, error);
268 			goto bad;
269 		}
270 	}
271 
272 	KASSERT(error == 0);
273 	return 0;
274 
275  bad:
276 	printf("\n");
277 	for (i--; i >= 0; i--) {
278 		e2 = drv_undo(cfdriverv[i]);
279 		KASSERT(e2 == 0);
280 	}
281 
282 	return error;
283 }
284 
285 typedef int (*cfattach_fn)(const char *, struct cfattach *);
286 static int
287 frob_cfattachvec(const struct cfattachinit *cfattachv,
288 	cfattach_fn att_do, cfattach_fn att_undo,
289 	const char *style, bool dopanic)
290 {
291 	const struct cfattachinit *cfai = NULL;
292 	void (*pr)(const char *, ...) __printflike(1, 2) =
293 	    dopanic ? panic : printf;
294 	int j = 0, error = 0, e2 __diagused;
295 
296 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
297 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
298 			if ((error = att_do(cfai->cfai_name,
299 			    cfai->cfai_list[j])) != 0) {
300 				pr("configure: attachment `%s' "
301 				    "of `%s' driver %s failed: %d",
302 				    cfai->cfai_list[j]->ca_name,
303 				    cfai->cfai_name, style, error);
304 				goto bad;
305 			}
306 		}
307 	}
308 
309 	KASSERT(error == 0);
310 	return 0;
311 
312  bad:
313 	/*
314 	 * Rollback in reverse order.  dunno if super-important, but
315 	 * do that anyway.  Although the code looks a little like
316 	 * someone did a little integration (in the math sense).
317 	 */
318 	printf("\n");
319 	if (cfai) {
320 		bool last;
321 
322 		for (last = false; last == false; ) {
323 			if (cfai == &cfattachv[0])
324 				last = true;
325 			for (j--; j >= 0; j--) {
326 				e2 = att_undo(cfai->cfai_name,
327 				    cfai->cfai_list[j]);
328 				KASSERT(e2 == 0);
329 			}
330 			if (!last) {
331 				cfai--;
332 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
333 					;
334 			}
335 		}
336 	}
337 
338 	return error;
339 }
340 
341 /*
342  * Initialize the autoconfiguration data structures.  Normally this
343  * is done by configure(), but some platforms need to do this very
344  * early (to e.g. initialize the console).
345  */
346 void
347 config_init(void)
348 {
349 
350 	KASSERT(config_initialized == false);
351 
352 	mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM);
353 
354 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
355 	cv_init(&config_misc_cv, "cfgmisc");
356 
357 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
358 
359 	frob_cfdrivervec(cfdriver_list_initial,
360 	    config_cfdriver_attach, NULL, "bootstrap", true);
361 	frob_cfattachvec(cfattachinit,
362 	    config_cfattach_attach, NULL, "bootstrap", true);
363 
364 	initcftable.ct_cfdata = cfdata;
365 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
366 
367 	config_initialized = true;
368 }
369 
370 /*
371  * Init or fini drivers and attachments.  Either all or none
372  * are processed (via rollback).  It would be nice if this were
373  * atomic to outside consumers, but with the current state of
374  * locking ...
375  */
376 int
377 config_init_component(struct cfdriver * const *cfdriverv,
378 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
379 {
380 	int error;
381 
382 	if ((error = frob_cfdrivervec(cfdriverv,
383 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
384 		return error;
385 	if ((error = frob_cfattachvec(cfattachv,
386 	    config_cfattach_attach, config_cfattach_detach,
387 	    "init", false)) != 0) {
388 		frob_cfdrivervec(cfdriverv,
389 	            config_cfdriver_detach, NULL, "init rollback", true);
390 		return error;
391 	}
392 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
393 		frob_cfattachvec(cfattachv,
394 		    config_cfattach_detach, NULL, "init rollback", true);
395 		frob_cfdrivervec(cfdriverv,
396 	            config_cfdriver_detach, NULL, "init rollback", true);
397 		return error;
398 	}
399 
400 	return 0;
401 }
402 
403 int
404 config_fini_component(struct cfdriver * const *cfdriverv,
405 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
406 {
407 	int error;
408 
409 	if ((error = config_cfdata_detach(cfdatav)) != 0)
410 		return error;
411 	if ((error = frob_cfattachvec(cfattachv,
412 	    config_cfattach_detach, config_cfattach_attach,
413 	    "fini", false)) != 0) {
414 		if (config_cfdata_attach(cfdatav, 0) != 0)
415 			panic("config_cfdata fini rollback failed");
416 		return error;
417 	}
418 	if ((error = frob_cfdrivervec(cfdriverv,
419 	    config_cfdriver_detach, config_cfdriver_attach,
420 	    "fini", false)) != 0) {
421 		frob_cfattachvec(cfattachv,
422 	            config_cfattach_attach, NULL, "fini rollback", true);
423 		if (config_cfdata_attach(cfdatav, 0) != 0)
424 			panic("config_cfdata fini rollback failed");
425 		return error;
426 	}
427 
428 	return 0;
429 }
430 
431 void
432 config_init_mi(void)
433 {
434 
435 	if (!config_initialized)
436 		config_init();
437 
438 	sysctl_detach_setup(NULL);
439 }
440 
441 void
442 config_deferred(device_t dev)
443 {
444 	config_process_deferred(&deferred_config_queue, dev);
445 	config_process_deferred(&interrupt_config_queue, dev);
446 	config_process_deferred(&mountroot_config_queue, dev);
447 }
448 
449 static void
450 config_interrupts_thread(void *cookie)
451 {
452 	struct deferred_config *dc;
453 
454 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
455 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
456 		(*dc->dc_func)(dc->dc_dev);
457 		config_pending_decr(dc->dc_dev);
458 		kmem_free(dc, sizeof(*dc));
459 	}
460 	kthread_exit(0);
461 }
462 
463 void
464 config_create_interruptthreads(void)
465 {
466 	int i;
467 
468 	for (i = 0; i < interrupt_config_threads; i++) {
469 		(void)kthread_create(PRI_NONE, 0, NULL,
470 		    config_interrupts_thread, NULL, NULL, "configintr");
471 	}
472 }
473 
474 static void
475 config_mountroot_thread(void *cookie)
476 {
477 	struct deferred_config *dc;
478 
479 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
480 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
481 		(*dc->dc_func)(dc->dc_dev);
482 		kmem_free(dc, sizeof(*dc));
483 	}
484 	kthread_exit(0);
485 }
486 
487 void
488 config_create_mountrootthreads(void)
489 {
490 	int i;
491 
492 	if (!root_is_mounted)
493 		root_is_mounted = true;
494 
495 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
496 				       mountroot_config_threads;
497 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
498 					     KM_NOSLEEP);
499 	KASSERT(mountroot_config_lwpids);
500 	for (i = 0; i < mountroot_config_threads; i++) {
501 		mountroot_config_lwpids[i] = 0;
502 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
503 				     config_mountroot_thread, NULL,
504 				     &mountroot_config_lwpids[i],
505 				     "configroot");
506 	}
507 }
508 
509 void
510 config_finalize_mountroot(void)
511 {
512 	int i, error;
513 
514 	for (i = 0; i < mountroot_config_threads; i++) {
515 		if (mountroot_config_lwpids[i] == 0)
516 			continue;
517 
518 		error = kthread_join(mountroot_config_lwpids[i]);
519 		if (error)
520 			printf("%s: thread %x joined with error %d\n",
521 			       __func__, i, error);
522 	}
523 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
524 }
525 
526 /*
527  * Announce device attach/detach to userland listeners.
528  */
529 
530 int
531 no_devmon_insert(const char *name, prop_dictionary_t p)
532 {
533 
534 	return ENODEV;
535 }
536 
537 static void
538 devmon_report_device(device_t dev, bool isattach)
539 {
540 	prop_dictionary_t ev;
541 	const char *parent;
542 	const char *what;
543 	device_t pdev = device_parent(dev);
544 
545 	/* If currently no drvctl device, just return */
546 	if (devmon_insert_vec == no_devmon_insert)
547 		return;
548 
549 	ev = prop_dictionary_create();
550 	if (ev == NULL)
551 		return;
552 
553 	what = (isattach ? "device-attach" : "device-detach");
554 	parent = (pdev == NULL ? "root" : device_xname(pdev));
555 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
556 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
557 		prop_object_release(ev);
558 		return;
559 	}
560 
561 	if ((*devmon_insert_vec)(what, ev) != 0)
562 		prop_object_release(ev);
563 }
564 
565 /*
566  * Add a cfdriver to the system.
567  */
568 int
569 config_cfdriver_attach(struct cfdriver *cd)
570 {
571 	struct cfdriver *lcd;
572 
573 	/* Make sure this driver isn't already in the system. */
574 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
575 		if (STREQ(lcd->cd_name, cd->cd_name))
576 			return EEXIST;
577 	}
578 
579 	LIST_INIT(&cd->cd_attach);
580 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
581 
582 	return 0;
583 }
584 
585 /*
586  * Remove a cfdriver from the system.
587  */
588 int
589 config_cfdriver_detach(struct cfdriver *cd)
590 {
591 	struct alldevs_foray af;
592 	int i, rc = 0;
593 
594 	config_alldevs_enter(&af);
595 	/* Make sure there are no active instances. */
596 	for (i = 0; i < cd->cd_ndevs; i++) {
597 		if (cd->cd_devs[i] != NULL) {
598 			rc = EBUSY;
599 			break;
600 		}
601 	}
602 	config_alldevs_exit(&af);
603 
604 	if (rc != 0)
605 		return rc;
606 
607 	/* ...and no attachments loaded. */
608 	if (LIST_EMPTY(&cd->cd_attach) == 0)
609 		return EBUSY;
610 
611 	LIST_REMOVE(cd, cd_list);
612 
613 	KASSERT(cd->cd_devs == NULL);
614 
615 	return 0;
616 }
617 
618 /*
619  * Look up a cfdriver by name.
620  */
621 struct cfdriver *
622 config_cfdriver_lookup(const char *name)
623 {
624 	struct cfdriver *cd;
625 
626 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
627 		if (STREQ(cd->cd_name, name))
628 			return cd;
629 	}
630 
631 	return NULL;
632 }
633 
634 /*
635  * Add a cfattach to the specified driver.
636  */
637 int
638 config_cfattach_attach(const char *driver, struct cfattach *ca)
639 {
640 	struct cfattach *lca;
641 	struct cfdriver *cd;
642 
643 	cd = config_cfdriver_lookup(driver);
644 	if (cd == NULL)
645 		return ESRCH;
646 
647 	/* Make sure this attachment isn't already on this driver. */
648 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
649 		if (STREQ(lca->ca_name, ca->ca_name))
650 			return EEXIST;
651 	}
652 
653 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
654 
655 	return 0;
656 }
657 
658 /*
659  * Remove a cfattach from the specified driver.
660  */
661 int
662 config_cfattach_detach(const char *driver, struct cfattach *ca)
663 {
664 	struct alldevs_foray af;
665 	struct cfdriver *cd;
666 	device_t dev;
667 	int i, rc = 0;
668 
669 	cd = config_cfdriver_lookup(driver);
670 	if (cd == NULL)
671 		return ESRCH;
672 
673 	config_alldevs_enter(&af);
674 	/* Make sure there are no active instances. */
675 	for (i = 0; i < cd->cd_ndevs; i++) {
676 		if ((dev = cd->cd_devs[i]) == NULL)
677 			continue;
678 		if (dev->dv_cfattach == ca) {
679 			rc = EBUSY;
680 			break;
681 		}
682 	}
683 	config_alldevs_exit(&af);
684 
685 	if (rc != 0)
686 		return rc;
687 
688 	LIST_REMOVE(ca, ca_list);
689 
690 	return 0;
691 }
692 
693 /*
694  * Look up a cfattach by name.
695  */
696 static struct cfattach *
697 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
698 {
699 	struct cfattach *ca;
700 
701 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
702 		if (STREQ(ca->ca_name, atname))
703 			return ca;
704 	}
705 
706 	return NULL;
707 }
708 
709 /*
710  * Look up a cfattach by driver/attachment name.
711  */
712 struct cfattach *
713 config_cfattach_lookup(const char *name, const char *atname)
714 {
715 	struct cfdriver *cd;
716 
717 	cd = config_cfdriver_lookup(name);
718 	if (cd == NULL)
719 		return NULL;
720 
721 	return config_cfattach_lookup_cd(cd, atname);
722 }
723 
724 /*
725  * Apply the matching function and choose the best.  This is used
726  * a few times and we want to keep the code small.
727  */
728 static void
729 mapply(struct matchinfo *m, cfdata_t cf)
730 {
731 	int pri;
732 
733 	if (m->fn != NULL) {
734 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
735 	} else {
736 		pri = config_match(m->parent, cf, m->aux);
737 	}
738 	if (pri > m->pri) {
739 		m->match = cf;
740 		m->pri = pri;
741 	}
742 }
743 
744 int
745 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
746 {
747 	const struct cfiattrdata *ci;
748 	const struct cflocdesc *cl;
749 	int nlocs, i;
750 
751 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
752 	KASSERT(ci);
753 	nlocs = ci->ci_loclen;
754 	KASSERT(!nlocs || locs);
755 	for (i = 0; i < nlocs; i++) {
756 		cl = &ci->ci_locdesc[i];
757 		if (cl->cld_defaultstr != NULL &&
758 		    cf->cf_loc[i] == cl->cld_default)
759 			continue;
760 		if (cf->cf_loc[i] == locs[i])
761 			continue;
762 		return 0;
763 	}
764 
765 	return config_match(parent, cf, aux);
766 }
767 
768 /*
769  * Helper function: check whether the driver supports the interface attribute
770  * and return its descriptor structure.
771  */
772 static const struct cfiattrdata *
773 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
774 {
775 	const struct cfiattrdata * const *cpp;
776 
777 	if (cd->cd_attrs == NULL)
778 		return 0;
779 
780 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
781 		if (STREQ((*cpp)->ci_name, ia)) {
782 			/* Match. */
783 			return *cpp;
784 		}
785 	}
786 	return 0;
787 }
788 
789 /*
790  * Lookup an interface attribute description by name.
791  * If the driver is given, consider only its supported attributes.
792  */
793 const struct cfiattrdata *
794 cfiattr_lookup(const char *name, const struct cfdriver *cd)
795 {
796 	const struct cfdriver *d;
797 	const struct cfiattrdata *ia;
798 
799 	if (cd)
800 		return cfdriver_get_iattr(cd, name);
801 
802 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
803 		ia = cfdriver_get_iattr(d, name);
804 		if (ia)
805 			return ia;
806 	}
807 	return 0;
808 }
809 
810 /*
811  * Determine if `parent' is a potential parent for a device spec based
812  * on `cfp'.
813  */
814 static int
815 cfparent_match(const device_t parent, const struct cfparent *cfp)
816 {
817 	struct cfdriver *pcd;
818 
819 	/* We don't match root nodes here. */
820 	if (cfp == NULL)
821 		return 0;
822 
823 	pcd = parent->dv_cfdriver;
824 	KASSERT(pcd != NULL);
825 
826 	/*
827 	 * First, ensure this parent has the correct interface
828 	 * attribute.
829 	 */
830 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
831 		return 0;
832 
833 	/*
834 	 * If no specific parent device instance was specified (i.e.
835 	 * we're attaching to the attribute only), we're done!
836 	 */
837 	if (cfp->cfp_parent == NULL)
838 		return 1;
839 
840 	/*
841 	 * Check the parent device's name.
842 	 */
843 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
844 		return 0;	/* not the same parent */
845 
846 	/*
847 	 * Make sure the unit number matches.
848 	 */
849 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
850 	    cfp->cfp_unit == parent->dv_unit)
851 		return 1;
852 
853 	/* Unit numbers don't match. */
854 	return 0;
855 }
856 
857 /*
858  * Helper for config_cfdata_attach(): check all devices whether it could be
859  * parent any attachment in the config data table passed, and rescan.
860  */
861 static void
862 rescan_with_cfdata(const struct cfdata *cf)
863 {
864 	device_t d;
865 	const struct cfdata *cf1;
866 	deviter_t di;
867 
868 
869 	/*
870 	 * "alldevs" is likely longer than a modules's cfdata, so make it
871 	 * the outer loop.
872 	 */
873 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
874 
875 		if (!(d->dv_cfattach->ca_rescan))
876 			continue;
877 
878 		for (cf1 = cf; cf1->cf_name; cf1++) {
879 
880 			if (!cfparent_match(d, cf1->cf_pspec))
881 				continue;
882 
883 			(*d->dv_cfattach->ca_rescan)(d,
884 				cfdata_ifattr(cf1), cf1->cf_loc);
885 
886 			config_deferred(d);
887 		}
888 	}
889 	deviter_release(&di);
890 }
891 
892 /*
893  * Attach a supplemental config data table and rescan potential
894  * parent devices if required.
895  */
896 int
897 config_cfdata_attach(cfdata_t cf, int scannow)
898 {
899 	struct cftable *ct;
900 
901 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
902 	ct->ct_cfdata = cf;
903 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
904 
905 	if (scannow)
906 		rescan_with_cfdata(cf);
907 
908 	return 0;
909 }
910 
911 /*
912  * Helper for config_cfdata_detach: check whether a device is
913  * found through any attachment in the config data table.
914  */
915 static int
916 dev_in_cfdata(device_t d, cfdata_t cf)
917 {
918 	const struct cfdata *cf1;
919 
920 	for (cf1 = cf; cf1->cf_name; cf1++)
921 		if (d->dv_cfdata == cf1)
922 			return 1;
923 
924 	return 0;
925 }
926 
927 /*
928  * Detach a supplemental config data table. Detach all devices found
929  * through that table (and thus keeping references to it) before.
930  */
931 int
932 config_cfdata_detach(cfdata_t cf)
933 {
934 	device_t d;
935 	int error = 0;
936 	struct cftable *ct;
937 	deviter_t di;
938 
939 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
940 	     d = deviter_next(&di)) {
941 		if (!dev_in_cfdata(d, cf))
942 			continue;
943 		if ((error = config_detach(d, 0)) != 0)
944 			break;
945 	}
946 	deviter_release(&di);
947 	if (error) {
948 		aprint_error_dev(d, "unable to detach instance\n");
949 		return error;
950 	}
951 
952 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
953 		if (ct->ct_cfdata == cf) {
954 			TAILQ_REMOVE(&allcftables, ct, ct_list);
955 			kmem_free(ct, sizeof(*ct));
956 			return 0;
957 		}
958 	}
959 
960 	/* not found -- shouldn't happen */
961 	return EINVAL;
962 }
963 
964 /*
965  * Invoke the "match" routine for a cfdata entry on behalf of
966  * an external caller, usually a "submatch" routine.
967  */
968 int
969 config_match(device_t parent, cfdata_t cf, void *aux)
970 {
971 	struct cfattach *ca;
972 
973 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
974 	if (ca == NULL) {
975 		/* No attachment for this entry, oh well. */
976 		return 0;
977 	}
978 
979 	return (*ca->ca_match)(parent, cf, aux);
980 }
981 
982 /*
983  * Iterate over all potential children of some device, calling the given
984  * function (default being the child's match function) for each one.
985  * Nonzero returns are matches; the highest value returned is considered
986  * the best match.  Return the `found child' if we got a match, or NULL
987  * otherwise.  The `aux' pointer is simply passed on through.
988  *
989  * Note that this function is designed so that it can be used to apply
990  * an arbitrary function to all potential children (its return value
991  * can be ignored).
992  */
993 cfdata_t
994 config_search_loc(cfsubmatch_t fn, device_t parent,
995 		  const char *ifattr, const int *locs, void *aux)
996 {
997 	struct cftable *ct;
998 	cfdata_t cf;
999 	struct matchinfo m;
1000 
1001 	KASSERT(config_initialized);
1002 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1003 
1004 	m.fn = fn;
1005 	m.parent = parent;
1006 	m.locs = locs;
1007 	m.aux = aux;
1008 	m.match = NULL;
1009 	m.pri = 0;
1010 
1011 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1012 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1013 
1014 			/* We don't match root nodes here. */
1015 			if (!cf->cf_pspec)
1016 				continue;
1017 
1018 			/*
1019 			 * Skip cf if no longer eligible, otherwise scan
1020 			 * through parents for one matching `parent', and
1021 			 * try match function.
1022 			 */
1023 			if (cf->cf_fstate == FSTATE_FOUND)
1024 				continue;
1025 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1026 			    cf->cf_fstate == FSTATE_DSTAR)
1027 				continue;
1028 
1029 			/*
1030 			 * If an interface attribute was specified,
1031 			 * consider only children which attach to
1032 			 * that attribute.
1033 			 */
1034 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1035 				continue;
1036 
1037 			if (cfparent_match(parent, cf->cf_pspec))
1038 				mapply(&m, cf);
1039 		}
1040 	}
1041 	return m.match;
1042 }
1043 
1044 cfdata_t
1045 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1046     void *aux)
1047 {
1048 
1049 	return config_search_loc(fn, parent, ifattr, NULL, aux);
1050 }
1051 
1052 /*
1053  * Find the given root device.
1054  * This is much like config_search, but there is no parent.
1055  * Don't bother with multiple cfdata tables; the root node
1056  * must always be in the initial table.
1057  */
1058 cfdata_t
1059 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1060 {
1061 	cfdata_t cf;
1062 	const short *p;
1063 	struct matchinfo m;
1064 
1065 	m.fn = fn;
1066 	m.parent = ROOT;
1067 	m.aux = aux;
1068 	m.match = NULL;
1069 	m.pri = 0;
1070 	m.locs = 0;
1071 	/*
1072 	 * Look at root entries for matching name.  We do not bother
1073 	 * with found-state here since only one root should ever be
1074 	 * searched (and it must be done first).
1075 	 */
1076 	for (p = cfroots; *p >= 0; p++) {
1077 		cf = &cfdata[*p];
1078 		if (strcmp(cf->cf_name, rootname) == 0)
1079 			mapply(&m, cf);
1080 	}
1081 	return m.match;
1082 }
1083 
1084 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1085 
1086 /*
1087  * The given `aux' argument describes a device that has been found
1088  * on the given parent, but not necessarily configured.  Locate the
1089  * configuration data for that device (using the submatch function
1090  * provided, or using candidates' cd_match configuration driver
1091  * functions) and attach it, and return its device_t.  If the device was
1092  * not configured, call the given `print' function and return NULL.
1093  */
1094 device_t
1095 config_found_sm_loc(device_t parent,
1096 		const char *ifattr, const int *locs, void *aux,
1097 		cfprint_t print, cfsubmatch_t submatch)
1098 {
1099 	cfdata_t cf;
1100 
1101 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1102 		return(config_attach_loc(parent, cf, locs, aux, print));
1103 	if (print) {
1104 		if (config_do_twiddle && cold)
1105 			twiddle();
1106 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1107 	}
1108 
1109 	/*
1110 	 * This has the effect of mixing in a single timestamp to the
1111 	 * entropy pool.  Experiments indicate the estimator will almost
1112 	 * always attribute one bit of entropy to this sample; analysis
1113 	 * of device attach/detach timestamps on FreeBSD indicates 4
1114 	 * bits of entropy/sample so this seems appropriately conservative.
1115 	 */
1116 	rnd_add_uint32(&rnd_autoconf_source, 0);
1117 	return NULL;
1118 }
1119 
1120 device_t
1121 config_found_ia(device_t parent, const char *ifattr, void *aux,
1122     cfprint_t print)
1123 {
1124 
1125 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1126 }
1127 
1128 device_t
1129 config_found(device_t parent, void *aux, cfprint_t print)
1130 {
1131 
1132 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1133 }
1134 
1135 /*
1136  * As above, but for root devices.
1137  */
1138 device_t
1139 config_rootfound(const char *rootname, void *aux)
1140 {
1141 	cfdata_t cf;
1142 
1143 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1144 		return config_attach(ROOT, cf, aux, NULL);
1145 	aprint_error("root device %s not configured\n", rootname);
1146 	return NULL;
1147 }
1148 
1149 /* just like sprintf(buf, "%d") except that it works from the end */
1150 static char *
1151 number(char *ep, int n)
1152 {
1153 
1154 	*--ep = 0;
1155 	while (n >= 10) {
1156 		*--ep = (n % 10) + '0';
1157 		n /= 10;
1158 	}
1159 	*--ep = n + '0';
1160 	return ep;
1161 }
1162 
1163 /*
1164  * Expand the size of the cd_devs array if necessary.
1165  *
1166  * The caller must hold alldevs.lock. config_makeroom() may release and
1167  * re-acquire alldevs.lock, so callers should re-check conditions such
1168  * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom()
1169  * returns.
1170  */
1171 static void
1172 config_makeroom(int n, struct cfdriver *cd)
1173 {
1174 	int ondevs, nndevs;
1175 	device_t *osp, *nsp;
1176 
1177 	KASSERT(mutex_owned(&alldevs.lock));
1178 	alldevs.nwrite++;
1179 
1180 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1181 		;
1182 
1183 	while (n >= cd->cd_ndevs) {
1184 		/*
1185 		 * Need to expand the array.
1186 		 */
1187 		ondevs = cd->cd_ndevs;
1188 		osp = cd->cd_devs;
1189 
1190 		/*
1191 		 * Release alldevs.lock around allocation, which may
1192 		 * sleep.
1193 		 */
1194 		mutex_exit(&alldevs.lock);
1195 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1196 		if (nsp == NULL)
1197 			panic("%s: could not expand cd_devs", __func__);
1198 		mutex_enter(&alldevs.lock);
1199 
1200 		/*
1201 		 * If another thread moved the array while we did
1202 		 * not hold alldevs.lock, try again.
1203 		 */
1204 		if (cd->cd_devs != osp) {
1205 			mutex_exit(&alldevs.lock);
1206 			kmem_free(nsp, sizeof(device_t[nndevs]));
1207 			mutex_enter(&alldevs.lock);
1208 			continue;
1209 		}
1210 
1211 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1212 		if (ondevs != 0)
1213 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1214 
1215 		cd->cd_ndevs = nndevs;
1216 		cd->cd_devs = nsp;
1217 		if (ondevs != 0) {
1218 			mutex_exit(&alldevs.lock);
1219 			kmem_free(osp, sizeof(device_t[ondevs]));
1220 			mutex_enter(&alldevs.lock);
1221 		}
1222 	}
1223 	KASSERT(mutex_owned(&alldevs.lock));
1224 	alldevs.nwrite--;
1225 }
1226 
1227 /*
1228  * Put dev into the devices list.
1229  */
1230 static void
1231 config_devlink(device_t dev)
1232 {
1233 
1234 	mutex_enter(&alldevs.lock);
1235 
1236 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1237 
1238 	dev->dv_add_gen = alldevs.gen;
1239 	/* It is safe to add a device to the tail of the list while
1240 	 * readers and writers are in the list.
1241 	 */
1242 	TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list);
1243 	mutex_exit(&alldevs.lock);
1244 }
1245 
1246 static void
1247 config_devfree(device_t dev)
1248 {
1249 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1250 
1251 	if (dev->dv_cfattach->ca_devsize > 0)
1252 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1253 	if (priv)
1254 		kmem_free(dev, sizeof(*dev));
1255 }
1256 
1257 /*
1258  * Caller must hold alldevs.lock.
1259  */
1260 static void
1261 config_devunlink(device_t dev, struct devicelist *garbage)
1262 {
1263 	struct device_garbage *dg = &dev->dv_garbage;
1264 	cfdriver_t cd = device_cfdriver(dev);
1265 	int i;
1266 
1267 	KASSERT(mutex_owned(&alldevs.lock));
1268 
1269  	/* Unlink from device list.  Link to garbage list. */
1270 	TAILQ_REMOVE(&alldevs.list, dev, dv_list);
1271 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1272 
1273 	/* Remove from cfdriver's array. */
1274 	cd->cd_devs[dev->dv_unit] = NULL;
1275 
1276 	/*
1277 	 * If the device now has no units in use, unlink its softc array.
1278 	 */
1279 	for (i = 0; i < cd->cd_ndevs; i++) {
1280 		if (cd->cd_devs[i] != NULL)
1281 			break;
1282 	}
1283 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1284 	if (i == cd->cd_ndevs) {
1285 		dg->dg_ndevs = cd->cd_ndevs;
1286 		dg->dg_devs = cd->cd_devs;
1287 		cd->cd_devs = NULL;
1288 		cd->cd_ndevs = 0;
1289 	}
1290 }
1291 
1292 static void
1293 config_devdelete(device_t dev)
1294 {
1295 	struct device_garbage *dg = &dev->dv_garbage;
1296 	device_lock_t dvl = device_getlock(dev);
1297 
1298 	if (dg->dg_devs != NULL)
1299 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1300 
1301 	cv_destroy(&dvl->dvl_cv);
1302 	mutex_destroy(&dvl->dvl_mtx);
1303 
1304 	KASSERT(dev->dv_properties != NULL);
1305 	prop_object_release(dev->dv_properties);
1306 
1307 	if (dev->dv_activity_handlers)
1308 		panic("%s with registered handlers", __func__);
1309 
1310 	if (dev->dv_locators) {
1311 		size_t amount = *--dev->dv_locators;
1312 		kmem_free(dev->dv_locators, amount);
1313 	}
1314 
1315 	config_devfree(dev);
1316 }
1317 
1318 static int
1319 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1320 {
1321 	int unit;
1322 
1323 	if (cf->cf_fstate == FSTATE_STAR) {
1324 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1325 			if (cd->cd_devs[unit] == NULL)
1326 				break;
1327 		/*
1328 		 * unit is now the unit of the first NULL device pointer,
1329 		 * or max(cd->cd_ndevs,cf->cf_unit).
1330 		 */
1331 	} else {
1332 		unit = cf->cf_unit;
1333 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1334 			unit = -1;
1335 	}
1336 	return unit;
1337 }
1338 
1339 static int
1340 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1341 {
1342 	struct alldevs_foray af;
1343 	int unit;
1344 
1345 	config_alldevs_enter(&af);
1346 	for (;;) {
1347 		unit = config_unit_nextfree(cd, cf);
1348 		if (unit == -1)
1349 			break;
1350 		if (unit < cd->cd_ndevs) {
1351 			cd->cd_devs[unit] = dev;
1352 			dev->dv_unit = unit;
1353 			break;
1354 		}
1355 		config_makeroom(unit, cd);
1356 	}
1357 	config_alldevs_exit(&af);
1358 
1359 	return unit;
1360 }
1361 
1362 static device_t
1363 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1364 {
1365 	cfdriver_t cd;
1366 	cfattach_t ca;
1367 	size_t lname, lunit;
1368 	const char *xunit;
1369 	int myunit;
1370 	char num[10];
1371 	device_t dev;
1372 	void *dev_private;
1373 	const struct cfiattrdata *ia;
1374 	device_lock_t dvl;
1375 
1376 	cd = config_cfdriver_lookup(cf->cf_name);
1377 	if (cd == NULL)
1378 		return NULL;
1379 
1380 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1381 	if (ca == NULL)
1382 		return NULL;
1383 
1384 	/* get memory for all device vars */
1385 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1386 	    || ca->ca_devsize >= sizeof(struct device),
1387 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1388 	    sizeof(struct device));
1389 	if (ca->ca_devsize > 0) {
1390 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1391 		if (dev_private == NULL)
1392 			panic("config_devalloc: memory allocation for device "
1393 			    "softc failed");
1394 	} else {
1395 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1396 		dev_private = NULL;
1397 	}
1398 
1399 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1400 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1401 	} else {
1402 		dev = dev_private;
1403 #ifdef DIAGNOSTIC
1404 		printf("%s has not been converted to device_t\n", cd->cd_name);
1405 #endif
1406 	}
1407 	if (dev == NULL)
1408 		panic("config_devalloc: memory allocation for device_t failed");
1409 
1410 	dev->dv_class = cd->cd_class;
1411 	dev->dv_cfdata = cf;
1412 	dev->dv_cfdriver = cd;
1413 	dev->dv_cfattach = ca;
1414 	dev->dv_activity_count = 0;
1415 	dev->dv_activity_handlers = NULL;
1416 	dev->dv_private = dev_private;
1417 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1418 
1419 	myunit = config_unit_alloc(dev, cd, cf);
1420 	if (myunit == -1) {
1421 		config_devfree(dev);
1422 		return NULL;
1423 	}
1424 
1425 	/* compute length of name and decimal expansion of unit number */
1426 	lname = strlen(cd->cd_name);
1427 	xunit = number(&num[sizeof(num)], myunit);
1428 	lunit = &num[sizeof(num)] - xunit;
1429 	if (lname + lunit > sizeof(dev->dv_xname))
1430 		panic("config_devalloc: device name too long");
1431 
1432 	dvl = device_getlock(dev);
1433 
1434 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1435 	cv_init(&dvl->dvl_cv, "pmfsusp");
1436 
1437 	memcpy(dev->dv_xname, cd->cd_name, lname);
1438 	memcpy(dev->dv_xname + lname, xunit, lunit);
1439 	dev->dv_parent = parent;
1440 	if (parent != NULL)
1441 		dev->dv_depth = parent->dv_depth + 1;
1442 	else
1443 		dev->dv_depth = 0;
1444 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1445 	if (locs) {
1446 		KASSERT(parent); /* no locators at root */
1447 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1448 		dev->dv_locators =
1449 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1450 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1451 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1452 	}
1453 	dev->dv_properties = prop_dictionary_create();
1454 	KASSERT(dev->dv_properties != NULL);
1455 
1456 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1457 	    "device-driver", dev->dv_cfdriver->cd_name);
1458 	prop_dictionary_set_uint16(dev->dv_properties,
1459 	    "device-unit", dev->dv_unit);
1460 	if (parent != NULL) {
1461 		prop_dictionary_set_cstring(dev->dv_properties,
1462 		    "device-parent", device_xname(parent));
1463 	}
1464 
1465 	if (dev->dv_cfdriver->cd_attrs != NULL)
1466 		config_add_attrib_dict(dev);
1467 
1468 	return dev;
1469 }
1470 
1471 /*
1472  * Create an array of device attach attributes and add it
1473  * to the device's dv_properties dictionary.
1474  *
1475  * <key>interface-attributes</key>
1476  * <array>
1477  *    <dict>
1478  *       <key>attribute-name</key>
1479  *       <string>foo</string>
1480  *       <key>locators</key>
1481  *       <array>
1482  *          <dict>
1483  *             <key>loc-name</key>
1484  *             <string>foo-loc1</string>
1485  *          </dict>
1486  *          <dict>
1487  *             <key>loc-name</key>
1488  *             <string>foo-loc2</string>
1489  *             <key>default</key>
1490  *             <string>foo-loc2-default</string>
1491  *          </dict>
1492  *          ...
1493  *       </array>
1494  *    </dict>
1495  *    ...
1496  * </array>
1497  */
1498 
1499 static void
1500 config_add_attrib_dict(device_t dev)
1501 {
1502 	int i, j;
1503 	const struct cfiattrdata *ci;
1504 	prop_dictionary_t attr_dict, loc_dict;
1505 	prop_array_t attr_array, loc_array;
1506 
1507 	if ((attr_array = prop_array_create()) == NULL)
1508 		return;
1509 
1510 	for (i = 0; ; i++) {
1511 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1512 			break;
1513 		if ((attr_dict = prop_dictionary_create()) == NULL)
1514 			break;
1515 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1516 		    ci->ci_name);
1517 
1518 		/* Create an array of the locator names and defaults */
1519 
1520 		if (ci->ci_loclen != 0 &&
1521 		    (loc_array = prop_array_create()) != NULL) {
1522 			for (j = 0; j < ci->ci_loclen; j++) {
1523 				loc_dict = prop_dictionary_create();
1524 				if (loc_dict == NULL)
1525 					continue;
1526 				prop_dictionary_set_cstring_nocopy(loc_dict,
1527 				    "loc-name", ci->ci_locdesc[j].cld_name);
1528 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1529 					prop_dictionary_set_cstring_nocopy(
1530 					    loc_dict, "default",
1531 					    ci->ci_locdesc[j].cld_defaultstr);
1532 				prop_array_set(loc_array, j, loc_dict);
1533 				prop_object_release(loc_dict);
1534 			}
1535 			prop_dictionary_set_and_rel(attr_dict, "locators",
1536 			    loc_array);
1537 		}
1538 		prop_array_add(attr_array, attr_dict);
1539 		prop_object_release(attr_dict);
1540 	}
1541 	if (i == 0)
1542 		prop_object_release(attr_array);
1543 	else
1544 		prop_dictionary_set_and_rel(dev->dv_properties,
1545 		    "interface-attributes", attr_array);
1546 
1547 	return;
1548 }
1549 
1550 /*
1551  * Attach a found device.
1552  */
1553 device_t
1554 config_attach_loc(device_t parent, cfdata_t cf,
1555 	const int *locs, void *aux, cfprint_t print)
1556 {
1557 	device_t dev;
1558 	struct cftable *ct;
1559 	const char *drvname;
1560 
1561 	dev = config_devalloc(parent, cf, locs);
1562 	if (!dev)
1563 		panic("config_attach: allocation of device softc failed");
1564 
1565 	/* XXX redundant - see below? */
1566 	if (cf->cf_fstate != FSTATE_STAR) {
1567 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1568 		cf->cf_fstate = FSTATE_FOUND;
1569 	}
1570 
1571 	config_devlink(dev);
1572 
1573 	if (config_do_twiddle && cold)
1574 		twiddle();
1575 	else
1576 		aprint_naive("Found ");
1577 	/*
1578 	 * We want the next two printfs for normal, verbose, and quiet,
1579 	 * but not silent (in which case, we're twiddling, instead).
1580 	 */
1581 	if (parent == ROOT) {
1582 		aprint_naive("%s (root)", device_xname(dev));
1583 		aprint_normal("%s (root)", device_xname(dev));
1584 	} else {
1585 		aprint_naive("%s at %s", device_xname(dev),
1586 		    device_xname(parent));
1587 		aprint_normal("%s at %s", device_xname(dev),
1588 		    device_xname(parent));
1589 		if (print)
1590 			(void) (*print)(aux, NULL);
1591 	}
1592 
1593 	/*
1594 	 * Before attaching, clobber any unfound devices that are
1595 	 * otherwise identical.
1596 	 * XXX code above is redundant?
1597 	 */
1598 	drvname = dev->dv_cfdriver->cd_name;
1599 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1600 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1601 			if (STREQ(cf->cf_name, drvname) &&
1602 			    cf->cf_unit == dev->dv_unit) {
1603 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1604 					cf->cf_fstate = FSTATE_FOUND;
1605 			}
1606 		}
1607 	}
1608 	device_register(dev, aux);
1609 
1610 	/* Let userland know */
1611 	devmon_report_device(dev, true);
1612 
1613 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1614 
1615 	if (!device_pmf_is_registered(dev))
1616 		aprint_debug_dev(dev, "WARNING: power management not "
1617 		    "supported\n");
1618 
1619 	config_process_deferred(&deferred_config_queue, dev);
1620 
1621 	device_register_post_config(dev, aux);
1622 	return dev;
1623 }
1624 
1625 device_t
1626 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1627 {
1628 
1629 	return config_attach_loc(parent, cf, NULL, aux, print);
1630 }
1631 
1632 /*
1633  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1634  * way are silently inserted into the device tree, and their children
1635  * attached.
1636  *
1637  * Note that because pseudo-devices are attached silently, any information
1638  * the attach routine wishes to print should be prefixed with the device
1639  * name by the attach routine.
1640  */
1641 device_t
1642 config_attach_pseudo(cfdata_t cf)
1643 {
1644 	device_t dev;
1645 
1646 	dev = config_devalloc(ROOT, cf, NULL);
1647 	if (!dev)
1648 		return NULL;
1649 
1650 	/* XXX mark busy in cfdata */
1651 
1652 	if (cf->cf_fstate != FSTATE_STAR) {
1653 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1654 		cf->cf_fstate = FSTATE_FOUND;
1655 	}
1656 
1657 	config_devlink(dev);
1658 
1659 #if 0	/* XXXJRT not yet */
1660 	device_register(dev, NULL);	/* like a root node */
1661 #endif
1662 
1663 	/* Let userland know */
1664 	devmon_report_device(dev, true);
1665 
1666 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1667 
1668 	config_process_deferred(&deferred_config_queue, dev);
1669 	return dev;
1670 }
1671 
1672 /*
1673  * Caller must hold alldevs.lock.
1674  */
1675 static void
1676 config_collect_garbage(struct devicelist *garbage)
1677 {
1678 	device_t dv;
1679 
1680 	KASSERT(!cpu_intr_p());
1681 	KASSERT(!cpu_softintr_p());
1682 	KASSERT(mutex_owned(&alldevs.lock));
1683 
1684 	while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) {
1685 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
1686 			if (dv->dv_del_gen != 0)
1687 				break;
1688 		}
1689 		if (dv == NULL) {
1690 			alldevs.garbage = false;
1691 			break;
1692 		}
1693 		config_devunlink(dv, garbage);
1694 	}
1695 	KASSERT(mutex_owned(&alldevs.lock));
1696 }
1697 
1698 static void
1699 config_dump_garbage(struct devicelist *garbage)
1700 {
1701 	device_t dv;
1702 
1703 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1704 		TAILQ_REMOVE(garbage, dv, dv_list);
1705 		config_devdelete(dv);
1706 	}
1707 }
1708 
1709 /*
1710  * Detach a device.  Optionally forced (e.g. because of hardware
1711  * removal) and quiet.  Returns zero if successful, non-zero
1712  * (an error code) otherwise.
1713  *
1714  * Note that this code wants to be run from a process context, so
1715  * that the detach can sleep to allow processes which have a device
1716  * open to run and unwind their stacks.
1717  */
1718 int
1719 config_detach(device_t dev, int flags)
1720 {
1721 	struct alldevs_foray af;
1722 	struct cftable *ct;
1723 	cfdata_t cf;
1724 	const struct cfattach *ca;
1725 	struct cfdriver *cd;
1726 	device_t d __diagused;
1727 	int rv = 0;
1728 
1729 	cf = dev->dv_cfdata;
1730 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1731 		cf->cf_fstate == FSTATE_STAR),
1732 	    "config_detach: %s: bad device fstate: %d",
1733 	    device_xname(dev), cf ? cf->cf_fstate : -1);
1734 
1735 	cd = dev->dv_cfdriver;
1736 	KASSERT(cd != NULL);
1737 
1738 	ca = dev->dv_cfattach;
1739 	KASSERT(ca != NULL);
1740 
1741 	mutex_enter(&alldevs.lock);
1742 	if (dev->dv_del_gen != 0) {
1743 		mutex_exit(&alldevs.lock);
1744 #ifdef DIAGNOSTIC
1745 		printf("%s: %s is already detached\n", __func__,
1746 		    device_xname(dev));
1747 #endif /* DIAGNOSTIC */
1748 		return ENOENT;
1749 	}
1750 	alldevs.nwrite++;
1751 	mutex_exit(&alldevs.lock);
1752 
1753 	if (!detachall &&
1754 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1755 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1756 		rv = EOPNOTSUPP;
1757 	} else if (ca->ca_detach != NULL) {
1758 		rv = (*ca->ca_detach)(dev, flags);
1759 	} else
1760 		rv = EOPNOTSUPP;
1761 
1762 	/*
1763 	 * If it was not possible to detach the device, then we either
1764 	 * panic() (for the forced but failed case), or return an error.
1765 	 *
1766 	 * If it was possible to detach the device, ensure that the
1767 	 * device is deactivated.
1768 	 */
1769 	if (rv == 0)
1770 		dev->dv_flags &= ~DVF_ACTIVE;
1771 	else if ((flags & DETACH_FORCE) == 0)
1772 		goto out;
1773 	else {
1774 		panic("config_detach: forced detach of %s failed (%d)",
1775 		    device_xname(dev), rv);
1776 	}
1777 
1778 	/*
1779 	 * The device has now been successfully detached.
1780 	 */
1781 
1782 	/* Let userland know */
1783 	devmon_report_device(dev, false);
1784 
1785 #ifdef DIAGNOSTIC
1786 	/*
1787 	 * Sanity: If you're successfully detached, you should have no
1788 	 * children.  (Note that because children must be attached
1789 	 * after parents, we only need to search the latter part of
1790 	 * the list.)
1791 	 */
1792 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1793 	    d = TAILQ_NEXT(d, dv_list)) {
1794 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1795 			printf("config_detach: detached device %s"
1796 			    " has children %s\n", device_xname(dev),
1797 			    device_xname(d));
1798 			panic("config_detach");
1799 		}
1800 	}
1801 #endif
1802 
1803 	/* notify the parent that the child is gone */
1804 	if (dev->dv_parent) {
1805 		device_t p = dev->dv_parent;
1806 		if (p->dv_cfattach->ca_childdetached)
1807 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1808 	}
1809 
1810 	/*
1811 	 * Mark cfdata to show that the unit can be reused, if possible.
1812 	 */
1813 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1814 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1815 			if (STREQ(cf->cf_name, cd->cd_name)) {
1816 				if (cf->cf_fstate == FSTATE_FOUND &&
1817 				    cf->cf_unit == dev->dv_unit)
1818 					cf->cf_fstate = FSTATE_NOTFOUND;
1819 			}
1820 		}
1821 	}
1822 
1823 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1824 		aprint_normal_dev(dev, "detached\n");
1825 
1826 out:
1827 	config_alldevs_enter(&af);
1828 	KASSERT(alldevs.nwrite != 0);
1829 	--alldevs.nwrite;
1830 	if (rv == 0 && dev->dv_del_gen == 0) {
1831 		if (alldevs.nwrite == 0 && alldevs.nread == 0)
1832 			config_devunlink(dev, &af.af_garbage);
1833 		else {
1834 			dev->dv_del_gen = alldevs.gen;
1835 			alldevs.garbage = true;
1836 		}
1837 	}
1838 	config_alldevs_exit(&af);
1839 
1840 	return rv;
1841 }
1842 
1843 int
1844 config_detach_children(device_t parent, int flags)
1845 {
1846 	device_t dv;
1847 	deviter_t di;
1848 	int error = 0;
1849 
1850 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1851 	     dv = deviter_next(&di)) {
1852 		if (device_parent(dv) != parent)
1853 			continue;
1854 		if ((error = config_detach(dv, flags)) != 0)
1855 			break;
1856 	}
1857 	deviter_release(&di);
1858 	return error;
1859 }
1860 
1861 device_t
1862 shutdown_first(struct shutdown_state *s)
1863 {
1864 	if (!s->initialized) {
1865 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1866 		s->initialized = true;
1867 	}
1868 	return shutdown_next(s);
1869 }
1870 
1871 device_t
1872 shutdown_next(struct shutdown_state *s)
1873 {
1874 	device_t dv;
1875 
1876 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1877 		;
1878 
1879 	if (dv == NULL)
1880 		s->initialized = false;
1881 
1882 	return dv;
1883 }
1884 
1885 bool
1886 config_detach_all(int how)
1887 {
1888 	static struct shutdown_state s;
1889 	device_t curdev;
1890 	bool progress = false;
1891 	int flags;
1892 
1893 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1894 		return false;
1895 
1896 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1897 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1898 	else
1899 		flags = DETACH_SHUTDOWN;
1900 
1901 	for (curdev = shutdown_first(&s); curdev != NULL;
1902 	     curdev = shutdown_next(&s)) {
1903 		aprint_debug(" detaching %s, ", device_xname(curdev));
1904 		if (config_detach(curdev, flags) == 0) {
1905 			progress = true;
1906 			aprint_debug("success.");
1907 		} else
1908 			aprint_debug("failed.");
1909 	}
1910 	return progress;
1911 }
1912 
1913 static bool
1914 device_is_ancestor_of(device_t ancestor, device_t descendant)
1915 {
1916 	device_t dv;
1917 
1918 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1919 		if (device_parent(dv) == ancestor)
1920 			return true;
1921 	}
1922 	return false;
1923 }
1924 
1925 int
1926 config_deactivate(device_t dev)
1927 {
1928 	deviter_t di;
1929 	const struct cfattach *ca;
1930 	device_t descendant;
1931 	int s, rv = 0, oflags;
1932 
1933 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1934 	     descendant != NULL;
1935 	     descendant = deviter_next(&di)) {
1936 		if (dev != descendant &&
1937 		    !device_is_ancestor_of(dev, descendant))
1938 			continue;
1939 
1940 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1941 			continue;
1942 
1943 		ca = descendant->dv_cfattach;
1944 		oflags = descendant->dv_flags;
1945 
1946 		descendant->dv_flags &= ~DVF_ACTIVE;
1947 		if (ca->ca_activate == NULL)
1948 			continue;
1949 		s = splhigh();
1950 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1951 		splx(s);
1952 		if (rv != 0)
1953 			descendant->dv_flags = oflags;
1954 	}
1955 	deviter_release(&di);
1956 	return rv;
1957 }
1958 
1959 /*
1960  * Defer the configuration of the specified device until all
1961  * of its parent's devices have been attached.
1962  */
1963 void
1964 config_defer(device_t dev, void (*func)(device_t))
1965 {
1966 	struct deferred_config *dc;
1967 
1968 	if (dev->dv_parent == NULL)
1969 		panic("config_defer: can't defer config of a root device");
1970 
1971 #ifdef DIAGNOSTIC
1972 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1973 		if (dc->dc_dev == dev)
1974 			panic("config_defer: deferred twice");
1975 	}
1976 #endif
1977 
1978 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1979 	if (dc == NULL)
1980 		panic("config_defer: unable to allocate callback");
1981 
1982 	dc->dc_dev = dev;
1983 	dc->dc_func = func;
1984 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1985 	config_pending_incr(dev);
1986 }
1987 
1988 /*
1989  * Defer some autoconfiguration for a device until after interrupts
1990  * are enabled.
1991  */
1992 void
1993 config_interrupts(device_t dev, void (*func)(device_t))
1994 {
1995 	struct deferred_config *dc;
1996 
1997 	/*
1998 	 * If interrupts are enabled, callback now.
1999 	 */
2000 	if (cold == 0) {
2001 		(*func)(dev);
2002 		return;
2003 	}
2004 
2005 #ifdef DIAGNOSTIC
2006 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
2007 		if (dc->dc_dev == dev)
2008 			panic("config_interrupts: deferred twice");
2009 	}
2010 #endif
2011 
2012 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2013 	if (dc == NULL)
2014 		panic("config_interrupts: unable to allocate callback");
2015 
2016 	dc->dc_dev = dev;
2017 	dc->dc_func = func;
2018 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2019 	config_pending_incr(dev);
2020 }
2021 
2022 /*
2023  * Defer some autoconfiguration for a device until after root file system
2024  * is mounted (to load firmware etc).
2025  */
2026 void
2027 config_mountroot(device_t dev, void (*func)(device_t))
2028 {
2029 	struct deferred_config *dc;
2030 
2031 	/*
2032 	 * If root file system is mounted, callback now.
2033 	 */
2034 	if (root_is_mounted) {
2035 		(*func)(dev);
2036 		return;
2037 	}
2038 
2039 #ifdef DIAGNOSTIC
2040 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2041 		if (dc->dc_dev == dev)
2042 			panic("%s: deferred twice", __func__);
2043 	}
2044 #endif
2045 
2046 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2047 	if (dc == NULL)
2048 		panic("%s: unable to allocate callback", __func__);
2049 
2050 	dc->dc_dev = dev;
2051 	dc->dc_func = func;
2052 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2053 }
2054 
2055 /*
2056  * Process a deferred configuration queue.
2057  */
2058 static void
2059 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2060 {
2061 	struct deferred_config *dc, *ndc;
2062 
2063 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2064 		ndc = TAILQ_NEXT(dc, dc_queue);
2065 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2066 			TAILQ_REMOVE(queue, dc, dc_queue);
2067 			(*dc->dc_func)(dc->dc_dev);
2068 			config_pending_decr(dc->dc_dev);
2069 			kmem_free(dc, sizeof(*dc));
2070 		}
2071 	}
2072 }
2073 
2074 /*
2075  * Manipulate the config_pending semaphore.
2076  */
2077 void
2078 config_pending_incr(device_t dev)
2079 {
2080 
2081 	mutex_enter(&config_misc_lock);
2082 	config_pending++;
2083 #ifdef DEBUG_AUTOCONF
2084 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2085 #endif
2086 	mutex_exit(&config_misc_lock);
2087 }
2088 
2089 void
2090 config_pending_decr(device_t dev)
2091 {
2092 
2093 	KASSERT(0 < config_pending);
2094 	mutex_enter(&config_misc_lock);
2095 	config_pending--;
2096 #ifdef DEBUG_AUTOCONF
2097 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2098 #endif
2099 	if (config_pending == 0)
2100 		cv_broadcast(&config_misc_cv);
2101 	mutex_exit(&config_misc_lock);
2102 }
2103 
2104 /*
2105  * Register a "finalization" routine.  Finalization routines are
2106  * called iteratively once all real devices have been found during
2107  * autoconfiguration, for as long as any one finalizer has done
2108  * any work.
2109  */
2110 int
2111 config_finalize_register(device_t dev, int (*fn)(device_t))
2112 {
2113 	struct finalize_hook *f;
2114 
2115 	/*
2116 	 * If finalization has already been done, invoke the
2117 	 * callback function now.
2118 	 */
2119 	if (config_finalize_done) {
2120 		while ((*fn)(dev) != 0)
2121 			/* loop */ ;
2122 		return 0;
2123 	}
2124 
2125 	/* Ensure this isn't already on the list. */
2126 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2127 		if (f->f_func == fn && f->f_dev == dev)
2128 			return EEXIST;
2129 	}
2130 
2131 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
2132 	f->f_func = fn;
2133 	f->f_dev = dev;
2134 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2135 
2136 	return 0;
2137 }
2138 
2139 void
2140 config_finalize(void)
2141 {
2142 	struct finalize_hook *f;
2143 	struct pdevinit *pdev;
2144 	extern struct pdevinit pdevinit[];
2145 	int errcnt, rv;
2146 
2147 	/*
2148 	 * Now that device driver threads have been created, wait for
2149 	 * them to finish any deferred autoconfiguration.
2150 	 */
2151 	mutex_enter(&config_misc_lock);
2152 	while (config_pending != 0)
2153 		cv_wait(&config_misc_cv, &config_misc_lock);
2154 	mutex_exit(&config_misc_lock);
2155 
2156 	KERNEL_LOCK(1, NULL);
2157 
2158 	/* Attach pseudo-devices. */
2159 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2160 		(*pdev->pdev_attach)(pdev->pdev_count);
2161 
2162 	/* Run the hooks until none of them does any work. */
2163 	do {
2164 		rv = 0;
2165 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
2166 			rv |= (*f->f_func)(f->f_dev);
2167 	} while (rv != 0);
2168 
2169 	config_finalize_done = 1;
2170 
2171 	/* Now free all the hooks. */
2172 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2173 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2174 		kmem_free(f, sizeof(*f));
2175 	}
2176 
2177 	KERNEL_UNLOCK_ONE(NULL);
2178 
2179 	errcnt = aprint_get_error_count();
2180 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2181 	    (boothowto & AB_VERBOSE) == 0) {
2182 		mutex_enter(&config_misc_lock);
2183 		if (config_do_twiddle) {
2184 			config_do_twiddle = 0;
2185 			printf_nolog(" done.\n");
2186 		}
2187 		mutex_exit(&config_misc_lock);
2188 	}
2189 	if (errcnt != 0) {
2190 		printf("WARNING: %d error%s while detecting hardware; "
2191 		    "check system log.\n", errcnt,
2192 		    errcnt == 1 ? "" : "s");
2193 	}
2194 }
2195 
2196 void
2197 config_twiddle_init(void)
2198 {
2199 
2200 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2201 		config_do_twiddle = 1;
2202 	}
2203 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2204 }
2205 
2206 void
2207 config_twiddle_fn(void *cookie)
2208 {
2209 
2210 	mutex_enter(&config_misc_lock);
2211 	if (config_do_twiddle) {
2212 		twiddle();
2213 		callout_schedule(&config_twiddle_ch, mstohz(100));
2214 	}
2215 	mutex_exit(&config_misc_lock);
2216 }
2217 
2218 static void
2219 config_alldevs_enter(struct alldevs_foray *af)
2220 {
2221 	TAILQ_INIT(&af->af_garbage);
2222 	mutex_enter(&alldevs.lock);
2223 	config_collect_garbage(&af->af_garbage);
2224 }
2225 
2226 static void
2227 config_alldevs_exit(struct alldevs_foray *af)
2228 {
2229 	mutex_exit(&alldevs.lock);
2230 	config_dump_garbage(&af->af_garbage);
2231 }
2232 
2233 /*
2234  * device_lookup:
2235  *
2236  *	Look up a device instance for a given driver.
2237  */
2238 device_t
2239 device_lookup(cfdriver_t cd, int unit)
2240 {
2241 	device_t dv;
2242 
2243 	mutex_enter(&alldevs.lock);
2244 	if (unit < 0 || unit >= cd->cd_ndevs)
2245 		dv = NULL;
2246 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2247 		dv = NULL;
2248 	mutex_exit(&alldevs.lock);
2249 
2250 	return dv;
2251 }
2252 
2253 /*
2254  * device_lookup_private:
2255  *
2256  *	Look up a softc instance for a given driver.
2257  */
2258 void *
2259 device_lookup_private(cfdriver_t cd, int unit)
2260 {
2261 
2262 	return device_private(device_lookup(cd, unit));
2263 }
2264 
2265 /*
2266  * device_find_by_xname:
2267  *
2268  *	Returns the device of the given name or NULL if it doesn't exist.
2269  */
2270 device_t
2271 device_find_by_xname(const char *name)
2272 {
2273 	device_t dv;
2274 	deviter_t di;
2275 
2276 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2277 		if (strcmp(device_xname(dv), name) == 0)
2278 			break;
2279 	}
2280 	deviter_release(&di);
2281 
2282 	return dv;
2283 }
2284 
2285 /*
2286  * device_find_by_driver_unit:
2287  *
2288  *	Returns the device of the given driver name and unit or
2289  *	NULL if it doesn't exist.
2290  */
2291 device_t
2292 device_find_by_driver_unit(const char *name, int unit)
2293 {
2294 	struct cfdriver *cd;
2295 
2296 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2297 		return NULL;
2298 	return device_lookup(cd, unit);
2299 }
2300 
2301 /*
2302  * Power management related functions.
2303  */
2304 
2305 bool
2306 device_pmf_is_registered(device_t dev)
2307 {
2308 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2309 }
2310 
2311 bool
2312 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2313 {
2314 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2315 		return true;
2316 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2317 		return false;
2318 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2319 	    dev->dv_driver_suspend != NULL &&
2320 	    !(*dev->dv_driver_suspend)(dev, qual))
2321 		return false;
2322 
2323 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2324 	return true;
2325 }
2326 
2327 bool
2328 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2329 {
2330 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2331 		return true;
2332 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2333 		return false;
2334 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2335 	    dev->dv_driver_resume != NULL &&
2336 	    !(*dev->dv_driver_resume)(dev, qual))
2337 		return false;
2338 
2339 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2340 	return true;
2341 }
2342 
2343 bool
2344 device_pmf_driver_shutdown(device_t dev, int how)
2345 {
2346 
2347 	if (*dev->dv_driver_shutdown != NULL &&
2348 	    !(*dev->dv_driver_shutdown)(dev, how))
2349 		return false;
2350 	return true;
2351 }
2352 
2353 bool
2354 device_pmf_driver_register(device_t dev,
2355     bool (*suspend)(device_t, const pmf_qual_t *),
2356     bool (*resume)(device_t, const pmf_qual_t *),
2357     bool (*shutdown)(device_t, int))
2358 {
2359 	dev->dv_driver_suspend = suspend;
2360 	dev->dv_driver_resume = resume;
2361 	dev->dv_driver_shutdown = shutdown;
2362 	dev->dv_flags |= DVF_POWER_HANDLERS;
2363 	return true;
2364 }
2365 
2366 static const char *
2367 curlwp_name(void)
2368 {
2369 	if (curlwp->l_name != NULL)
2370 		return curlwp->l_name;
2371 	else
2372 		return curlwp->l_proc->p_comm;
2373 }
2374 
2375 void
2376 device_pmf_driver_deregister(device_t dev)
2377 {
2378 	device_lock_t dvl = device_getlock(dev);
2379 
2380 	dev->dv_driver_suspend = NULL;
2381 	dev->dv_driver_resume = NULL;
2382 
2383 	mutex_enter(&dvl->dvl_mtx);
2384 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2385 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2386 		/* Wake a thread that waits for the lock.  That
2387 		 * thread will fail to acquire the lock, and then
2388 		 * it will wake the next thread that waits for the
2389 		 * lock, or else it will wake us.
2390 		 */
2391 		cv_signal(&dvl->dvl_cv);
2392 		pmflock_debug(dev, __func__, __LINE__);
2393 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2394 		pmflock_debug(dev, __func__, __LINE__);
2395 	}
2396 	mutex_exit(&dvl->dvl_mtx);
2397 }
2398 
2399 bool
2400 device_pmf_driver_child_register(device_t dev)
2401 {
2402 	device_t parent = device_parent(dev);
2403 
2404 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2405 		return true;
2406 	return (*parent->dv_driver_child_register)(dev);
2407 }
2408 
2409 void
2410 device_pmf_driver_set_child_register(device_t dev,
2411     bool (*child_register)(device_t))
2412 {
2413 	dev->dv_driver_child_register = child_register;
2414 }
2415 
2416 static void
2417 pmflock_debug(device_t dev, const char *func, int line)
2418 {
2419 	device_lock_t dvl = device_getlock(dev);
2420 
2421 	aprint_debug_dev(dev,
2422 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2423 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2424 }
2425 
2426 static bool
2427 device_pmf_lock1(device_t dev)
2428 {
2429 	device_lock_t dvl = device_getlock(dev);
2430 
2431 	while (device_pmf_is_registered(dev) &&
2432 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2433 		dvl->dvl_nwait++;
2434 		pmflock_debug(dev, __func__, __LINE__);
2435 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2436 		pmflock_debug(dev, __func__, __LINE__);
2437 		dvl->dvl_nwait--;
2438 	}
2439 	if (!device_pmf_is_registered(dev)) {
2440 		pmflock_debug(dev, __func__, __LINE__);
2441 		/* We could not acquire the lock, but some other thread may
2442 		 * wait for it, also.  Wake that thread.
2443 		 */
2444 		cv_signal(&dvl->dvl_cv);
2445 		return false;
2446 	}
2447 	dvl->dvl_nlock++;
2448 	dvl->dvl_holder = curlwp;
2449 	pmflock_debug(dev, __func__, __LINE__);
2450 	return true;
2451 }
2452 
2453 bool
2454 device_pmf_lock(device_t dev)
2455 {
2456 	bool rc;
2457 	device_lock_t dvl = device_getlock(dev);
2458 
2459 	mutex_enter(&dvl->dvl_mtx);
2460 	rc = device_pmf_lock1(dev);
2461 	mutex_exit(&dvl->dvl_mtx);
2462 
2463 	return rc;
2464 }
2465 
2466 void
2467 device_pmf_unlock(device_t dev)
2468 {
2469 	device_lock_t dvl = device_getlock(dev);
2470 
2471 	KASSERT(dvl->dvl_nlock > 0);
2472 	mutex_enter(&dvl->dvl_mtx);
2473 	if (--dvl->dvl_nlock == 0)
2474 		dvl->dvl_holder = NULL;
2475 	cv_signal(&dvl->dvl_cv);
2476 	pmflock_debug(dev, __func__, __LINE__);
2477 	mutex_exit(&dvl->dvl_mtx);
2478 }
2479 
2480 device_lock_t
2481 device_getlock(device_t dev)
2482 {
2483 	return &dev->dv_lock;
2484 }
2485 
2486 void *
2487 device_pmf_bus_private(device_t dev)
2488 {
2489 	return dev->dv_bus_private;
2490 }
2491 
2492 bool
2493 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2494 {
2495 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2496 		return true;
2497 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2498 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2499 		return false;
2500 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2501 	    dev->dv_bus_suspend != NULL &&
2502 	    !(*dev->dv_bus_suspend)(dev, qual))
2503 		return false;
2504 
2505 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2506 	return true;
2507 }
2508 
2509 bool
2510 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2511 {
2512 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2513 		return true;
2514 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2515 	    dev->dv_bus_resume != NULL &&
2516 	    !(*dev->dv_bus_resume)(dev, qual))
2517 		return false;
2518 
2519 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2520 	return true;
2521 }
2522 
2523 bool
2524 device_pmf_bus_shutdown(device_t dev, int how)
2525 {
2526 
2527 	if (*dev->dv_bus_shutdown != NULL &&
2528 	    !(*dev->dv_bus_shutdown)(dev, how))
2529 		return false;
2530 	return true;
2531 }
2532 
2533 void
2534 device_pmf_bus_register(device_t dev, void *priv,
2535     bool (*suspend)(device_t, const pmf_qual_t *),
2536     bool (*resume)(device_t, const pmf_qual_t *),
2537     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2538 {
2539 	dev->dv_bus_private = priv;
2540 	dev->dv_bus_resume = resume;
2541 	dev->dv_bus_suspend = suspend;
2542 	dev->dv_bus_shutdown = shutdown;
2543 	dev->dv_bus_deregister = deregister;
2544 }
2545 
2546 void
2547 device_pmf_bus_deregister(device_t dev)
2548 {
2549 	if (dev->dv_bus_deregister == NULL)
2550 		return;
2551 	(*dev->dv_bus_deregister)(dev);
2552 	dev->dv_bus_private = NULL;
2553 	dev->dv_bus_suspend = NULL;
2554 	dev->dv_bus_resume = NULL;
2555 	dev->dv_bus_deregister = NULL;
2556 }
2557 
2558 void *
2559 device_pmf_class_private(device_t dev)
2560 {
2561 	return dev->dv_class_private;
2562 }
2563 
2564 bool
2565 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2566 {
2567 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2568 		return true;
2569 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2570 	    dev->dv_class_suspend != NULL &&
2571 	    !(*dev->dv_class_suspend)(dev, qual))
2572 		return false;
2573 
2574 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2575 	return true;
2576 }
2577 
2578 bool
2579 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2580 {
2581 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2582 		return true;
2583 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2584 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2585 		return false;
2586 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2587 	    dev->dv_class_resume != NULL &&
2588 	    !(*dev->dv_class_resume)(dev, qual))
2589 		return false;
2590 
2591 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2592 	return true;
2593 }
2594 
2595 void
2596 device_pmf_class_register(device_t dev, void *priv,
2597     bool (*suspend)(device_t, const pmf_qual_t *),
2598     bool (*resume)(device_t, const pmf_qual_t *),
2599     void (*deregister)(device_t))
2600 {
2601 	dev->dv_class_private = priv;
2602 	dev->dv_class_suspend = suspend;
2603 	dev->dv_class_resume = resume;
2604 	dev->dv_class_deregister = deregister;
2605 }
2606 
2607 void
2608 device_pmf_class_deregister(device_t dev)
2609 {
2610 	if (dev->dv_class_deregister == NULL)
2611 		return;
2612 	(*dev->dv_class_deregister)(dev);
2613 	dev->dv_class_private = NULL;
2614 	dev->dv_class_suspend = NULL;
2615 	dev->dv_class_resume = NULL;
2616 	dev->dv_class_deregister = NULL;
2617 }
2618 
2619 bool
2620 device_active(device_t dev, devactive_t type)
2621 {
2622 	size_t i;
2623 
2624 	if (dev->dv_activity_count == 0)
2625 		return false;
2626 
2627 	for (i = 0; i < dev->dv_activity_count; ++i) {
2628 		if (dev->dv_activity_handlers[i] == NULL)
2629 			break;
2630 		(*dev->dv_activity_handlers[i])(dev, type);
2631 	}
2632 
2633 	return true;
2634 }
2635 
2636 bool
2637 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2638 {
2639 	void (**new_handlers)(device_t, devactive_t);
2640 	void (**old_handlers)(device_t, devactive_t);
2641 	size_t i, old_size, new_size;
2642 	int s;
2643 
2644 	old_handlers = dev->dv_activity_handlers;
2645 	old_size = dev->dv_activity_count;
2646 
2647 	KASSERT(old_size == 0 || old_handlers != NULL);
2648 
2649 	for (i = 0; i < old_size; ++i) {
2650 		KASSERT(old_handlers[i] != handler);
2651 		if (old_handlers[i] == NULL) {
2652 			old_handlers[i] = handler;
2653 			return true;
2654 		}
2655 	}
2656 
2657 	new_size = old_size + 4;
2658 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2659 
2660 	for (i = 0; i < old_size; ++i)
2661 		new_handlers[i] = old_handlers[i];
2662 	new_handlers[old_size] = handler;
2663 	for (i = old_size+1; i < new_size; ++i)
2664 		new_handlers[i] = NULL;
2665 
2666 	s = splhigh();
2667 	dev->dv_activity_count = new_size;
2668 	dev->dv_activity_handlers = new_handlers;
2669 	splx(s);
2670 
2671 	if (old_size > 0)
2672 		kmem_free(old_handlers, sizeof(void * [old_size]));
2673 
2674 	return true;
2675 }
2676 
2677 void
2678 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2679 {
2680 	void (**old_handlers)(device_t, devactive_t);
2681 	size_t i, old_size;
2682 	int s;
2683 
2684 	old_handlers = dev->dv_activity_handlers;
2685 	old_size = dev->dv_activity_count;
2686 
2687 	for (i = 0; i < old_size; ++i) {
2688 		if (old_handlers[i] == handler)
2689 			break;
2690 		if (old_handlers[i] == NULL)
2691 			return; /* XXX panic? */
2692 	}
2693 
2694 	if (i == old_size)
2695 		return; /* XXX panic? */
2696 
2697 	for (; i < old_size - 1; ++i) {
2698 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2699 			continue;
2700 
2701 		if (i == 0) {
2702 			s = splhigh();
2703 			dev->dv_activity_count = 0;
2704 			dev->dv_activity_handlers = NULL;
2705 			splx(s);
2706 			kmem_free(old_handlers, sizeof(void *[old_size]));
2707 		}
2708 		return;
2709 	}
2710 	old_handlers[i] = NULL;
2711 }
2712 
2713 /* Return true iff the device_t `dev' exists at generation `gen'. */
2714 static bool
2715 device_exists_at(device_t dv, devgen_t gen)
2716 {
2717 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2718 	    dv->dv_add_gen <= gen;
2719 }
2720 
2721 static bool
2722 deviter_visits(const deviter_t *di, device_t dv)
2723 {
2724 	return device_exists_at(dv, di->di_gen);
2725 }
2726 
2727 /*
2728  * Device Iteration
2729  *
2730  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2731  *     each device_t's in the device tree.
2732  *
2733  * deviter_init(di, flags): initialize the device iterator `di'
2734  *     to "walk" the device tree.  deviter_next(di) will return
2735  *     the first device_t in the device tree, or NULL if there are
2736  *     no devices.
2737  *
2738  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2739  *     caller intends to modify the device tree by calling
2740  *     config_detach(9) on devices in the order that the iterator
2741  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2742  *     nearest the "root" of the device tree to be returned, first;
2743  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2744  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2745  *     indicating both that deviter_init() should not respect any
2746  *     locks on the device tree, and that deviter_next(di) may run
2747  *     in more than one LWP before the walk has finished.
2748  *
2749  *     Only one DEVITER_F_RW iterator may be in the device tree at
2750  *     once.
2751  *
2752  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2753  *
2754  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2755  *     DEVITER_F_LEAVES_FIRST are used in combination.
2756  *
2757  * deviter_first(di, flags): initialize the device iterator `di'
2758  *     and return the first device_t in the device tree, or NULL
2759  *     if there are no devices.  The statement
2760  *
2761  *         dv = deviter_first(di);
2762  *
2763  *     is shorthand for
2764  *
2765  *         deviter_init(di);
2766  *         dv = deviter_next(di);
2767  *
2768  * deviter_next(di): return the next device_t in the device tree,
2769  *     or NULL if there are no more devices.  deviter_next(di)
2770  *     is undefined if `di' was not initialized with deviter_init() or
2771  *     deviter_first().
2772  *
2773  * deviter_release(di): stops iteration (subsequent calls to
2774  *     deviter_next() will return NULL), releases any locks and
2775  *     resources held by the device iterator.
2776  *
2777  * Device iteration does not return device_t's in any particular
2778  * order.  An iterator will never return the same device_t twice.
2779  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2780  * is called repeatedly on the same `di', it will eventually return
2781  * NULL.  It is ok to attach/detach devices during device iteration.
2782  */
2783 void
2784 deviter_init(deviter_t *di, deviter_flags_t flags)
2785 {
2786 	device_t dv;
2787 
2788 	memset(di, 0, sizeof(*di));
2789 
2790 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2791 		flags |= DEVITER_F_RW;
2792 
2793 	mutex_enter(&alldevs.lock);
2794 	if ((flags & DEVITER_F_RW) != 0)
2795 		alldevs.nwrite++;
2796 	else
2797 		alldevs.nread++;
2798 	di->di_gen = alldevs.gen++;
2799 	di->di_flags = flags;
2800 
2801 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2802 	case DEVITER_F_LEAVES_FIRST:
2803 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2804 			if (!deviter_visits(di, dv))
2805 				continue;
2806 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2807 		}
2808 		break;
2809 	case DEVITER_F_ROOT_FIRST:
2810 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2811 			if (!deviter_visits(di, dv))
2812 				continue;
2813 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2814 		}
2815 		break;
2816 	default:
2817 		break;
2818 	}
2819 
2820 	deviter_reinit(di);
2821 	mutex_exit(&alldevs.lock);
2822 }
2823 
2824 static void
2825 deviter_reinit(deviter_t *di)
2826 {
2827 
2828 	KASSERT(mutex_owned(&alldevs.lock));
2829 	if ((di->di_flags & DEVITER_F_RW) != 0)
2830 		di->di_prev = TAILQ_LAST(&alldevs.list, devicelist);
2831 	else
2832 		di->di_prev = TAILQ_FIRST(&alldevs.list);
2833 }
2834 
2835 device_t
2836 deviter_first(deviter_t *di, deviter_flags_t flags)
2837 {
2838 
2839 	deviter_init(di, flags);
2840 	return deviter_next(di);
2841 }
2842 
2843 static device_t
2844 deviter_next2(deviter_t *di)
2845 {
2846 	device_t dv;
2847 
2848 	KASSERT(mutex_owned(&alldevs.lock));
2849 
2850 	dv = di->di_prev;
2851 
2852 	if (dv == NULL)
2853 		return NULL;
2854 
2855 	if ((di->di_flags & DEVITER_F_RW) != 0)
2856 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2857 	else
2858 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2859 
2860 	return dv;
2861 }
2862 
2863 static device_t
2864 deviter_next1(deviter_t *di)
2865 {
2866 	device_t dv;
2867 
2868 	KASSERT(mutex_owned(&alldevs.lock));
2869 
2870 	do {
2871 		dv = deviter_next2(di);
2872 	} while (dv != NULL && !deviter_visits(di, dv));
2873 
2874 	return dv;
2875 }
2876 
2877 device_t
2878 deviter_next(deviter_t *di)
2879 {
2880 	device_t dv = NULL;
2881 
2882 	mutex_enter(&alldevs.lock);
2883 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2884 	case 0:
2885 		dv = deviter_next1(di);
2886 		break;
2887 	case DEVITER_F_LEAVES_FIRST:
2888 		while (di->di_curdepth >= 0) {
2889 			if ((dv = deviter_next1(di)) == NULL) {
2890 				di->di_curdepth--;
2891 				deviter_reinit(di);
2892 			} else if (dv->dv_depth == di->di_curdepth)
2893 				break;
2894 		}
2895 		break;
2896 	case DEVITER_F_ROOT_FIRST:
2897 		while (di->di_curdepth <= di->di_maxdepth) {
2898 			if ((dv = deviter_next1(di)) == NULL) {
2899 				di->di_curdepth++;
2900 				deviter_reinit(di);
2901 			} else if (dv->dv_depth == di->di_curdepth)
2902 				break;
2903 		}
2904 		break;
2905 	default:
2906 		break;
2907 	}
2908 	mutex_exit(&alldevs.lock);
2909 
2910 	return dv;
2911 }
2912 
2913 void
2914 deviter_release(deviter_t *di)
2915 {
2916 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2917 
2918 	mutex_enter(&alldevs.lock);
2919 	if (rw)
2920 		--alldevs.nwrite;
2921 	else
2922 		--alldevs.nread;
2923 	/* XXX wake a garbage-collection thread */
2924 	mutex_exit(&alldevs.lock);
2925 }
2926 
2927 const char *
2928 cfdata_ifattr(const struct cfdata *cf)
2929 {
2930 	return cf->cf_pspec->cfp_iattr;
2931 }
2932 
2933 bool
2934 ifattr_match(const char *snull, const char *t)
2935 {
2936 	return (snull == NULL) || strcmp(snull, t) == 0;
2937 }
2938 
2939 void
2940 null_childdetached(device_t self, device_t child)
2941 {
2942 	/* do nothing */
2943 }
2944 
2945 static void
2946 sysctl_detach_setup(struct sysctllog **clog)
2947 {
2948 
2949 	sysctl_createv(clog, 0, NULL, NULL,
2950 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2951 		CTLTYPE_BOOL, "detachall",
2952 		SYSCTL_DESCR("Detach all devices at shutdown"),
2953 		NULL, 0, &detachall, 0,
2954 		CTL_KERN, CTL_CREATE, CTL_EOL);
2955 }
2956