xref: /netbsd-src/sys/kern/subr_autoconf.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /* $NetBSD: subr_autoconf.c,v 1.255 2017/10/27 12:25:15 joerg Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.255 2017/10/27 12:25:15 joerg Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <sys/rndsource.h>
114 
115 #include <machine/limits.h>
116 
117 /*
118  * Autoconfiguration subroutines.
119  */
120 
121 /*
122  * Device autoconfiguration timings are mixed into the entropy pool.
123  */
124 extern krndsource_t rnd_autoconf_source;
125 
126 /*
127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
128  * devices and drivers are found via these tables.
129  */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132 
133 /*
134  * List of all cfdriver structures.  We use this to detect duplicates
135  * when other cfdrivers are loaded.
136  */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139 
140 /*
141  * Initial list of cfattach's.
142  */
143 extern const struct cfattachinit cfattachinit[];
144 
145 /*
146  * List of cfdata tables.  We always have one such list -- the one
147  * built statically when the kernel was configured.
148  */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151 
152 #define	ROOT ((device_t)NULL)
153 
154 struct matchinfo {
155 	cfsubmatch_t fn;
156 	device_t parent;
157 	const int *locs;
158 	void	*aux;
159 	struct	cfdata *match;
160 	int	pri;
161 };
162 
163 struct alldevs_foray {
164 	int			af_s;
165 	struct devicelist	af_garbage;
166 };
167 
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178 
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181 
182 static void pmflock_debug(device_t, const char *, int);
183 
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186 
187 struct deferred_config {
188 	TAILQ_ENTRY(deferred_config) dc_queue;
189 	device_t dc_dev;
190 	void (*dc_func)(device_t);
191 };
192 
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194 
195 struct deferred_config_head deferred_config_queue =
196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 struct deferred_config_head interrupt_config_queue =
198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 int interrupt_config_threads = 8;
200 struct deferred_config_head mountroot_config_queue =
201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 static bool root_is_mounted = false;
206 
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208 
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 	TAILQ_ENTRY(finalize_hook) f_list;
212 	int (*f_func)(device_t);
213 	device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218 
219 /* list of all devices */
220 static struct {
221 	kmutex_t		lock;
222 	struct devicelist	list;
223 	devgen_t		gen;
224 	int			nread;
225 	int			nwrite;
226 	bool			garbage;
227 } alldevs __cacheline_aligned = {
228 	.list = TAILQ_HEAD_INITIALIZER(alldevs.list),
229 	.gen = 1,
230 	.nread = 0,
231 	.nwrite = 0,
232 	.garbage = false,
233 };
234 
235 static int config_pending;		/* semaphore for mountroot */
236 static kmutex_t config_misc_lock;
237 static kcondvar_t config_misc_cv;
238 
239 static bool detachall = false;
240 
241 #define	STREQ(s1, s2)			\
242 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
243 
244 static bool config_initialized = false;	/* config_init() has been called. */
245 
246 static int config_do_twiddle;
247 static callout_t config_twiddle_ch;
248 
249 static void sysctl_detach_setup(struct sysctllog **);
250 
251 int no_devmon_insert(const char *, prop_dictionary_t);
252 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
253 
254 typedef int (*cfdriver_fn)(struct cfdriver *);
255 static int
256 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
257 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
258 	const char *style, bool dopanic)
259 {
260 	void (*pr)(const char *, ...) __printflike(1, 2) =
261 	    dopanic ? panic : printf;
262 	int i, error = 0, e2 __diagused;
263 
264 	for (i = 0; cfdriverv[i] != NULL; i++) {
265 		if ((error = drv_do(cfdriverv[i])) != 0) {
266 			pr("configure: `%s' driver %s failed: %d",
267 			    cfdriverv[i]->cd_name, style, error);
268 			goto bad;
269 		}
270 	}
271 
272 	KASSERT(error == 0);
273 	return 0;
274 
275  bad:
276 	printf("\n");
277 	for (i--; i >= 0; i--) {
278 		e2 = drv_undo(cfdriverv[i]);
279 		KASSERT(e2 == 0);
280 	}
281 
282 	return error;
283 }
284 
285 typedef int (*cfattach_fn)(const char *, struct cfattach *);
286 static int
287 frob_cfattachvec(const struct cfattachinit *cfattachv,
288 	cfattach_fn att_do, cfattach_fn att_undo,
289 	const char *style, bool dopanic)
290 {
291 	const struct cfattachinit *cfai = NULL;
292 	void (*pr)(const char *, ...) __printflike(1, 2) =
293 	    dopanic ? panic : printf;
294 	int j = 0, error = 0, e2 __diagused;
295 
296 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
297 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
298 			if ((error = att_do(cfai->cfai_name,
299 			    cfai->cfai_list[j])) != 0) {
300 				pr("configure: attachment `%s' "
301 				    "of `%s' driver %s failed: %d",
302 				    cfai->cfai_list[j]->ca_name,
303 				    cfai->cfai_name, style, error);
304 				goto bad;
305 			}
306 		}
307 	}
308 
309 	KASSERT(error == 0);
310 	return 0;
311 
312  bad:
313 	/*
314 	 * Rollback in reverse order.  dunno if super-important, but
315 	 * do that anyway.  Although the code looks a little like
316 	 * someone did a little integration (in the math sense).
317 	 */
318 	printf("\n");
319 	if (cfai) {
320 		bool last;
321 
322 		for (last = false; last == false; ) {
323 			if (cfai == &cfattachv[0])
324 				last = true;
325 			for (j--; j >= 0; j--) {
326 				e2 = att_undo(cfai->cfai_name,
327 				    cfai->cfai_list[j]);
328 				KASSERT(e2 == 0);
329 			}
330 			if (!last) {
331 				cfai--;
332 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
333 					;
334 			}
335 		}
336 	}
337 
338 	return error;
339 }
340 
341 /*
342  * Initialize the autoconfiguration data structures.  Normally this
343  * is done by configure(), but some platforms need to do this very
344  * early (to e.g. initialize the console).
345  */
346 void
347 config_init(void)
348 {
349 
350 	KASSERT(config_initialized == false);
351 
352 	mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM);
353 
354 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
355 	cv_init(&config_misc_cv, "cfgmisc");
356 
357 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
358 
359 	frob_cfdrivervec(cfdriver_list_initial,
360 	    config_cfdriver_attach, NULL, "bootstrap", true);
361 	frob_cfattachvec(cfattachinit,
362 	    config_cfattach_attach, NULL, "bootstrap", true);
363 
364 	initcftable.ct_cfdata = cfdata;
365 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
366 
367 	config_initialized = true;
368 }
369 
370 /*
371  * Init or fini drivers and attachments.  Either all or none
372  * are processed (via rollback).  It would be nice if this were
373  * atomic to outside consumers, but with the current state of
374  * locking ...
375  */
376 int
377 config_init_component(struct cfdriver * const *cfdriverv,
378 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
379 {
380 	int error;
381 
382 	if ((error = frob_cfdrivervec(cfdriverv,
383 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
384 		return error;
385 	if ((error = frob_cfattachvec(cfattachv,
386 	    config_cfattach_attach, config_cfattach_detach,
387 	    "init", false)) != 0) {
388 		frob_cfdrivervec(cfdriverv,
389 	            config_cfdriver_detach, NULL, "init rollback", true);
390 		return error;
391 	}
392 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
393 		frob_cfattachvec(cfattachv,
394 		    config_cfattach_detach, NULL, "init rollback", true);
395 		frob_cfdrivervec(cfdriverv,
396 	            config_cfdriver_detach, NULL, "init rollback", true);
397 		return error;
398 	}
399 
400 	return 0;
401 }
402 
403 int
404 config_fini_component(struct cfdriver * const *cfdriverv,
405 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
406 {
407 	int error;
408 
409 	if ((error = config_cfdata_detach(cfdatav)) != 0)
410 		return error;
411 	if ((error = frob_cfattachvec(cfattachv,
412 	    config_cfattach_detach, config_cfattach_attach,
413 	    "fini", false)) != 0) {
414 		if (config_cfdata_attach(cfdatav, 0) != 0)
415 			panic("config_cfdata fini rollback failed");
416 		return error;
417 	}
418 	if ((error = frob_cfdrivervec(cfdriverv,
419 	    config_cfdriver_detach, config_cfdriver_attach,
420 	    "fini", false)) != 0) {
421 		frob_cfattachvec(cfattachv,
422 	            config_cfattach_attach, NULL, "fini rollback", true);
423 		if (config_cfdata_attach(cfdatav, 0) != 0)
424 			panic("config_cfdata fini rollback failed");
425 		return error;
426 	}
427 
428 	return 0;
429 }
430 
431 void
432 config_init_mi(void)
433 {
434 
435 	if (!config_initialized)
436 		config_init();
437 
438 	sysctl_detach_setup(NULL);
439 }
440 
441 void
442 config_deferred(device_t dev)
443 {
444 	config_process_deferred(&deferred_config_queue, dev);
445 	config_process_deferred(&interrupt_config_queue, dev);
446 	config_process_deferred(&mountroot_config_queue, dev);
447 }
448 
449 static void
450 config_interrupts_thread(void *cookie)
451 {
452 	struct deferred_config *dc;
453 
454 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
455 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
456 		(*dc->dc_func)(dc->dc_dev);
457 		config_pending_decr(dc->dc_dev);
458 		kmem_free(dc, sizeof(*dc));
459 	}
460 	kthread_exit(0);
461 }
462 
463 void
464 config_create_interruptthreads(void)
465 {
466 	int i;
467 
468 	for (i = 0; i < interrupt_config_threads; i++) {
469 		(void)kthread_create(PRI_NONE, 0, NULL,
470 		    config_interrupts_thread, NULL, NULL, "configintr");
471 	}
472 }
473 
474 static void
475 config_mountroot_thread(void *cookie)
476 {
477 	struct deferred_config *dc;
478 
479 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
480 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
481 		(*dc->dc_func)(dc->dc_dev);
482 		kmem_free(dc, sizeof(*dc));
483 	}
484 	kthread_exit(0);
485 }
486 
487 void
488 config_create_mountrootthreads(void)
489 {
490 	int i;
491 
492 	if (!root_is_mounted)
493 		root_is_mounted = true;
494 
495 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
496 				       mountroot_config_threads;
497 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
498 					     KM_NOSLEEP);
499 	KASSERT(mountroot_config_lwpids);
500 	for (i = 0; i < mountroot_config_threads; i++) {
501 		mountroot_config_lwpids[i] = 0;
502 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
503 				     config_mountroot_thread, NULL,
504 				     &mountroot_config_lwpids[i],
505 				     "configroot");
506 	}
507 }
508 
509 void
510 config_finalize_mountroot(void)
511 {
512 	int i, error;
513 
514 	for (i = 0; i < mountroot_config_threads; i++) {
515 		if (mountroot_config_lwpids[i] == 0)
516 			continue;
517 
518 		error = kthread_join(mountroot_config_lwpids[i]);
519 		if (error)
520 			printf("%s: thread %x joined with error %d\n",
521 			       __func__, i, error);
522 	}
523 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
524 }
525 
526 /*
527  * Announce device attach/detach to userland listeners.
528  */
529 
530 int
531 no_devmon_insert(const char *name, prop_dictionary_t p)
532 {
533 
534 	return ENODEV;
535 }
536 
537 static void
538 devmon_report_device(device_t dev, bool isattach)
539 {
540 	prop_dictionary_t ev;
541 	const char *parent;
542 	const char *what;
543 	device_t pdev = device_parent(dev);
544 
545 	/* If currently no drvctl device, just return */
546 	if (devmon_insert_vec == no_devmon_insert)
547 		return;
548 
549 	ev = prop_dictionary_create();
550 	if (ev == NULL)
551 		return;
552 
553 	what = (isattach ? "device-attach" : "device-detach");
554 	parent = (pdev == NULL ? "root" : device_xname(pdev));
555 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
556 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
557 		prop_object_release(ev);
558 		return;
559 	}
560 
561 	if ((*devmon_insert_vec)(what, ev) != 0)
562 		prop_object_release(ev);
563 }
564 
565 /*
566  * Add a cfdriver to the system.
567  */
568 int
569 config_cfdriver_attach(struct cfdriver *cd)
570 {
571 	struct cfdriver *lcd;
572 
573 	/* Make sure this driver isn't already in the system. */
574 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
575 		if (STREQ(lcd->cd_name, cd->cd_name))
576 			return EEXIST;
577 	}
578 
579 	LIST_INIT(&cd->cd_attach);
580 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
581 
582 	return 0;
583 }
584 
585 /*
586  * Remove a cfdriver from the system.
587  */
588 int
589 config_cfdriver_detach(struct cfdriver *cd)
590 {
591 	struct alldevs_foray af;
592 	int i, rc = 0;
593 
594 	config_alldevs_enter(&af);
595 	/* Make sure there are no active instances. */
596 	for (i = 0; i < cd->cd_ndevs; i++) {
597 		if (cd->cd_devs[i] != NULL) {
598 			rc = EBUSY;
599 			break;
600 		}
601 	}
602 	config_alldevs_exit(&af);
603 
604 	if (rc != 0)
605 		return rc;
606 
607 	/* ...and no attachments loaded. */
608 	if (LIST_EMPTY(&cd->cd_attach) == 0)
609 		return EBUSY;
610 
611 	LIST_REMOVE(cd, cd_list);
612 
613 	KASSERT(cd->cd_devs == NULL);
614 
615 	return 0;
616 }
617 
618 /*
619  * Look up a cfdriver by name.
620  */
621 struct cfdriver *
622 config_cfdriver_lookup(const char *name)
623 {
624 	struct cfdriver *cd;
625 
626 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
627 		if (STREQ(cd->cd_name, name))
628 			return cd;
629 	}
630 
631 	return NULL;
632 }
633 
634 /*
635  * Add a cfattach to the specified driver.
636  */
637 int
638 config_cfattach_attach(const char *driver, struct cfattach *ca)
639 {
640 	struct cfattach *lca;
641 	struct cfdriver *cd;
642 
643 	cd = config_cfdriver_lookup(driver);
644 	if (cd == NULL)
645 		return ESRCH;
646 
647 	/* Make sure this attachment isn't already on this driver. */
648 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
649 		if (STREQ(lca->ca_name, ca->ca_name))
650 			return EEXIST;
651 	}
652 
653 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
654 
655 	return 0;
656 }
657 
658 /*
659  * Remove a cfattach from the specified driver.
660  */
661 int
662 config_cfattach_detach(const char *driver, struct cfattach *ca)
663 {
664 	struct alldevs_foray af;
665 	struct cfdriver *cd;
666 	device_t dev;
667 	int i, rc = 0;
668 
669 	cd = config_cfdriver_lookup(driver);
670 	if (cd == NULL)
671 		return ESRCH;
672 
673 	config_alldevs_enter(&af);
674 	/* Make sure there are no active instances. */
675 	for (i = 0; i < cd->cd_ndevs; i++) {
676 		if ((dev = cd->cd_devs[i]) == NULL)
677 			continue;
678 		if (dev->dv_cfattach == ca) {
679 			rc = EBUSY;
680 			break;
681 		}
682 	}
683 	config_alldevs_exit(&af);
684 
685 	if (rc != 0)
686 		return rc;
687 
688 	LIST_REMOVE(ca, ca_list);
689 
690 	return 0;
691 }
692 
693 /*
694  * Look up a cfattach by name.
695  */
696 static struct cfattach *
697 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
698 {
699 	struct cfattach *ca;
700 
701 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
702 		if (STREQ(ca->ca_name, atname))
703 			return ca;
704 	}
705 
706 	return NULL;
707 }
708 
709 /*
710  * Look up a cfattach by driver/attachment name.
711  */
712 struct cfattach *
713 config_cfattach_lookup(const char *name, const char *atname)
714 {
715 	struct cfdriver *cd;
716 
717 	cd = config_cfdriver_lookup(name);
718 	if (cd == NULL)
719 		return NULL;
720 
721 	return config_cfattach_lookup_cd(cd, atname);
722 }
723 
724 /*
725  * Apply the matching function and choose the best.  This is used
726  * a few times and we want to keep the code small.
727  */
728 static void
729 mapply(struct matchinfo *m, cfdata_t cf)
730 {
731 	int pri;
732 
733 	if (m->fn != NULL) {
734 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
735 	} else {
736 		pri = config_match(m->parent, cf, m->aux);
737 	}
738 	if (pri > m->pri) {
739 		m->match = cf;
740 		m->pri = pri;
741 	}
742 }
743 
744 int
745 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
746 {
747 	const struct cfiattrdata *ci;
748 	const struct cflocdesc *cl;
749 	int nlocs, i;
750 
751 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
752 	KASSERT(ci);
753 	nlocs = ci->ci_loclen;
754 	KASSERT(!nlocs || locs);
755 	for (i = 0; i < nlocs; i++) {
756 		cl = &ci->ci_locdesc[i];
757 		if (cl->cld_defaultstr != NULL &&
758 		    cf->cf_loc[i] == cl->cld_default)
759 			continue;
760 		if (cf->cf_loc[i] == locs[i])
761 			continue;
762 		return 0;
763 	}
764 
765 	return config_match(parent, cf, aux);
766 }
767 
768 /*
769  * Helper function: check whether the driver supports the interface attribute
770  * and return its descriptor structure.
771  */
772 static const struct cfiattrdata *
773 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
774 {
775 	const struct cfiattrdata * const *cpp;
776 
777 	if (cd->cd_attrs == NULL)
778 		return 0;
779 
780 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
781 		if (STREQ((*cpp)->ci_name, ia)) {
782 			/* Match. */
783 			return *cpp;
784 		}
785 	}
786 	return 0;
787 }
788 
789 /*
790  * Lookup an interface attribute description by name.
791  * If the driver is given, consider only its supported attributes.
792  */
793 const struct cfiattrdata *
794 cfiattr_lookup(const char *name, const struct cfdriver *cd)
795 {
796 	const struct cfdriver *d;
797 	const struct cfiattrdata *ia;
798 
799 	if (cd)
800 		return cfdriver_get_iattr(cd, name);
801 
802 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
803 		ia = cfdriver_get_iattr(d, name);
804 		if (ia)
805 			return ia;
806 	}
807 	return 0;
808 }
809 
810 /*
811  * Determine if `parent' is a potential parent for a device spec based
812  * on `cfp'.
813  */
814 static int
815 cfparent_match(const device_t parent, const struct cfparent *cfp)
816 {
817 	struct cfdriver *pcd;
818 
819 	/* We don't match root nodes here. */
820 	if (cfp == NULL)
821 		return 0;
822 
823 	pcd = parent->dv_cfdriver;
824 	KASSERT(pcd != NULL);
825 
826 	/*
827 	 * First, ensure this parent has the correct interface
828 	 * attribute.
829 	 */
830 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
831 		return 0;
832 
833 	/*
834 	 * If no specific parent device instance was specified (i.e.
835 	 * we're attaching to the attribute only), we're done!
836 	 */
837 	if (cfp->cfp_parent == NULL)
838 		return 1;
839 
840 	/*
841 	 * Check the parent device's name.
842 	 */
843 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
844 		return 0;	/* not the same parent */
845 
846 	/*
847 	 * Make sure the unit number matches.
848 	 */
849 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
850 	    cfp->cfp_unit == parent->dv_unit)
851 		return 1;
852 
853 	/* Unit numbers don't match. */
854 	return 0;
855 }
856 
857 /*
858  * Helper for config_cfdata_attach(): check all devices whether it could be
859  * parent any attachment in the config data table passed, and rescan.
860  */
861 static void
862 rescan_with_cfdata(const struct cfdata *cf)
863 {
864 	device_t d;
865 	const struct cfdata *cf1;
866 	deviter_t di;
867 
868 
869 	/*
870 	 * "alldevs" is likely longer than a modules's cfdata, so make it
871 	 * the outer loop.
872 	 */
873 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
874 
875 		if (!(d->dv_cfattach->ca_rescan))
876 			continue;
877 
878 		for (cf1 = cf; cf1->cf_name; cf1++) {
879 
880 			if (!cfparent_match(d, cf1->cf_pspec))
881 				continue;
882 
883 			(*d->dv_cfattach->ca_rescan)(d,
884 				cfdata_ifattr(cf1), cf1->cf_loc);
885 
886 			config_deferred(d);
887 		}
888 	}
889 	deviter_release(&di);
890 }
891 
892 /*
893  * Attach a supplemental config data table and rescan potential
894  * parent devices if required.
895  */
896 int
897 config_cfdata_attach(cfdata_t cf, int scannow)
898 {
899 	struct cftable *ct;
900 
901 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
902 	ct->ct_cfdata = cf;
903 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
904 
905 	if (scannow)
906 		rescan_with_cfdata(cf);
907 
908 	return 0;
909 }
910 
911 /*
912  * Helper for config_cfdata_detach: check whether a device is
913  * found through any attachment in the config data table.
914  */
915 static int
916 dev_in_cfdata(device_t d, cfdata_t cf)
917 {
918 	const struct cfdata *cf1;
919 
920 	for (cf1 = cf; cf1->cf_name; cf1++)
921 		if (d->dv_cfdata == cf1)
922 			return 1;
923 
924 	return 0;
925 }
926 
927 /*
928  * Detach a supplemental config data table. Detach all devices found
929  * through that table (and thus keeping references to it) before.
930  */
931 int
932 config_cfdata_detach(cfdata_t cf)
933 {
934 	device_t d;
935 	int error = 0;
936 	struct cftable *ct;
937 	deviter_t di;
938 
939 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
940 	     d = deviter_next(&di)) {
941 		if (!dev_in_cfdata(d, cf))
942 			continue;
943 		if ((error = config_detach(d, 0)) != 0)
944 			break;
945 	}
946 	deviter_release(&di);
947 	if (error) {
948 		aprint_error_dev(d, "unable to detach instance\n");
949 		return error;
950 	}
951 
952 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
953 		if (ct->ct_cfdata == cf) {
954 			TAILQ_REMOVE(&allcftables, ct, ct_list);
955 			kmem_free(ct, sizeof(*ct));
956 			return 0;
957 		}
958 	}
959 
960 	/* not found -- shouldn't happen */
961 	return EINVAL;
962 }
963 
964 /*
965  * Invoke the "match" routine for a cfdata entry on behalf of
966  * an external caller, usually a "submatch" routine.
967  */
968 int
969 config_match(device_t parent, cfdata_t cf, void *aux)
970 {
971 	struct cfattach *ca;
972 
973 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
974 	if (ca == NULL) {
975 		/* No attachment for this entry, oh well. */
976 		return 0;
977 	}
978 
979 	return (*ca->ca_match)(parent, cf, aux);
980 }
981 
982 /*
983  * Iterate over all potential children of some device, calling the given
984  * function (default being the child's match function) for each one.
985  * Nonzero returns are matches; the highest value returned is considered
986  * the best match.  Return the `found child' if we got a match, or NULL
987  * otherwise.  The `aux' pointer is simply passed on through.
988  *
989  * Note that this function is designed so that it can be used to apply
990  * an arbitrary function to all potential children (its return value
991  * can be ignored).
992  */
993 cfdata_t
994 config_search_loc(cfsubmatch_t fn, device_t parent,
995 		  const char *ifattr, const int *locs, void *aux)
996 {
997 	struct cftable *ct;
998 	cfdata_t cf;
999 	struct matchinfo m;
1000 
1001 	KASSERT(config_initialized);
1002 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1003 
1004 	m.fn = fn;
1005 	m.parent = parent;
1006 	m.locs = locs;
1007 	m.aux = aux;
1008 	m.match = NULL;
1009 	m.pri = 0;
1010 
1011 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1012 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1013 
1014 			/* We don't match root nodes here. */
1015 			if (!cf->cf_pspec)
1016 				continue;
1017 
1018 			/*
1019 			 * Skip cf if no longer eligible, otherwise scan
1020 			 * through parents for one matching `parent', and
1021 			 * try match function.
1022 			 */
1023 			if (cf->cf_fstate == FSTATE_FOUND)
1024 				continue;
1025 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1026 			    cf->cf_fstate == FSTATE_DSTAR)
1027 				continue;
1028 
1029 			/*
1030 			 * If an interface attribute was specified,
1031 			 * consider only children which attach to
1032 			 * that attribute.
1033 			 */
1034 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1035 				continue;
1036 
1037 			if (cfparent_match(parent, cf->cf_pspec))
1038 				mapply(&m, cf);
1039 		}
1040 	}
1041 	return m.match;
1042 }
1043 
1044 cfdata_t
1045 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1046     void *aux)
1047 {
1048 
1049 	return config_search_loc(fn, parent, ifattr, NULL, aux);
1050 }
1051 
1052 /*
1053  * Find the given root device.
1054  * This is much like config_search, but there is no parent.
1055  * Don't bother with multiple cfdata tables; the root node
1056  * must always be in the initial table.
1057  */
1058 cfdata_t
1059 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1060 {
1061 	cfdata_t cf;
1062 	const short *p;
1063 	struct matchinfo m;
1064 
1065 	m.fn = fn;
1066 	m.parent = ROOT;
1067 	m.aux = aux;
1068 	m.match = NULL;
1069 	m.pri = 0;
1070 	m.locs = 0;
1071 	/*
1072 	 * Look at root entries for matching name.  We do not bother
1073 	 * with found-state here since only one root should ever be
1074 	 * searched (and it must be done first).
1075 	 */
1076 	for (p = cfroots; *p >= 0; p++) {
1077 		cf = &cfdata[*p];
1078 		if (strcmp(cf->cf_name, rootname) == 0)
1079 			mapply(&m, cf);
1080 	}
1081 	return m.match;
1082 }
1083 
1084 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1085 
1086 /*
1087  * The given `aux' argument describes a device that has been found
1088  * on the given parent, but not necessarily configured.  Locate the
1089  * configuration data for that device (using the submatch function
1090  * provided, or using candidates' cd_match configuration driver
1091  * functions) and attach it, and return its device_t.  If the device was
1092  * not configured, call the given `print' function and return NULL.
1093  */
1094 device_t
1095 config_found_sm_loc(device_t parent,
1096 		const char *ifattr, const int *locs, void *aux,
1097 		cfprint_t print, cfsubmatch_t submatch)
1098 {
1099 	cfdata_t cf;
1100 
1101 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1102 		return(config_attach_loc(parent, cf, locs, aux, print));
1103 	if (print) {
1104 		if (config_do_twiddle && cold)
1105 			twiddle();
1106 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1107 	}
1108 
1109 	/*
1110 	 * This has the effect of mixing in a single timestamp to the
1111 	 * entropy pool.  Experiments indicate the estimator will almost
1112 	 * always attribute one bit of entropy to this sample; analysis
1113 	 * of device attach/detach timestamps on FreeBSD indicates 4
1114 	 * bits of entropy/sample so this seems appropriately conservative.
1115 	 */
1116 	rnd_add_uint32(&rnd_autoconf_source, 0);
1117 	return NULL;
1118 }
1119 
1120 device_t
1121 config_found_ia(device_t parent, const char *ifattr, void *aux,
1122     cfprint_t print)
1123 {
1124 
1125 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1126 }
1127 
1128 device_t
1129 config_found(device_t parent, void *aux, cfprint_t print)
1130 {
1131 
1132 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1133 }
1134 
1135 /*
1136  * As above, but for root devices.
1137  */
1138 device_t
1139 config_rootfound(const char *rootname, void *aux)
1140 {
1141 	cfdata_t cf;
1142 
1143 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1144 		return config_attach(ROOT, cf, aux, NULL);
1145 	aprint_error("root device %s not configured\n", rootname);
1146 	return NULL;
1147 }
1148 
1149 /* just like sprintf(buf, "%d") except that it works from the end */
1150 static char *
1151 number(char *ep, int n)
1152 {
1153 
1154 	*--ep = 0;
1155 	while (n >= 10) {
1156 		*--ep = (n % 10) + '0';
1157 		n /= 10;
1158 	}
1159 	*--ep = n + '0';
1160 	return ep;
1161 }
1162 
1163 /*
1164  * Expand the size of the cd_devs array if necessary.
1165  *
1166  * The caller must hold alldevs.lock. config_makeroom() may release and
1167  * re-acquire alldevs.lock, so callers should re-check conditions such
1168  * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom()
1169  * returns.
1170  */
1171 static void
1172 config_makeroom(int n, struct cfdriver *cd)
1173 {
1174 	int ondevs, nndevs;
1175 	device_t *osp, *nsp;
1176 
1177 	KASSERT(mutex_owned(&alldevs.lock));
1178 	alldevs.nwrite++;
1179 
1180 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1181 		;
1182 
1183 	while (n >= cd->cd_ndevs) {
1184 		/*
1185 		 * Need to expand the array.
1186 		 */
1187 		ondevs = cd->cd_ndevs;
1188 		osp = cd->cd_devs;
1189 
1190 		/*
1191 		 * Release alldevs.lock around allocation, which may
1192 		 * sleep.
1193 		 */
1194 		mutex_exit(&alldevs.lock);
1195 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1196 		mutex_enter(&alldevs.lock);
1197 
1198 		/*
1199 		 * If another thread moved the array while we did
1200 		 * not hold alldevs.lock, try again.
1201 		 */
1202 		if (cd->cd_devs != osp) {
1203 			mutex_exit(&alldevs.lock);
1204 			kmem_free(nsp, sizeof(device_t[nndevs]));
1205 			mutex_enter(&alldevs.lock);
1206 			continue;
1207 		}
1208 
1209 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1210 		if (ondevs != 0)
1211 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1212 
1213 		cd->cd_ndevs = nndevs;
1214 		cd->cd_devs = nsp;
1215 		if (ondevs != 0) {
1216 			mutex_exit(&alldevs.lock);
1217 			kmem_free(osp, sizeof(device_t[ondevs]));
1218 			mutex_enter(&alldevs.lock);
1219 		}
1220 	}
1221 	KASSERT(mutex_owned(&alldevs.lock));
1222 	alldevs.nwrite--;
1223 }
1224 
1225 /*
1226  * Put dev into the devices list.
1227  */
1228 static void
1229 config_devlink(device_t dev)
1230 {
1231 
1232 	mutex_enter(&alldevs.lock);
1233 
1234 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1235 
1236 	dev->dv_add_gen = alldevs.gen;
1237 	/* It is safe to add a device to the tail of the list while
1238 	 * readers and writers are in the list.
1239 	 */
1240 	TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list);
1241 	mutex_exit(&alldevs.lock);
1242 }
1243 
1244 static void
1245 config_devfree(device_t dev)
1246 {
1247 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1248 
1249 	if (dev->dv_cfattach->ca_devsize > 0)
1250 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1251 	if (priv)
1252 		kmem_free(dev, sizeof(*dev));
1253 }
1254 
1255 /*
1256  * Caller must hold alldevs.lock.
1257  */
1258 static void
1259 config_devunlink(device_t dev, struct devicelist *garbage)
1260 {
1261 	struct device_garbage *dg = &dev->dv_garbage;
1262 	cfdriver_t cd = device_cfdriver(dev);
1263 	int i;
1264 
1265 	KASSERT(mutex_owned(&alldevs.lock));
1266 
1267  	/* Unlink from device list.  Link to garbage list. */
1268 	TAILQ_REMOVE(&alldevs.list, dev, dv_list);
1269 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1270 
1271 	/* Remove from cfdriver's array. */
1272 	cd->cd_devs[dev->dv_unit] = NULL;
1273 
1274 	/*
1275 	 * If the device now has no units in use, unlink its softc array.
1276 	 */
1277 	for (i = 0; i < cd->cd_ndevs; i++) {
1278 		if (cd->cd_devs[i] != NULL)
1279 			break;
1280 	}
1281 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1282 	if (i == cd->cd_ndevs) {
1283 		dg->dg_ndevs = cd->cd_ndevs;
1284 		dg->dg_devs = cd->cd_devs;
1285 		cd->cd_devs = NULL;
1286 		cd->cd_ndevs = 0;
1287 	}
1288 }
1289 
1290 static void
1291 config_devdelete(device_t dev)
1292 {
1293 	struct device_garbage *dg = &dev->dv_garbage;
1294 	device_lock_t dvl = device_getlock(dev);
1295 
1296 	if (dg->dg_devs != NULL)
1297 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1298 
1299 	cv_destroy(&dvl->dvl_cv);
1300 	mutex_destroy(&dvl->dvl_mtx);
1301 
1302 	KASSERT(dev->dv_properties != NULL);
1303 	prop_object_release(dev->dv_properties);
1304 
1305 	if (dev->dv_activity_handlers)
1306 		panic("%s with registered handlers", __func__);
1307 
1308 	if (dev->dv_locators) {
1309 		size_t amount = *--dev->dv_locators;
1310 		kmem_free(dev->dv_locators, amount);
1311 	}
1312 
1313 	config_devfree(dev);
1314 }
1315 
1316 static int
1317 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1318 {
1319 	int unit;
1320 
1321 	if (cf->cf_fstate == FSTATE_STAR) {
1322 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1323 			if (cd->cd_devs[unit] == NULL)
1324 				break;
1325 		/*
1326 		 * unit is now the unit of the first NULL device pointer,
1327 		 * or max(cd->cd_ndevs,cf->cf_unit).
1328 		 */
1329 	} else {
1330 		unit = cf->cf_unit;
1331 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1332 			unit = -1;
1333 	}
1334 	return unit;
1335 }
1336 
1337 static int
1338 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1339 {
1340 	struct alldevs_foray af;
1341 	int unit;
1342 
1343 	config_alldevs_enter(&af);
1344 	for (;;) {
1345 		unit = config_unit_nextfree(cd, cf);
1346 		if (unit == -1)
1347 			break;
1348 		if (unit < cd->cd_ndevs) {
1349 			cd->cd_devs[unit] = dev;
1350 			dev->dv_unit = unit;
1351 			break;
1352 		}
1353 		config_makeroom(unit, cd);
1354 	}
1355 	config_alldevs_exit(&af);
1356 
1357 	return unit;
1358 }
1359 
1360 static device_t
1361 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1362 {
1363 	cfdriver_t cd;
1364 	cfattach_t ca;
1365 	size_t lname, lunit;
1366 	const char *xunit;
1367 	int myunit;
1368 	char num[10];
1369 	device_t dev;
1370 	void *dev_private;
1371 	const struct cfiattrdata *ia;
1372 	device_lock_t dvl;
1373 
1374 	cd = config_cfdriver_lookup(cf->cf_name);
1375 	if (cd == NULL)
1376 		return NULL;
1377 
1378 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1379 	if (ca == NULL)
1380 		return NULL;
1381 
1382 	/* get memory for all device vars */
1383 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1384 	    || ca->ca_devsize >= sizeof(struct device),
1385 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1386 	    sizeof(struct device));
1387 	if (ca->ca_devsize > 0) {
1388 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1389 	} else {
1390 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1391 		dev_private = NULL;
1392 	}
1393 
1394 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1395 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1396 	} else {
1397 		dev = dev_private;
1398 #ifdef DIAGNOSTIC
1399 		printf("%s has not been converted to device_t\n", cd->cd_name);
1400 #endif
1401 	}
1402 	dev->dv_class = cd->cd_class;
1403 	dev->dv_cfdata = cf;
1404 	dev->dv_cfdriver = cd;
1405 	dev->dv_cfattach = ca;
1406 	dev->dv_activity_count = 0;
1407 	dev->dv_activity_handlers = NULL;
1408 	dev->dv_private = dev_private;
1409 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1410 
1411 	myunit = config_unit_alloc(dev, cd, cf);
1412 	if (myunit == -1) {
1413 		config_devfree(dev);
1414 		return NULL;
1415 	}
1416 
1417 	/* compute length of name and decimal expansion of unit number */
1418 	lname = strlen(cd->cd_name);
1419 	xunit = number(&num[sizeof(num)], myunit);
1420 	lunit = &num[sizeof(num)] - xunit;
1421 	if (lname + lunit > sizeof(dev->dv_xname))
1422 		panic("config_devalloc: device name too long");
1423 
1424 	dvl = device_getlock(dev);
1425 
1426 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1427 	cv_init(&dvl->dvl_cv, "pmfsusp");
1428 
1429 	memcpy(dev->dv_xname, cd->cd_name, lname);
1430 	memcpy(dev->dv_xname + lname, xunit, lunit);
1431 	dev->dv_parent = parent;
1432 	if (parent != NULL)
1433 		dev->dv_depth = parent->dv_depth + 1;
1434 	else
1435 		dev->dv_depth = 0;
1436 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1437 	if (locs) {
1438 		KASSERT(parent); /* no locators at root */
1439 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1440 		dev->dv_locators =
1441 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1442 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1443 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1444 	}
1445 	dev->dv_properties = prop_dictionary_create();
1446 	KASSERT(dev->dv_properties != NULL);
1447 
1448 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1449 	    "device-driver", dev->dv_cfdriver->cd_name);
1450 	prop_dictionary_set_uint16(dev->dv_properties,
1451 	    "device-unit", dev->dv_unit);
1452 	if (parent != NULL) {
1453 		prop_dictionary_set_cstring(dev->dv_properties,
1454 		    "device-parent", device_xname(parent));
1455 	}
1456 
1457 	if (dev->dv_cfdriver->cd_attrs != NULL)
1458 		config_add_attrib_dict(dev);
1459 
1460 	return dev;
1461 }
1462 
1463 /*
1464  * Create an array of device attach attributes and add it
1465  * to the device's dv_properties dictionary.
1466  *
1467  * <key>interface-attributes</key>
1468  * <array>
1469  *    <dict>
1470  *       <key>attribute-name</key>
1471  *       <string>foo</string>
1472  *       <key>locators</key>
1473  *       <array>
1474  *          <dict>
1475  *             <key>loc-name</key>
1476  *             <string>foo-loc1</string>
1477  *          </dict>
1478  *          <dict>
1479  *             <key>loc-name</key>
1480  *             <string>foo-loc2</string>
1481  *             <key>default</key>
1482  *             <string>foo-loc2-default</string>
1483  *          </dict>
1484  *          ...
1485  *       </array>
1486  *    </dict>
1487  *    ...
1488  * </array>
1489  */
1490 
1491 static void
1492 config_add_attrib_dict(device_t dev)
1493 {
1494 	int i, j;
1495 	const struct cfiattrdata *ci;
1496 	prop_dictionary_t attr_dict, loc_dict;
1497 	prop_array_t attr_array, loc_array;
1498 
1499 	if ((attr_array = prop_array_create()) == NULL)
1500 		return;
1501 
1502 	for (i = 0; ; i++) {
1503 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1504 			break;
1505 		if ((attr_dict = prop_dictionary_create()) == NULL)
1506 			break;
1507 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1508 		    ci->ci_name);
1509 
1510 		/* Create an array of the locator names and defaults */
1511 
1512 		if (ci->ci_loclen != 0 &&
1513 		    (loc_array = prop_array_create()) != NULL) {
1514 			for (j = 0; j < ci->ci_loclen; j++) {
1515 				loc_dict = prop_dictionary_create();
1516 				if (loc_dict == NULL)
1517 					continue;
1518 				prop_dictionary_set_cstring_nocopy(loc_dict,
1519 				    "loc-name", ci->ci_locdesc[j].cld_name);
1520 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1521 					prop_dictionary_set_cstring_nocopy(
1522 					    loc_dict, "default",
1523 					    ci->ci_locdesc[j].cld_defaultstr);
1524 				prop_array_set(loc_array, j, loc_dict);
1525 				prop_object_release(loc_dict);
1526 			}
1527 			prop_dictionary_set_and_rel(attr_dict, "locators",
1528 			    loc_array);
1529 		}
1530 		prop_array_add(attr_array, attr_dict);
1531 		prop_object_release(attr_dict);
1532 	}
1533 	if (i == 0)
1534 		prop_object_release(attr_array);
1535 	else
1536 		prop_dictionary_set_and_rel(dev->dv_properties,
1537 		    "interface-attributes", attr_array);
1538 
1539 	return;
1540 }
1541 
1542 /*
1543  * Attach a found device.
1544  */
1545 device_t
1546 config_attach_loc(device_t parent, cfdata_t cf,
1547 	const int *locs, void *aux, cfprint_t print)
1548 {
1549 	device_t dev;
1550 	struct cftable *ct;
1551 	const char *drvname;
1552 
1553 	dev = config_devalloc(parent, cf, locs);
1554 	if (!dev)
1555 		panic("config_attach: allocation of device softc failed");
1556 
1557 	/* XXX redundant - see below? */
1558 	if (cf->cf_fstate != FSTATE_STAR) {
1559 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1560 		cf->cf_fstate = FSTATE_FOUND;
1561 	}
1562 
1563 	config_devlink(dev);
1564 
1565 	if (config_do_twiddle && cold)
1566 		twiddle();
1567 	else
1568 		aprint_naive("Found ");
1569 	/*
1570 	 * We want the next two printfs for normal, verbose, and quiet,
1571 	 * but not silent (in which case, we're twiddling, instead).
1572 	 */
1573 	if (parent == ROOT) {
1574 		aprint_naive("%s (root)", device_xname(dev));
1575 		aprint_normal("%s (root)", device_xname(dev));
1576 	} else {
1577 		aprint_naive("%s at %s", device_xname(dev),
1578 		    device_xname(parent));
1579 		aprint_normal("%s at %s", device_xname(dev),
1580 		    device_xname(parent));
1581 		if (print)
1582 			(void) (*print)(aux, NULL);
1583 	}
1584 
1585 	/*
1586 	 * Before attaching, clobber any unfound devices that are
1587 	 * otherwise identical.
1588 	 * XXX code above is redundant?
1589 	 */
1590 	drvname = dev->dv_cfdriver->cd_name;
1591 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1592 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1593 			if (STREQ(cf->cf_name, drvname) &&
1594 			    cf->cf_unit == dev->dv_unit) {
1595 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1596 					cf->cf_fstate = FSTATE_FOUND;
1597 			}
1598 		}
1599 	}
1600 	device_register(dev, aux);
1601 
1602 	/* Let userland know */
1603 	devmon_report_device(dev, true);
1604 
1605 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1606 
1607 	if (!device_pmf_is_registered(dev))
1608 		aprint_debug_dev(dev, "WARNING: power management not "
1609 		    "supported\n");
1610 
1611 	config_process_deferred(&deferred_config_queue, dev);
1612 
1613 	device_register_post_config(dev, aux);
1614 	return dev;
1615 }
1616 
1617 device_t
1618 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1619 {
1620 
1621 	return config_attach_loc(parent, cf, NULL, aux, print);
1622 }
1623 
1624 /*
1625  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1626  * way are silently inserted into the device tree, and their children
1627  * attached.
1628  *
1629  * Note that because pseudo-devices are attached silently, any information
1630  * the attach routine wishes to print should be prefixed with the device
1631  * name by the attach routine.
1632  */
1633 device_t
1634 config_attach_pseudo(cfdata_t cf)
1635 {
1636 	device_t dev;
1637 
1638 	dev = config_devalloc(ROOT, cf, NULL);
1639 	if (!dev)
1640 		return NULL;
1641 
1642 	/* XXX mark busy in cfdata */
1643 
1644 	if (cf->cf_fstate != FSTATE_STAR) {
1645 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1646 		cf->cf_fstate = FSTATE_FOUND;
1647 	}
1648 
1649 	config_devlink(dev);
1650 
1651 #if 0	/* XXXJRT not yet */
1652 	device_register(dev, NULL);	/* like a root node */
1653 #endif
1654 
1655 	/* Let userland know */
1656 	devmon_report_device(dev, true);
1657 
1658 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1659 
1660 	config_process_deferred(&deferred_config_queue, dev);
1661 	return dev;
1662 }
1663 
1664 /*
1665  * Caller must hold alldevs.lock.
1666  */
1667 static void
1668 config_collect_garbage(struct devicelist *garbage)
1669 {
1670 	device_t dv;
1671 
1672 	KASSERT(!cpu_intr_p());
1673 	KASSERT(!cpu_softintr_p());
1674 	KASSERT(mutex_owned(&alldevs.lock));
1675 
1676 	while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) {
1677 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
1678 			if (dv->dv_del_gen != 0)
1679 				break;
1680 		}
1681 		if (dv == NULL) {
1682 			alldevs.garbage = false;
1683 			break;
1684 		}
1685 		config_devunlink(dv, garbage);
1686 	}
1687 	KASSERT(mutex_owned(&alldevs.lock));
1688 }
1689 
1690 static void
1691 config_dump_garbage(struct devicelist *garbage)
1692 {
1693 	device_t dv;
1694 
1695 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1696 		TAILQ_REMOVE(garbage, dv, dv_list);
1697 		config_devdelete(dv);
1698 	}
1699 }
1700 
1701 /*
1702  * Detach a device.  Optionally forced (e.g. because of hardware
1703  * removal) and quiet.  Returns zero if successful, non-zero
1704  * (an error code) otherwise.
1705  *
1706  * Note that this code wants to be run from a process context, so
1707  * that the detach can sleep to allow processes which have a device
1708  * open to run and unwind their stacks.
1709  */
1710 int
1711 config_detach(device_t dev, int flags)
1712 {
1713 	struct alldevs_foray af;
1714 	struct cftable *ct;
1715 	cfdata_t cf;
1716 	const struct cfattach *ca;
1717 	struct cfdriver *cd;
1718 	device_t d __diagused;
1719 	int rv = 0;
1720 
1721 	cf = dev->dv_cfdata;
1722 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1723 		cf->cf_fstate == FSTATE_STAR),
1724 	    "config_detach: %s: bad device fstate: %d",
1725 	    device_xname(dev), cf ? cf->cf_fstate : -1);
1726 
1727 	cd = dev->dv_cfdriver;
1728 	KASSERT(cd != NULL);
1729 
1730 	ca = dev->dv_cfattach;
1731 	KASSERT(ca != NULL);
1732 
1733 	mutex_enter(&alldevs.lock);
1734 	if (dev->dv_del_gen != 0) {
1735 		mutex_exit(&alldevs.lock);
1736 #ifdef DIAGNOSTIC
1737 		printf("%s: %s is already detached\n", __func__,
1738 		    device_xname(dev));
1739 #endif /* DIAGNOSTIC */
1740 		return ENOENT;
1741 	}
1742 	alldevs.nwrite++;
1743 	mutex_exit(&alldevs.lock);
1744 
1745 	if (!detachall &&
1746 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1747 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1748 		rv = EOPNOTSUPP;
1749 	} else if (ca->ca_detach != NULL) {
1750 		rv = (*ca->ca_detach)(dev, flags);
1751 	} else
1752 		rv = EOPNOTSUPP;
1753 
1754 	/*
1755 	 * If it was not possible to detach the device, then we either
1756 	 * panic() (for the forced but failed case), or return an error.
1757 	 *
1758 	 * If it was possible to detach the device, ensure that the
1759 	 * device is deactivated.
1760 	 */
1761 	if (rv == 0)
1762 		dev->dv_flags &= ~DVF_ACTIVE;
1763 	else if ((flags & DETACH_FORCE) == 0)
1764 		goto out;
1765 	else {
1766 		panic("config_detach: forced detach of %s failed (%d)",
1767 		    device_xname(dev), rv);
1768 	}
1769 
1770 	/*
1771 	 * The device has now been successfully detached.
1772 	 */
1773 
1774 	/* Let userland know */
1775 	devmon_report_device(dev, false);
1776 
1777 #ifdef DIAGNOSTIC
1778 	/*
1779 	 * Sanity: If you're successfully detached, you should have no
1780 	 * children.  (Note that because children must be attached
1781 	 * after parents, we only need to search the latter part of
1782 	 * the list.)
1783 	 */
1784 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1785 	    d = TAILQ_NEXT(d, dv_list)) {
1786 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1787 			printf("config_detach: detached device %s"
1788 			    " has children %s\n", device_xname(dev),
1789 			    device_xname(d));
1790 			panic("config_detach");
1791 		}
1792 	}
1793 #endif
1794 
1795 	/* notify the parent that the child is gone */
1796 	if (dev->dv_parent) {
1797 		device_t p = dev->dv_parent;
1798 		if (p->dv_cfattach->ca_childdetached)
1799 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1800 	}
1801 
1802 	/*
1803 	 * Mark cfdata to show that the unit can be reused, if possible.
1804 	 */
1805 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1806 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1807 			if (STREQ(cf->cf_name, cd->cd_name)) {
1808 				if (cf->cf_fstate == FSTATE_FOUND &&
1809 				    cf->cf_unit == dev->dv_unit)
1810 					cf->cf_fstate = FSTATE_NOTFOUND;
1811 			}
1812 		}
1813 	}
1814 
1815 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1816 		aprint_normal_dev(dev, "detached\n");
1817 
1818 out:
1819 	config_alldevs_enter(&af);
1820 	KASSERT(alldevs.nwrite != 0);
1821 	--alldevs.nwrite;
1822 	if (rv == 0 && dev->dv_del_gen == 0) {
1823 		if (alldevs.nwrite == 0 && alldevs.nread == 0)
1824 			config_devunlink(dev, &af.af_garbage);
1825 		else {
1826 			dev->dv_del_gen = alldevs.gen;
1827 			alldevs.garbage = true;
1828 		}
1829 	}
1830 	config_alldevs_exit(&af);
1831 
1832 	return rv;
1833 }
1834 
1835 int
1836 config_detach_children(device_t parent, int flags)
1837 {
1838 	device_t dv;
1839 	deviter_t di;
1840 	int error = 0;
1841 
1842 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1843 	     dv = deviter_next(&di)) {
1844 		if (device_parent(dv) != parent)
1845 			continue;
1846 		if ((error = config_detach(dv, flags)) != 0)
1847 			break;
1848 	}
1849 	deviter_release(&di);
1850 	return error;
1851 }
1852 
1853 device_t
1854 shutdown_first(struct shutdown_state *s)
1855 {
1856 	if (!s->initialized) {
1857 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1858 		s->initialized = true;
1859 	}
1860 	return shutdown_next(s);
1861 }
1862 
1863 device_t
1864 shutdown_next(struct shutdown_state *s)
1865 {
1866 	device_t dv;
1867 
1868 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1869 		;
1870 
1871 	if (dv == NULL)
1872 		s->initialized = false;
1873 
1874 	return dv;
1875 }
1876 
1877 bool
1878 config_detach_all(int how)
1879 {
1880 	static struct shutdown_state s;
1881 	device_t curdev;
1882 	bool progress = false;
1883 	int flags;
1884 
1885 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1886 		return false;
1887 
1888 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1889 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1890 	else
1891 		flags = DETACH_SHUTDOWN;
1892 
1893 	for (curdev = shutdown_first(&s); curdev != NULL;
1894 	     curdev = shutdown_next(&s)) {
1895 		aprint_debug(" detaching %s, ", device_xname(curdev));
1896 		if (config_detach(curdev, flags) == 0) {
1897 			progress = true;
1898 			aprint_debug("success.");
1899 		} else
1900 			aprint_debug("failed.");
1901 	}
1902 	return progress;
1903 }
1904 
1905 static bool
1906 device_is_ancestor_of(device_t ancestor, device_t descendant)
1907 {
1908 	device_t dv;
1909 
1910 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1911 		if (device_parent(dv) == ancestor)
1912 			return true;
1913 	}
1914 	return false;
1915 }
1916 
1917 int
1918 config_deactivate(device_t dev)
1919 {
1920 	deviter_t di;
1921 	const struct cfattach *ca;
1922 	device_t descendant;
1923 	int s, rv = 0, oflags;
1924 
1925 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1926 	     descendant != NULL;
1927 	     descendant = deviter_next(&di)) {
1928 		if (dev != descendant &&
1929 		    !device_is_ancestor_of(dev, descendant))
1930 			continue;
1931 
1932 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1933 			continue;
1934 
1935 		ca = descendant->dv_cfattach;
1936 		oflags = descendant->dv_flags;
1937 
1938 		descendant->dv_flags &= ~DVF_ACTIVE;
1939 		if (ca->ca_activate == NULL)
1940 			continue;
1941 		s = splhigh();
1942 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1943 		splx(s);
1944 		if (rv != 0)
1945 			descendant->dv_flags = oflags;
1946 	}
1947 	deviter_release(&di);
1948 	return rv;
1949 }
1950 
1951 /*
1952  * Defer the configuration of the specified device until all
1953  * of its parent's devices have been attached.
1954  */
1955 void
1956 config_defer(device_t dev, void (*func)(device_t))
1957 {
1958 	struct deferred_config *dc;
1959 
1960 	if (dev->dv_parent == NULL)
1961 		panic("config_defer: can't defer config of a root device");
1962 
1963 #ifdef DIAGNOSTIC
1964 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1965 		if (dc->dc_dev == dev)
1966 			panic("config_defer: deferred twice");
1967 	}
1968 #endif
1969 
1970 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1971 	dc->dc_dev = dev;
1972 	dc->dc_func = func;
1973 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1974 	config_pending_incr(dev);
1975 }
1976 
1977 /*
1978  * Defer some autoconfiguration for a device until after interrupts
1979  * are enabled.
1980  */
1981 void
1982 config_interrupts(device_t dev, void (*func)(device_t))
1983 {
1984 	struct deferred_config *dc;
1985 
1986 	/*
1987 	 * If interrupts are enabled, callback now.
1988 	 */
1989 	if (cold == 0) {
1990 		(*func)(dev);
1991 		return;
1992 	}
1993 
1994 #ifdef DIAGNOSTIC
1995 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1996 		if (dc->dc_dev == dev)
1997 			panic("config_interrupts: deferred twice");
1998 	}
1999 #endif
2000 
2001 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2002 	dc->dc_dev = dev;
2003 	dc->dc_func = func;
2004 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2005 	config_pending_incr(dev);
2006 }
2007 
2008 /*
2009  * Defer some autoconfiguration for a device until after root file system
2010  * is mounted (to load firmware etc).
2011  */
2012 void
2013 config_mountroot(device_t dev, void (*func)(device_t))
2014 {
2015 	struct deferred_config *dc;
2016 
2017 	/*
2018 	 * If root file system is mounted, callback now.
2019 	 */
2020 	if (root_is_mounted) {
2021 		(*func)(dev);
2022 		return;
2023 	}
2024 
2025 #ifdef DIAGNOSTIC
2026 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2027 		if (dc->dc_dev == dev)
2028 			panic("%s: deferred twice", __func__);
2029 	}
2030 #endif
2031 
2032 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2033 	dc->dc_dev = dev;
2034 	dc->dc_func = func;
2035 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2036 }
2037 
2038 /*
2039  * Process a deferred configuration queue.
2040  */
2041 static void
2042 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2043 {
2044 	struct deferred_config *dc, *ndc;
2045 
2046 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2047 		ndc = TAILQ_NEXT(dc, dc_queue);
2048 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2049 			TAILQ_REMOVE(queue, dc, dc_queue);
2050 			(*dc->dc_func)(dc->dc_dev);
2051 			config_pending_decr(dc->dc_dev);
2052 			kmem_free(dc, sizeof(*dc));
2053 		}
2054 	}
2055 }
2056 
2057 /*
2058  * Manipulate the config_pending semaphore.
2059  */
2060 void
2061 config_pending_incr(device_t dev)
2062 {
2063 
2064 	mutex_enter(&config_misc_lock);
2065 	config_pending++;
2066 #ifdef DEBUG_AUTOCONF
2067 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2068 #endif
2069 	mutex_exit(&config_misc_lock);
2070 }
2071 
2072 void
2073 config_pending_decr(device_t dev)
2074 {
2075 
2076 	KASSERT(0 < config_pending);
2077 	mutex_enter(&config_misc_lock);
2078 	config_pending--;
2079 #ifdef DEBUG_AUTOCONF
2080 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2081 #endif
2082 	if (config_pending == 0)
2083 		cv_broadcast(&config_misc_cv);
2084 	mutex_exit(&config_misc_lock);
2085 }
2086 
2087 /*
2088  * Register a "finalization" routine.  Finalization routines are
2089  * called iteratively once all real devices have been found during
2090  * autoconfiguration, for as long as any one finalizer has done
2091  * any work.
2092  */
2093 int
2094 config_finalize_register(device_t dev, int (*fn)(device_t))
2095 {
2096 	struct finalize_hook *f;
2097 
2098 	/*
2099 	 * If finalization has already been done, invoke the
2100 	 * callback function now.
2101 	 */
2102 	if (config_finalize_done) {
2103 		while ((*fn)(dev) != 0)
2104 			/* loop */ ;
2105 		return 0;
2106 	}
2107 
2108 	/* Ensure this isn't already on the list. */
2109 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2110 		if (f->f_func == fn && f->f_dev == dev)
2111 			return EEXIST;
2112 	}
2113 
2114 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
2115 	f->f_func = fn;
2116 	f->f_dev = dev;
2117 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2118 
2119 	return 0;
2120 }
2121 
2122 void
2123 config_finalize(void)
2124 {
2125 	struct finalize_hook *f;
2126 	struct pdevinit *pdev;
2127 	extern struct pdevinit pdevinit[];
2128 	int errcnt, rv;
2129 
2130 	/*
2131 	 * Now that device driver threads have been created, wait for
2132 	 * them to finish any deferred autoconfiguration.
2133 	 */
2134 	mutex_enter(&config_misc_lock);
2135 	while (config_pending != 0)
2136 		cv_wait(&config_misc_cv, &config_misc_lock);
2137 	mutex_exit(&config_misc_lock);
2138 
2139 	KERNEL_LOCK(1, NULL);
2140 
2141 	/* Attach pseudo-devices. */
2142 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2143 		(*pdev->pdev_attach)(pdev->pdev_count);
2144 
2145 	/* Run the hooks until none of them does any work. */
2146 	do {
2147 		rv = 0;
2148 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
2149 			rv |= (*f->f_func)(f->f_dev);
2150 	} while (rv != 0);
2151 
2152 	config_finalize_done = 1;
2153 
2154 	/* Now free all the hooks. */
2155 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2156 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2157 		kmem_free(f, sizeof(*f));
2158 	}
2159 
2160 	KERNEL_UNLOCK_ONE(NULL);
2161 
2162 	errcnt = aprint_get_error_count();
2163 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2164 	    (boothowto & AB_VERBOSE) == 0) {
2165 		mutex_enter(&config_misc_lock);
2166 		if (config_do_twiddle) {
2167 			config_do_twiddle = 0;
2168 			printf_nolog(" done.\n");
2169 		}
2170 		mutex_exit(&config_misc_lock);
2171 	}
2172 	if (errcnt != 0) {
2173 		printf("WARNING: %d error%s while detecting hardware; "
2174 		    "check system log.\n", errcnt,
2175 		    errcnt == 1 ? "" : "s");
2176 	}
2177 }
2178 
2179 void
2180 config_twiddle_init(void)
2181 {
2182 
2183 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2184 		config_do_twiddle = 1;
2185 	}
2186 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2187 }
2188 
2189 void
2190 config_twiddle_fn(void *cookie)
2191 {
2192 
2193 	mutex_enter(&config_misc_lock);
2194 	if (config_do_twiddle) {
2195 		twiddle();
2196 		callout_schedule(&config_twiddle_ch, mstohz(100));
2197 	}
2198 	mutex_exit(&config_misc_lock);
2199 }
2200 
2201 static void
2202 config_alldevs_enter(struct alldevs_foray *af)
2203 {
2204 	TAILQ_INIT(&af->af_garbage);
2205 	mutex_enter(&alldevs.lock);
2206 	config_collect_garbage(&af->af_garbage);
2207 }
2208 
2209 static void
2210 config_alldevs_exit(struct alldevs_foray *af)
2211 {
2212 	mutex_exit(&alldevs.lock);
2213 	config_dump_garbage(&af->af_garbage);
2214 }
2215 
2216 /*
2217  * device_lookup:
2218  *
2219  *	Look up a device instance for a given driver.
2220  */
2221 device_t
2222 device_lookup(cfdriver_t cd, int unit)
2223 {
2224 	device_t dv;
2225 
2226 	mutex_enter(&alldevs.lock);
2227 	if (unit < 0 || unit >= cd->cd_ndevs)
2228 		dv = NULL;
2229 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2230 		dv = NULL;
2231 	mutex_exit(&alldevs.lock);
2232 
2233 	return dv;
2234 }
2235 
2236 /*
2237  * device_lookup_private:
2238  *
2239  *	Look up a softc instance for a given driver.
2240  */
2241 void *
2242 device_lookup_private(cfdriver_t cd, int unit)
2243 {
2244 
2245 	return device_private(device_lookup(cd, unit));
2246 }
2247 
2248 /*
2249  * device_find_by_xname:
2250  *
2251  *	Returns the device of the given name or NULL if it doesn't exist.
2252  */
2253 device_t
2254 device_find_by_xname(const char *name)
2255 {
2256 	device_t dv;
2257 	deviter_t di;
2258 
2259 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2260 		if (strcmp(device_xname(dv), name) == 0)
2261 			break;
2262 	}
2263 	deviter_release(&di);
2264 
2265 	return dv;
2266 }
2267 
2268 /*
2269  * device_find_by_driver_unit:
2270  *
2271  *	Returns the device of the given driver name and unit or
2272  *	NULL if it doesn't exist.
2273  */
2274 device_t
2275 device_find_by_driver_unit(const char *name, int unit)
2276 {
2277 	struct cfdriver *cd;
2278 
2279 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2280 		return NULL;
2281 	return device_lookup(cd, unit);
2282 }
2283 
2284 /*
2285  * Power management related functions.
2286  */
2287 
2288 bool
2289 device_pmf_is_registered(device_t dev)
2290 {
2291 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2292 }
2293 
2294 bool
2295 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2296 {
2297 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2298 		return true;
2299 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2300 		return false;
2301 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2302 	    dev->dv_driver_suspend != NULL &&
2303 	    !(*dev->dv_driver_suspend)(dev, qual))
2304 		return false;
2305 
2306 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2307 	return true;
2308 }
2309 
2310 bool
2311 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2312 {
2313 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2314 		return true;
2315 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2316 		return false;
2317 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2318 	    dev->dv_driver_resume != NULL &&
2319 	    !(*dev->dv_driver_resume)(dev, qual))
2320 		return false;
2321 
2322 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2323 	return true;
2324 }
2325 
2326 bool
2327 device_pmf_driver_shutdown(device_t dev, int how)
2328 {
2329 
2330 	if (*dev->dv_driver_shutdown != NULL &&
2331 	    !(*dev->dv_driver_shutdown)(dev, how))
2332 		return false;
2333 	return true;
2334 }
2335 
2336 bool
2337 device_pmf_driver_register(device_t dev,
2338     bool (*suspend)(device_t, const pmf_qual_t *),
2339     bool (*resume)(device_t, const pmf_qual_t *),
2340     bool (*shutdown)(device_t, int))
2341 {
2342 	dev->dv_driver_suspend = suspend;
2343 	dev->dv_driver_resume = resume;
2344 	dev->dv_driver_shutdown = shutdown;
2345 	dev->dv_flags |= DVF_POWER_HANDLERS;
2346 	return true;
2347 }
2348 
2349 static const char *
2350 curlwp_name(void)
2351 {
2352 	if (curlwp->l_name != NULL)
2353 		return curlwp->l_name;
2354 	else
2355 		return curlwp->l_proc->p_comm;
2356 }
2357 
2358 void
2359 device_pmf_driver_deregister(device_t dev)
2360 {
2361 	device_lock_t dvl = device_getlock(dev);
2362 
2363 	dev->dv_driver_suspend = NULL;
2364 	dev->dv_driver_resume = NULL;
2365 
2366 	mutex_enter(&dvl->dvl_mtx);
2367 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2368 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2369 		/* Wake a thread that waits for the lock.  That
2370 		 * thread will fail to acquire the lock, and then
2371 		 * it will wake the next thread that waits for the
2372 		 * lock, or else it will wake us.
2373 		 */
2374 		cv_signal(&dvl->dvl_cv);
2375 		pmflock_debug(dev, __func__, __LINE__);
2376 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2377 		pmflock_debug(dev, __func__, __LINE__);
2378 	}
2379 	mutex_exit(&dvl->dvl_mtx);
2380 }
2381 
2382 bool
2383 device_pmf_driver_child_register(device_t dev)
2384 {
2385 	device_t parent = device_parent(dev);
2386 
2387 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2388 		return true;
2389 	return (*parent->dv_driver_child_register)(dev);
2390 }
2391 
2392 void
2393 device_pmf_driver_set_child_register(device_t dev,
2394     bool (*child_register)(device_t))
2395 {
2396 	dev->dv_driver_child_register = child_register;
2397 }
2398 
2399 static void
2400 pmflock_debug(device_t dev, const char *func, int line)
2401 {
2402 	device_lock_t dvl = device_getlock(dev);
2403 
2404 	aprint_debug_dev(dev,
2405 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2406 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2407 }
2408 
2409 static bool
2410 device_pmf_lock1(device_t dev)
2411 {
2412 	device_lock_t dvl = device_getlock(dev);
2413 
2414 	while (device_pmf_is_registered(dev) &&
2415 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2416 		dvl->dvl_nwait++;
2417 		pmflock_debug(dev, __func__, __LINE__);
2418 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2419 		pmflock_debug(dev, __func__, __LINE__);
2420 		dvl->dvl_nwait--;
2421 	}
2422 	if (!device_pmf_is_registered(dev)) {
2423 		pmflock_debug(dev, __func__, __LINE__);
2424 		/* We could not acquire the lock, but some other thread may
2425 		 * wait for it, also.  Wake that thread.
2426 		 */
2427 		cv_signal(&dvl->dvl_cv);
2428 		return false;
2429 	}
2430 	dvl->dvl_nlock++;
2431 	dvl->dvl_holder = curlwp;
2432 	pmflock_debug(dev, __func__, __LINE__);
2433 	return true;
2434 }
2435 
2436 bool
2437 device_pmf_lock(device_t dev)
2438 {
2439 	bool rc;
2440 	device_lock_t dvl = device_getlock(dev);
2441 
2442 	mutex_enter(&dvl->dvl_mtx);
2443 	rc = device_pmf_lock1(dev);
2444 	mutex_exit(&dvl->dvl_mtx);
2445 
2446 	return rc;
2447 }
2448 
2449 void
2450 device_pmf_unlock(device_t dev)
2451 {
2452 	device_lock_t dvl = device_getlock(dev);
2453 
2454 	KASSERT(dvl->dvl_nlock > 0);
2455 	mutex_enter(&dvl->dvl_mtx);
2456 	if (--dvl->dvl_nlock == 0)
2457 		dvl->dvl_holder = NULL;
2458 	cv_signal(&dvl->dvl_cv);
2459 	pmflock_debug(dev, __func__, __LINE__);
2460 	mutex_exit(&dvl->dvl_mtx);
2461 }
2462 
2463 device_lock_t
2464 device_getlock(device_t dev)
2465 {
2466 	return &dev->dv_lock;
2467 }
2468 
2469 void *
2470 device_pmf_bus_private(device_t dev)
2471 {
2472 	return dev->dv_bus_private;
2473 }
2474 
2475 bool
2476 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2477 {
2478 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2479 		return true;
2480 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2481 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2482 		return false;
2483 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2484 	    dev->dv_bus_suspend != NULL &&
2485 	    !(*dev->dv_bus_suspend)(dev, qual))
2486 		return false;
2487 
2488 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2489 	return true;
2490 }
2491 
2492 bool
2493 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2494 {
2495 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2496 		return true;
2497 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2498 	    dev->dv_bus_resume != NULL &&
2499 	    !(*dev->dv_bus_resume)(dev, qual))
2500 		return false;
2501 
2502 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2503 	return true;
2504 }
2505 
2506 bool
2507 device_pmf_bus_shutdown(device_t dev, int how)
2508 {
2509 
2510 	if (*dev->dv_bus_shutdown != NULL &&
2511 	    !(*dev->dv_bus_shutdown)(dev, how))
2512 		return false;
2513 	return true;
2514 }
2515 
2516 void
2517 device_pmf_bus_register(device_t dev, void *priv,
2518     bool (*suspend)(device_t, const pmf_qual_t *),
2519     bool (*resume)(device_t, const pmf_qual_t *),
2520     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2521 {
2522 	dev->dv_bus_private = priv;
2523 	dev->dv_bus_resume = resume;
2524 	dev->dv_bus_suspend = suspend;
2525 	dev->dv_bus_shutdown = shutdown;
2526 	dev->dv_bus_deregister = deregister;
2527 }
2528 
2529 void
2530 device_pmf_bus_deregister(device_t dev)
2531 {
2532 	if (dev->dv_bus_deregister == NULL)
2533 		return;
2534 	(*dev->dv_bus_deregister)(dev);
2535 	dev->dv_bus_private = NULL;
2536 	dev->dv_bus_suspend = NULL;
2537 	dev->dv_bus_resume = NULL;
2538 	dev->dv_bus_deregister = NULL;
2539 }
2540 
2541 void *
2542 device_pmf_class_private(device_t dev)
2543 {
2544 	return dev->dv_class_private;
2545 }
2546 
2547 bool
2548 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2549 {
2550 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2551 		return true;
2552 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2553 	    dev->dv_class_suspend != NULL &&
2554 	    !(*dev->dv_class_suspend)(dev, qual))
2555 		return false;
2556 
2557 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2558 	return true;
2559 }
2560 
2561 bool
2562 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2563 {
2564 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2565 		return true;
2566 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2567 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2568 		return false;
2569 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2570 	    dev->dv_class_resume != NULL &&
2571 	    !(*dev->dv_class_resume)(dev, qual))
2572 		return false;
2573 
2574 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2575 	return true;
2576 }
2577 
2578 void
2579 device_pmf_class_register(device_t dev, void *priv,
2580     bool (*suspend)(device_t, const pmf_qual_t *),
2581     bool (*resume)(device_t, const pmf_qual_t *),
2582     void (*deregister)(device_t))
2583 {
2584 	dev->dv_class_private = priv;
2585 	dev->dv_class_suspend = suspend;
2586 	dev->dv_class_resume = resume;
2587 	dev->dv_class_deregister = deregister;
2588 }
2589 
2590 void
2591 device_pmf_class_deregister(device_t dev)
2592 {
2593 	if (dev->dv_class_deregister == NULL)
2594 		return;
2595 	(*dev->dv_class_deregister)(dev);
2596 	dev->dv_class_private = NULL;
2597 	dev->dv_class_suspend = NULL;
2598 	dev->dv_class_resume = NULL;
2599 	dev->dv_class_deregister = NULL;
2600 }
2601 
2602 bool
2603 device_active(device_t dev, devactive_t type)
2604 {
2605 	size_t i;
2606 
2607 	if (dev->dv_activity_count == 0)
2608 		return false;
2609 
2610 	for (i = 0; i < dev->dv_activity_count; ++i) {
2611 		if (dev->dv_activity_handlers[i] == NULL)
2612 			break;
2613 		(*dev->dv_activity_handlers[i])(dev, type);
2614 	}
2615 
2616 	return true;
2617 }
2618 
2619 bool
2620 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2621 {
2622 	void (**new_handlers)(device_t, devactive_t);
2623 	void (**old_handlers)(device_t, devactive_t);
2624 	size_t i, old_size, new_size;
2625 	int s;
2626 
2627 	old_handlers = dev->dv_activity_handlers;
2628 	old_size = dev->dv_activity_count;
2629 
2630 	KASSERT(old_size == 0 || old_handlers != NULL);
2631 
2632 	for (i = 0; i < old_size; ++i) {
2633 		KASSERT(old_handlers[i] != handler);
2634 		if (old_handlers[i] == NULL) {
2635 			old_handlers[i] = handler;
2636 			return true;
2637 		}
2638 	}
2639 
2640 	new_size = old_size + 4;
2641 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2642 
2643 	for (i = 0; i < old_size; ++i)
2644 		new_handlers[i] = old_handlers[i];
2645 	new_handlers[old_size] = handler;
2646 	for (i = old_size+1; i < new_size; ++i)
2647 		new_handlers[i] = NULL;
2648 
2649 	s = splhigh();
2650 	dev->dv_activity_count = new_size;
2651 	dev->dv_activity_handlers = new_handlers;
2652 	splx(s);
2653 
2654 	if (old_size > 0)
2655 		kmem_free(old_handlers, sizeof(void * [old_size]));
2656 
2657 	return true;
2658 }
2659 
2660 void
2661 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2662 {
2663 	void (**old_handlers)(device_t, devactive_t);
2664 	size_t i, old_size;
2665 	int s;
2666 
2667 	old_handlers = dev->dv_activity_handlers;
2668 	old_size = dev->dv_activity_count;
2669 
2670 	for (i = 0; i < old_size; ++i) {
2671 		if (old_handlers[i] == handler)
2672 			break;
2673 		if (old_handlers[i] == NULL)
2674 			return; /* XXX panic? */
2675 	}
2676 
2677 	if (i == old_size)
2678 		return; /* XXX panic? */
2679 
2680 	for (; i < old_size - 1; ++i) {
2681 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2682 			continue;
2683 
2684 		if (i == 0) {
2685 			s = splhigh();
2686 			dev->dv_activity_count = 0;
2687 			dev->dv_activity_handlers = NULL;
2688 			splx(s);
2689 			kmem_free(old_handlers, sizeof(void *[old_size]));
2690 		}
2691 		return;
2692 	}
2693 	old_handlers[i] = NULL;
2694 }
2695 
2696 /* Return true iff the device_t `dev' exists at generation `gen'. */
2697 static bool
2698 device_exists_at(device_t dv, devgen_t gen)
2699 {
2700 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2701 	    dv->dv_add_gen <= gen;
2702 }
2703 
2704 static bool
2705 deviter_visits(const deviter_t *di, device_t dv)
2706 {
2707 	return device_exists_at(dv, di->di_gen);
2708 }
2709 
2710 /*
2711  * Device Iteration
2712  *
2713  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2714  *     each device_t's in the device tree.
2715  *
2716  * deviter_init(di, flags): initialize the device iterator `di'
2717  *     to "walk" the device tree.  deviter_next(di) will return
2718  *     the first device_t in the device tree, or NULL if there are
2719  *     no devices.
2720  *
2721  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2722  *     caller intends to modify the device tree by calling
2723  *     config_detach(9) on devices in the order that the iterator
2724  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2725  *     nearest the "root" of the device tree to be returned, first;
2726  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2727  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2728  *     indicating both that deviter_init() should not respect any
2729  *     locks on the device tree, and that deviter_next(di) may run
2730  *     in more than one LWP before the walk has finished.
2731  *
2732  *     Only one DEVITER_F_RW iterator may be in the device tree at
2733  *     once.
2734  *
2735  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2736  *
2737  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2738  *     DEVITER_F_LEAVES_FIRST are used in combination.
2739  *
2740  * deviter_first(di, flags): initialize the device iterator `di'
2741  *     and return the first device_t in the device tree, or NULL
2742  *     if there are no devices.  The statement
2743  *
2744  *         dv = deviter_first(di);
2745  *
2746  *     is shorthand for
2747  *
2748  *         deviter_init(di);
2749  *         dv = deviter_next(di);
2750  *
2751  * deviter_next(di): return the next device_t in the device tree,
2752  *     or NULL if there are no more devices.  deviter_next(di)
2753  *     is undefined if `di' was not initialized with deviter_init() or
2754  *     deviter_first().
2755  *
2756  * deviter_release(di): stops iteration (subsequent calls to
2757  *     deviter_next() will return NULL), releases any locks and
2758  *     resources held by the device iterator.
2759  *
2760  * Device iteration does not return device_t's in any particular
2761  * order.  An iterator will never return the same device_t twice.
2762  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2763  * is called repeatedly on the same `di', it will eventually return
2764  * NULL.  It is ok to attach/detach devices during device iteration.
2765  */
2766 void
2767 deviter_init(deviter_t *di, deviter_flags_t flags)
2768 {
2769 	device_t dv;
2770 
2771 	memset(di, 0, sizeof(*di));
2772 
2773 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2774 		flags |= DEVITER_F_RW;
2775 
2776 	mutex_enter(&alldevs.lock);
2777 	if ((flags & DEVITER_F_RW) != 0)
2778 		alldevs.nwrite++;
2779 	else
2780 		alldevs.nread++;
2781 	di->di_gen = alldevs.gen++;
2782 	di->di_flags = flags;
2783 
2784 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2785 	case DEVITER_F_LEAVES_FIRST:
2786 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2787 			if (!deviter_visits(di, dv))
2788 				continue;
2789 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2790 		}
2791 		break;
2792 	case DEVITER_F_ROOT_FIRST:
2793 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2794 			if (!deviter_visits(di, dv))
2795 				continue;
2796 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2797 		}
2798 		break;
2799 	default:
2800 		break;
2801 	}
2802 
2803 	deviter_reinit(di);
2804 	mutex_exit(&alldevs.lock);
2805 }
2806 
2807 static void
2808 deviter_reinit(deviter_t *di)
2809 {
2810 
2811 	KASSERT(mutex_owned(&alldevs.lock));
2812 	if ((di->di_flags & DEVITER_F_RW) != 0)
2813 		di->di_prev = TAILQ_LAST(&alldevs.list, devicelist);
2814 	else
2815 		di->di_prev = TAILQ_FIRST(&alldevs.list);
2816 }
2817 
2818 device_t
2819 deviter_first(deviter_t *di, deviter_flags_t flags)
2820 {
2821 
2822 	deviter_init(di, flags);
2823 	return deviter_next(di);
2824 }
2825 
2826 static device_t
2827 deviter_next2(deviter_t *di)
2828 {
2829 	device_t dv;
2830 
2831 	KASSERT(mutex_owned(&alldevs.lock));
2832 
2833 	dv = di->di_prev;
2834 
2835 	if (dv == NULL)
2836 		return NULL;
2837 
2838 	if ((di->di_flags & DEVITER_F_RW) != 0)
2839 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2840 	else
2841 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2842 
2843 	return dv;
2844 }
2845 
2846 static device_t
2847 deviter_next1(deviter_t *di)
2848 {
2849 	device_t dv;
2850 
2851 	KASSERT(mutex_owned(&alldevs.lock));
2852 
2853 	do {
2854 		dv = deviter_next2(di);
2855 	} while (dv != NULL && !deviter_visits(di, dv));
2856 
2857 	return dv;
2858 }
2859 
2860 device_t
2861 deviter_next(deviter_t *di)
2862 {
2863 	device_t dv = NULL;
2864 
2865 	mutex_enter(&alldevs.lock);
2866 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2867 	case 0:
2868 		dv = deviter_next1(di);
2869 		break;
2870 	case DEVITER_F_LEAVES_FIRST:
2871 		while (di->di_curdepth >= 0) {
2872 			if ((dv = deviter_next1(di)) == NULL) {
2873 				di->di_curdepth--;
2874 				deviter_reinit(di);
2875 			} else if (dv->dv_depth == di->di_curdepth)
2876 				break;
2877 		}
2878 		break;
2879 	case DEVITER_F_ROOT_FIRST:
2880 		while (di->di_curdepth <= di->di_maxdepth) {
2881 			if ((dv = deviter_next1(di)) == NULL) {
2882 				di->di_curdepth++;
2883 				deviter_reinit(di);
2884 			} else if (dv->dv_depth == di->di_curdepth)
2885 				break;
2886 		}
2887 		break;
2888 	default:
2889 		break;
2890 	}
2891 	mutex_exit(&alldevs.lock);
2892 
2893 	return dv;
2894 }
2895 
2896 void
2897 deviter_release(deviter_t *di)
2898 {
2899 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2900 
2901 	mutex_enter(&alldevs.lock);
2902 	if (rw)
2903 		--alldevs.nwrite;
2904 	else
2905 		--alldevs.nread;
2906 	/* XXX wake a garbage-collection thread */
2907 	mutex_exit(&alldevs.lock);
2908 }
2909 
2910 const char *
2911 cfdata_ifattr(const struct cfdata *cf)
2912 {
2913 	return cf->cf_pspec->cfp_iattr;
2914 }
2915 
2916 bool
2917 ifattr_match(const char *snull, const char *t)
2918 {
2919 	return (snull == NULL) || strcmp(snull, t) == 0;
2920 }
2921 
2922 void
2923 null_childdetached(device_t self, device_t child)
2924 {
2925 	/* do nothing */
2926 }
2927 
2928 static void
2929 sysctl_detach_setup(struct sysctllog **clog)
2930 {
2931 
2932 	sysctl_createv(clog, 0, NULL, NULL,
2933 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2934 		CTLTYPE_BOOL, "detachall",
2935 		SYSCTL_DESCR("Detach all devices at shutdown"),
2936 		NULL, 0, &detachall, 0,
2937 		CTL_KERN, CTL_CREATE, CTL_EOL);
2938 }
2939