1 /* $NetBSD: subr_autoconf.c,v 1.255 2017/10/27 12:25:15 joerg Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.255 2017/10/27 12:25:15 joerg Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/disklabel.h> 90 #include <sys/conf.h> 91 #include <sys/kauth.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 111 #include <sys/disk.h> 112 113 #include <sys/rndsource.h> 114 115 #include <machine/limits.h> 116 117 /* 118 * Autoconfiguration subroutines. 119 */ 120 121 /* 122 * Device autoconfiguration timings are mixed into the entropy pool. 123 */ 124 extern krndsource_t rnd_autoconf_source; 125 126 /* 127 * ioconf.c exports exactly two names: cfdata and cfroots. All system 128 * devices and drivers are found via these tables. 129 */ 130 extern struct cfdata cfdata[]; 131 extern const short cfroots[]; 132 133 /* 134 * List of all cfdriver structures. We use this to detect duplicates 135 * when other cfdrivers are loaded. 136 */ 137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 138 extern struct cfdriver * const cfdriver_list_initial[]; 139 140 /* 141 * Initial list of cfattach's. 142 */ 143 extern const struct cfattachinit cfattachinit[]; 144 145 /* 146 * List of cfdata tables. We always have one such list -- the one 147 * built statically when the kernel was configured. 148 */ 149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 150 static struct cftable initcftable; 151 152 #define ROOT ((device_t)NULL) 153 154 struct matchinfo { 155 cfsubmatch_t fn; 156 device_t parent; 157 const int *locs; 158 void *aux; 159 struct cfdata *match; 160 int pri; 161 }; 162 163 struct alldevs_foray { 164 int af_s; 165 struct devicelist af_garbage; 166 }; 167 168 static char *number(char *, int); 169 static void mapply(struct matchinfo *, cfdata_t); 170 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 171 static void config_devdelete(device_t); 172 static void config_devunlink(device_t, struct devicelist *); 173 static void config_makeroom(int, struct cfdriver *); 174 static void config_devlink(device_t); 175 static void config_alldevs_enter(struct alldevs_foray *); 176 static void config_alldevs_exit(struct alldevs_foray *); 177 static void config_add_attrib_dict(device_t); 178 179 static void config_collect_garbage(struct devicelist *); 180 static void config_dump_garbage(struct devicelist *); 181 182 static void pmflock_debug(device_t, const char *, int); 183 184 static device_t deviter_next1(deviter_t *); 185 static void deviter_reinit(deviter_t *); 186 187 struct deferred_config { 188 TAILQ_ENTRY(deferred_config) dc_queue; 189 device_t dc_dev; 190 void (*dc_func)(device_t); 191 }; 192 193 TAILQ_HEAD(deferred_config_head, deferred_config); 194 195 struct deferred_config_head deferred_config_queue = 196 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 197 struct deferred_config_head interrupt_config_queue = 198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 199 int interrupt_config_threads = 8; 200 struct deferred_config_head mountroot_config_queue = 201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 202 int mountroot_config_threads = 2; 203 static lwp_t **mountroot_config_lwpids; 204 static size_t mountroot_config_lwpids_size; 205 static bool root_is_mounted = false; 206 207 static void config_process_deferred(struct deferred_config_head *, device_t); 208 209 /* Hooks to finalize configuration once all real devices have been found. */ 210 struct finalize_hook { 211 TAILQ_ENTRY(finalize_hook) f_list; 212 int (*f_func)(device_t); 213 device_t f_dev; 214 }; 215 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 216 TAILQ_HEAD_INITIALIZER(config_finalize_list); 217 static int config_finalize_done; 218 219 /* list of all devices */ 220 static struct { 221 kmutex_t lock; 222 struct devicelist list; 223 devgen_t gen; 224 int nread; 225 int nwrite; 226 bool garbage; 227 } alldevs __cacheline_aligned = { 228 .list = TAILQ_HEAD_INITIALIZER(alldevs.list), 229 .gen = 1, 230 .nread = 0, 231 .nwrite = 0, 232 .garbage = false, 233 }; 234 235 static int config_pending; /* semaphore for mountroot */ 236 static kmutex_t config_misc_lock; 237 static kcondvar_t config_misc_cv; 238 239 static bool detachall = false; 240 241 #define STREQ(s1, s2) \ 242 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 243 244 static bool config_initialized = false; /* config_init() has been called. */ 245 246 static int config_do_twiddle; 247 static callout_t config_twiddle_ch; 248 249 static void sysctl_detach_setup(struct sysctllog **); 250 251 int no_devmon_insert(const char *, prop_dictionary_t); 252 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; 253 254 typedef int (*cfdriver_fn)(struct cfdriver *); 255 static int 256 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 257 cfdriver_fn drv_do, cfdriver_fn drv_undo, 258 const char *style, bool dopanic) 259 { 260 void (*pr)(const char *, ...) __printflike(1, 2) = 261 dopanic ? panic : printf; 262 int i, error = 0, e2 __diagused; 263 264 for (i = 0; cfdriverv[i] != NULL; i++) { 265 if ((error = drv_do(cfdriverv[i])) != 0) { 266 pr("configure: `%s' driver %s failed: %d", 267 cfdriverv[i]->cd_name, style, error); 268 goto bad; 269 } 270 } 271 272 KASSERT(error == 0); 273 return 0; 274 275 bad: 276 printf("\n"); 277 for (i--; i >= 0; i--) { 278 e2 = drv_undo(cfdriverv[i]); 279 KASSERT(e2 == 0); 280 } 281 282 return error; 283 } 284 285 typedef int (*cfattach_fn)(const char *, struct cfattach *); 286 static int 287 frob_cfattachvec(const struct cfattachinit *cfattachv, 288 cfattach_fn att_do, cfattach_fn att_undo, 289 const char *style, bool dopanic) 290 { 291 const struct cfattachinit *cfai = NULL; 292 void (*pr)(const char *, ...) __printflike(1, 2) = 293 dopanic ? panic : printf; 294 int j = 0, error = 0, e2 __diagused; 295 296 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 297 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 298 if ((error = att_do(cfai->cfai_name, 299 cfai->cfai_list[j])) != 0) { 300 pr("configure: attachment `%s' " 301 "of `%s' driver %s failed: %d", 302 cfai->cfai_list[j]->ca_name, 303 cfai->cfai_name, style, error); 304 goto bad; 305 } 306 } 307 } 308 309 KASSERT(error == 0); 310 return 0; 311 312 bad: 313 /* 314 * Rollback in reverse order. dunno if super-important, but 315 * do that anyway. Although the code looks a little like 316 * someone did a little integration (in the math sense). 317 */ 318 printf("\n"); 319 if (cfai) { 320 bool last; 321 322 for (last = false; last == false; ) { 323 if (cfai == &cfattachv[0]) 324 last = true; 325 for (j--; j >= 0; j--) { 326 e2 = att_undo(cfai->cfai_name, 327 cfai->cfai_list[j]); 328 KASSERT(e2 == 0); 329 } 330 if (!last) { 331 cfai--; 332 for (j = 0; cfai->cfai_list[j] != NULL; j++) 333 ; 334 } 335 } 336 } 337 338 return error; 339 } 340 341 /* 342 * Initialize the autoconfiguration data structures. Normally this 343 * is done by configure(), but some platforms need to do this very 344 * early (to e.g. initialize the console). 345 */ 346 void 347 config_init(void) 348 { 349 350 KASSERT(config_initialized == false); 351 352 mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM); 353 354 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 355 cv_init(&config_misc_cv, "cfgmisc"); 356 357 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 358 359 frob_cfdrivervec(cfdriver_list_initial, 360 config_cfdriver_attach, NULL, "bootstrap", true); 361 frob_cfattachvec(cfattachinit, 362 config_cfattach_attach, NULL, "bootstrap", true); 363 364 initcftable.ct_cfdata = cfdata; 365 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 366 367 config_initialized = true; 368 } 369 370 /* 371 * Init or fini drivers and attachments. Either all or none 372 * are processed (via rollback). It would be nice if this were 373 * atomic to outside consumers, but with the current state of 374 * locking ... 375 */ 376 int 377 config_init_component(struct cfdriver * const *cfdriverv, 378 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 379 { 380 int error; 381 382 if ((error = frob_cfdrivervec(cfdriverv, 383 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 384 return error; 385 if ((error = frob_cfattachvec(cfattachv, 386 config_cfattach_attach, config_cfattach_detach, 387 "init", false)) != 0) { 388 frob_cfdrivervec(cfdriverv, 389 config_cfdriver_detach, NULL, "init rollback", true); 390 return error; 391 } 392 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 393 frob_cfattachvec(cfattachv, 394 config_cfattach_detach, NULL, "init rollback", true); 395 frob_cfdrivervec(cfdriverv, 396 config_cfdriver_detach, NULL, "init rollback", true); 397 return error; 398 } 399 400 return 0; 401 } 402 403 int 404 config_fini_component(struct cfdriver * const *cfdriverv, 405 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 406 { 407 int error; 408 409 if ((error = config_cfdata_detach(cfdatav)) != 0) 410 return error; 411 if ((error = frob_cfattachvec(cfattachv, 412 config_cfattach_detach, config_cfattach_attach, 413 "fini", false)) != 0) { 414 if (config_cfdata_attach(cfdatav, 0) != 0) 415 panic("config_cfdata fini rollback failed"); 416 return error; 417 } 418 if ((error = frob_cfdrivervec(cfdriverv, 419 config_cfdriver_detach, config_cfdriver_attach, 420 "fini", false)) != 0) { 421 frob_cfattachvec(cfattachv, 422 config_cfattach_attach, NULL, "fini rollback", true); 423 if (config_cfdata_attach(cfdatav, 0) != 0) 424 panic("config_cfdata fini rollback failed"); 425 return error; 426 } 427 428 return 0; 429 } 430 431 void 432 config_init_mi(void) 433 { 434 435 if (!config_initialized) 436 config_init(); 437 438 sysctl_detach_setup(NULL); 439 } 440 441 void 442 config_deferred(device_t dev) 443 { 444 config_process_deferred(&deferred_config_queue, dev); 445 config_process_deferred(&interrupt_config_queue, dev); 446 config_process_deferred(&mountroot_config_queue, dev); 447 } 448 449 static void 450 config_interrupts_thread(void *cookie) 451 { 452 struct deferred_config *dc; 453 454 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 455 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 456 (*dc->dc_func)(dc->dc_dev); 457 config_pending_decr(dc->dc_dev); 458 kmem_free(dc, sizeof(*dc)); 459 } 460 kthread_exit(0); 461 } 462 463 void 464 config_create_interruptthreads(void) 465 { 466 int i; 467 468 for (i = 0; i < interrupt_config_threads; i++) { 469 (void)kthread_create(PRI_NONE, 0, NULL, 470 config_interrupts_thread, NULL, NULL, "configintr"); 471 } 472 } 473 474 static void 475 config_mountroot_thread(void *cookie) 476 { 477 struct deferred_config *dc; 478 479 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 480 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 481 (*dc->dc_func)(dc->dc_dev); 482 kmem_free(dc, sizeof(*dc)); 483 } 484 kthread_exit(0); 485 } 486 487 void 488 config_create_mountrootthreads(void) 489 { 490 int i; 491 492 if (!root_is_mounted) 493 root_is_mounted = true; 494 495 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * 496 mountroot_config_threads; 497 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, 498 KM_NOSLEEP); 499 KASSERT(mountroot_config_lwpids); 500 for (i = 0; i < mountroot_config_threads; i++) { 501 mountroot_config_lwpids[i] = 0; 502 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL, 503 config_mountroot_thread, NULL, 504 &mountroot_config_lwpids[i], 505 "configroot"); 506 } 507 } 508 509 void 510 config_finalize_mountroot(void) 511 { 512 int i, error; 513 514 for (i = 0; i < mountroot_config_threads; i++) { 515 if (mountroot_config_lwpids[i] == 0) 516 continue; 517 518 error = kthread_join(mountroot_config_lwpids[i]); 519 if (error) 520 printf("%s: thread %x joined with error %d\n", 521 __func__, i, error); 522 } 523 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); 524 } 525 526 /* 527 * Announce device attach/detach to userland listeners. 528 */ 529 530 int 531 no_devmon_insert(const char *name, prop_dictionary_t p) 532 { 533 534 return ENODEV; 535 } 536 537 static void 538 devmon_report_device(device_t dev, bool isattach) 539 { 540 prop_dictionary_t ev; 541 const char *parent; 542 const char *what; 543 device_t pdev = device_parent(dev); 544 545 /* If currently no drvctl device, just return */ 546 if (devmon_insert_vec == no_devmon_insert) 547 return; 548 549 ev = prop_dictionary_create(); 550 if (ev == NULL) 551 return; 552 553 what = (isattach ? "device-attach" : "device-detach"); 554 parent = (pdev == NULL ? "root" : device_xname(pdev)); 555 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 556 !prop_dictionary_set_cstring(ev, "parent", parent)) { 557 prop_object_release(ev); 558 return; 559 } 560 561 if ((*devmon_insert_vec)(what, ev) != 0) 562 prop_object_release(ev); 563 } 564 565 /* 566 * Add a cfdriver to the system. 567 */ 568 int 569 config_cfdriver_attach(struct cfdriver *cd) 570 { 571 struct cfdriver *lcd; 572 573 /* Make sure this driver isn't already in the system. */ 574 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 575 if (STREQ(lcd->cd_name, cd->cd_name)) 576 return EEXIST; 577 } 578 579 LIST_INIT(&cd->cd_attach); 580 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 581 582 return 0; 583 } 584 585 /* 586 * Remove a cfdriver from the system. 587 */ 588 int 589 config_cfdriver_detach(struct cfdriver *cd) 590 { 591 struct alldevs_foray af; 592 int i, rc = 0; 593 594 config_alldevs_enter(&af); 595 /* Make sure there are no active instances. */ 596 for (i = 0; i < cd->cd_ndevs; i++) { 597 if (cd->cd_devs[i] != NULL) { 598 rc = EBUSY; 599 break; 600 } 601 } 602 config_alldevs_exit(&af); 603 604 if (rc != 0) 605 return rc; 606 607 /* ...and no attachments loaded. */ 608 if (LIST_EMPTY(&cd->cd_attach) == 0) 609 return EBUSY; 610 611 LIST_REMOVE(cd, cd_list); 612 613 KASSERT(cd->cd_devs == NULL); 614 615 return 0; 616 } 617 618 /* 619 * Look up a cfdriver by name. 620 */ 621 struct cfdriver * 622 config_cfdriver_lookup(const char *name) 623 { 624 struct cfdriver *cd; 625 626 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 627 if (STREQ(cd->cd_name, name)) 628 return cd; 629 } 630 631 return NULL; 632 } 633 634 /* 635 * Add a cfattach to the specified driver. 636 */ 637 int 638 config_cfattach_attach(const char *driver, struct cfattach *ca) 639 { 640 struct cfattach *lca; 641 struct cfdriver *cd; 642 643 cd = config_cfdriver_lookup(driver); 644 if (cd == NULL) 645 return ESRCH; 646 647 /* Make sure this attachment isn't already on this driver. */ 648 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 649 if (STREQ(lca->ca_name, ca->ca_name)) 650 return EEXIST; 651 } 652 653 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 654 655 return 0; 656 } 657 658 /* 659 * Remove a cfattach from the specified driver. 660 */ 661 int 662 config_cfattach_detach(const char *driver, struct cfattach *ca) 663 { 664 struct alldevs_foray af; 665 struct cfdriver *cd; 666 device_t dev; 667 int i, rc = 0; 668 669 cd = config_cfdriver_lookup(driver); 670 if (cd == NULL) 671 return ESRCH; 672 673 config_alldevs_enter(&af); 674 /* Make sure there are no active instances. */ 675 for (i = 0; i < cd->cd_ndevs; i++) { 676 if ((dev = cd->cd_devs[i]) == NULL) 677 continue; 678 if (dev->dv_cfattach == ca) { 679 rc = EBUSY; 680 break; 681 } 682 } 683 config_alldevs_exit(&af); 684 685 if (rc != 0) 686 return rc; 687 688 LIST_REMOVE(ca, ca_list); 689 690 return 0; 691 } 692 693 /* 694 * Look up a cfattach by name. 695 */ 696 static struct cfattach * 697 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 698 { 699 struct cfattach *ca; 700 701 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 702 if (STREQ(ca->ca_name, atname)) 703 return ca; 704 } 705 706 return NULL; 707 } 708 709 /* 710 * Look up a cfattach by driver/attachment name. 711 */ 712 struct cfattach * 713 config_cfattach_lookup(const char *name, const char *atname) 714 { 715 struct cfdriver *cd; 716 717 cd = config_cfdriver_lookup(name); 718 if (cd == NULL) 719 return NULL; 720 721 return config_cfattach_lookup_cd(cd, atname); 722 } 723 724 /* 725 * Apply the matching function and choose the best. This is used 726 * a few times and we want to keep the code small. 727 */ 728 static void 729 mapply(struct matchinfo *m, cfdata_t cf) 730 { 731 int pri; 732 733 if (m->fn != NULL) { 734 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 735 } else { 736 pri = config_match(m->parent, cf, m->aux); 737 } 738 if (pri > m->pri) { 739 m->match = cf; 740 m->pri = pri; 741 } 742 } 743 744 int 745 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 746 { 747 const struct cfiattrdata *ci; 748 const struct cflocdesc *cl; 749 int nlocs, i; 750 751 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 752 KASSERT(ci); 753 nlocs = ci->ci_loclen; 754 KASSERT(!nlocs || locs); 755 for (i = 0; i < nlocs; i++) { 756 cl = &ci->ci_locdesc[i]; 757 if (cl->cld_defaultstr != NULL && 758 cf->cf_loc[i] == cl->cld_default) 759 continue; 760 if (cf->cf_loc[i] == locs[i]) 761 continue; 762 return 0; 763 } 764 765 return config_match(parent, cf, aux); 766 } 767 768 /* 769 * Helper function: check whether the driver supports the interface attribute 770 * and return its descriptor structure. 771 */ 772 static const struct cfiattrdata * 773 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 774 { 775 const struct cfiattrdata * const *cpp; 776 777 if (cd->cd_attrs == NULL) 778 return 0; 779 780 for (cpp = cd->cd_attrs; *cpp; cpp++) { 781 if (STREQ((*cpp)->ci_name, ia)) { 782 /* Match. */ 783 return *cpp; 784 } 785 } 786 return 0; 787 } 788 789 /* 790 * Lookup an interface attribute description by name. 791 * If the driver is given, consider only its supported attributes. 792 */ 793 const struct cfiattrdata * 794 cfiattr_lookup(const char *name, const struct cfdriver *cd) 795 { 796 const struct cfdriver *d; 797 const struct cfiattrdata *ia; 798 799 if (cd) 800 return cfdriver_get_iattr(cd, name); 801 802 LIST_FOREACH(d, &allcfdrivers, cd_list) { 803 ia = cfdriver_get_iattr(d, name); 804 if (ia) 805 return ia; 806 } 807 return 0; 808 } 809 810 /* 811 * Determine if `parent' is a potential parent for a device spec based 812 * on `cfp'. 813 */ 814 static int 815 cfparent_match(const device_t parent, const struct cfparent *cfp) 816 { 817 struct cfdriver *pcd; 818 819 /* We don't match root nodes here. */ 820 if (cfp == NULL) 821 return 0; 822 823 pcd = parent->dv_cfdriver; 824 KASSERT(pcd != NULL); 825 826 /* 827 * First, ensure this parent has the correct interface 828 * attribute. 829 */ 830 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 831 return 0; 832 833 /* 834 * If no specific parent device instance was specified (i.e. 835 * we're attaching to the attribute only), we're done! 836 */ 837 if (cfp->cfp_parent == NULL) 838 return 1; 839 840 /* 841 * Check the parent device's name. 842 */ 843 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 844 return 0; /* not the same parent */ 845 846 /* 847 * Make sure the unit number matches. 848 */ 849 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 850 cfp->cfp_unit == parent->dv_unit) 851 return 1; 852 853 /* Unit numbers don't match. */ 854 return 0; 855 } 856 857 /* 858 * Helper for config_cfdata_attach(): check all devices whether it could be 859 * parent any attachment in the config data table passed, and rescan. 860 */ 861 static void 862 rescan_with_cfdata(const struct cfdata *cf) 863 { 864 device_t d; 865 const struct cfdata *cf1; 866 deviter_t di; 867 868 869 /* 870 * "alldevs" is likely longer than a modules's cfdata, so make it 871 * the outer loop. 872 */ 873 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 874 875 if (!(d->dv_cfattach->ca_rescan)) 876 continue; 877 878 for (cf1 = cf; cf1->cf_name; cf1++) { 879 880 if (!cfparent_match(d, cf1->cf_pspec)) 881 continue; 882 883 (*d->dv_cfattach->ca_rescan)(d, 884 cfdata_ifattr(cf1), cf1->cf_loc); 885 886 config_deferred(d); 887 } 888 } 889 deviter_release(&di); 890 } 891 892 /* 893 * Attach a supplemental config data table and rescan potential 894 * parent devices if required. 895 */ 896 int 897 config_cfdata_attach(cfdata_t cf, int scannow) 898 { 899 struct cftable *ct; 900 901 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 902 ct->ct_cfdata = cf; 903 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 904 905 if (scannow) 906 rescan_with_cfdata(cf); 907 908 return 0; 909 } 910 911 /* 912 * Helper for config_cfdata_detach: check whether a device is 913 * found through any attachment in the config data table. 914 */ 915 static int 916 dev_in_cfdata(device_t d, cfdata_t cf) 917 { 918 const struct cfdata *cf1; 919 920 for (cf1 = cf; cf1->cf_name; cf1++) 921 if (d->dv_cfdata == cf1) 922 return 1; 923 924 return 0; 925 } 926 927 /* 928 * Detach a supplemental config data table. Detach all devices found 929 * through that table (and thus keeping references to it) before. 930 */ 931 int 932 config_cfdata_detach(cfdata_t cf) 933 { 934 device_t d; 935 int error = 0; 936 struct cftable *ct; 937 deviter_t di; 938 939 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 940 d = deviter_next(&di)) { 941 if (!dev_in_cfdata(d, cf)) 942 continue; 943 if ((error = config_detach(d, 0)) != 0) 944 break; 945 } 946 deviter_release(&di); 947 if (error) { 948 aprint_error_dev(d, "unable to detach instance\n"); 949 return error; 950 } 951 952 TAILQ_FOREACH(ct, &allcftables, ct_list) { 953 if (ct->ct_cfdata == cf) { 954 TAILQ_REMOVE(&allcftables, ct, ct_list); 955 kmem_free(ct, sizeof(*ct)); 956 return 0; 957 } 958 } 959 960 /* not found -- shouldn't happen */ 961 return EINVAL; 962 } 963 964 /* 965 * Invoke the "match" routine for a cfdata entry on behalf of 966 * an external caller, usually a "submatch" routine. 967 */ 968 int 969 config_match(device_t parent, cfdata_t cf, void *aux) 970 { 971 struct cfattach *ca; 972 973 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 974 if (ca == NULL) { 975 /* No attachment for this entry, oh well. */ 976 return 0; 977 } 978 979 return (*ca->ca_match)(parent, cf, aux); 980 } 981 982 /* 983 * Iterate over all potential children of some device, calling the given 984 * function (default being the child's match function) for each one. 985 * Nonzero returns are matches; the highest value returned is considered 986 * the best match. Return the `found child' if we got a match, or NULL 987 * otherwise. The `aux' pointer is simply passed on through. 988 * 989 * Note that this function is designed so that it can be used to apply 990 * an arbitrary function to all potential children (its return value 991 * can be ignored). 992 */ 993 cfdata_t 994 config_search_loc(cfsubmatch_t fn, device_t parent, 995 const char *ifattr, const int *locs, void *aux) 996 { 997 struct cftable *ct; 998 cfdata_t cf; 999 struct matchinfo m; 1000 1001 KASSERT(config_initialized); 1002 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 1003 1004 m.fn = fn; 1005 m.parent = parent; 1006 m.locs = locs; 1007 m.aux = aux; 1008 m.match = NULL; 1009 m.pri = 0; 1010 1011 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1012 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1013 1014 /* We don't match root nodes here. */ 1015 if (!cf->cf_pspec) 1016 continue; 1017 1018 /* 1019 * Skip cf if no longer eligible, otherwise scan 1020 * through parents for one matching `parent', and 1021 * try match function. 1022 */ 1023 if (cf->cf_fstate == FSTATE_FOUND) 1024 continue; 1025 if (cf->cf_fstate == FSTATE_DNOTFOUND || 1026 cf->cf_fstate == FSTATE_DSTAR) 1027 continue; 1028 1029 /* 1030 * If an interface attribute was specified, 1031 * consider only children which attach to 1032 * that attribute. 1033 */ 1034 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 1035 continue; 1036 1037 if (cfparent_match(parent, cf->cf_pspec)) 1038 mapply(&m, cf); 1039 } 1040 } 1041 return m.match; 1042 } 1043 1044 cfdata_t 1045 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 1046 void *aux) 1047 { 1048 1049 return config_search_loc(fn, parent, ifattr, NULL, aux); 1050 } 1051 1052 /* 1053 * Find the given root device. 1054 * This is much like config_search, but there is no parent. 1055 * Don't bother with multiple cfdata tables; the root node 1056 * must always be in the initial table. 1057 */ 1058 cfdata_t 1059 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1060 { 1061 cfdata_t cf; 1062 const short *p; 1063 struct matchinfo m; 1064 1065 m.fn = fn; 1066 m.parent = ROOT; 1067 m.aux = aux; 1068 m.match = NULL; 1069 m.pri = 0; 1070 m.locs = 0; 1071 /* 1072 * Look at root entries for matching name. We do not bother 1073 * with found-state here since only one root should ever be 1074 * searched (and it must be done first). 1075 */ 1076 for (p = cfroots; *p >= 0; p++) { 1077 cf = &cfdata[*p]; 1078 if (strcmp(cf->cf_name, rootname) == 0) 1079 mapply(&m, cf); 1080 } 1081 return m.match; 1082 } 1083 1084 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1085 1086 /* 1087 * The given `aux' argument describes a device that has been found 1088 * on the given parent, but not necessarily configured. Locate the 1089 * configuration data for that device (using the submatch function 1090 * provided, or using candidates' cd_match configuration driver 1091 * functions) and attach it, and return its device_t. If the device was 1092 * not configured, call the given `print' function and return NULL. 1093 */ 1094 device_t 1095 config_found_sm_loc(device_t parent, 1096 const char *ifattr, const int *locs, void *aux, 1097 cfprint_t print, cfsubmatch_t submatch) 1098 { 1099 cfdata_t cf; 1100 1101 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1102 return(config_attach_loc(parent, cf, locs, aux, print)); 1103 if (print) { 1104 if (config_do_twiddle && cold) 1105 twiddle(); 1106 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1107 } 1108 1109 /* 1110 * This has the effect of mixing in a single timestamp to the 1111 * entropy pool. Experiments indicate the estimator will almost 1112 * always attribute one bit of entropy to this sample; analysis 1113 * of device attach/detach timestamps on FreeBSD indicates 4 1114 * bits of entropy/sample so this seems appropriately conservative. 1115 */ 1116 rnd_add_uint32(&rnd_autoconf_source, 0); 1117 return NULL; 1118 } 1119 1120 device_t 1121 config_found_ia(device_t parent, const char *ifattr, void *aux, 1122 cfprint_t print) 1123 { 1124 1125 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1126 } 1127 1128 device_t 1129 config_found(device_t parent, void *aux, cfprint_t print) 1130 { 1131 1132 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1133 } 1134 1135 /* 1136 * As above, but for root devices. 1137 */ 1138 device_t 1139 config_rootfound(const char *rootname, void *aux) 1140 { 1141 cfdata_t cf; 1142 1143 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1144 return config_attach(ROOT, cf, aux, NULL); 1145 aprint_error("root device %s not configured\n", rootname); 1146 return NULL; 1147 } 1148 1149 /* just like sprintf(buf, "%d") except that it works from the end */ 1150 static char * 1151 number(char *ep, int n) 1152 { 1153 1154 *--ep = 0; 1155 while (n >= 10) { 1156 *--ep = (n % 10) + '0'; 1157 n /= 10; 1158 } 1159 *--ep = n + '0'; 1160 return ep; 1161 } 1162 1163 /* 1164 * Expand the size of the cd_devs array if necessary. 1165 * 1166 * The caller must hold alldevs.lock. config_makeroom() may release and 1167 * re-acquire alldevs.lock, so callers should re-check conditions such 1168 * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom() 1169 * returns. 1170 */ 1171 static void 1172 config_makeroom(int n, struct cfdriver *cd) 1173 { 1174 int ondevs, nndevs; 1175 device_t *osp, *nsp; 1176 1177 KASSERT(mutex_owned(&alldevs.lock)); 1178 alldevs.nwrite++; 1179 1180 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1181 ; 1182 1183 while (n >= cd->cd_ndevs) { 1184 /* 1185 * Need to expand the array. 1186 */ 1187 ondevs = cd->cd_ndevs; 1188 osp = cd->cd_devs; 1189 1190 /* 1191 * Release alldevs.lock around allocation, which may 1192 * sleep. 1193 */ 1194 mutex_exit(&alldevs.lock); 1195 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP); 1196 mutex_enter(&alldevs.lock); 1197 1198 /* 1199 * If another thread moved the array while we did 1200 * not hold alldevs.lock, try again. 1201 */ 1202 if (cd->cd_devs != osp) { 1203 mutex_exit(&alldevs.lock); 1204 kmem_free(nsp, sizeof(device_t[nndevs])); 1205 mutex_enter(&alldevs.lock); 1206 continue; 1207 } 1208 1209 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs])); 1210 if (ondevs != 0) 1211 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs])); 1212 1213 cd->cd_ndevs = nndevs; 1214 cd->cd_devs = nsp; 1215 if (ondevs != 0) { 1216 mutex_exit(&alldevs.lock); 1217 kmem_free(osp, sizeof(device_t[ondevs])); 1218 mutex_enter(&alldevs.lock); 1219 } 1220 } 1221 KASSERT(mutex_owned(&alldevs.lock)); 1222 alldevs.nwrite--; 1223 } 1224 1225 /* 1226 * Put dev into the devices list. 1227 */ 1228 static void 1229 config_devlink(device_t dev) 1230 { 1231 1232 mutex_enter(&alldevs.lock); 1233 1234 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1235 1236 dev->dv_add_gen = alldevs.gen; 1237 /* It is safe to add a device to the tail of the list while 1238 * readers and writers are in the list. 1239 */ 1240 TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list); 1241 mutex_exit(&alldevs.lock); 1242 } 1243 1244 static void 1245 config_devfree(device_t dev) 1246 { 1247 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1248 1249 if (dev->dv_cfattach->ca_devsize > 0) 1250 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1251 if (priv) 1252 kmem_free(dev, sizeof(*dev)); 1253 } 1254 1255 /* 1256 * Caller must hold alldevs.lock. 1257 */ 1258 static void 1259 config_devunlink(device_t dev, struct devicelist *garbage) 1260 { 1261 struct device_garbage *dg = &dev->dv_garbage; 1262 cfdriver_t cd = device_cfdriver(dev); 1263 int i; 1264 1265 KASSERT(mutex_owned(&alldevs.lock)); 1266 1267 /* Unlink from device list. Link to garbage list. */ 1268 TAILQ_REMOVE(&alldevs.list, dev, dv_list); 1269 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1270 1271 /* Remove from cfdriver's array. */ 1272 cd->cd_devs[dev->dv_unit] = NULL; 1273 1274 /* 1275 * If the device now has no units in use, unlink its softc array. 1276 */ 1277 for (i = 0; i < cd->cd_ndevs; i++) { 1278 if (cd->cd_devs[i] != NULL) 1279 break; 1280 } 1281 /* Nothing found. Unlink, now. Deallocate, later. */ 1282 if (i == cd->cd_ndevs) { 1283 dg->dg_ndevs = cd->cd_ndevs; 1284 dg->dg_devs = cd->cd_devs; 1285 cd->cd_devs = NULL; 1286 cd->cd_ndevs = 0; 1287 } 1288 } 1289 1290 static void 1291 config_devdelete(device_t dev) 1292 { 1293 struct device_garbage *dg = &dev->dv_garbage; 1294 device_lock_t dvl = device_getlock(dev); 1295 1296 if (dg->dg_devs != NULL) 1297 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1298 1299 cv_destroy(&dvl->dvl_cv); 1300 mutex_destroy(&dvl->dvl_mtx); 1301 1302 KASSERT(dev->dv_properties != NULL); 1303 prop_object_release(dev->dv_properties); 1304 1305 if (dev->dv_activity_handlers) 1306 panic("%s with registered handlers", __func__); 1307 1308 if (dev->dv_locators) { 1309 size_t amount = *--dev->dv_locators; 1310 kmem_free(dev->dv_locators, amount); 1311 } 1312 1313 config_devfree(dev); 1314 } 1315 1316 static int 1317 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1318 { 1319 int unit; 1320 1321 if (cf->cf_fstate == FSTATE_STAR) { 1322 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1323 if (cd->cd_devs[unit] == NULL) 1324 break; 1325 /* 1326 * unit is now the unit of the first NULL device pointer, 1327 * or max(cd->cd_ndevs,cf->cf_unit). 1328 */ 1329 } else { 1330 unit = cf->cf_unit; 1331 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1332 unit = -1; 1333 } 1334 return unit; 1335 } 1336 1337 static int 1338 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1339 { 1340 struct alldevs_foray af; 1341 int unit; 1342 1343 config_alldevs_enter(&af); 1344 for (;;) { 1345 unit = config_unit_nextfree(cd, cf); 1346 if (unit == -1) 1347 break; 1348 if (unit < cd->cd_ndevs) { 1349 cd->cd_devs[unit] = dev; 1350 dev->dv_unit = unit; 1351 break; 1352 } 1353 config_makeroom(unit, cd); 1354 } 1355 config_alldevs_exit(&af); 1356 1357 return unit; 1358 } 1359 1360 static device_t 1361 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1362 { 1363 cfdriver_t cd; 1364 cfattach_t ca; 1365 size_t lname, lunit; 1366 const char *xunit; 1367 int myunit; 1368 char num[10]; 1369 device_t dev; 1370 void *dev_private; 1371 const struct cfiattrdata *ia; 1372 device_lock_t dvl; 1373 1374 cd = config_cfdriver_lookup(cf->cf_name); 1375 if (cd == NULL) 1376 return NULL; 1377 1378 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1379 if (ca == NULL) 1380 return NULL; 1381 1382 /* get memory for all device vars */ 1383 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC) 1384 || ca->ca_devsize >= sizeof(struct device), 1385 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize, 1386 sizeof(struct device)); 1387 if (ca->ca_devsize > 0) { 1388 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1389 } else { 1390 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1391 dev_private = NULL; 1392 } 1393 1394 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1395 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1396 } else { 1397 dev = dev_private; 1398 #ifdef DIAGNOSTIC 1399 printf("%s has not been converted to device_t\n", cd->cd_name); 1400 #endif 1401 } 1402 dev->dv_class = cd->cd_class; 1403 dev->dv_cfdata = cf; 1404 dev->dv_cfdriver = cd; 1405 dev->dv_cfattach = ca; 1406 dev->dv_activity_count = 0; 1407 dev->dv_activity_handlers = NULL; 1408 dev->dv_private = dev_private; 1409 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1410 1411 myunit = config_unit_alloc(dev, cd, cf); 1412 if (myunit == -1) { 1413 config_devfree(dev); 1414 return NULL; 1415 } 1416 1417 /* compute length of name and decimal expansion of unit number */ 1418 lname = strlen(cd->cd_name); 1419 xunit = number(&num[sizeof(num)], myunit); 1420 lunit = &num[sizeof(num)] - xunit; 1421 if (lname + lunit > sizeof(dev->dv_xname)) 1422 panic("config_devalloc: device name too long"); 1423 1424 dvl = device_getlock(dev); 1425 1426 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1427 cv_init(&dvl->dvl_cv, "pmfsusp"); 1428 1429 memcpy(dev->dv_xname, cd->cd_name, lname); 1430 memcpy(dev->dv_xname + lname, xunit, lunit); 1431 dev->dv_parent = parent; 1432 if (parent != NULL) 1433 dev->dv_depth = parent->dv_depth + 1; 1434 else 1435 dev->dv_depth = 0; 1436 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1437 if (locs) { 1438 KASSERT(parent); /* no locators at root */ 1439 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1440 dev->dv_locators = 1441 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1442 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1443 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1444 } 1445 dev->dv_properties = prop_dictionary_create(); 1446 KASSERT(dev->dv_properties != NULL); 1447 1448 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1449 "device-driver", dev->dv_cfdriver->cd_name); 1450 prop_dictionary_set_uint16(dev->dv_properties, 1451 "device-unit", dev->dv_unit); 1452 if (parent != NULL) { 1453 prop_dictionary_set_cstring(dev->dv_properties, 1454 "device-parent", device_xname(parent)); 1455 } 1456 1457 if (dev->dv_cfdriver->cd_attrs != NULL) 1458 config_add_attrib_dict(dev); 1459 1460 return dev; 1461 } 1462 1463 /* 1464 * Create an array of device attach attributes and add it 1465 * to the device's dv_properties dictionary. 1466 * 1467 * <key>interface-attributes</key> 1468 * <array> 1469 * <dict> 1470 * <key>attribute-name</key> 1471 * <string>foo</string> 1472 * <key>locators</key> 1473 * <array> 1474 * <dict> 1475 * <key>loc-name</key> 1476 * <string>foo-loc1</string> 1477 * </dict> 1478 * <dict> 1479 * <key>loc-name</key> 1480 * <string>foo-loc2</string> 1481 * <key>default</key> 1482 * <string>foo-loc2-default</string> 1483 * </dict> 1484 * ... 1485 * </array> 1486 * </dict> 1487 * ... 1488 * </array> 1489 */ 1490 1491 static void 1492 config_add_attrib_dict(device_t dev) 1493 { 1494 int i, j; 1495 const struct cfiattrdata *ci; 1496 prop_dictionary_t attr_dict, loc_dict; 1497 prop_array_t attr_array, loc_array; 1498 1499 if ((attr_array = prop_array_create()) == NULL) 1500 return; 1501 1502 for (i = 0; ; i++) { 1503 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1504 break; 1505 if ((attr_dict = prop_dictionary_create()) == NULL) 1506 break; 1507 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name", 1508 ci->ci_name); 1509 1510 /* Create an array of the locator names and defaults */ 1511 1512 if (ci->ci_loclen != 0 && 1513 (loc_array = prop_array_create()) != NULL) { 1514 for (j = 0; j < ci->ci_loclen; j++) { 1515 loc_dict = prop_dictionary_create(); 1516 if (loc_dict == NULL) 1517 continue; 1518 prop_dictionary_set_cstring_nocopy(loc_dict, 1519 "loc-name", ci->ci_locdesc[j].cld_name); 1520 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1521 prop_dictionary_set_cstring_nocopy( 1522 loc_dict, "default", 1523 ci->ci_locdesc[j].cld_defaultstr); 1524 prop_array_set(loc_array, j, loc_dict); 1525 prop_object_release(loc_dict); 1526 } 1527 prop_dictionary_set_and_rel(attr_dict, "locators", 1528 loc_array); 1529 } 1530 prop_array_add(attr_array, attr_dict); 1531 prop_object_release(attr_dict); 1532 } 1533 if (i == 0) 1534 prop_object_release(attr_array); 1535 else 1536 prop_dictionary_set_and_rel(dev->dv_properties, 1537 "interface-attributes", attr_array); 1538 1539 return; 1540 } 1541 1542 /* 1543 * Attach a found device. 1544 */ 1545 device_t 1546 config_attach_loc(device_t parent, cfdata_t cf, 1547 const int *locs, void *aux, cfprint_t print) 1548 { 1549 device_t dev; 1550 struct cftable *ct; 1551 const char *drvname; 1552 1553 dev = config_devalloc(parent, cf, locs); 1554 if (!dev) 1555 panic("config_attach: allocation of device softc failed"); 1556 1557 /* XXX redundant - see below? */ 1558 if (cf->cf_fstate != FSTATE_STAR) { 1559 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1560 cf->cf_fstate = FSTATE_FOUND; 1561 } 1562 1563 config_devlink(dev); 1564 1565 if (config_do_twiddle && cold) 1566 twiddle(); 1567 else 1568 aprint_naive("Found "); 1569 /* 1570 * We want the next two printfs for normal, verbose, and quiet, 1571 * but not silent (in which case, we're twiddling, instead). 1572 */ 1573 if (parent == ROOT) { 1574 aprint_naive("%s (root)", device_xname(dev)); 1575 aprint_normal("%s (root)", device_xname(dev)); 1576 } else { 1577 aprint_naive("%s at %s", device_xname(dev), 1578 device_xname(parent)); 1579 aprint_normal("%s at %s", device_xname(dev), 1580 device_xname(parent)); 1581 if (print) 1582 (void) (*print)(aux, NULL); 1583 } 1584 1585 /* 1586 * Before attaching, clobber any unfound devices that are 1587 * otherwise identical. 1588 * XXX code above is redundant? 1589 */ 1590 drvname = dev->dv_cfdriver->cd_name; 1591 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1592 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1593 if (STREQ(cf->cf_name, drvname) && 1594 cf->cf_unit == dev->dv_unit) { 1595 if (cf->cf_fstate == FSTATE_NOTFOUND) 1596 cf->cf_fstate = FSTATE_FOUND; 1597 } 1598 } 1599 } 1600 device_register(dev, aux); 1601 1602 /* Let userland know */ 1603 devmon_report_device(dev, true); 1604 1605 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1606 1607 if (!device_pmf_is_registered(dev)) 1608 aprint_debug_dev(dev, "WARNING: power management not " 1609 "supported\n"); 1610 1611 config_process_deferred(&deferred_config_queue, dev); 1612 1613 device_register_post_config(dev, aux); 1614 return dev; 1615 } 1616 1617 device_t 1618 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1619 { 1620 1621 return config_attach_loc(parent, cf, NULL, aux, print); 1622 } 1623 1624 /* 1625 * As above, but for pseudo-devices. Pseudo-devices attached in this 1626 * way are silently inserted into the device tree, and their children 1627 * attached. 1628 * 1629 * Note that because pseudo-devices are attached silently, any information 1630 * the attach routine wishes to print should be prefixed with the device 1631 * name by the attach routine. 1632 */ 1633 device_t 1634 config_attach_pseudo(cfdata_t cf) 1635 { 1636 device_t dev; 1637 1638 dev = config_devalloc(ROOT, cf, NULL); 1639 if (!dev) 1640 return NULL; 1641 1642 /* XXX mark busy in cfdata */ 1643 1644 if (cf->cf_fstate != FSTATE_STAR) { 1645 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1646 cf->cf_fstate = FSTATE_FOUND; 1647 } 1648 1649 config_devlink(dev); 1650 1651 #if 0 /* XXXJRT not yet */ 1652 device_register(dev, NULL); /* like a root node */ 1653 #endif 1654 1655 /* Let userland know */ 1656 devmon_report_device(dev, true); 1657 1658 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1659 1660 config_process_deferred(&deferred_config_queue, dev); 1661 return dev; 1662 } 1663 1664 /* 1665 * Caller must hold alldevs.lock. 1666 */ 1667 static void 1668 config_collect_garbage(struct devicelist *garbage) 1669 { 1670 device_t dv; 1671 1672 KASSERT(!cpu_intr_p()); 1673 KASSERT(!cpu_softintr_p()); 1674 KASSERT(mutex_owned(&alldevs.lock)); 1675 1676 while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) { 1677 TAILQ_FOREACH(dv, &alldevs.list, dv_list) { 1678 if (dv->dv_del_gen != 0) 1679 break; 1680 } 1681 if (dv == NULL) { 1682 alldevs.garbage = false; 1683 break; 1684 } 1685 config_devunlink(dv, garbage); 1686 } 1687 KASSERT(mutex_owned(&alldevs.lock)); 1688 } 1689 1690 static void 1691 config_dump_garbage(struct devicelist *garbage) 1692 { 1693 device_t dv; 1694 1695 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1696 TAILQ_REMOVE(garbage, dv, dv_list); 1697 config_devdelete(dv); 1698 } 1699 } 1700 1701 /* 1702 * Detach a device. Optionally forced (e.g. because of hardware 1703 * removal) and quiet. Returns zero if successful, non-zero 1704 * (an error code) otherwise. 1705 * 1706 * Note that this code wants to be run from a process context, so 1707 * that the detach can sleep to allow processes which have a device 1708 * open to run and unwind their stacks. 1709 */ 1710 int 1711 config_detach(device_t dev, int flags) 1712 { 1713 struct alldevs_foray af; 1714 struct cftable *ct; 1715 cfdata_t cf; 1716 const struct cfattach *ca; 1717 struct cfdriver *cd; 1718 device_t d __diagused; 1719 int rv = 0; 1720 1721 cf = dev->dv_cfdata; 1722 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND || 1723 cf->cf_fstate == FSTATE_STAR), 1724 "config_detach: %s: bad device fstate: %d", 1725 device_xname(dev), cf ? cf->cf_fstate : -1); 1726 1727 cd = dev->dv_cfdriver; 1728 KASSERT(cd != NULL); 1729 1730 ca = dev->dv_cfattach; 1731 KASSERT(ca != NULL); 1732 1733 mutex_enter(&alldevs.lock); 1734 if (dev->dv_del_gen != 0) { 1735 mutex_exit(&alldevs.lock); 1736 #ifdef DIAGNOSTIC 1737 printf("%s: %s is already detached\n", __func__, 1738 device_xname(dev)); 1739 #endif /* DIAGNOSTIC */ 1740 return ENOENT; 1741 } 1742 alldevs.nwrite++; 1743 mutex_exit(&alldevs.lock); 1744 1745 if (!detachall && 1746 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1747 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1748 rv = EOPNOTSUPP; 1749 } else if (ca->ca_detach != NULL) { 1750 rv = (*ca->ca_detach)(dev, flags); 1751 } else 1752 rv = EOPNOTSUPP; 1753 1754 /* 1755 * If it was not possible to detach the device, then we either 1756 * panic() (for the forced but failed case), or return an error. 1757 * 1758 * If it was possible to detach the device, ensure that the 1759 * device is deactivated. 1760 */ 1761 if (rv == 0) 1762 dev->dv_flags &= ~DVF_ACTIVE; 1763 else if ((flags & DETACH_FORCE) == 0) 1764 goto out; 1765 else { 1766 panic("config_detach: forced detach of %s failed (%d)", 1767 device_xname(dev), rv); 1768 } 1769 1770 /* 1771 * The device has now been successfully detached. 1772 */ 1773 1774 /* Let userland know */ 1775 devmon_report_device(dev, false); 1776 1777 #ifdef DIAGNOSTIC 1778 /* 1779 * Sanity: If you're successfully detached, you should have no 1780 * children. (Note that because children must be attached 1781 * after parents, we only need to search the latter part of 1782 * the list.) 1783 */ 1784 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1785 d = TAILQ_NEXT(d, dv_list)) { 1786 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1787 printf("config_detach: detached device %s" 1788 " has children %s\n", device_xname(dev), 1789 device_xname(d)); 1790 panic("config_detach"); 1791 } 1792 } 1793 #endif 1794 1795 /* notify the parent that the child is gone */ 1796 if (dev->dv_parent) { 1797 device_t p = dev->dv_parent; 1798 if (p->dv_cfattach->ca_childdetached) 1799 (*p->dv_cfattach->ca_childdetached)(p, dev); 1800 } 1801 1802 /* 1803 * Mark cfdata to show that the unit can be reused, if possible. 1804 */ 1805 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1806 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1807 if (STREQ(cf->cf_name, cd->cd_name)) { 1808 if (cf->cf_fstate == FSTATE_FOUND && 1809 cf->cf_unit == dev->dv_unit) 1810 cf->cf_fstate = FSTATE_NOTFOUND; 1811 } 1812 } 1813 } 1814 1815 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1816 aprint_normal_dev(dev, "detached\n"); 1817 1818 out: 1819 config_alldevs_enter(&af); 1820 KASSERT(alldevs.nwrite != 0); 1821 --alldevs.nwrite; 1822 if (rv == 0 && dev->dv_del_gen == 0) { 1823 if (alldevs.nwrite == 0 && alldevs.nread == 0) 1824 config_devunlink(dev, &af.af_garbage); 1825 else { 1826 dev->dv_del_gen = alldevs.gen; 1827 alldevs.garbage = true; 1828 } 1829 } 1830 config_alldevs_exit(&af); 1831 1832 return rv; 1833 } 1834 1835 int 1836 config_detach_children(device_t parent, int flags) 1837 { 1838 device_t dv; 1839 deviter_t di; 1840 int error = 0; 1841 1842 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1843 dv = deviter_next(&di)) { 1844 if (device_parent(dv) != parent) 1845 continue; 1846 if ((error = config_detach(dv, flags)) != 0) 1847 break; 1848 } 1849 deviter_release(&di); 1850 return error; 1851 } 1852 1853 device_t 1854 shutdown_first(struct shutdown_state *s) 1855 { 1856 if (!s->initialized) { 1857 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1858 s->initialized = true; 1859 } 1860 return shutdown_next(s); 1861 } 1862 1863 device_t 1864 shutdown_next(struct shutdown_state *s) 1865 { 1866 device_t dv; 1867 1868 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1869 ; 1870 1871 if (dv == NULL) 1872 s->initialized = false; 1873 1874 return dv; 1875 } 1876 1877 bool 1878 config_detach_all(int how) 1879 { 1880 static struct shutdown_state s; 1881 device_t curdev; 1882 bool progress = false; 1883 int flags; 1884 1885 if ((how & (RB_NOSYNC|RB_DUMP)) != 0) 1886 return false; 1887 1888 if ((how & RB_POWERDOWN) == RB_POWERDOWN) 1889 flags = DETACH_SHUTDOWN | DETACH_POWEROFF; 1890 else 1891 flags = DETACH_SHUTDOWN; 1892 1893 for (curdev = shutdown_first(&s); curdev != NULL; 1894 curdev = shutdown_next(&s)) { 1895 aprint_debug(" detaching %s, ", device_xname(curdev)); 1896 if (config_detach(curdev, flags) == 0) { 1897 progress = true; 1898 aprint_debug("success."); 1899 } else 1900 aprint_debug("failed."); 1901 } 1902 return progress; 1903 } 1904 1905 static bool 1906 device_is_ancestor_of(device_t ancestor, device_t descendant) 1907 { 1908 device_t dv; 1909 1910 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1911 if (device_parent(dv) == ancestor) 1912 return true; 1913 } 1914 return false; 1915 } 1916 1917 int 1918 config_deactivate(device_t dev) 1919 { 1920 deviter_t di; 1921 const struct cfattach *ca; 1922 device_t descendant; 1923 int s, rv = 0, oflags; 1924 1925 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1926 descendant != NULL; 1927 descendant = deviter_next(&di)) { 1928 if (dev != descendant && 1929 !device_is_ancestor_of(dev, descendant)) 1930 continue; 1931 1932 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1933 continue; 1934 1935 ca = descendant->dv_cfattach; 1936 oflags = descendant->dv_flags; 1937 1938 descendant->dv_flags &= ~DVF_ACTIVE; 1939 if (ca->ca_activate == NULL) 1940 continue; 1941 s = splhigh(); 1942 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1943 splx(s); 1944 if (rv != 0) 1945 descendant->dv_flags = oflags; 1946 } 1947 deviter_release(&di); 1948 return rv; 1949 } 1950 1951 /* 1952 * Defer the configuration of the specified device until all 1953 * of its parent's devices have been attached. 1954 */ 1955 void 1956 config_defer(device_t dev, void (*func)(device_t)) 1957 { 1958 struct deferred_config *dc; 1959 1960 if (dev->dv_parent == NULL) 1961 panic("config_defer: can't defer config of a root device"); 1962 1963 #ifdef DIAGNOSTIC 1964 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1965 if (dc->dc_dev == dev) 1966 panic("config_defer: deferred twice"); 1967 } 1968 #endif 1969 1970 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1971 dc->dc_dev = dev; 1972 dc->dc_func = func; 1973 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1974 config_pending_incr(dev); 1975 } 1976 1977 /* 1978 * Defer some autoconfiguration for a device until after interrupts 1979 * are enabled. 1980 */ 1981 void 1982 config_interrupts(device_t dev, void (*func)(device_t)) 1983 { 1984 struct deferred_config *dc; 1985 1986 /* 1987 * If interrupts are enabled, callback now. 1988 */ 1989 if (cold == 0) { 1990 (*func)(dev); 1991 return; 1992 } 1993 1994 #ifdef DIAGNOSTIC 1995 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1996 if (dc->dc_dev == dev) 1997 panic("config_interrupts: deferred twice"); 1998 } 1999 #endif 2000 2001 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2002 dc->dc_dev = dev; 2003 dc->dc_func = func; 2004 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 2005 config_pending_incr(dev); 2006 } 2007 2008 /* 2009 * Defer some autoconfiguration for a device until after root file system 2010 * is mounted (to load firmware etc). 2011 */ 2012 void 2013 config_mountroot(device_t dev, void (*func)(device_t)) 2014 { 2015 struct deferred_config *dc; 2016 2017 /* 2018 * If root file system is mounted, callback now. 2019 */ 2020 if (root_is_mounted) { 2021 (*func)(dev); 2022 return; 2023 } 2024 2025 #ifdef DIAGNOSTIC 2026 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) { 2027 if (dc->dc_dev == dev) 2028 panic("%s: deferred twice", __func__); 2029 } 2030 #endif 2031 2032 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2033 dc->dc_dev = dev; 2034 dc->dc_func = func; 2035 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 2036 } 2037 2038 /* 2039 * Process a deferred configuration queue. 2040 */ 2041 static void 2042 config_process_deferred(struct deferred_config_head *queue, device_t parent) 2043 { 2044 struct deferred_config *dc, *ndc; 2045 2046 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 2047 ndc = TAILQ_NEXT(dc, dc_queue); 2048 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2049 TAILQ_REMOVE(queue, dc, dc_queue); 2050 (*dc->dc_func)(dc->dc_dev); 2051 config_pending_decr(dc->dc_dev); 2052 kmem_free(dc, sizeof(*dc)); 2053 } 2054 } 2055 } 2056 2057 /* 2058 * Manipulate the config_pending semaphore. 2059 */ 2060 void 2061 config_pending_incr(device_t dev) 2062 { 2063 2064 mutex_enter(&config_misc_lock); 2065 config_pending++; 2066 #ifdef DEBUG_AUTOCONF 2067 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2068 #endif 2069 mutex_exit(&config_misc_lock); 2070 } 2071 2072 void 2073 config_pending_decr(device_t dev) 2074 { 2075 2076 KASSERT(0 < config_pending); 2077 mutex_enter(&config_misc_lock); 2078 config_pending--; 2079 #ifdef DEBUG_AUTOCONF 2080 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2081 #endif 2082 if (config_pending == 0) 2083 cv_broadcast(&config_misc_cv); 2084 mutex_exit(&config_misc_lock); 2085 } 2086 2087 /* 2088 * Register a "finalization" routine. Finalization routines are 2089 * called iteratively once all real devices have been found during 2090 * autoconfiguration, for as long as any one finalizer has done 2091 * any work. 2092 */ 2093 int 2094 config_finalize_register(device_t dev, int (*fn)(device_t)) 2095 { 2096 struct finalize_hook *f; 2097 2098 /* 2099 * If finalization has already been done, invoke the 2100 * callback function now. 2101 */ 2102 if (config_finalize_done) { 2103 while ((*fn)(dev) != 0) 2104 /* loop */ ; 2105 return 0; 2106 } 2107 2108 /* Ensure this isn't already on the list. */ 2109 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2110 if (f->f_func == fn && f->f_dev == dev) 2111 return EEXIST; 2112 } 2113 2114 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2115 f->f_func = fn; 2116 f->f_dev = dev; 2117 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2118 2119 return 0; 2120 } 2121 2122 void 2123 config_finalize(void) 2124 { 2125 struct finalize_hook *f; 2126 struct pdevinit *pdev; 2127 extern struct pdevinit pdevinit[]; 2128 int errcnt, rv; 2129 2130 /* 2131 * Now that device driver threads have been created, wait for 2132 * them to finish any deferred autoconfiguration. 2133 */ 2134 mutex_enter(&config_misc_lock); 2135 while (config_pending != 0) 2136 cv_wait(&config_misc_cv, &config_misc_lock); 2137 mutex_exit(&config_misc_lock); 2138 2139 KERNEL_LOCK(1, NULL); 2140 2141 /* Attach pseudo-devices. */ 2142 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2143 (*pdev->pdev_attach)(pdev->pdev_count); 2144 2145 /* Run the hooks until none of them does any work. */ 2146 do { 2147 rv = 0; 2148 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2149 rv |= (*f->f_func)(f->f_dev); 2150 } while (rv != 0); 2151 2152 config_finalize_done = 1; 2153 2154 /* Now free all the hooks. */ 2155 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2156 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2157 kmem_free(f, sizeof(*f)); 2158 } 2159 2160 KERNEL_UNLOCK_ONE(NULL); 2161 2162 errcnt = aprint_get_error_count(); 2163 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2164 (boothowto & AB_VERBOSE) == 0) { 2165 mutex_enter(&config_misc_lock); 2166 if (config_do_twiddle) { 2167 config_do_twiddle = 0; 2168 printf_nolog(" done.\n"); 2169 } 2170 mutex_exit(&config_misc_lock); 2171 } 2172 if (errcnt != 0) { 2173 printf("WARNING: %d error%s while detecting hardware; " 2174 "check system log.\n", errcnt, 2175 errcnt == 1 ? "" : "s"); 2176 } 2177 } 2178 2179 void 2180 config_twiddle_init(void) 2181 { 2182 2183 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2184 config_do_twiddle = 1; 2185 } 2186 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2187 } 2188 2189 void 2190 config_twiddle_fn(void *cookie) 2191 { 2192 2193 mutex_enter(&config_misc_lock); 2194 if (config_do_twiddle) { 2195 twiddle(); 2196 callout_schedule(&config_twiddle_ch, mstohz(100)); 2197 } 2198 mutex_exit(&config_misc_lock); 2199 } 2200 2201 static void 2202 config_alldevs_enter(struct alldevs_foray *af) 2203 { 2204 TAILQ_INIT(&af->af_garbage); 2205 mutex_enter(&alldevs.lock); 2206 config_collect_garbage(&af->af_garbage); 2207 } 2208 2209 static void 2210 config_alldevs_exit(struct alldevs_foray *af) 2211 { 2212 mutex_exit(&alldevs.lock); 2213 config_dump_garbage(&af->af_garbage); 2214 } 2215 2216 /* 2217 * device_lookup: 2218 * 2219 * Look up a device instance for a given driver. 2220 */ 2221 device_t 2222 device_lookup(cfdriver_t cd, int unit) 2223 { 2224 device_t dv; 2225 2226 mutex_enter(&alldevs.lock); 2227 if (unit < 0 || unit >= cd->cd_ndevs) 2228 dv = NULL; 2229 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2230 dv = NULL; 2231 mutex_exit(&alldevs.lock); 2232 2233 return dv; 2234 } 2235 2236 /* 2237 * device_lookup_private: 2238 * 2239 * Look up a softc instance for a given driver. 2240 */ 2241 void * 2242 device_lookup_private(cfdriver_t cd, int unit) 2243 { 2244 2245 return device_private(device_lookup(cd, unit)); 2246 } 2247 2248 /* 2249 * device_find_by_xname: 2250 * 2251 * Returns the device of the given name or NULL if it doesn't exist. 2252 */ 2253 device_t 2254 device_find_by_xname(const char *name) 2255 { 2256 device_t dv; 2257 deviter_t di; 2258 2259 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2260 if (strcmp(device_xname(dv), name) == 0) 2261 break; 2262 } 2263 deviter_release(&di); 2264 2265 return dv; 2266 } 2267 2268 /* 2269 * device_find_by_driver_unit: 2270 * 2271 * Returns the device of the given driver name and unit or 2272 * NULL if it doesn't exist. 2273 */ 2274 device_t 2275 device_find_by_driver_unit(const char *name, int unit) 2276 { 2277 struct cfdriver *cd; 2278 2279 if ((cd = config_cfdriver_lookup(name)) == NULL) 2280 return NULL; 2281 return device_lookup(cd, unit); 2282 } 2283 2284 /* 2285 * Power management related functions. 2286 */ 2287 2288 bool 2289 device_pmf_is_registered(device_t dev) 2290 { 2291 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2292 } 2293 2294 bool 2295 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2296 { 2297 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2298 return true; 2299 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2300 return false; 2301 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2302 dev->dv_driver_suspend != NULL && 2303 !(*dev->dv_driver_suspend)(dev, qual)) 2304 return false; 2305 2306 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2307 return true; 2308 } 2309 2310 bool 2311 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2312 { 2313 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2314 return true; 2315 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2316 return false; 2317 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2318 dev->dv_driver_resume != NULL && 2319 !(*dev->dv_driver_resume)(dev, qual)) 2320 return false; 2321 2322 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2323 return true; 2324 } 2325 2326 bool 2327 device_pmf_driver_shutdown(device_t dev, int how) 2328 { 2329 2330 if (*dev->dv_driver_shutdown != NULL && 2331 !(*dev->dv_driver_shutdown)(dev, how)) 2332 return false; 2333 return true; 2334 } 2335 2336 bool 2337 device_pmf_driver_register(device_t dev, 2338 bool (*suspend)(device_t, const pmf_qual_t *), 2339 bool (*resume)(device_t, const pmf_qual_t *), 2340 bool (*shutdown)(device_t, int)) 2341 { 2342 dev->dv_driver_suspend = suspend; 2343 dev->dv_driver_resume = resume; 2344 dev->dv_driver_shutdown = shutdown; 2345 dev->dv_flags |= DVF_POWER_HANDLERS; 2346 return true; 2347 } 2348 2349 static const char * 2350 curlwp_name(void) 2351 { 2352 if (curlwp->l_name != NULL) 2353 return curlwp->l_name; 2354 else 2355 return curlwp->l_proc->p_comm; 2356 } 2357 2358 void 2359 device_pmf_driver_deregister(device_t dev) 2360 { 2361 device_lock_t dvl = device_getlock(dev); 2362 2363 dev->dv_driver_suspend = NULL; 2364 dev->dv_driver_resume = NULL; 2365 2366 mutex_enter(&dvl->dvl_mtx); 2367 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2368 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2369 /* Wake a thread that waits for the lock. That 2370 * thread will fail to acquire the lock, and then 2371 * it will wake the next thread that waits for the 2372 * lock, or else it will wake us. 2373 */ 2374 cv_signal(&dvl->dvl_cv); 2375 pmflock_debug(dev, __func__, __LINE__); 2376 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2377 pmflock_debug(dev, __func__, __LINE__); 2378 } 2379 mutex_exit(&dvl->dvl_mtx); 2380 } 2381 2382 bool 2383 device_pmf_driver_child_register(device_t dev) 2384 { 2385 device_t parent = device_parent(dev); 2386 2387 if (parent == NULL || parent->dv_driver_child_register == NULL) 2388 return true; 2389 return (*parent->dv_driver_child_register)(dev); 2390 } 2391 2392 void 2393 device_pmf_driver_set_child_register(device_t dev, 2394 bool (*child_register)(device_t)) 2395 { 2396 dev->dv_driver_child_register = child_register; 2397 } 2398 2399 static void 2400 pmflock_debug(device_t dev, const char *func, int line) 2401 { 2402 device_lock_t dvl = device_getlock(dev); 2403 2404 aprint_debug_dev(dev, 2405 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line, 2406 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags); 2407 } 2408 2409 static bool 2410 device_pmf_lock1(device_t dev) 2411 { 2412 device_lock_t dvl = device_getlock(dev); 2413 2414 while (device_pmf_is_registered(dev) && 2415 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2416 dvl->dvl_nwait++; 2417 pmflock_debug(dev, __func__, __LINE__); 2418 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2419 pmflock_debug(dev, __func__, __LINE__); 2420 dvl->dvl_nwait--; 2421 } 2422 if (!device_pmf_is_registered(dev)) { 2423 pmflock_debug(dev, __func__, __LINE__); 2424 /* We could not acquire the lock, but some other thread may 2425 * wait for it, also. Wake that thread. 2426 */ 2427 cv_signal(&dvl->dvl_cv); 2428 return false; 2429 } 2430 dvl->dvl_nlock++; 2431 dvl->dvl_holder = curlwp; 2432 pmflock_debug(dev, __func__, __LINE__); 2433 return true; 2434 } 2435 2436 bool 2437 device_pmf_lock(device_t dev) 2438 { 2439 bool rc; 2440 device_lock_t dvl = device_getlock(dev); 2441 2442 mutex_enter(&dvl->dvl_mtx); 2443 rc = device_pmf_lock1(dev); 2444 mutex_exit(&dvl->dvl_mtx); 2445 2446 return rc; 2447 } 2448 2449 void 2450 device_pmf_unlock(device_t dev) 2451 { 2452 device_lock_t dvl = device_getlock(dev); 2453 2454 KASSERT(dvl->dvl_nlock > 0); 2455 mutex_enter(&dvl->dvl_mtx); 2456 if (--dvl->dvl_nlock == 0) 2457 dvl->dvl_holder = NULL; 2458 cv_signal(&dvl->dvl_cv); 2459 pmflock_debug(dev, __func__, __LINE__); 2460 mutex_exit(&dvl->dvl_mtx); 2461 } 2462 2463 device_lock_t 2464 device_getlock(device_t dev) 2465 { 2466 return &dev->dv_lock; 2467 } 2468 2469 void * 2470 device_pmf_bus_private(device_t dev) 2471 { 2472 return dev->dv_bus_private; 2473 } 2474 2475 bool 2476 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2477 { 2478 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2479 return true; 2480 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2481 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2482 return false; 2483 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2484 dev->dv_bus_suspend != NULL && 2485 !(*dev->dv_bus_suspend)(dev, qual)) 2486 return false; 2487 2488 dev->dv_flags |= DVF_BUS_SUSPENDED; 2489 return true; 2490 } 2491 2492 bool 2493 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2494 { 2495 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2496 return true; 2497 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2498 dev->dv_bus_resume != NULL && 2499 !(*dev->dv_bus_resume)(dev, qual)) 2500 return false; 2501 2502 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2503 return true; 2504 } 2505 2506 bool 2507 device_pmf_bus_shutdown(device_t dev, int how) 2508 { 2509 2510 if (*dev->dv_bus_shutdown != NULL && 2511 !(*dev->dv_bus_shutdown)(dev, how)) 2512 return false; 2513 return true; 2514 } 2515 2516 void 2517 device_pmf_bus_register(device_t dev, void *priv, 2518 bool (*suspend)(device_t, const pmf_qual_t *), 2519 bool (*resume)(device_t, const pmf_qual_t *), 2520 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2521 { 2522 dev->dv_bus_private = priv; 2523 dev->dv_bus_resume = resume; 2524 dev->dv_bus_suspend = suspend; 2525 dev->dv_bus_shutdown = shutdown; 2526 dev->dv_bus_deregister = deregister; 2527 } 2528 2529 void 2530 device_pmf_bus_deregister(device_t dev) 2531 { 2532 if (dev->dv_bus_deregister == NULL) 2533 return; 2534 (*dev->dv_bus_deregister)(dev); 2535 dev->dv_bus_private = NULL; 2536 dev->dv_bus_suspend = NULL; 2537 dev->dv_bus_resume = NULL; 2538 dev->dv_bus_deregister = NULL; 2539 } 2540 2541 void * 2542 device_pmf_class_private(device_t dev) 2543 { 2544 return dev->dv_class_private; 2545 } 2546 2547 bool 2548 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2549 { 2550 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2551 return true; 2552 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2553 dev->dv_class_suspend != NULL && 2554 !(*dev->dv_class_suspend)(dev, qual)) 2555 return false; 2556 2557 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2558 return true; 2559 } 2560 2561 bool 2562 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2563 { 2564 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2565 return true; 2566 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2567 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2568 return false; 2569 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2570 dev->dv_class_resume != NULL && 2571 !(*dev->dv_class_resume)(dev, qual)) 2572 return false; 2573 2574 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2575 return true; 2576 } 2577 2578 void 2579 device_pmf_class_register(device_t dev, void *priv, 2580 bool (*suspend)(device_t, const pmf_qual_t *), 2581 bool (*resume)(device_t, const pmf_qual_t *), 2582 void (*deregister)(device_t)) 2583 { 2584 dev->dv_class_private = priv; 2585 dev->dv_class_suspend = suspend; 2586 dev->dv_class_resume = resume; 2587 dev->dv_class_deregister = deregister; 2588 } 2589 2590 void 2591 device_pmf_class_deregister(device_t dev) 2592 { 2593 if (dev->dv_class_deregister == NULL) 2594 return; 2595 (*dev->dv_class_deregister)(dev); 2596 dev->dv_class_private = NULL; 2597 dev->dv_class_suspend = NULL; 2598 dev->dv_class_resume = NULL; 2599 dev->dv_class_deregister = NULL; 2600 } 2601 2602 bool 2603 device_active(device_t dev, devactive_t type) 2604 { 2605 size_t i; 2606 2607 if (dev->dv_activity_count == 0) 2608 return false; 2609 2610 for (i = 0; i < dev->dv_activity_count; ++i) { 2611 if (dev->dv_activity_handlers[i] == NULL) 2612 break; 2613 (*dev->dv_activity_handlers[i])(dev, type); 2614 } 2615 2616 return true; 2617 } 2618 2619 bool 2620 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2621 { 2622 void (**new_handlers)(device_t, devactive_t); 2623 void (**old_handlers)(device_t, devactive_t); 2624 size_t i, old_size, new_size; 2625 int s; 2626 2627 old_handlers = dev->dv_activity_handlers; 2628 old_size = dev->dv_activity_count; 2629 2630 KASSERT(old_size == 0 || old_handlers != NULL); 2631 2632 for (i = 0; i < old_size; ++i) { 2633 KASSERT(old_handlers[i] != handler); 2634 if (old_handlers[i] == NULL) { 2635 old_handlers[i] = handler; 2636 return true; 2637 } 2638 } 2639 2640 new_size = old_size + 4; 2641 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2642 2643 for (i = 0; i < old_size; ++i) 2644 new_handlers[i] = old_handlers[i]; 2645 new_handlers[old_size] = handler; 2646 for (i = old_size+1; i < new_size; ++i) 2647 new_handlers[i] = NULL; 2648 2649 s = splhigh(); 2650 dev->dv_activity_count = new_size; 2651 dev->dv_activity_handlers = new_handlers; 2652 splx(s); 2653 2654 if (old_size > 0) 2655 kmem_free(old_handlers, sizeof(void * [old_size])); 2656 2657 return true; 2658 } 2659 2660 void 2661 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2662 { 2663 void (**old_handlers)(device_t, devactive_t); 2664 size_t i, old_size; 2665 int s; 2666 2667 old_handlers = dev->dv_activity_handlers; 2668 old_size = dev->dv_activity_count; 2669 2670 for (i = 0; i < old_size; ++i) { 2671 if (old_handlers[i] == handler) 2672 break; 2673 if (old_handlers[i] == NULL) 2674 return; /* XXX panic? */ 2675 } 2676 2677 if (i == old_size) 2678 return; /* XXX panic? */ 2679 2680 for (; i < old_size - 1; ++i) { 2681 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2682 continue; 2683 2684 if (i == 0) { 2685 s = splhigh(); 2686 dev->dv_activity_count = 0; 2687 dev->dv_activity_handlers = NULL; 2688 splx(s); 2689 kmem_free(old_handlers, sizeof(void *[old_size])); 2690 } 2691 return; 2692 } 2693 old_handlers[i] = NULL; 2694 } 2695 2696 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2697 static bool 2698 device_exists_at(device_t dv, devgen_t gen) 2699 { 2700 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2701 dv->dv_add_gen <= gen; 2702 } 2703 2704 static bool 2705 deviter_visits(const deviter_t *di, device_t dv) 2706 { 2707 return device_exists_at(dv, di->di_gen); 2708 } 2709 2710 /* 2711 * Device Iteration 2712 * 2713 * deviter_t: a device iterator. Holds state for a "walk" visiting 2714 * each device_t's in the device tree. 2715 * 2716 * deviter_init(di, flags): initialize the device iterator `di' 2717 * to "walk" the device tree. deviter_next(di) will return 2718 * the first device_t in the device tree, or NULL if there are 2719 * no devices. 2720 * 2721 * `flags' is one or more of DEVITER_F_RW, indicating that the 2722 * caller intends to modify the device tree by calling 2723 * config_detach(9) on devices in the order that the iterator 2724 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2725 * nearest the "root" of the device tree to be returned, first; 2726 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2727 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2728 * indicating both that deviter_init() should not respect any 2729 * locks on the device tree, and that deviter_next(di) may run 2730 * in more than one LWP before the walk has finished. 2731 * 2732 * Only one DEVITER_F_RW iterator may be in the device tree at 2733 * once. 2734 * 2735 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2736 * 2737 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2738 * DEVITER_F_LEAVES_FIRST are used in combination. 2739 * 2740 * deviter_first(di, flags): initialize the device iterator `di' 2741 * and return the first device_t in the device tree, or NULL 2742 * if there are no devices. The statement 2743 * 2744 * dv = deviter_first(di); 2745 * 2746 * is shorthand for 2747 * 2748 * deviter_init(di); 2749 * dv = deviter_next(di); 2750 * 2751 * deviter_next(di): return the next device_t in the device tree, 2752 * or NULL if there are no more devices. deviter_next(di) 2753 * is undefined if `di' was not initialized with deviter_init() or 2754 * deviter_first(). 2755 * 2756 * deviter_release(di): stops iteration (subsequent calls to 2757 * deviter_next() will return NULL), releases any locks and 2758 * resources held by the device iterator. 2759 * 2760 * Device iteration does not return device_t's in any particular 2761 * order. An iterator will never return the same device_t twice. 2762 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2763 * is called repeatedly on the same `di', it will eventually return 2764 * NULL. It is ok to attach/detach devices during device iteration. 2765 */ 2766 void 2767 deviter_init(deviter_t *di, deviter_flags_t flags) 2768 { 2769 device_t dv; 2770 2771 memset(di, 0, sizeof(*di)); 2772 2773 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2774 flags |= DEVITER_F_RW; 2775 2776 mutex_enter(&alldevs.lock); 2777 if ((flags & DEVITER_F_RW) != 0) 2778 alldevs.nwrite++; 2779 else 2780 alldevs.nread++; 2781 di->di_gen = alldevs.gen++; 2782 di->di_flags = flags; 2783 2784 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2785 case DEVITER_F_LEAVES_FIRST: 2786 TAILQ_FOREACH(dv, &alldevs.list, dv_list) { 2787 if (!deviter_visits(di, dv)) 2788 continue; 2789 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2790 } 2791 break; 2792 case DEVITER_F_ROOT_FIRST: 2793 TAILQ_FOREACH(dv, &alldevs.list, dv_list) { 2794 if (!deviter_visits(di, dv)) 2795 continue; 2796 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2797 } 2798 break; 2799 default: 2800 break; 2801 } 2802 2803 deviter_reinit(di); 2804 mutex_exit(&alldevs.lock); 2805 } 2806 2807 static void 2808 deviter_reinit(deviter_t *di) 2809 { 2810 2811 KASSERT(mutex_owned(&alldevs.lock)); 2812 if ((di->di_flags & DEVITER_F_RW) != 0) 2813 di->di_prev = TAILQ_LAST(&alldevs.list, devicelist); 2814 else 2815 di->di_prev = TAILQ_FIRST(&alldevs.list); 2816 } 2817 2818 device_t 2819 deviter_first(deviter_t *di, deviter_flags_t flags) 2820 { 2821 2822 deviter_init(di, flags); 2823 return deviter_next(di); 2824 } 2825 2826 static device_t 2827 deviter_next2(deviter_t *di) 2828 { 2829 device_t dv; 2830 2831 KASSERT(mutex_owned(&alldevs.lock)); 2832 2833 dv = di->di_prev; 2834 2835 if (dv == NULL) 2836 return NULL; 2837 2838 if ((di->di_flags & DEVITER_F_RW) != 0) 2839 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2840 else 2841 di->di_prev = TAILQ_NEXT(dv, dv_list); 2842 2843 return dv; 2844 } 2845 2846 static device_t 2847 deviter_next1(deviter_t *di) 2848 { 2849 device_t dv; 2850 2851 KASSERT(mutex_owned(&alldevs.lock)); 2852 2853 do { 2854 dv = deviter_next2(di); 2855 } while (dv != NULL && !deviter_visits(di, dv)); 2856 2857 return dv; 2858 } 2859 2860 device_t 2861 deviter_next(deviter_t *di) 2862 { 2863 device_t dv = NULL; 2864 2865 mutex_enter(&alldevs.lock); 2866 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2867 case 0: 2868 dv = deviter_next1(di); 2869 break; 2870 case DEVITER_F_LEAVES_FIRST: 2871 while (di->di_curdepth >= 0) { 2872 if ((dv = deviter_next1(di)) == NULL) { 2873 di->di_curdepth--; 2874 deviter_reinit(di); 2875 } else if (dv->dv_depth == di->di_curdepth) 2876 break; 2877 } 2878 break; 2879 case DEVITER_F_ROOT_FIRST: 2880 while (di->di_curdepth <= di->di_maxdepth) { 2881 if ((dv = deviter_next1(di)) == NULL) { 2882 di->di_curdepth++; 2883 deviter_reinit(di); 2884 } else if (dv->dv_depth == di->di_curdepth) 2885 break; 2886 } 2887 break; 2888 default: 2889 break; 2890 } 2891 mutex_exit(&alldevs.lock); 2892 2893 return dv; 2894 } 2895 2896 void 2897 deviter_release(deviter_t *di) 2898 { 2899 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2900 2901 mutex_enter(&alldevs.lock); 2902 if (rw) 2903 --alldevs.nwrite; 2904 else 2905 --alldevs.nread; 2906 /* XXX wake a garbage-collection thread */ 2907 mutex_exit(&alldevs.lock); 2908 } 2909 2910 const char * 2911 cfdata_ifattr(const struct cfdata *cf) 2912 { 2913 return cf->cf_pspec->cfp_iattr; 2914 } 2915 2916 bool 2917 ifattr_match(const char *snull, const char *t) 2918 { 2919 return (snull == NULL) || strcmp(snull, t) == 0; 2920 } 2921 2922 void 2923 null_childdetached(device_t self, device_t child) 2924 { 2925 /* do nothing */ 2926 } 2927 2928 static void 2929 sysctl_detach_setup(struct sysctllog **clog) 2930 { 2931 2932 sysctl_createv(clog, 0, NULL, NULL, 2933 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2934 CTLTYPE_BOOL, "detachall", 2935 SYSCTL_DESCR("Detach all devices at shutdown"), 2936 NULL, 0, &detachall, 0, 2937 CTL_KERN, CTL_CREATE, CTL_EOL); 2938 } 2939