1 /* $NetBSD: subr_autoconf.c,v 1.232 2014/09/05 05:57:21 matt Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.232 2014/09/05 05:57:21 matt Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/disklabel.h> 90 #include <sys/conf.h> 91 #include <sys/kauth.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 111 #include <sys/disk.h> 112 113 #include <sys/rnd.h> 114 115 #include <machine/limits.h> 116 117 /* 118 * Autoconfiguration subroutines. 119 */ 120 121 /* 122 * Device autoconfiguration timings are mixed into the entropy pool. 123 */ 124 extern krndsource_t rnd_autoconf_source; 125 126 /* 127 * ioconf.c exports exactly two names: cfdata and cfroots. All system 128 * devices and drivers are found via these tables. 129 */ 130 extern struct cfdata cfdata[]; 131 extern const short cfroots[]; 132 133 /* 134 * List of all cfdriver structures. We use this to detect duplicates 135 * when other cfdrivers are loaded. 136 */ 137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 138 extern struct cfdriver * const cfdriver_list_initial[]; 139 140 /* 141 * Initial list of cfattach's. 142 */ 143 extern const struct cfattachinit cfattachinit[]; 144 145 /* 146 * List of cfdata tables. We always have one such list -- the one 147 * built statically when the kernel was configured. 148 */ 149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 150 static struct cftable initcftable; 151 152 #define ROOT ((device_t)NULL) 153 154 struct matchinfo { 155 cfsubmatch_t fn; 156 device_t parent; 157 const int *locs; 158 void *aux; 159 struct cfdata *match; 160 int pri; 161 }; 162 163 struct alldevs_foray { 164 int af_s; 165 struct devicelist af_garbage; 166 }; 167 168 static char *number(char *, int); 169 static void mapply(struct matchinfo *, cfdata_t); 170 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 171 static void config_devdelete(device_t); 172 static void config_devunlink(device_t, struct devicelist *); 173 static void config_makeroom(int, struct cfdriver *); 174 static void config_devlink(device_t); 175 static void config_alldevs_unlock(int); 176 static int config_alldevs_lock(void); 177 static void config_alldevs_enter(struct alldevs_foray *); 178 static void config_alldevs_exit(struct alldevs_foray *); 179 static void config_add_attrib_dict(device_t); 180 181 static void config_collect_garbage(struct devicelist *); 182 static void config_dump_garbage(struct devicelist *); 183 184 static void pmflock_debug(device_t, const char *, int); 185 186 static device_t deviter_next1(deviter_t *); 187 static void deviter_reinit(deviter_t *); 188 189 struct deferred_config { 190 TAILQ_ENTRY(deferred_config) dc_queue; 191 device_t dc_dev; 192 void (*dc_func)(device_t); 193 }; 194 195 TAILQ_HEAD(deferred_config_head, deferred_config); 196 197 struct deferred_config_head deferred_config_queue = 198 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 199 struct deferred_config_head interrupt_config_queue = 200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 201 int interrupt_config_threads = 8; 202 struct deferred_config_head mountroot_config_queue = 203 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 204 int mountroot_config_threads = 2; 205 static bool root_is_mounted = false; 206 207 static void config_process_deferred(struct deferred_config_head *, device_t); 208 209 /* Hooks to finalize configuration once all real devices have been found. */ 210 struct finalize_hook { 211 TAILQ_ENTRY(finalize_hook) f_list; 212 int (*f_func)(device_t); 213 device_t f_dev; 214 }; 215 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 216 TAILQ_HEAD_INITIALIZER(config_finalize_list); 217 static int config_finalize_done; 218 219 /* list of all devices */ 220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 221 static kmutex_t alldevs_mtx; 222 static volatile bool alldevs_garbage = false; 223 static volatile devgen_t alldevs_gen = 1; 224 static volatile int alldevs_nread = 0; 225 static volatile int alldevs_nwrite = 0; 226 227 static int config_pending; /* semaphore for mountroot */ 228 static kmutex_t config_misc_lock; 229 static kcondvar_t config_misc_cv; 230 231 static bool detachall = false; 232 233 #define STREQ(s1, s2) \ 234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 235 236 static bool config_initialized = false; /* config_init() has been called. */ 237 238 static int config_do_twiddle; 239 static callout_t config_twiddle_ch; 240 241 static void sysctl_detach_setup(struct sysctllog **); 242 243 typedef int (*cfdriver_fn)(struct cfdriver *); 244 static int 245 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 246 cfdriver_fn drv_do, cfdriver_fn drv_undo, 247 const char *style, bool dopanic) 248 { 249 void (*pr)(const char *, ...) __printflike(1, 2) = 250 dopanic ? panic : printf; 251 int i, error = 0, e2 __diagused; 252 253 for (i = 0; cfdriverv[i] != NULL; i++) { 254 if ((error = drv_do(cfdriverv[i])) != 0) { 255 pr("configure: `%s' driver %s failed: %d", 256 cfdriverv[i]->cd_name, style, error); 257 goto bad; 258 } 259 } 260 261 KASSERT(error == 0); 262 return 0; 263 264 bad: 265 printf("\n"); 266 for (i--; i >= 0; i--) { 267 e2 = drv_undo(cfdriverv[i]); 268 KASSERT(e2 == 0); 269 } 270 271 return error; 272 } 273 274 typedef int (*cfattach_fn)(const char *, struct cfattach *); 275 static int 276 frob_cfattachvec(const struct cfattachinit *cfattachv, 277 cfattach_fn att_do, cfattach_fn att_undo, 278 const char *style, bool dopanic) 279 { 280 const struct cfattachinit *cfai = NULL; 281 void (*pr)(const char *, ...) __printflike(1, 2) = 282 dopanic ? panic : printf; 283 int j = 0, error = 0, e2 __diagused; 284 285 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 286 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 287 if ((error = att_do(cfai->cfai_name, 288 cfai->cfai_list[j])) != 0) { 289 pr("configure: attachment `%s' " 290 "of `%s' driver %s failed: %d", 291 cfai->cfai_list[j]->ca_name, 292 cfai->cfai_name, style, error); 293 goto bad; 294 } 295 } 296 } 297 298 KASSERT(error == 0); 299 return 0; 300 301 bad: 302 /* 303 * Rollback in reverse order. dunno if super-important, but 304 * do that anyway. Although the code looks a little like 305 * someone did a little integration (in the math sense). 306 */ 307 printf("\n"); 308 if (cfai) { 309 bool last; 310 311 for (last = false; last == false; ) { 312 if (cfai == &cfattachv[0]) 313 last = true; 314 for (j--; j >= 0; j--) { 315 e2 = att_undo(cfai->cfai_name, 316 cfai->cfai_list[j]); 317 KASSERT(e2 == 0); 318 } 319 if (!last) { 320 cfai--; 321 for (j = 0; cfai->cfai_list[j] != NULL; j++) 322 ; 323 } 324 } 325 } 326 327 return error; 328 } 329 330 /* 331 * Initialize the autoconfiguration data structures. Normally this 332 * is done by configure(), but some platforms need to do this very 333 * early (to e.g. initialize the console). 334 */ 335 void 336 config_init(void) 337 { 338 339 KASSERT(config_initialized == false); 340 341 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM); 342 343 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 344 cv_init(&config_misc_cv, "cfgmisc"); 345 346 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 347 348 frob_cfdrivervec(cfdriver_list_initial, 349 config_cfdriver_attach, NULL, "bootstrap", true); 350 frob_cfattachvec(cfattachinit, 351 config_cfattach_attach, NULL, "bootstrap", true); 352 353 initcftable.ct_cfdata = cfdata; 354 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 355 356 config_initialized = true; 357 } 358 359 /* 360 * Init or fini drivers and attachments. Either all or none 361 * are processed (via rollback). It would be nice if this were 362 * atomic to outside consumers, but with the current state of 363 * locking ... 364 */ 365 int 366 config_init_component(struct cfdriver * const *cfdriverv, 367 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 368 { 369 int error; 370 371 if ((error = frob_cfdrivervec(cfdriverv, 372 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 373 return error; 374 if ((error = frob_cfattachvec(cfattachv, 375 config_cfattach_attach, config_cfattach_detach, 376 "init", false)) != 0) { 377 frob_cfdrivervec(cfdriverv, 378 config_cfdriver_detach, NULL, "init rollback", true); 379 return error; 380 } 381 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 382 frob_cfattachvec(cfattachv, 383 config_cfattach_detach, NULL, "init rollback", true); 384 frob_cfdrivervec(cfdriverv, 385 config_cfdriver_detach, NULL, "init rollback", true); 386 return error; 387 } 388 389 return 0; 390 } 391 392 int 393 config_fini_component(struct cfdriver * const *cfdriverv, 394 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 395 { 396 int error; 397 398 if ((error = config_cfdata_detach(cfdatav)) != 0) 399 return error; 400 if ((error = frob_cfattachvec(cfattachv, 401 config_cfattach_detach, config_cfattach_attach, 402 "fini", false)) != 0) { 403 if (config_cfdata_attach(cfdatav, 0) != 0) 404 panic("config_cfdata fini rollback failed"); 405 return error; 406 } 407 if ((error = frob_cfdrivervec(cfdriverv, 408 config_cfdriver_detach, config_cfdriver_attach, 409 "fini", false)) != 0) { 410 frob_cfattachvec(cfattachv, 411 config_cfattach_attach, NULL, "fini rollback", true); 412 if (config_cfdata_attach(cfdatav, 0) != 0) 413 panic("config_cfdata fini rollback failed"); 414 return error; 415 } 416 417 return 0; 418 } 419 420 void 421 config_init_mi(void) 422 { 423 424 if (!config_initialized) 425 config_init(); 426 427 sysctl_detach_setup(NULL); 428 } 429 430 void 431 config_deferred(device_t dev) 432 { 433 config_process_deferred(&deferred_config_queue, dev); 434 config_process_deferred(&interrupt_config_queue, dev); 435 config_process_deferred(&mountroot_config_queue, dev); 436 } 437 438 static void 439 config_interrupts_thread(void *cookie) 440 { 441 struct deferred_config *dc; 442 443 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 444 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 445 (*dc->dc_func)(dc->dc_dev); 446 config_pending_decr(dc->dc_dev); 447 kmem_free(dc, sizeof(*dc)); 448 } 449 kthread_exit(0); 450 } 451 452 void 453 config_create_interruptthreads(void) 454 { 455 int i; 456 457 for (i = 0; i < interrupt_config_threads; i++) { 458 (void)kthread_create(PRI_NONE, 0, NULL, 459 config_interrupts_thread, NULL, NULL, "configintr"); 460 } 461 } 462 463 static void 464 config_mountroot_thread(void *cookie) 465 { 466 struct deferred_config *dc; 467 468 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 469 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 470 (*dc->dc_func)(dc->dc_dev); 471 kmem_free(dc, sizeof(*dc)); 472 } 473 kthread_exit(0); 474 } 475 476 void 477 config_create_mountrootthreads(void) 478 { 479 int i; 480 481 if (!root_is_mounted) 482 root_is_mounted = true; 483 484 for (i = 0; i < mountroot_config_threads; i++) { 485 (void)kthread_create(PRI_NONE, 0, NULL, 486 config_mountroot_thread, NULL, NULL, "configroot"); 487 } 488 } 489 490 /* 491 * Announce device attach/detach to userland listeners. 492 */ 493 static void 494 devmon_report_device(device_t dev, bool isattach) 495 { 496 #if NDRVCTL > 0 497 prop_dictionary_t ev; 498 const char *parent; 499 const char *what; 500 device_t pdev = device_parent(dev); 501 502 ev = prop_dictionary_create(); 503 if (ev == NULL) 504 return; 505 506 what = (isattach ? "device-attach" : "device-detach"); 507 parent = (pdev == NULL ? "root" : device_xname(pdev)); 508 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 509 !prop_dictionary_set_cstring(ev, "parent", parent)) { 510 prop_object_release(ev); 511 return; 512 } 513 514 devmon_insert(what, ev); 515 #endif 516 } 517 518 /* 519 * Add a cfdriver to the system. 520 */ 521 int 522 config_cfdriver_attach(struct cfdriver *cd) 523 { 524 struct cfdriver *lcd; 525 526 /* Make sure this driver isn't already in the system. */ 527 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 528 if (STREQ(lcd->cd_name, cd->cd_name)) 529 return EEXIST; 530 } 531 532 LIST_INIT(&cd->cd_attach); 533 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 534 535 return 0; 536 } 537 538 /* 539 * Remove a cfdriver from the system. 540 */ 541 int 542 config_cfdriver_detach(struct cfdriver *cd) 543 { 544 struct alldevs_foray af; 545 int i, rc = 0; 546 547 config_alldevs_enter(&af); 548 /* Make sure there are no active instances. */ 549 for (i = 0; i < cd->cd_ndevs; i++) { 550 if (cd->cd_devs[i] != NULL) { 551 rc = EBUSY; 552 break; 553 } 554 } 555 config_alldevs_exit(&af); 556 557 if (rc != 0) 558 return rc; 559 560 /* ...and no attachments loaded. */ 561 if (LIST_EMPTY(&cd->cd_attach) == 0) 562 return EBUSY; 563 564 LIST_REMOVE(cd, cd_list); 565 566 KASSERT(cd->cd_devs == NULL); 567 568 return 0; 569 } 570 571 /* 572 * Look up a cfdriver by name. 573 */ 574 struct cfdriver * 575 config_cfdriver_lookup(const char *name) 576 { 577 struct cfdriver *cd; 578 579 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 580 if (STREQ(cd->cd_name, name)) 581 return cd; 582 } 583 584 return NULL; 585 } 586 587 /* 588 * Add a cfattach to the specified driver. 589 */ 590 int 591 config_cfattach_attach(const char *driver, struct cfattach *ca) 592 { 593 struct cfattach *lca; 594 struct cfdriver *cd; 595 596 cd = config_cfdriver_lookup(driver); 597 if (cd == NULL) 598 return ESRCH; 599 600 /* Make sure this attachment isn't already on this driver. */ 601 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 602 if (STREQ(lca->ca_name, ca->ca_name)) 603 return EEXIST; 604 } 605 606 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 607 608 return 0; 609 } 610 611 /* 612 * Remove a cfattach from the specified driver. 613 */ 614 int 615 config_cfattach_detach(const char *driver, struct cfattach *ca) 616 { 617 struct alldevs_foray af; 618 struct cfdriver *cd; 619 device_t dev; 620 int i, rc = 0; 621 622 cd = config_cfdriver_lookup(driver); 623 if (cd == NULL) 624 return ESRCH; 625 626 config_alldevs_enter(&af); 627 /* Make sure there are no active instances. */ 628 for (i = 0; i < cd->cd_ndevs; i++) { 629 if ((dev = cd->cd_devs[i]) == NULL) 630 continue; 631 if (dev->dv_cfattach == ca) { 632 rc = EBUSY; 633 break; 634 } 635 } 636 config_alldevs_exit(&af); 637 638 if (rc != 0) 639 return rc; 640 641 LIST_REMOVE(ca, ca_list); 642 643 return 0; 644 } 645 646 /* 647 * Look up a cfattach by name. 648 */ 649 static struct cfattach * 650 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 651 { 652 struct cfattach *ca; 653 654 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 655 if (STREQ(ca->ca_name, atname)) 656 return ca; 657 } 658 659 return NULL; 660 } 661 662 /* 663 * Look up a cfattach by driver/attachment name. 664 */ 665 struct cfattach * 666 config_cfattach_lookup(const char *name, const char *atname) 667 { 668 struct cfdriver *cd; 669 670 cd = config_cfdriver_lookup(name); 671 if (cd == NULL) 672 return NULL; 673 674 return config_cfattach_lookup_cd(cd, atname); 675 } 676 677 /* 678 * Apply the matching function and choose the best. This is used 679 * a few times and we want to keep the code small. 680 */ 681 static void 682 mapply(struct matchinfo *m, cfdata_t cf) 683 { 684 int pri; 685 686 if (m->fn != NULL) { 687 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 688 } else { 689 pri = config_match(m->parent, cf, m->aux); 690 } 691 if (pri > m->pri) { 692 m->match = cf; 693 m->pri = pri; 694 } 695 } 696 697 int 698 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 699 { 700 const struct cfiattrdata *ci; 701 const struct cflocdesc *cl; 702 int nlocs, i; 703 704 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 705 KASSERT(ci); 706 nlocs = ci->ci_loclen; 707 KASSERT(!nlocs || locs); 708 for (i = 0; i < nlocs; i++) { 709 cl = &ci->ci_locdesc[i]; 710 /* !cld_defaultstr means no default value */ 711 if ((!(cl->cld_defaultstr) 712 || (cf->cf_loc[i] != cl->cld_default)) 713 && cf->cf_loc[i] != locs[i]) 714 return 0; 715 } 716 717 return config_match(parent, cf, aux); 718 } 719 720 /* 721 * Helper function: check whether the driver supports the interface attribute 722 * and return its descriptor structure. 723 */ 724 static const struct cfiattrdata * 725 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 726 { 727 const struct cfiattrdata * const *cpp; 728 729 if (cd->cd_attrs == NULL) 730 return 0; 731 732 for (cpp = cd->cd_attrs; *cpp; cpp++) { 733 if (STREQ((*cpp)->ci_name, ia)) { 734 /* Match. */ 735 return *cpp; 736 } 737 } 738 return 0; 739 } 740 741 /* 742 * Lookup an interface attribute description by name. 743 * If the driver is given, consider only its supported attributes. 744 */ 745 const struct cfiattrdata * 746 cfiattr_lookup(const char *name, const struct cfdriver *cd) 747 { 748 const struct cfdriver *d; 749 const struct cfiattrdata *ia; 750 751 if (cd) 752 return cfdriver_get_iattr(cd, name); 753 754 LIST_FOREACH(d, &allcfdrivers, cd_list) { 755 ia = cfdriver_get_iattr(d, name); 756 if (ia) 757 return ia; 758 } 759 return 0; 760 } 761 762 /* 763 * Determine if `parent' is a potential parent for a device spec based 764 * on `cfp'. 765 */ 766 static int 767 cfparent_match(const device_t parent, const struct cfparent *cfp) 768 { 769 struct cfdriver *pcd; 770 771 /* We don't match root nodes here. */ 772 if (cfp == NULL) 773 return 0; 774 775 pcd = parent->dv_cfdriver; 776 KASSERT(pcd != NULL); 777 778 /* 779 * First, ensure this parent has the correct interface 780 * attribute. 781 */ 782 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 783 return 0; 784 785 /* 786 * If no specific parent device instance was specified (i.e. 787 * we're attaching to the attribute only), we're done! 788 */ 789 if (cfp->cfp_parent == NULL) 790 return 1; 791 792 /* 793 * Check the parent device's name. 794 */ 795 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 796 return 0; /* not the same parent */ 797 798 /* 799 * Make sure the unit number matches. 800 */ 801 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 802 cfp->cfp_unit == parent->dv_unit) 803 return 1; 804 805 /* Unit numbers don't match. */ 806 return 0; 807 } 808 809 /* 810 * Helper for config_cfdata_attach(): check all devices whether it could be 811 * parent any attachment in the config data table passed, and rescan. 812 */ 813 static void 814 rescan_with_cfdata(const struct cfdata *cf) 815 { 816 device_t d; 817 const struct cfdata *cf1; 818 deviter_t di; 819 820 821 /* 822 * "alldevs" is likely longer than a modules's cfdata, so make it 823 * the outer loop. 824 */ 825 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 826 827 if (!(d->dv_cfattach->ca_rescan)) 828 continue; 829 830 for (cf1 = cf; cf1->cf_name; cf1++) { 831 832 if (!cfparent_match(d, cf1->cf_pspec)) 833 continue; 834 835 (*d->dv_cfattach->ca_rescan)(d, 836 cfdata_ifattr(cf1), cf1->cf_loc); 837 838 config_deferred(d); 839 } 840 } 841 deviter_release(&di); 842 } 843 844 /* 845 * Attach a supplemental config data table and rescan potential 846 * parent devices if required. 847 */ 848 int 849 config_cfdata_attach(cfdata_t cf, int scannow) 850 { 851 struct cftable *ct; 852 853 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 854 ct->ct_cfdata = cf; 855 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 856 857 if (scannow) 858 rescan_with_cfdata(cf); 859 860 return 0; 861 } 862 863 /* 864 * Helper for config_cfdata_detach: check whether a device is 865 * found through any attachment in the config data table. 866 */ 867 static int 868 dev_in_cfdata(device_t d, cfdata_t cf) 869 { 870 const struct cfdata *cf1; 871 872 for (cf1 = cf; cf1->cf_name; cf1++) 873 if (d->dv_cfdata == cf1) 874 return 1; 875 876 return 0; 877 } 878 879 /* 880 * Detach a supplemental config data table. Detach all devices found 881 * through that table (and thus keeping references to it) before. 882 */ 883 int 884 config_cfdata_detach(cfdata_t cf) 885 { 886 device_t d; 887 int error = 0; 888 struct cftable *ct; 889 deviter_t di; 890 891 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 892 d = deviter_next(&di)) { 893 if (!dev_in_cfdata(d, cf)) 894 continue; 895 if ((error = config_detach(d, 0)) != 0) 896 break; 897 } 898 deviter_release(&di); 899 if (error) { 900 aprint_error_dev(d, "unable to detach instance\n"); 901 return error; 902 } 903 904 TAILQ_FOREACH(ct, &allcftables, ct_list) { 905 if (ct->ct_cfdata == cf) { 906 TAILQ_REMOVE(&allcftables, ct, ct_list); 907 kmem_free(ct, sizeof(*ct)); 908 return 0; 909 } 910 } 911 912 /* not found -- shouldn't happen */ 913 return EINVAL; 914 } 915 916 /* 917 * Invoke the "match" routine for a cfdata entry on behalf of 918 * an external caller, usually a "submatch" routine. 919 */ 920 int 921 config_match(device_t parent, cfdata_t cf, void *aux) 922 { 923 struct cfattach *ca; 924 925 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 926 if (ca == NULL) { 927 /* No attachment for this entry, oh well. */ 928 return 0; 929 } 930 931 return (*ca->ca_match)(parent, cf, aux); 932 } 933 934 /* 935 * Iterate over all potential children of some device, calling the given 936 * function (default being the child's match function) for each one. 937 * Nonzero returns are matches; the highest value returned is considered 938 * the best match. Return the `found child' if we got a match, or NULL 939 * otherwise. The `aux' pointer is simply passed on through. 940 * 941 * Note that this function is designed so that it can be used to apply 942 * an arbitrary function to all potential children (its return value 943 * can be ignored). 944 */ 945 cfdata_t 946 config_search_loc(cfsubmatch_t fn, device_t parent, 947 const char *ifattr, const int *locs, void *aux) 948 { 949 struct cftable *ct; 950 cfdata_t cf; 951 struct matchinfo m; 952 953 KASSERT(config_initialized); 954 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 955 956 m.fn = fn; 957 m.parent = parent; 958 m.locs = locs; 959 m.aux = aux; 960 m.match = NULL; 961 m.pri = 0; 962 963 TAILQ_FOREACH(ct, &allcftables, ct_list) { 964 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 965 966 /* We don't match root nodes here. */ 967 if (!cf->cf_pspec) 968 continue; 969 970 /* 971 * Skip cf if no longer eligible, otherwise scan 972 * through parents for one matching `parent', and 973 * try match function. 974 */ 975 if (cf->cf_fstate == FSTATE_FOUND) 976 continue; 977 if (cf->cf_fstate == FSTATE_DNOTFOUND || 978 cf->cf_fstate == FSTATE_DSTAR) 979 continue; 980 981 /* 982 * If an interface attribute was specified, 983 * consider only children which attach to 984 * that attribute. 985 */ 986 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 987 continue; 988 989 if (cfparent_match(parent, cf->cf_pspec)) 990 mapply(&m, cf); 991 } 992 } 993 return m.match; 994 } 995 996 cfdata_t 997 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 998 void *aux) 999 { 1000 1001 return config_search_loc(fn, parent, ifattr, NULL, aux); 1002 } 1003 1004 /* 1005 * Find the given root device. 1006 * This is much like config_search, but there is no parent. 1007 * Don't bother with multiple cfdata tables; the root node 1008 * must always be in the initial table. 1009 */ 1010 cfdata_t 1011 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1012 { 1013 cfdata_t cf; 1014 const short *p; 1015 struct matchinfo m; 1016 1017 m.fn = fn; 1018 m.parent = ROOT; 1019 m.aux = aux; 1020 m.match = NULL; 1021 m.pri = 0; 1022 m.locs = 0; 1023 /* 1024 * Look at root entries for matching name. We do not bother 1025 * with found-state here since only one root should ever be 1026 * searched (and it must be done first). 1027 */ 1028 for (p = cfroots; *p >= 0; p++) { 1029 cf = &cfdata[*p]; 1030 if (strcmp(cf->cf_name, rootname) == 0) 1031 mapply(&m, cf); 1032 } 1033 return m.match; 1034 } 1035 1036 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1037 1038 /* 1039 * The given `aux' argument describes a device that has been found 1040 * on the given parent, but not necessarily configured. Locate the 1041 * configuration data for that device (using the submatch function 1042 * provided, or using candidates' cd_match configuration driver 1043 * functions) and attach it, and return its device_t. If the device was 1044 * not configured, call the given `print' function and return NULL. 1045 */ 1046 device_t 1047 config_found_sm_loc(device_t parent, 1048 const char *ifattr, const int *locs, void *aux, 1049 cfprint_t print, cfsubmatch_t submatch) 1050 { 1051 cfdata_t cf; 1052 1053 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1054 return(config_attach_loc(parent, cf, locs, aux, print)); 1055 if (print) { 1056 if (config_do_twiddle && cold) 1057 twiddle(); 1058 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1059 } 1060 1061 /* 1062 * This has the effect of mixing in a single timestamp to the 1063 * entropy pool. Experiments indicate the estimator will almost 1064 * always attribute one bit of entropy to this sample; analysis 1065 * of device attach/detach timestamps on FreeBSD indicates 4 1066 * bits of entropy/sample so this seems appropriately conservative. 1067 */ 1068 rnd_add_uint32(&rnd_autoconf_source, 0); 1069 return NULL; 1070 } 1071 1072 device_t 1073 config_found_ia(device_t parent, const char *ifattr, void *aux, 1074 cfprint_t print) 1075 { 1076 1077 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1078 } 1079 1080 device_t 1081 config_found(device_t parent, void *aux, cfprint_t print) 1082 { 1083 1084 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1085 } 1086 1087 /* 1088 * As above, but for root devices. 1089 */ 1090 device_t 1091 config_rootfound(const char *rootname, void *aux) 1092 { 1093 cfdata_t cf; 1094 1095 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1096 return config_attach(ROOT, cf, aux, NULL); 1097 aprint_error("root device %s not configured\n", rootname); 1098 return NULL; 1099 } 1100 1101 /* just like sprintf(buf, "%d") except that it works from the end */ 1102 static char * 1103 number(char *ep, int n) 1104 { 1105 1106 *--ep = 0; 1107 while (n >= 10) { 1108 *--ep = (n % 10) + '0'; 1109 n /= 10; 1110 } 1111 *--ep = n + '0'; 1112 return ep; 1113 } 1114 1115 /* 1116 * Expand the size of the cd_devs array if necessary. 1117 * 1118 * The caller must hold alldevs_mtx. config_makeroom() may release and 1119 * re-acquire alldevs_mtx, so callers should re-check conditions such 1120 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1121 * returns. 1122 */ 1123 static void 1124 config_makeroom(int n, struct cfdriver *cd) 1125 { 1126 int ondevs, nndevs; 1127 device_t *osp, *nsp; 1128 1129 alldevs_nwrite++; 1130 1131 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1132 ; 1133 1134 while (n >= cd->cd_ndevs) { 1135 /* 1136 * Need to expand the array. 1137 */ 1138 ondevs = cd->cd_ndevs; 1139 osp = cd->cd_devs; 1140 1141 /* Release alldevs_mtx around allocation, which may 1142 * sleep. 1143 */ 1144 mutex_exit(&alldevs_mtx); 1145 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP); 1146 if (nsp == NULL) 1147 panic("%s: could not expand cd_devs", __func__); 1148 mutex_enter(&alldevs_mtx); 1149 1150 /* If another thread moved the array while we did 1151 * not hold alldevs_mtx, try again. 1152 */ 1153 if (cd->cd_devs != osp) { 1154 mutex_exit(&alldevs_mtx); 1155 kmem_free(nsp, sizeof(device_t[nndevs])); 1156 mutex_enter(&alldevs_mtx); 1157 continue; 1158 } 1159 1160 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs])); 1161 if (ondevs != 0) 1162 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs])); 1163 1164 cd->cd_ndevs = nndevs; 1165 cd->cd_devs = nsp; 1166 if (ondevs != 0) { 1167 mutex_exit(&alldevs_mtx); 1168 kmem_free(osp, sizeof(device_t[ondevs])); 1169 mutex_enter(&alldevs_mtx); 1170 } 1171 } 1172 alldevs_nwrite--; 1173 } 1174 1175 /* 1176 * Put dev into the devices list. 1177 */ 1178 static void 1179 config_devlink(device_t dev) 1180 { 1181 int s; 1182 1183 s = config_alldevs_lock(); 1184 1185 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1186 1187 dev->dv_add_gen = alldevs_gen; 1188 /* It is safe to add a device to the tail of the list while 1189 * readers and writers are in the list. 1190 */ 1191 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1192 config_alldevs_unlock(s); 1193 } 1194 1195 static void 1196 config_devfree(device_t dev) 1197 { 1198 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1199 1200 if (dev->dv_cfattach->ca_devsize > 0) 1201 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1202 if (priv) 1203 kmem_free(dev, sizeof(*dev)); 1204 } 1205 1206 /* 1207 * Caller must hold alldevs_mtx. 1208 */ 1209 static void 1210 config_devunlink(device_t dev, struct devicelist *garbage) 1211 { 1212 struct device_garbage *dg = &dev->dv_garbage; 1213 cfdriver_t cd = device_cfdriver(dev); 1214 int i; 1215 1216 KASSERT(mutex_owned(&alldevs_mtx)); 1217 1218 /* Unlink from device list. Link to garbage list. */ 1219 TAILQ_REMOVE(&alldevs, dev, dv_list); 1220 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1221 1222 /* Remove from cfdriver's array. */ 1223 cd->cd_devs[dev->dv_unit] = NULL; 1224 1225 /* 1226 * If the device now has no units in use, unlink its softc array. 1227 */ 1228 for (i = 0; i < cd->cd_ndevs; i++) { 1229 if (cd->cd_devs[i] != NULL) 1230 break; 1231 } 1232 /* Nothing found. Unlink, now. Deallocate, later. */ 1233 if (i == cd->cd_ndevs) { 1234 dg->dg_ndevs = cd->cd_ndevs; 1235 dg->dg_devs = cd->cd_devs; 1236 cd->cd_devs = NULL; 1237 cd->cd_ndevs = 0; 1238 } 1239 } 1240 1241 static void 1242 config_devdelete(device_t dev) 1243 { 1244 struct device_garbage *dg = &dev->dv_garbage; 1245 device_lock_t dvl = device_getlock(dev); 1246 1247 if (dg->dg_devs != NULL) 1248 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1249 1250 cv_destroy(&dvl->dvl_cv); 1251 mutex_destroy(&dvl->dvl_mtx); 1252 1253 KASSERT(dev->dv_properties != NULL); 1254 prop_object_release(dev->dv_properties); 1255 1256 if (dev->dv_activity_handlers) 1257 panic("%s with registered handlers", __func__); 1258 1259 if (dev->dv_locators) { 1260 size_t amount = *--dev->dv_locators; 1261 kmem_free(dev->dv_locators, amount); 1262 } 1263 1264 config_devfree(dev); 1265 } 1266 1267 static int 1268 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1269 { 1270 int unit; 1271 1272 if (cf->cf_fstate == FSTATE_STAR) { 1273 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1274 if (cd->cd_devs[unit] == NULL) 1275 break; 1276 /* 1277 * unit is now the unit of the first NULL device pointer, 1278 * or max(cd->cd_ndevs,cf->cf_unit). 1279 */ 1280 } else { 1281 unit = cf->cf_unit; 1282 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1283 unit = -1; 1284 } 1285 return unit; 1286 } 1287 1288 static int 1289 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1290 { 1291 struct alldevs_foray af; 1292 int unit; 1293 1294 config_alldevs_enter(&af); 1295 for (;;) { 1296 unit = config_unit_nextfree(cd, cf); 1297 if (unit == -1) 1298 break; 1299 if (unit < cd->cd_ndevs) { 1300 cd->cd_devs[unit] = dev; 1301 dev->dv_unit = unit; 1302 break; 1303 } 1304 config_makeroom(unit, cd); 1305 } 1306 config_alldevs_exit(&af); 1307 1308 return unit; 1309 } 1310 1311 static device_t 1312 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1313 { 1314 cfdriver_t cd; 1315 cfattach_t ca; 1316 size_t lname, lunit; 1317 const char *xunit; 1318 int myunit; 1319 char num[10]; 1320 device_t dev; 1321 void *dev_private; 1322 const struct cfiattrdata *ia; 1323 device_lock_t dvl; 1324 1325 cd = config_cfdriver_lookup(cf->cf_name); 1326 if (cd == NULL) 1327 return NULL; 1328 1329 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1330 if (ca == NULL) 1331 return NULL; 1332 1333 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1334 ca->ca_devsize < sizeof(struct device)) 1335 panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname, 1336 ca->ca_devsize, sizeof(struct device)); 1337 1338 /* get memory for all device vars */ 1339 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1340 if (ca->ca_devsize > 0) { 1341 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1342 if (dev_private == NULL) 1343 panic("config_devalloc: memory allocation for device softc failed"); 1344 } else { 1345 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1346 dev_private = NULL; 1347 } 1348 1349 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1350 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1351 } else { 1352 dev = dev_private; 1353 #ifdef DIAGNOSTIC 1354 printf("%s has not been converted to device_t\n", cd->cd_name); 1355 #endif 1356 } 1357 if (dev == NULL) 1358 panic("config_devalloc: memory allocation for device_t failed"); 1359 1360 dev->dv_class = cd->cd_class; 1361 dev->dv_cfdata = cf; 1362 dev->dv_cfdriver = cd; 1363 dev->dv_cfattach = ca; 1364 dev->dv_activity_count = 0; 1365 dev->dv_activity_handlers = NULL; 1366 dev->dv_private = dev_private; 1367 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1368 1369 myunit = config_unit_alloc(dev, cd, cf); 1370 if (myunit == -1) { 1371 config_devfree(dev); 1372 return NULL; 1373 } 1374 1375 /* compute length of name and decimal expansion of unit number */ 1376 lname = strlen(cd->cd_name); 1377 xunit = number(&num[sizeof(num)], myunit); 1378 lunit = &num[sizeof(num)] - xunit; 1379 if (lname + lunit > sizeof(dev->dv_xname)) 1380 panic("config_devalloc: device name too long"); 1381 1382 dvl = device_getlock(dev); 1383 1384 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1385 cv_init(&dvl->dvl_cv, "pmfsusp"); 1386 1387 memcpy(dev->dv_xname, cd->cd_name, lname); 1388 memcpy(dev->dv_xname + lname, xunit, lunit); 1389 dev->dv_parent = parent; 1390 if (parent != NULL) 1391 dev->dv_depth = parent->dv_depth + 1; 1392 else 1393 dev->dv_depth = 0; 1394 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1395 if (locs) { 1396 KASSERT(parent); /* no locators at root */ 1397 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1398 dev->dv_locators = 1399 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1400 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1401 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1402 } 1403 dev->dv_properties = prop_dictionary_create(); 1404 KASSERT(dev->dv_properties != NULL); 1405 1406 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1407 "device-driver", dev->dv_cfdriver->cd_name); 1408 prop_dictionary_set_uint16(dev->dv_properties, 1409 "device-unit", dev->dv_unit); 1410 1411 if (dev->dv_cfdriver->cd_attrs != NULL) 1412 config_add_attrib_dict(dev); 1413 1414 return dev; 1415 } 1416 1417 /* 1418 * Create an array of device attach attributes and add it 1419 * to the device's dv_properties dictionary. 1420 * 1421 * <key>interface-attributes</key> 1422 * <array> 1423 * <dict> 1424 * <key>attribute-name</key> 1425 * <string>foo</string> 1426 * <key>locators</key> 1427 * <array> 1428 * <dict> 1429 * <key>loc-name</key> 1430 * <string>foo-loc1</string> 1431 * </dict> 1432 * <dict> 1433 * <key>loc-name</key> 1434 * <string>foo-loc2</string> 1435 * <key>default</key> 1436 * <string>foo-loc2-default</string> 1437 * </dict> 1438 * ... 1439 * </array> 1440 * </dict> 1441 * ... 1442 * </array> 1443 */ 1444 1445 static void 1446 config_add_attrib_dict(device_t dev) 1447 { 1448 int i, j; 1449 const struct cfiattrdata *ci; 1450 prop_dictionary_t attr_dict, loc_dict; 1451 prop_array_t attr_array, loc_array; 1452 1453 if ((attr_array = prop_array_create()) == NULL) 1454 return; 1455 1456 for (i = 0; ; i++) { 1457 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1458 break; 1459 if ((attr_dict = prop_dictionary_create()) == NULL) 1460 break; 1461 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name", 1462 ci->ci_name); 1463 1464 /* Create an array of the locator names and defaults */ 1465 1466 if (ci->ci_loclen != 0 && 1467 (loc_array = prop_array_create()) != NULL) { 1468 for (j = 0; j < ci->ci_loclen; j++) { 1469 loc_dict = prop_dictionary_create(); 1470 if (loc_dict == NULL) 1471 continue; 1472 prop_dictionary_set_cstring_nocopy(loc_dict, 1473 "loc-name", ci->ci_locdesc[j].cld_name); 1474 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1475 prop_dictionary_set_cstring_nocopy( 1476 loc_dict, "default", 1477 ci->ci_locdesc[j].cld_defaultstr); 1478 prop_array_set(loc_array, j, loc_dict); 1479 prop_object_release(loc_dict); 1480 } 1481 prop_dictionary_set_and_rel(attr_dict, "locators", 1482 loc_array); 1483 } 1484 prop_array_add(attr_array, attr_dict); 1485 prop_object_release(attr_dict); 1486 } 1487 if (i == 0) 1488 prop_object_release(attr_array); 1489 else 1490 prop_dictionary_set_and_rel(dev->dv_properties, 1491 "interface-attributes", attr_array); 1492 1493 return; 1494 } 1495 1496 /* 1497 * Attach a found device. 1498 */ 1499 device_t 1500 config_attach_loc(device_t parent, cfdata_t cf, 1501 const int *locs, void *aux, cfprint_t print) 1502 { 1503 device_t dev; 1504 struct cftable *ct; 1505 const char *drvname; 1506 1507 dev = config_devalloc(parent, cf, locs); 1508 if (!dev) 1509 panic("config_attach: allocation of device softc failed"); 1510 1511 /* XXX redundant - see below? */ 1512 if (cf->cf_fstate != FSTATE_STAR) { 1513 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1514 cf->cf_fstate = FSTATE_FOUND; 1515 } 1516 1517 config_devlink(dev); 1518 1519 if (config_do_twiddle && cold) 1520 twiddle(); 1521 else 1522 aprint_naive("Found "); 1523 /* 1524 * We want the next two printfs for normal, verbose, and quiet, 1525 * but not silent (in which case, we're twiddling, instead). 1526 */ 1527 if (parent == ROOT) { 1528 aprint_naive("%s (root)", device_xname(dev)); 1529 aprint_normal("%s (root)", device_xname(dev)); 1530 } else { 1531 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1532 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1533 if (print) 1534 (void) (*print)(aux, NULL); 1535 } 1536 1537 /* 1538 * Before attaching, clobber any unfound devices that are 1539 * otherwise identical. 1540 * XXX code above is redundant? 1541 */ 1542 drvname = dev->dv_cfdriver->cd_name; 1543 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1544 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1545 if (STREQ(cf->cf_name, drvname) && 1546 cf->cf_unit == dev->dv_unit) { 1547 if (cf->cf_fstate == FSTATE_NOTFOUND) 1548 cf->cf_fstate = FSTATE_FOUND; 1549 } 1550 } 1551 } 1552 device_register(dev, aux); 1553 1554 /* Let userland know */ 1555 devmon_report_device(dev, true); 1556 1557 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1558 1559 if (!device_pmf_is_registered(dev)) 1560 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1561 1562 config_process_deferred(&deferred_config_queue, dev); 1563 1564 device_register_post_config(dev, aux); 1565 return dev; 1566 } 1567 1568 device_t 1569 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1570 { 1571 1572 return config_attach_loc(parent, cf, NULL, aux, print); 1573 } 1574 1575 /* 1576 * As above, but for pseudo-devices. Pseudo-devices attached in this 1577 * way are silently inserted into the device tree, and their children 1578 * attached. 1579 * 1580 * Note that because pseudo-devices are attached silently, any information 1581 * the attach routine wishes to print should be prefixed with the device 1582 * name by the attach routine. 1583 */ 1584 device_t 1585 config_attach_pseudo(cfdata_t cf) 1586 { 1587 device_t dev; 1588 1589 dev = config_devalloc(ROOT, cf, NULL); 1590 if (!dev) 1591 return NULL; 1592 1593 /* XXX mark busy in cfdata */ 1594 1595 if (cf->cf_fstate != FSTATE_STAR) { 1596 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1597 cf->cf_fstate = FSTATE_FOUND; 1598 } 1599 1600 config_devlink(dev); 1601 1602 #if 0 /* XXXJRT not yet */ 1603 device_register(dev, NULL); /* like a root node */ 1604 #endif 1605 1606 /* Let userland know */ 1607 devmon_report_device(dev, true); 1608 1609 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1610 1611 config_process_deferred(&deferred_config_queue, dev); 1612 return dev; 1613 } 1614 1615 /* 1616 * Caller must hold alldevs_mtx. 1617 */ 1618 static void 1619 config_collect_garbage(struct devicelist *garbage) 1620 { 1621 device_t dv; 1622 1623 KASSERT(!cpu_intr_p()); 1624 KASSERT(!cpu_softintr_p()); 1625 KASSERT(mutex_owned(&alldevs_mtx)); 1626 1627 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1628 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1629 if (dv->dv_del_gen != 0) 1630 break; 1631 } 1632 if (dv == NULL) { 1633 alldevs_garbage = false; 1634 break; 1635 } 1636 config_devunlink(dv, garbage); 1637 } 1638 KASSERT(mutex_owned(&alldevs_mtx)); 1639 } 1640 1641 static void 1642 config_dump_garbage(struct devicelist *garbage) 1643 { 1644 device_t dv; 1645 1646 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1647 TAILQ_REMOVE(garbage, dv, dv_list); 1648 config_devdelete(dv); 1649 } 1650 } 1651 1652 /* 1653 * Detach a device. Optionally forced (e.g. because of hardware 1654 * removal) and quiet. Returns zero if successful, non-zero 1655 * (an error code) otherwise. 1656 * 1657 * Note that this code wants to be run from a process context, so 1658 * that the detach can sleep to allow processes which have a device 1659 * open to run and unwind their stacks. 1660 */ 1661 int 1662 config_detach(device_t dev, int flags) 1663 { 1664 struct alldevs_foray af; 1665 struct cftable *ct; 1666 cfdata_t cf; 1667 const struct cfattach *ca; 1668 struct cfdriver *cd; 1669 #ifdef DIAGNOSTIC 1670 device_t d; 1671 #endif 1672 int rv = 0, s; 1673 1674 #ifdef DIAGNOSTIC 1675 cf = dev->dv_cfdata; 1676 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1677 cf->cf_fstate != FSTATE_STAR) 1678 panic("config_detach: %s: bad device fstate %d", 1679 device_xname(dev), cf ? cf->cf_fstate : -1); 1680 #endif 1681 cd = dev->dv_cfdriver; 1682 KASSERT(cd != NULL); 1683 1684 ca = dev->dv_cfattach; 1685 KASSERT(ca != NULL); 1686 1687 s = config_alldevs_lock(); 1688 if (dev->dv_del_gen != 0) { 1689 config_alldevs_unlock(s); 1690 #ifdef DIAGNOSTIC 1691 printf("%s: %s is already detached\n", __func__, 1692 device_xname(dev)); 1693 #endif /* DIAGNOSTIC */ 1694 return ENOENT; 1695 } 1696 alldevs_nwrite++; 1697 config_alldevs_unlock(s); 1698 1699 if (!detachall && 1700 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1701 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1702 rv = EOPNOTSUPP; 1703 } else if (ca->ca_detach != NULL) { 1704 rv = (*ca->ca_detach)(dev, flags); 1705 } else 1706 rv = EOPNOTSUPP; 1707 1708 /* 1709 * If it was not possible to detach the device, then we either 1710 * panic() (for the forced but failed case), or return an error. 1711 * 1712 * If it was possible to detach the device, ensure that the 1713 * device is deactivated. 1714 */ 1715 if (rv == 0) 1716 dev->dv_flags &= ~DVF_ACTIVE; 1717 else if ((flags & DETACH_FORCE) == 0) 1718 goto out; 1719 else { 1720 panic("config_detach: forced detach of %s failed (%d)", 1721 device_xname(dev), rv); 1722 } 1723 1724 /* 1725 * The device has now been successfully detached. 1726 */ 1727 1728 /* Let userland know */ 1729 devmon_report_device(dev, false); 1730 1731 #ifdef DIAGNOSTIC 1732 /* 1733 * Sanity: If you're successfully detached, you should have no 1734 * children. (Note that because children must be attached 1735 * after parents, we only need to search the latter part of 1736 * the list.) 1737 */ 1738 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1739 d = TAILQ_NEXT(d, dv_list)) { 1740 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1741 printf("config_detach: detached device %s" 1742 " has children %s\n", device_xname(dev), device_xname(d)); 1743 panic("config_detach"); 1744 } 1745 } 1746 #endif 1747 1748 /* notify the parent that the child is gone */ 1749 if (dev->dv_parent) { 1750 device_t p = dev->dv_parent; 1751 if (p->dv_cfattach->ca_childdetached) 1752 (*p->dv_cfattach->ca_childdetached)(p, dev); 1753 } 1754 1755 /* 1756 * Mark cfdata to show that the unit can be reused, if possible. 1757 */ 1758 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1759 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1760 if (STREQ(cf->cf_name, cd->cd_name)) { 1761 if (cf->cf_fstate == FSTATE_FOUND && 1762 cf->cf_unit == dev->dv_unit) 1763 cf->cf_fstate = FSTATE_NOTFOUND; 1764 } 1765 } 1766 } 1767 1768 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1769 aprint_normal_dev(dev, "detached\n"); 1770 1771 out: 1772 config_alldevs_enter(&af); 1773 KASSERT(alldevs_nwrite != 0); 1774 --alldevs_nwrite; 1775 if (rv == 0 && dev->dv_del_gen == 0) { 1776 if (alldevs_nwrite == 0 && alldevs_nread == 0) 1777 config_devunlink(dev, &af.af_garbage); 1778 else { 1779 dev->dv_del_gen = alldevs_gen; 1780 alldevs_garbage = true; 1781 } 1782 } 1783 config_alldevs_exit(&af); 1784 1785 return rv; 1786 } 1787 1788 int 1789 config_detach_children(device_t parent, int flags) 1790 { 1791 device_t dv; 1792 deviter_t di; 1793 int error = 0; 1794 1795 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1796 dv = deviter_next(&di)) { 1797 if (device_parent(dv) != parent) 1798 continue; 1799 if ((error = config_detach(dv, flags)) != 0) 1800 break; 1801 } 1802 deviter_release(&di); 1803 return error; 1804 } 1805 1806 device_t 1807 shutdown_first(struct shutdown_state *s) 1808 { 1809 if (!s->initialized) { 1810 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1811 s->initialized = true; 1812 } 1813 return shutdown_next(s); 1814 } 1815 1816 device_t 1817 shutdown_next(struct shutdown_state *s) 1818 { 1819 device_t dv; 1820 1821 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1822 ; 1823 1824 if (dv == NULL) 1825 s->initialized = false; 1826 1827 return dv; 1828 } 1829 1830 bool 1831 config_detach_all(int how) 1832 { 1833 static struct shutdown_state s; 1834 device_t curdev; 1835 bool progress = false; 1836 1837 if ((how & RB_NOSYNC) != 0) 1838 return false; 1839 1840 for (curdev = shutdown_first(&s); curdev != NULL; 1841 curdev = shutdown_next(&s)) { 1842 aprint_debug(" detaching %s, ", device_xname(curdev)); 1843 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1844 progress = true; 1845 aprint_debug("success."); 1846 } else 1847 aprint_debug("failed."); 1848 } 1849 return progress; 1850 } 1851 1852 static bool 1853 device_is_ancestor_of(device_t ancestor, device_t descendant) 1854 { 1855 device_t dv; 1856 1857 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1858 if (device_parent(dv) == ancestor) 1859 return true; 1860 } 1861 return false; 1862 } 1863 1864 int 1865 config_deactivate(device_t dev) 1866 { 1867 deviter_t di; 1868 const struct cfattach *ca; 1869 device_t descendant; 1870 int s, rv = 0, oflags; 1871 1872 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1873 descendant != NULL; 1874 descendant = deviter_next(&di)) { 1875 if (dev != descendant && 1876 !device_is_ancestor_of(dev, descendant)) 1877 continue; 1878 1879 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1880 continue; 1881 1882 ca = descendant->dv_cfattach; 1883 oflags = descendant->dv_flags; 1884 1885 descendant->dv_flags &= ~DVF_ACTIVE; 1886 if (ca->ca_activate == NULL) 1887 continue; 1888 s = splhigh(); 1889 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1890 splx(s); 1891 if (rv != 0) 1892 descendant->dv_flags = oflags; 1893 } 1894 deviter_release(&di); 1895 return rv; 1896 } 1897 1898 /* 1899 * Defer the configuration of the specified device until all 1900 * of its parent's devices have been attached. 1901 */ 1902 void 1903 config_defer(device_t dev, void (*func)(device_t)) 1904 { 1905 struct deferred_config *dc; 1906 1907 if (dev->dv_parent == NULL) 1908 panic("config_defer: can't defer config of a root device"); 1909 1910 #ifdef DIAGNOSTIC 1911 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1912 if (dc->dc_dev == dev) 1913 panic("config_defer: deferred twice"); 1914 } 1915 #endif 1916 1917 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1918 if (dc == NULL) 1919 panic("config_defer: unable to allocate callback"); 1920 1921 dc->dc_dev = dev; 1922 dc->dc_func = func; 1923 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1924 config_pending_incr(dev); 1925 } 1926 1927 /* 1928 * Defer some autoconfiguration for a device until after interrupts 1929 * are enabled. 1930 */ 1931 void 1932 config_interrupts(device_t dev, void (*func)(device_t)) 1933 { 1934 struct deferred_config *dc; 1935 1936 /* 1937 * If interrupts are enabled, callback now. 1938 */ 1939 if (cold == 0) { 1940 (*func)(dev); 1941 return; 1942 } 1943 1944 #ifdef DIAGNOSTIC 1945 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1946 if (dc->dc_dev == dev) 1947 panic("config_interrupts: deferred twice"); 1948 } 1949 #endif 1950 1951 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1952 if (dc == NULL) 1953 panic("config_interrupts: unable to allocate callback"); 1954 1955 dc->dc_dev = dev; 1956 dc->dc_func = func; 1957 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1958 config_pending_incr(dev); 1959 } 1960 1961 /* 1962 * Defer some autoconfiguration for a device until after root file system 1963 * is mounted (to load firmware etc). 1964 */ 1965 void 1966 config_mountroot(device_t dev, void (*func)(device_t)) 1967 { 1968 struct deferred_config *dc; 1969 1970 /* 1971 * If root file system is mounted, callback now. 1972 */ 1973 if (root_is_mounted) { 1974 (*func)(dev); 1975 return; 1976 } 1977 1978 #ifdef DIAGNOSTIC 1979 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) { 1980 if (dc->dc_dev == dev) 1981 panic("%s: deferred twice", __func__); 1982 } 1983 #endif 1984 1985 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1986 if (dc == NULL) 1987 panic("%s: unable to allocate callback", __func__); 1988 1989 dc->dc_dev = dev; 1990 dc->dc_func = func; 1991 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 1992 } 1993 1994 /* 1995 * Process a deferred configuration queue. 1996 */ 1997 static void 1998 config_process_deferred(struct deferred_config_head *queue, 1999 device_t parent) 2000 { 2001 struct deferred_config *dc, *ndc; 2002 2003 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 2004 ndc = TAILQ_NEXT(dc, dc_queue); 2005 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2006 TAILQ_REMOVE(queue, dc, dc_queue); 2007 (*dc->dc_func)(dc->dc_dev); 2008 config_pending_decr(dc->dc_dev); 2009 kmem_free(dc, sizeof(*dc)); 2010 } 2011 } 2012 } 2013 2014 /* 2015 * Manipulate the config_pending semaphore. 2016 */ 2017 void 2018 config_pending_incr(device_t dev) 2019 { 2020 2021 mutex_enter(&config_misc_lock); 2022 config_pending++; 2023 #ifdef DEBUG_AUTOCONF 2024 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2025 #endif 2026 mutex_exit(&config_misc_lock); 2027 } 2028 2029 void 2030 config_pending_decr(device_t dev) 2031 { 2032 2033 #ifdef DIAGNOSTIC 2034 if (config_pending == 0) 2035 panic("config_pending_decr: config_pending == 0"); 2036 #endif 2037 mutex_enter(&config_misc_lock); 2038 config_pending--; 2039 #ifdef DEBUG_AUTOCONF 2040 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2041 #endif 2042 if (config_pending == 0) 2043 cv_broadcast(&config_misc_cv); 2044 mutex_exit(&config_misc_lock); 2045 } 2046 2047 /* 2048 * Register a "finalization" routine. Finalization routines are 2049 * called iteratively once all real devices have been found during 2050 * autoconfiguration, for as long as any one finalizer has done 2051 * any work. 2052 */ 2053 int 2054 config_finalize_register(device_t dev, int (*fn)(device_t)) 2055 { 2056 struct finalize_hook *f; 2057 2058 /* 2059 * If finalization has already been done, invoke the 2060 * callback function now. 2061 */ 2062 if (config_finalize_done) { 2063 while ((*fn)(dev) != 0) 2064 /* loop */ ; 2065 } 2066 2067 /* Ensure this isn't already on the list. */ 2068 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2069 if (f->f_func == fn && f->f_dev == dev) 2070 return EEXIST; 2071 } 2072 2073 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2074 f->f_func = fn; 2075 f->f_dev = dev; 2076 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2077 2078 return 0; 2079 } 2080 2081 void 2082 config_finalize(void) 2083 { 2084 struct finalize_hook *f; 2085 struct pdevinit *pdev; 2086 extern struct pdevinit pdevinit[]; 2087 int errcnt, rv; 2088 2089 /* 2090 * Now that device driver threads have been created, wait for 2091 * them to finish any deferred autoconfiguration. 2092 */ 2093 mutex_enter(&config_misc_lock); 2094 while (config_pending != 0) 2095 cv_wait(&config_misc_cv, &config_misc_lock); 2096 mutex_exit(&config_misc_lock); 2097 2098 KERNEL_LOCK(1, NULL); 2099 2100 /* Attach pseudo-devices. */ 2101 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2102 (*pdev->pdev_attach)(pdev->pdev_count); 2103 2104 /* Run the hooks until none of them does any work. */ 2105 do { 2106 rv = 0; 2107 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2108 rv |= (*f->f_func)(f->f_dev); 2109 } while (rv != 0); 2110 2111 config_finalize_done = 1; 2112 2113 /* Now free all the hooks. */ 2114 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2115 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2116 kmem_free(f, sizeof(*f)); 2117 } 2118 2119 KERNEL_UNLOCK_ONE(NULL); 2120 2121 errcnt = aprint_get_error_count(); 2122 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2123 (boothowto & AB_VERBOSE) == 0) { 2124 mutex_enter(&config_misc_lock); 2125 if (config_do_twiddle) { 2126 config_do_twiddle = 0; 2127 printf_nolog(" done.\n"); 2128 } 2129 mutex_exit(&config_misc_lock); 2130 if (errcnt != 0) { 2131 printf("WARNING: %d error%s while detecting hardware; " 2132 "check system log.\n", errcnt, 2133 errcnt == 1 ? "" : "s"); 2134 } 2135 } 2136 } 2137 2138 void 2139 config_twiddle_init(void) 2140 { 2141 2142 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2143 config_do_twiddle = 1; 2144 } 2145 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2146 } 2147 2148 void 2149 config_twiddle_fn(void *cookie) 2150 { 2151 2152 mutex_enter(&config_misc_lock); 2153 if (config_do_twiddle) { 2154 twiddle(); 2155 callout_schedule(&config_twiddle_ch, mstohz(100)); 2156 } 2157 mutex_exit(&config_misc_lock); 2158 } 2159 2160 static int 2161 config_alldevs_lock(void) 2162 { 2163 mutex_enter(&alldevs_mtx); 2164 return 0; 2165 } 2166 2167 static void 2168 config_alldevs_enter(struct alldevs_foray *af) 2169 { 2170 TAILQ_INIT(&af->af_garbage); 2171 af->af_s = config_alldevs_lock(); 2172 config_collect_garbage(&af->af_garbage); 2173 } 2174 2175 static void 2176 config_alldevs_exit(struct alldevs_foray *af) 2177 { 2178 config_alldevs_unlock(af->af_s); 2179 config_dump_garbage(&af->af_garbage); 2180 } 2181 2182 /*ARGSUSED*/ 2183 static void 2184 config_alldevs_unlock(int s) 2185 { 2186 mutex_exit(&alldevs_mtx); 2187 } 2188 2189 /* 2190 * device_lookup: 2191 * 2192 * Look up a device instance for a given driver. 2193 */ 2194 device_t 2195 device_lookup(cfdriver_t cd, int unit) 2196 { 2197 device_t dv; 2198 int s; 2199 2200 s = config_alldevs_lock(); 2201 KASSERT(mutex_owned(&alldevs_mtx)); 2202 if (unit < 0 || unit >= cd->cd_ndevs) 2203 dv = NULL; 2204 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2205 dv = NULL; 2206 config_alldevs_unlock(s); 2207 2208 return dv; 2209 } 2210 2211 /* 2212 * device_lookup_private: 2213 * 2214 * Look up a softc instance for a given driver. 2215 */ 2216 void * 2217 device_lookup_private(cfdriver_t cd, int unit) 2218 { 2219 2220 return device_private(device_lookup(cd, unit)); 2221 } 2222 2223 /* 2224 * device_find_by_xname: 2225 * 2226 * Returns the device of the given name or NULL if it doesn't exist. 2227 */ 2228 device_t 2229 device_find_by_xname(const char *name) 2230 { 2231 device_t dv; 2232 deviter_t di; 2233 2234 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2235 if (strcmp(device_xname(dv), name) == 0) 2236 break; 2237 } 2238 deviter_release(&di); 2239 2240 return dv; 2241 } 2242 2243 /* 2244 * device_find_by_driver_unit: 2245 * 2246 * Returns the device of the given driver name and unit or 2247 * NULL if it doesn't exist. 2248 */ 2249 device_t 2250 device_find_by_driver_unit(const char *name, int unit) 2251 { 2252 struct cfdriver *cd; 2253 2254 if ((cd = config_cfdriver_lookup(name)) == NULL) 2255 return NULL; 2256 return device_lookup(cd, unit); 2257 } 2258 2259 /* 2260 * Power management related functions. 2261 */ 2262 2263 bool 2264 device_pmf_is_registered(device_t dev) 2265 { 2266 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2267 } 2268 2269 bool 2270 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2271 { 2272 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2273 return true; 2274 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2275 return false; 2276 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2277 dev->dv_driver_suspend != NULL && 2278 !(*dev->dv_driver_suspend)(dev, qual)) 2279 return false; 2280 2281 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2282 return true; 2283 } 2284 2285 bool 2286 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2287 { 2288 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2289 return true; 2290 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2291 return false; 2292 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2293 dev->dv_driver_resume != NULL && 2294 !(*dev->dv_driver_resume)(dev, qual)) 2295 return false; 2296 2297 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2298 return true; 2299 } 2300 2301 bool 2302 device_pmf_driver_shutdown(device_t dev, int how) 2303 { 2304 2305 if (*dev->dv_driver_shutdown != NULL && 2306 !(*dev->dv_driver_shutdown)(dev, how)) 2307 return false; 2308 return true; 2309 } 2310 2311 bool 2312 device_pmf_driver_register(device_t dev, 2313 bool (*suspend)(device_t, const pmf_qual_t *), 2314 bool (*resume)(device_t, const pmf_qual_t *), 2315 bool (*shutdown)(device_t, int)) 2316 { 2317 dev->dv_driver_suspend = suspend; 2318 dev->dv_driver_resume = resume; 2319 dev->dv_driver_shutdown = shutdown; 2320 dev->dv_flags |= DVF_POWER_HANDLERS; 2321 return true; 2322 } 2323 2324 static const char * 2325 curlwp_name(void) 2326 { 2327 if (curlwp->l_name != NULL) 2328 return curlwp->l_name; 2329 else 2330 return curlwp->l_proc->p_comm; 2331 } 2332 2333 void 2334 device_pmf_driver_deregister(device_t dev) 2335 { 2336 device_lock_t dvl = device_getlock(dev); 2337 2338 dev->dv_driver_suspend = NULL; 2339 dev->dv_driver_resume = NULL; 2340 2341 mutex_enter(&dvl->dvl_mtx); 2342 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2343 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2344 /* Wake a thread that waits for the lock. That 2345 * thread will fail to acquire the lock, and then 2346 * it will wake the next thread that waits for the 2347 * lock, or else it will wake us. 2348 */ 2349 cv_signal(&dvl->dvl_cv); 2350 pmflock_debug(dev, __func__, __LINE__); 2351 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2352 pmflock_debug(dev, __func__, __LINE__); 2353 } 2354 mutex_exit(&dvl->dvl_mtx); 2355 } 2356 2357 bool 2358 device_pmf_driver_child_register(device_t dev) 2359 { 2360 device_t parent = device_parent(dev); 2361 2362 if (parent == NULL || parent->dv_driver_child_register == NULL) 2363 return true; 2364 return (*parent->dv_driver_child_register)(dev); 2365 } 2366 2367 void 2368 device_pmf_driver_set_child_register(device_t dev, 2369 bool (*child_register)(device_t)) 2370 { 2371 dev->dv_driver_child_register = child_register; 2372 } 2373 2374 static void 2375 pmflock_debug(device_t dev, const char *func, int line) 2376 { 2377 device_lock_t dvl = device_getlock(dev); 2378 2379 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2380 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2381 dev->dv_flags); 2382 } 2383 2384 static bool 2385 device_pmf_lock1(device_t dev) 2386 { 2387 device_lock_t dvl = device_getlock(dev); 2388 2389 while (device_pmf_is_registered(dev) && 2390 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2391 dvl->dvl_nwait++; 2392 pmflock_debug(dev, __func__, __LINE__); 2393 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2394 pmflock_debug(dev, __func__, __LINE__); 2395 dvl->dvl_nwait--; 2396 } 2397 if (!device_pmf_is_registered(dev)) { 2398 pmflock_debug(dev, __func__, __LINE__); 2399 /* We could not acquire the lock, but some other thread may 2400 * wait for it, also. Wake that thread. 2401 */ 2402 cv_signal(&dvl->dvl_cv); 2403 return false; 2404 } 2405 dvl->dvl_nlock++; 2406 dvl->dvl_holder = curlwp; 2407 pmflock_debug(dev, __func__, __LINE__); 2408 return true; 2409 } 2410 2411 bool 2412 device_pmf_lock(device_t dev) 2413 { 2414 bool rc; 2415 device_lock_t dvl = device_getlock(dev); 2416 2417 mutex_enter(&dvl->dvl_mtx); 2418 rc = device_pmf_lock1(dev); 2419 mutex_exit(&dvl->dvl_mtx); 2420 2421 return rc; 2422 } 2423 2424 void 2425 device_pmf_unlock(device_t dev) 2426 { 2427 device_lock_t dvl = device_getlock(dev); 2428 2429 KASSERT(dvl->dvl_nlock > 0); 2430 mutex_enter(&dvl->dvl_mtx); 2431 if (--dvl->dvl_nlock == 0) 2432 dvl->dvl_holder = NULL; 2433 cv_signal(&dvl->dvl_cv); 2434 pmflock_debug(dev, __func__, __LINE__); 2435 mutex_exit(&dvl->dvl_mtx); 2436 } 2437 2438 device_lock_t 2439 device_getlock(device_t dev) 2440 { 2441 return &dev->dv_lock; 2442 } 2443 2444 void * 2445 device_pmf_bus_private(device_t dev) 2446 { 2447 return dev->dv_bus_private; 2448 } 2449 2450 bool 2451 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2452 { 2453 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2454 return true; 2455 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2456 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2457 return false; 2458 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2459 dev->dv_bus_suspend != NULL && 2460 !(*dev->dv_bus_suspend)(dev, qual)) 2461 return false; 2462 2463 dev->dv_flags |= DVF_BUS_SUSPENDED; 2464 return true; 2465 } 2466 2467 bool 2468 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2469 { 2470 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2471 return true; 2472 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2473 dev->dv_bus_resume != NULL && 2474 !(*dev->dv_bus_resume)(dev, qual)) 2475 return false; 2476 2477 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2478 return true; 2479 } 2480 2481 bool 2482 device_pmf_bus_shutdown(device_t dev, int how) 2483 { 2484 2485 if (*dev->dv_bus_shutdown != NULL && 2486 !(*dev->dv_bus_shutdown)(dev, how)) 2487 return false; 2488 return true; 2489 } 2490 2491 void 2492 device_pmf_bus_register(device_t dev, void *priv, 2493 bool (*suspend)(device_t, const pmf_qual_t *), 2494 bool (*resume)(device_t, const pmf_qual_t *), 2495 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2496 { 2497 dev->dv_bus_private = priv; 2498 dev->dv_bus_resume = resume; 2499 dev->dv_bus_suspend = suspend; 2500 dev->dv_bus_shutdown = shutdown; 2501 dev->dv_bus_deregister = deregister; 2502 } 2503 2504 void 2505 device_pmf_bus_deregister(device_t dev) 2506 { 2507 if (dev->dv_bus_deregister == NULL) 2508 return; 2509 (*dev->dv_bus_deregister)(dev); 2510 dev->dv_bus_private = NULL; 2511 dev->dv_bus_suspend = NULL; 2512 dev->dv_bus_resume = NULL; 2513 dev->dv_bus_deregister = NULL; 2514 } 2515 2516 void * 2517 device_pmf_class_private(device_t dev) 2518 { 2519 return dev->dv_class_private; 2520 } 2521 2522 bool 2523 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2524 { 2525 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2526 return true; 2527 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2528 dev->dv_class_suspend != NULL && 2529 !(*dev->dv_class_suspend)(dev, qual)) 2530 return false; 2531 2532 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2533 return true; 2534 } 2535 2536 bool 2537 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2538 { 2539 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2540 return true; 2541 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2542 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2543 return false; 2544 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2545 dev->dv_class_resume != NULL && 2546 !(*dev->dv_class_resume)(dev, qual)) 2547 return false; 2548 2549 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2550 return true; 2551 } 2552 2553 void 2554 device_pmf_class_register(device_t dev, void *priv, 2555 bool (*suspend)(device_t, const pmf_qual_t *), 2556 bool (*resume)(device_t, const pmf_qual_t *), 2557 void (*deregister)(device_t)) 2558 { 2559 dev->dv_class_private = priv; 2560 dev->dv_class_suspend = suspend; 2561 dev->dv_class_resume = resume; 2562 dev->dv_class_deregister = deregister; 2563 } 2564 2565 void 2566 device_pmf_class_deregister(device_t dev) 2567 { 2568 if (dev->dv_class_deregister == NULL) 2569 return; 2570 (*dev->dv_class_deregister)(dev); 2571 dev->dv_class_private = NULL; 2572 dev->dv_class_suspend = NULL; 2573 dev->dv_class_resume = NULL; 2574 dev->dv_class_deregister = NULL; 2575 } 2576 2577 bool 2578 device_active(device_t dev, devactive_t type) 2579 { 2580 size_t i; 2581 2582 if (dev->dv_activity_count == 0) 2583 return false; 2584 2585 for (i = 0; i < dev->dv_activity_count; ++i) { 2586 if (dev->dv_activity_handlers[i] == NULL) 2587 break; 2588 (*dev->dv_activity_handlers[i])(dev, type); 2589 } 2590 2591 return true; 2592 } 2593 2594 bool 2595 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2596 { 2597 void (**new_handlers)(device_t, devactive_t); 2598 void (**old_handlers)(device_t, devactive_t); 2599 size_t i, old_size, new_size; 2600 int s; 2601 2602 old_handlers = dev->dv_activity_handlers; 2603 old_size = dev->dv_activity_count; 2604 2605 for (i = 0; i < old_size; ++i) { 2606 KASSERT(old_handlers[i] != handler); 2607 if (old_handlers[i] == NULL) { 2608 old_handlers[i] = handler; 2609 return true; 2610 } 2611 } 2612 2613 new_size = old_size + 4; 2614 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2615 2616 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2617 new_handlers[old_size] = handler; 2618 memset(new_handlers + old_size + 1, 0, 2619 sizeof(int [new_size - (old_size+1)])); 2620 2621 s = splhigh(); 2622 dev->dv_activity_count = new_size; 2623 dev->dv_activity_handlers = new_handlers; 2624 splx(s); 2625 2626 if (old_handlers != NULL) 2627 kmem_free(old_handlers, sizeof(void * [old_size])); 2628 2629 return true; 2630 } 2631 2632 void 2633 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2634 { 2635 void (**old_handlers)(device_t, devactive_t); 2636 size_t i, old_size; 2637 int s; 2638 2639 old_handlers = dev->dv_activity_handlers; 2640 old_size = dev->dv_activity_count; 2641 2642 for (i = 0; i < old_size; ++i) { 2643 if (old_handlers[i] == handler) 2644 break; 2645 if (old_handlers[i] == NULL) 2646 return; /* XXX panic? */ 2647 } 2648 2649 if (i == old_size) 2650 return; /* XXX panic? */ 2651 2652 for (; i < old_size - 1; ++i) { 2653 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2654 continue; 2655 2656 if (i == 0) { 2657 s = splhigh(); 2658 dev->dv_activity_count = 0; 2659 dev->dv_activity_handlers = NULL; 2660 splx(s); 2661 kmem_free(old_handlers, sizeof(void *[old_size])); 2662 } 2663 return; 2664 } 2665 old_handlers[i] = NULL; 2666 } 2667 2668 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2669 static bool 2670 device_exists_at(device_t dv, devgen_t gen) 2671 { 2672 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2673 dv->dv_add_gen <= gen; 2674 } 2675 2676 static bool 2677 deviter_visits(const deviter_t *di, device_t dv) 2678 { 2679 return device_exists_at(dv, di->di_gen); 2680 } 2681 2682 /* 2683 * Device Iteration 2684 * 2685 * deviter_t: a device iterator. Holds state for a "walk" visiting 2686 * each device_t's in the device tree. 2687 * 2688 * deviter_init(di, flags): initialize the device iterator `di' 2689 * to "walk" the device tree. deviter_next(di) will return 2690 * the first device_t in the device tree, or NULL if there are 2691 * no devices. 2692 * 2693 * `flags' is one or more of DEVITER_F_RW, indicating that the 2694 * caller intends to modify the device tree by calling 2695 * config_detach(9) on devices in the order that the iterator 2696 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2697 * nearest the "root" of the device tree to be returned, first; 2698 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2699 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2700 * indicating both that deviter_init() should not respect any 2701 * locks on the device tree, and that deviter_next(di) may run 2702 * in more than one LWP before the walk has finished. 2703 * 2704 * Only one DEVITER_F_RW iterator may be in the device tree at 2705 * once. 2706 * 2707 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2708 * 2709 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2710 * DEVITER_F_LEAVES_FIRST are used in combination. 2711 * 2712 * deviter_first(di, flags): initialize the device iterator `di' 2713 * and return the first device_t in the device tree, or NULL 2714 * if there are no devices. The statement 2715 * 2716 * dv = deviter_first(di); 2717 * 2718 * is shorthand for 2719 * 2720 * deviter_init(di); 2721 * dv = deviter_next(di); 2722 * 2723 * deviter_next(di): return the next device_t in the device tree, 2724 * or NULL if there are no more devices. deviter_next(di) 2725 * is undefined if `di' was not initialized with deviter_init() or 2726 * deviter_first(). 2727 * 2728 * deviter_release(di): stops iteration (subsequent calls to 2729 * deviter_next() will return NULL), releases any locks and 2730 * resources held by the device iterator. 2731 * 2732 * Device iteration does not return device_t's in any particular 2733 * order. An iterator will never return the same device_t twice. 2734 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2735 * is called repeatedly on the same `di', it will eventually return 2736 * NULL. It is ok to attach/detach devices during device iteration. 2737 */ 2738 void 2739 deviter_init(deviter_t *di, deviter_flags_t flags) 2740 { 2741 device_t dv; 2742 int s; 2743 2744 memset(di, 0, sizeof(*di)); 2745 2746 s = config_alldevs_lock(); 2747 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2748 flags |= DEVITER_F_RW; 2749 2750 if ((flags & DEVITER_F_RW) != 0) 2751 alldevs_nwrite++; 2752 else 2753 alldevs_nread++; 2754 di->di_gen = alldevs_gen++; 2755 config_alldevs_unlock(s); 2756 2757 di->di_flags = flags; 2758 2759 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2760 case DEVITER_F_LEAVES_FIRST: 2761 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2762 if (!deviter_visits(di, dv)) 2763 continue; 2764 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2765 } 2766 break; 2767 case DEVITER_F_ROOT_FIRST: 2768 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2769 if (!deviter_visits(di, dv)) 2770 continue; 2771 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2772 } 2773 break; 2774 default: 2775 break; 2776 } 2777 2778 deviter_reinit(di); 2779 } 2780 2781 static void 2782 deviter_reinit(deviter_t *di) 2783 { 2784 if ((di->di_flags & DEVITER_F_RW) != 0) 2785 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2786 else 2787 di->di_prev = TAILQ_FIRST(&alldevs); 2788 } 2789 2790 device_t 2791 deviter_first(deviter_t *di, deviter_flags_t flags) 2792 { 2793 deviter_init(di, flags); 2794 return deviter_next(di); 2795 } 2796 2797 static device_t 2798 deviter_next2(deviter_t *di) 2799 { 2800 device_t dv; 2801 2802 dv = di->di_prev; 2803 2804 if (dv == NULL) 2805 return NULL; 2806 2807 if ((di->di_flags & DEVITER_F_RW) != 0) 2808 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2809 else 2810 di->di_prev = TAILQ_NEXT(dv, dv_list); 2811 2812 return dv; 2813 } 2814 2815 static device_t 2816 deviter_next1(deviter_t *di) 2817 { 2818 device_t dv; 2819 2820 do { 2821 dv = deviter_next2(di); 2822 } while (dv != NULL && !deviter_visits(di, dv)); 2823 2824 return dv; 2825 } 2826 2827 device_t 2828 deviter_next(deviter_t *di) 2829 { 2830 device_t dv = NULL; 2831 2832 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2833 case 0: 2834 return deviter_next1(di); 2835 case DEVITER_F_LEAVES_FIRST: 2836 while (di->di_curdepth >= 0) { 2837 if ((dv = deviter_next1(di)) == NULL) { 2838 di->di_curdepth--; 2839 deviter_reinit(di); 2840 } else if (dv->dv_depth == di->di_curdepth) 2841 break; 2842 } 2843 return dv; 2844 case DEVITER_F_ROOT_FIRST: 2845 while (di->di_curdepth <= di->di_maxdepth) { 2846 if ((dv = deviter_next1(di)) == NULL) { 2847 di->di_curdepth++; 2848 deviter_reinit(di); 2849 } else if (dv->dv_depth == di->di_curdepth) 2850 break; 2851 } 2852 return dv; 2853 default: 2854 return NULL; 2855 } 2856 } 2857 2858 void 2859 deviter_release(deviter_t *di) 2860 { 2861 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2862 int s; 2863 2864 s = config_alldevs_lock(); 2865 if (rw) 2866 --alldevs_nwrite; 2867 else 2868 --alldevs_nread; 2869 /* XXX wake a garbage-collection thread */ 2870 config_alldevs_unlock(s); 2871 } 2872 2873 const char * 2874 cfdata_ifattr(const struct cfdata *cf) 2875 { 2876 return cf->cf_pspec->cfp_iattr; 2877 } 2878 2879 bool 2880 ifattr_match(const char *snull, const char *t) 2881 { 2882 return (snull == NULL) || strcmp(snull, t) == 0; 2883 } 2884 2885 void 2886 null_childdetached(device_t self, device_t child) 2887 { 2888 /* do nothing */ 2889 } 2890 2891 static void 2892 sysctl_detach_setup(struct sysctllog **clog) 2893 { 2894 2895 sysctl_createv(clog, 0, NULL, NULL, 2896 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2897 CTLTYPE_BOOL, "detachall", 2898 SYSCTL_DESCR("Detach all devices at shutdown"), 2899 NULL, 0, &detachall, 0, 2900 CTL_KERN, CTL_CREATE, CTL_EOL); 2901 } 2902