1 /* $NetBSD: subr_autoconf.c,v 1.203 2010/02/24 22:38:10 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.203 2010/02/24 22:38:10 dyoung Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/device.h> 88 #include <sys/disklabel.h> 89 #include <sys/conf.h> 90 #include <sys/kauth.h> 91 #include <sys/malloc.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/vnode.h> 102 #include <sys/mount.h> 103 #include <sys/namei.h> 104 #include <sys/unistd.h> 105 #include <sys/fcntl.h> 106 #include <sys/lockf.h> 107 #include <sys/callout.h> 108 #include <sys/devmon.h> 109 #include <sys/cpu.h> 110 #include <sys/sysctl.h> 111 112 #include <sys/disk.h> 113 114 #include <machine/limits.h> 115 116 #if defined(__i386__) && defined(_KERNEL_OPT) 117 #include "opt_splash.h" 118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 119 #include <dev/splash/splash.h> 120 extern struct splash_progress *splash_progress_state; 121 #endif 122 #endif 123 124 /* 125 * Autoconfiguration subroutines. 126 */ 127 128 /* 129 * ioconf.c exports exactly two names: cfdata and cfroots. All system 130 * devices and drivers are found via these tables. 131 */ 132 extern struct cfdata cfdata[]; 133 extern const short cfroots[]; 134 135 /* 136 * List of all cfdriver structures. We use this to detect duplicates 137 * when other cfdrivers are loaded. 138 */ 139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 140 extern struct cfdriver * const cfdriver_list_initial[]; 141 142 /* 143 * Initial list of cfattach's. 144 */ 145 extern const struct cfattachinit cfattachinit[]; 146 147 /* 148 * List of cfdata tables. We always have one such list -- the one 149 * built statically when the kernel was configured. 150 */ 151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 152 static struct cftable initcftable; 153 154 #define ROOT ((device_t)NULL) 155 156 struct matchinfo { 157 cfsubmatch_t fn; 158 struct device *parent; 159 const int *locs; 160 void *aux; 161 struct cfdata *match; 162 int pri; 163 }; 164 165 struct alldevs_foray { 166 int af_s; 167 struct devicelist af_garbage; 168 }; 169 170 static char *number(char *, int); 171 static void mapply(struct matchinfo *, cfdata_t); 172 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 173 static void config_devdelete(device_t); 174 static void config_devunlink(device_t, struct devicelist *); 175 static void config_makeroom(int, struct cfdriver *); 176 static void config_devlink(device_t); 177 static void config_alldevs_unlock(int); 178 static int config_alldevs_lock(void); 179 static void config_alldevs_enter(struct alldevs_foray *); 180 static void config_alldevs_exit(struct alldevs_foray *); 181 182 static void config_collect_garbage(struct devicelist *); 183 static void config_dump_garbage(struct devicelist *); 184 185 static void pmflock_debug(device_t, const char *, int); 186 187 static device_t deviter_next1(deviter_t *); 188 static void deviter_reinit(deviter_t *); 189 190 struct deferred_config { 191 TAILQ_ENTRY(deferred_config) dc_queue; 192 device_t dc_dev; 193 void (*dc_func)(device_t); 194 }; 195 196 TAILQ_HEAD(deferred_config_head, deferred_config); 197 198 struct deferred_config_head deferred_config_queue = 199 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 200 struct deferred_config_head interrupt_config_queue = 201 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 202 int interrupt_config_threads = 8; 203 204 static void config_process_deferred(struct deferred_config_head *, device_t); 205 206 /* Hooks to finalize configuration once all real devices have been found. */ 207 struct finalize_hook { 208 TAILQ_ENTRY(finalize_hook) f_list; 209 int (*f_func)(device_t); 210 device_t f_dev; 211 }; 212 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 213 TAILQ_HEAD_INITIALIZER(config_finalize_list); 214 static int config_finalize_done; 215 216 /* list of all devices */ 217 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 218 static kmutex_t alldevs_mtx; 219 static volatile bool alldevs_garbage = false; 220 static volatile devgen_t alldevs_gen = 1; 221 static volatile int alldevs_nread = 0; 222 static volatile int alldevs_nwrite = 0; 223 224 static int config_pending; /* semaphore for mountroot */ 225 static kmutex_t config_misc_lock; 226 static kcondvar_t config_misc_cv; 227 228 static int detachall = 0; 229 230 #define STREQ(s1, s2) \ 231 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 232 233 static bool config_initialized = false; /* config_init() has been called. */ 234 235 static int config_do_twiddle; 236 static callout_t config_twiddle_ch; 237 238 static void sysctl_detach_setup(struct sysctllog **); 239 240 /* 241 * Initialize the autoconfiguration data structures. Normally this 242 * is done by configure(), but some platforms need to do this very 243 * early (to e.g. initialize the console). 244 */ 245 void 246 config_init(void) 247 { 248 const struct cfattachinit *cfai; 249 int i, j; 250 251 KASSERT(config_initialized == false); 252 253 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM); 254 255 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 256 cv_init(&config_misc_cv, "cfgmisc"); 257 258 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 259 260 /* allcfdrivers is statically initialized. */ 261 for (i = 0; cfdriver_list_initial[i] != NULL; i++) { 262 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) 263 panic("configure: duplicate `%s' drivers", 264 cfdriver_list_initial[i]->cd_name); 265 } 266 267 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { 268 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 269 if (config_cfattach_attach(cfai->cfai_name, 270 cfai->cfai_list[j]) != 0) 271 panic("configure: duplicate `%s' attachment " 272 "of `%s' driver", 273 cfai->cfai_list[j]->ca_name, 274 cfai->cfai_name); 275 } 276 } 277 278 initcftable.ct_cfdata = cfdata; 279 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 280 281 config_initialized = true; 282 } 283 284 void 285 config_init_mi(void) 286 { 287 288 if (!config_initialized) 289 config_init(); 290 291 sysctl_detach_setup(NULL); 292 } 293 294 void 295 config_deferred(device_t dev) 296 { 297 config_process_deferred(&deferred_config_queue, dev); 298 config_process_deferred(&interrupt_config_queue, dev); 299 } 300 301 static void 302 config_interrupts_thread(void *cookie) 303 { 304 struct deferred_config *dc; 305 306 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 307 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 308 (*dc->dc_func)(dc->dc_dev); 309 kmem_free(dc, sizeof(*dc)); 310 config_pending_decr(); 311 } 312 kthread_exit(0); 313 } 314 315 void 316 config_create_interruptthreads() 317 { 318 int i; 319 320 for (i = 0; i < interrupt_config_threads; i++) { 321 (void)kthread_create(PRI_NONE, 0, NULL, 322 config_interrupts_thread, NULL, NULL, "config"); 323 } 324 } 325 326 /* 327 * Announce device attach/detach to userland listeners. 328 */ 329 static void 330 devmon_report_device(device_t dev, bool isattach) 331 { 332 #if NDRVCTL > 0 333 prop_dictionary_t ev; 334 const char *parent; 335 const char *what; 336 device_t pdev = device_parent(dev); 337 338 ev = prop_dictionary_create(); 339 if (ev == NULL) 340 return; 341 342 what = (isattach ? "device-attach" : "device-detach"); 343 parent = (pdev == NULL ? "root" : device_xname(pdev)); 344 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 345 !prop_dictionary_set_cstring(ev, "parent", parent)) { 346 prop_object_release(ev); 347 return; 348 } 349 350 devmon_insert(what, ev); 351 #endif 352 } 353 354 /* 355 * Add a cfdriver to the system. 356 */ 357 int 358 config_cfdriver_attach(struct cfdriver *cd) 359 { 360 struct cfdriver *lcd; 361 362 /* Make sure this driver isn't already in the system. */ 363 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 364 if (STREQ(lcd->cd_name, cd->cd_name)) 365 return EEXIST; 366 } 367 368 LIST_INIT(&cd->cd_attach); 369 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 370 371 return 0; 372 } 373 374 /* 375 * Remove a cfdriver from the system. 376 */ 377 int 378 config_cfdriver_detach(struct cfdriver *cd) 379 { 380 struct alldevs_foray af; 381 int i, rc = 0; 382 383 config_alldevs_enter(&af); 384 /* Make sure there are no active instances. */ 385 for (i = 0; i < cd->cd_ndevs; i++) { 386 if (cd->cd_devs[i] != NULL) { 387 rc = EBUSY; 388 break; 389 } 390 } 391 config_alldevs_exit(&af); 392 393 if (rc != 0) 394 return rc; 395 396 /* ...and no attachments loaded. */ 397 if (LIST_EMPTY(&cd->cd_attach) == 0) 398 return EBUSY; 399 400 LIST_REMOVE(cd, cd_list); 401 402 KASSERT(cd->cd_devs == NULL); 403 404 return 0; 405 } 406 407 /* 408 * Look up a cfdriver by name. 409 */ 410 struct cfdriver * 411 config_cfdriver_lookup(const char *name) 412 { 413 struct cfdriver *cd; 414 415 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 416 if (STREQ(cd->cd_name, name)) 417 return cd; 418 } 419 420 return NULL; 421 } 422 423 /* 424 * Add a cfattach to the specified driver. 425 */ 426 int 427 config_cfattach_attach(const char *driver, struct cfattach *ca) 428 { 429 struct cfattach *lca; 430 struct cfdriver *cd; 431 432 cd = config_cfdriver_lookup(driver); 433 if (cd == NULL) 434 return ESRCH; 435 436 /* Make sure this attachment isn't already on this driver. */ 437 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 438 if (STREQ(lca->ca_name, ca->ca_name)) 439 return EEXIST; 440 } 441 442 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 443 444 return 0; 445 } 446 447 /* 448 * Remove a cfattach from the specified driver. 449 */ 450 int 451 config_cfattach_detach(const char *driver, struct cfattach *ca) 452 { 453 struct alldevs_foray af; 454 struct cfdriver *cd; 455 device_t dev; 456 int i, rc = 0; 457 458 cd = config_cfdriver_lookup(driver); 459 if (cd == NULL) 460 return ESRCH; 461 462 config_alldevs_enter(&af); 463 /* Make sure there are no active instances. */ 464 for (i = 0; i < cd->cd_ndevs; i++) { 465 if ((dev = cd->cd_devs[i]) == NULL) 466 continue; 467 if (dev->dv_cfattach == ca) { 468 rc = EBUSY; 469 break; 470 } 471 } 472 config_alldevs_exit(&af); 473 474 if (rc != 0) 475 return rc; 476 477 LIST_REMOVE(ca, ca_list); 478 479 return 0; 480 } 481 482 /* 483 * Look up a cfattach by name. 484 */ 485 static struct cfattach * 486 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 487 { 488 struct cfattach *ca; 489 490 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 491 if (STREQ(ca->ca_name, atname)) 492 return ca; 493 } 494 495 return NULL; 496 } 497 498 /* 499 * Look up a cfattach by driver/attachment name. 500 */ 501 struct cfattach * 502 config_cfattach_lookup(const char *name, const char *atname) 503 { 504 struct cfdriver *cd; 505 506 cd = config_cfdriver_lookup(name); 507 if (cd == NULL) 508 return NULL; 509 510 return config_cfattach_lookup_cd(cd, atname); 511 } 512 513 /* 514 * Apply the matching function and choose the best. This is used 515 * a few times and we want to keep the code small. 516 */ 517 static void 518 mapply(struct matchinfo *m, cfdata_t cf) 519 { 520 int pri; 521 522 if (m->fn != NULL) { 523 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 524 } else { 525 pri = config_match(m->parent, cf, m->aux); 526 } 527 if (pri > m->pri) { 528 m->match = cf; 529 m->pri = pri; 530 } 531 } 532 533 int 534 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 535 { 536 const struct cfiattrdata *ci; 537 const struct cflocdesc *cl; 538 int nlocs, i; 539 540 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 541 KASSERT(ci); 542 nlocs = ci->ci_loclen; 543 KASSERT(!nlocs || locs); 544 for (i = 0; i < nlocs; i++) { 545 cl = &ci->ci_locdesc[i]; 546 /* !cld_defaultstr means no default value */ 547 if ((!(cl->cld_defaultstr) 548 || (cf->cf_loc[i] != cl->cld_default)) 549 && cf->cf_loc[i] != locs[i]) 550 return 0; 551 } 552 553 return config_match(parent, cf, aux); 554 } 555 556 /* 557 * Helper function: check whether the driver supports the interface attribute 558 * and return its descriptor structure. 559 */ 560 static const struct cfiattrdata * 561 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 562 { 563 const struct cfiattrdata * const *cpp; 564 565 if (cd->cd_attrs == NULL) 566 return 0; 567 568 for (cpp = cd->cd_attrs; *cpp; cpp++) { 569 if (STREQ((*cpp)->ci_name, ia)) { 570 /* Match. */ 571 return *cpp; 572 } 573 } 574 return 0; 575 } 576 577 /* 578 * Lookup an interface attribute description by name. 579 * If the driver is given, consider only its supported attributes. 580 */ 581 const struct cfiattrdata * 582 cfiattr_lookup(const char *name, const struct cfdriver *cd) 583 { 584 const struct cfdriver *d; 585 const struct cfiattrdata *ia; 586 587 if (cd) 588 return cfdriver_get_iattr(cd, name); 589 590 LIST_FOREACH(d, &allcfdrivers, cd_list) { 591 ia = cfdriver_get_iattr(d, name); 592 if (ia) 593 return ia; 594 } 595 return 0; 596 } 597 598 /* 599 * Determine if `parent' is a potential parent for a device spec based 600 * on `cfp'. 601 */ 602 static int 603 cfparent_match(const device_t parent, const struct cfparent *cfp) 604 { 605 struct cfdriver *pcd; 606 607 /* We don't match root nodes here. */ 608 if (cfp == NULL) 609 return 0; 610 611 pcd = parent->dv_cfdriver; 612 KASSERT(pcd != NULL); 613 614 /* 615 * First, ensure this parent has the correct interface 616 * attribute. 617 */ 618 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 619 return 0; 620 621 /* 622 * If no specific parent device instance was specified (i.e. 623 * we're attaching to the attribute only), we're done! 624 */ 625 if (cfp->cfp_parent == NULL) 626 return 1; 627 628 /* 629 * Check the parent device's name. 630 */ 631 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 632 return 0; /* not the same parent */ 633 634 /* 635 * Make sure the unit number matches. 636 */ 637 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 638 cfp->cfp_unit == parent->dv_unit) 639 return 1; 640 641 /* Unit numbers don't match. */ 642 return 0; 643 } 644 645 /* 646 * Helper for config_cfdata_attach(): check all devices whether it could be 647 * parent any attachment in the config data table passed, and rescan. 648 */ 649 static void 650 rescan_with_cfdata(const struct cfdata *cf) 651 { 652 device_t d; 653 const struct cfdata *cf1; 654 deviter_t di; 655 656 657 /* 658 * "alldevs" is likely longer than a modules's cfdata, so make it 659 * the outer loop. 660 */ 661 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 662 663 if (!(d->dv_cfattach->ca_rescan)) 664 continue; 665 666 for (cf1 = cf; cf1->cf_name; cf1++) { 667 668 if (!cfparent_match(d, cf1->cf_pspec)) 669 continue; 670 671 (*d->dv_cfattach->ca_rescan)(d, 672 cfdata_ifattr(cf1), cf1->cf_loc); 673 } 674 } 675 deviter_release(&di); 676 } 677 678 /* 679 * Attach a supplemental config data table and rescan potential 680 * parent devices if required. 681 */ 682 int 683 config_cfdata_attach(cfdata_t cf, int scannow) 684 { 685 struct cftable *ct; 686 687 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 688 ct->ct_cfdata = cf; 689 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 690 691 if (scannow) 692 rescan_with_cfdata(cf); 693 694 return 0; 695 } 696 697 /* 698 * Helper for config_cfdata_detach: check whether a device is 699 * found through any attachment in the config data table. 700 */ 701 static int 702 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 703 { 704 const struct cfdata *cf1; 705 706 for (cf1 = cf; cf1->cf_name; cf1++) 707 if (d->dv_cfdata == cf1) 708 return 1; 709 710 return 0; 711 } 712 713 /* 714 * Detach a supplemental config data table. Detach all devices found 715 * through that table (and thus keeping references to it) before. 716 */ 717 int 718 config_cfdata_detach(cfdata_t cf) 719 { 720 device_t d; 721 int error = 0; 722 struct cftable *ct; 723 deviter_t di; 724 725 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 726 d = deviter_next(&di)) { 727 if (!dev_in_cfdata(d, cf)) 728 continue; 729 if ((error = config_detach(d, 0)) != 0) 730 break; 731 } 732 deviter_release(&di); 733 if (error) { 734 aprint_error_dev(d, "unable to detach instance\n"); 735 return error; 736 } 737 738 TAILQ_FOREACH(ct, &allcftables, ct_list) { 739 if (ct->ct_cfdata == cf) { 740 TAILQ_REMOVE(&allcftables, ct, ct_list); 741 kmem_free(ct, sizeof(*ct)); 742 return 0; 743 } 744 } 745 746 /* not found -- shouldn't happen */ 747 return EINVAL; 748 } 749 750 /* 751 * Invoke the "match" routine for a cfdata entry on behalf of 752 * an external caller, usually a "submatch" routine. 753 */ 754 int 755 config_match(device_t parent, cfdata_t cf, void *aux) 756 { 757 struct cfattach *ca; 758 759 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 760 if (ca == NULL) { 761 /* No attachment for this entry, oh well. */ 762 return 0; 763 } 764 765 return (*ca->ca_match)(parent, cf, aux); 766 } 767 768 /* 769 * Iterate over all potential children of some device, calling the given 770 * function (default being the child's match function) for each one. 771 * Nonzero returns are matches; the highest value returned is considered 772 * the best match. Return the `found child' if we got a match, or NULL 773 * otherwise. The `aux' pointer is simply passed on through. 774 * 775 * Note that this function is designed so that it can be used to apply 776 * an arbitrary function to all potential children (its return value 777 * can be ignored). 778 */ 779 cfdata_t 780 config_search_loc(cfsubmatch_t fn, device_t parent, 781 const char *ifattr, const int *locs, void *aux) 782 { 783 struct cftable *ct; 784 cfdata_t cf; 785 struct matchinfo m; 786 787 KASSERT(config_initialized); 788 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 789 790 m.fn = fn; 791 m.parent = parent; 792 m.locs = locs; 793 m.aux = aux; 794 m.match = NULL; 795 m.pri = 0; 796 797 TAILQ_FOREACH(ct, &allcftables, ct_list) { 798 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 799 800 /* We don't match root nodes here. */ 801 if (!cf->cf_pspec) 802 continue; 803 804 /* 805 * Skip cf if no longer eligible, otherwise scan 806 * through parents for one matching `parent', and 807 * try match function. 808 */ 809 if (cf->cf_fstate == FSTATE_FOUND) 810 continue; 811 if (cf->cf_fstate == FSTATE_DNOTFOUND || 812 cf->cf_fstate == FSTATE_DSTAR) 813 continue; 814 815 /* 816 * If an interface attribute was specified, 817 * consider only children which attach to 818 * that attribute. 819 */ 820 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 821 continue; 822 823 if (cfparent_match(parent, cf->cf_pspec)) 824 mapply(&m, cf); 825 } 826 } 827 return m.match; 828 } 829 830 cfdata_t 831 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 832 void *aux) 833 { 834 835 return config_search_loc(fn, parent, ifattr, NULL, aux); 836 } 837 838 /* 839 * Find the given root device. 840 * This is much like config_search, but there is no parent. 841 * Don't bother with multiple cfdata tables; the root node 842 * must always be in the initial table. 843 */ 844 cfdata_t 845 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 846 { 847 cfdata_t cf; 848 const short *p; 849 struct matchinfo m; 850 851 m.fn = fn; 852 m.parent = ROOT; 853 m.aux = aux; 854 m.match = NULL; 855 m.pri = 0; 856 m.locs = 0; 857 /* 858 * Look at root entries for matching name. We do not bother 859 * with found-state here since only one root should ever be 860 * searched (and it must be done first). 861 */ 862 for (p = cfroots; *p >= 0; p++) { 863 cf = &cfdata[*p]; 864 if (strcmp(cf->cf_name, rootname) == 0) 865 mapply(&m, cf); 866 } 867 return m.match; 868 } 869 870 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 871 872 /* 873 * The given `aux' argument describes a device that has been found 874 * on the given parent, but not necessarily configured. Locate the 875 * configuration data for that device (using the submatch function 876 * provided, or using candidates' cd_match configuration driver 877 * functions) and attach it, and return true. If the device was 878 * not configured, call the given `print' function and return 0. 879 */ 880 device_t 881 config_found_sm_loc(device_t parent, 882 const char *ifattr, const int *locs, void *aux, 883 cfprint_t print, cfsubmatch_t submatch) 884 { 885 cfdata_t cf; 886 887 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 888 if (splash_progress_state) 889 splash_progress_update(splash_progress_state); 890 #endif 891 892 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 893 return(config_attach_loc(parent, cf, locs, aux, print)); 894 if (print) { 895 if (config_do_twiddle && cold) 896 twiddle(); 897 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 898 } 899 900 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 901 if (splash_progress_state) 902 splash_progress_update(splash_progress_state); 903 #endif 904 905 return NULL; 906 } 907 908 device_t 909 config_found_ia(device_t parent, const char *ifattr, void *aux, 910 cfprint_t print) 911 { 912 913 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 914 } 915 916 device_t 917 config_found(device_t parent, void *aux, cfprint_t print) 918 { 919 920 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 921 } 922 923 /* 924 * As above, but for root devices. 925 */ 926 device_t 927 config_rootfound(const char *rootname, void *aux) 928 { 929 cfdata_t cf; 930 931 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 932 return config_attach(ROOT, cf, aux, (cfprint_t)NULL); 933 aprint_error("root device %s not configured\n", rootname); 934 return NULL; 935 } 936 937 /* just like sprintf(buf, "%d") except that it works from the end */ 938 static char * 939 number(char *ep, int n) 940 { 941 942 *--ep = 0; 943 while (n >= 10) { 944 *--ep = (n % 10) + '0'; 945 n /= 10; 946 } 947 *--ep = n + '0'; 948 return ep; 949 } 950 951 /* 952 * Expand the size of the cd_devs array if necessary. 953 * 954 * The caller must hold alldevs_mtx. config_makeroom() may release and 955 * re-acquire alldevs_mtx, so callers should re-check conditions such 956 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 957 * returns. 958 */ 959 static void 960 config_makeroom(int n, struct cfdriver *cd) 961 { 962 int old, new; 963 device_t *osp, *nsp; 964 965 alldevs_nwrite++; 966 967 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new) 968 ; 969 970 while (n >= cd->cd_ndevs) { 971 /* 972 * Need to expand the array. 973 */ 974 old = cd->cd_ndevs; 975 osp = cd->cd_devs; 976 977 /* Release alldevs_mtx around allocation, which may 978 * sleep. 979 */ 980 mutex_exit(&alldevs_mtx); 981 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP); 982 if (nsp == NULL) 983 panic("%s: could not expand cd_devs", __func__); 984 mutex_enter(&alldevs_mtx); 985 986 /* If another thread moved the array while we did 987 * not hold alldevs_mtx, try again. 988 */ 989 if (cd->cd_devs != osp) { 990 kmem_free(nsp, sizeof(device_t[new])); 991 continue; 992 } 993 994 memset(nsp + old, 0, sizeof(device_t[new - old])); 995 if (old != 0) 996 memcpy(nsp, cd->cd_devs, sizeof(device_t[old])); 997 998 cd->cd_ndevs = new; 999 cd->cd_devs = nsp; 1000 if (old != 0) 1001 kmem_free(osp, sizeof(device_t[old])); 1002 } 1003 alldevs_nwrite--; 1004 } 1005 1006 /* 1007 * Put dev into the devices list. 1008 */ 1009 static void 1010 config_devlink(device_t dev) 1011 { 1012 int s; 1013 1014 s = config_alldevs_lock(); 1015 1016 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1017 1018 dev->dv_add_gen = alldevs_gen; 1019 /* It is safe to add a device to the tail of the list while 1020 * readers and writers are in the list. 1021 */ 1022 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1023 config_alldevs_unlock(s); 1024 } 1025 1026 static void 1027 config_devfree(device_t dev) 1028 { 1029 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1030 1031 if (dev->dv_cfattach->ca_devsize > 0) 1032 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1033 if (priv) 1034 kmem_free(dev, sizeof(*dev)); 1035 } 1036 1037 /* 1038 * Caller must hold alldevs_mtx. 1039 */ 1040 static void 1041 config_devunlink(device_t dev, struct devicelist *garbage) 1042 { 1043 struct device_garbage *dg = &dev->dv_garbage; 1044 cfdriver_t cd = device_cfdriver(dev); 1045 int i; 1046 1047 KASSERT(mutex_owned(&alldevs_mtx)); 1048 1049 /* Unlink from device list. Link to garbage list. */ 1050 TAILQ_REMOVE(&alldevs, dev, dv_list); 1051 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1052 1053 /* Remove from cfdriver's array. */ 1054 cd->cd_devs[dev->dv_unit] = NULL; 1055 1056 /* 1057 * If the device now has no units in use, unlink its softc array. 1058 */ 1059 for (i = 0; i < cd->cd_ndevs; i++) { 1060 if (cd->cd_devs[i] != NULL) 1061 break; 1062 } 1063 /* Nothing found. Unlink, now. Deallocate, later. */ 1064 if (i == cd->cd_ndevs) { 1065 dg->dg_ndevs = cd->cd_ndevs; 1066 dg->dg_devs = cd->cd_devs; 1067 cd->cd_devs = NULL; 1068 cd->cd_ndevs = 0; 1069 } 1070 } 1071 1072 static void 1073 config_devdelete(device_t dev) 1074 { 1075 struct device_garbage *dg = &dev->dv_garbage; 1076 device_lock_t dvl = device_getlock(dev); 1077 1078 if (dg->dg_devs != NULL) 1079 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1080 1081 cv_destroy(&dvl->dvl_cv); 1082 mutex_destroy(&dvl->dvl_mtx); 1083 1084 KASSERT(dev->dv_properties != NULL); 1085 prop_object_release(dev->dv_properties); 1086 1087 if (dev->dv_activity_handlers) 1088 panic("%s with registered handlers", __func__); 1089 1090 if (dev->dv_locators) { 1091 size_t amount = *--dev->dv_locators; 1092 kmem_free(dev->dv_locators, amount); 1093 } 1094 1095 config_devfree(dev); 1096 } 1097 1098 static int 1099 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1100 { 1101 int unit; 1102 1103 if (cf->cf_fstate == FSTATE_STAR) { 1104 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1105 if (cd->cd_devs[unit] == NULL) 1106 break; 1107 /* 1108 * unit is now the unit of the first NULL device pointer, 1109 * or max(cd->cd_ndevs,cf->cf_unit). 1110 */ 1111 } else { 1112 unit = cf->cf_unit; 1113 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1114 unit = -1; 1115 } 1116 return unit; 1117 } 1118 1119 static int 1120 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1121 { 1122 struct alldevs_foray af; 1123 int unit; 1124 1125 config_alldevs_enter(&af); 1126 for (;;) { 1127 unit = config_unit_nextfree(cd, cf); 1128 if (unit == -1) 1129 break; 1130 if (unit < cd->cd_ndevs) { 1131 cd->cd_devs[unit] = dev; 1132 dev->dv_unit = unit; 1133 break; 1134 } 1135 config_makeroom(unit, cd); 1136 } 1137 config_alldevs_exit(&af); 1138 1139 return unit; 1140 } 1141 1142 static device_t 1143 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1144 { 1145 cfdriver_t cd; 1146 cfattach_t ca; 1147 size_t lname, lunit; 1148 const char *xunit; 1149 int myunit; 1150 char num[10]; 1151 device_t dev; 1152 void *dev_private; 1153 const struct cfiattrdata *ia; 1154 device_lock_t dvl; 1155 1156 cd = config_cfdriver_lookup(cf->cf_name); 1157 if (cd == NULL) 1158 return NULL; 1159 1160 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1161 if (ca == NULL) 1162 return NULL; 1163 1164 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1165 ca->ca_devsize < sizeof(struct device)) 1166 panic("config_devalloc: %s", cf->cf_atname); 1167 1168 /* get memory for all device vars */ 1169 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1170 if (ca->ca_devsize > 0) { 1171 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1172 if (dev_private == NULL) 1173 panic("config_devalloc: memory allocation for device softc failed"); 1174 } else { 1175 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1176 dev_private = NULL; 1177 } 1178 1179 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1180 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1181 } else { 1182 dev = dev_private; 1183 } 1184 if (dev == NULL) 1185 panic("config_devalloc: memory allocation for device_t failed"); 1186 1187 dev->dv_class = cd->cd_class; 1188 dev->dv_cfdata = cf; 1189 dev->dv_cfdriver = cd; 1190 dev->dv_cfattach = ca; 1191 dev->dv_activity_count = 0; 1192 dev->dv_activity_handlers = NULL; 1193 dev->dv_private = dev_private; 1194 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1195 1196 myunit = config_unit_alloc(dev, cd, cf); 1197 if (myunit == -1) { 1198 config_devfree(dev); 1199 return NULL; 1200 } 1201 1202 /* compute length of name and decimal expansion of unit number */ 1203 lname = strlen(cd->cd_name); 1204 xunit = number(&num[sizeof(num)], myunit); 1205 lunit = &num[sizeof(num)] - xunit; 1206 if (lname + lunit > sizeof(dev->dv_xname)) 1207 panic("config_devalloc: device name too long"); 1208 1209 dvl = device_getlock(dev); 1210 1211 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1212 cv_init(&dvl->dvl_cv, "pmfsusp"); 1213 1214 memcpy(dev->dv_xname, cd->cd_name, lname); 1215 memcpy(dev->dv_xname + lname, xunit, lunit); 1216 dev->dv_parent = parent; 1217 if (parent != NULL) 1218 dev->dv_depth = parent->dv_depth + 1; 1219 else 1220 dev->dv_depth = 0; 1221 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1222 if (locs) { 1223 KASSERT(parent); /* no locators at root */ 1224 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1225 dev->dv_locators = 1226 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1227 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1228 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1229 } 1230 dev->dv_properties = prop_dictionary_create(); 1231 KASSERT(dev->dv_properties != NULL); 1232 1233 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1234 "device-driver", dev->dv_cfdriver->cd_name); 1235 prop_dictionary_set_uint16(dev->dv_properties, 1236 "device-unit", dev->dv_unit); 1237 1238 return dev; 1239 } 1240 1241 /* 1242 * Attach a found device. 1243 */ 1244 device_t 1245 config_attach_loc(device_t parent, cfdata_t cf, 1246 const int *locs, void *aux, cfprint_t print) 1247 { 1248 device_t dev; 1249 struct cftable *ct; 1250 const char *drvname; 1251 1252 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1253 if (splash_progress_state) 1254 splash_progress_update(splash_progress_state); 1255 #endif 1256 1257 dev = config_devalloc(parent, cf, locs); 1258 if (!dev) 1259 panic("config_attach: allocation of device softc failed"); 1260 1261 /* XXX redundant - see below? */ 1262 if (cf->cf_fstate != FSTATE_STAR) { 1263 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1264 cf->cf_fstate = FSTATE_FOUND; 1265 } 1266 1267 config_devlink(dev); 1268 1269 if (config_do_twiddle && cold) 1270 twiddle(); 1271 else 1272 aprint_naive("Found "); 1273 /* 1274 * We want the next two printfs for normal, verbose, and quiet, 1275 * but not silent (in which case, we're twiddling, instead). 1276 */ 1277 if (parent == ROOT) { 1278 aprint_naive("%s (root)", device_xname(dev)); 1279 aprint_normal("%s (root)", device_xname(dev)); 1280 } else { 1281 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1282 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1283 if (print) 1284 (void) (*print)(aux, NULL); 1285 } 1286 1287 /* 1288 * Before attaching, clobber any unfound devices that are 1289 * otherwise identical. 1290 * XXX code above is redundant? 1291 */ 1292 drvname = dev->dv_cfdriver->cd_name; 1293 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1294 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1295 if (STREQ(cf->cf_name, drvname) && 1296 cf->cf_unit == dev->dv_unit) { 1297 if (cf->cf_fstate == FSTATE_NOTFOUND) 1298 cf->cf_fstate = FSTATE_FOUND; 1299 } 1300 } 1301 } 1302 #ifdef __HAVE_DEVICE_REGISTER 1303 device_register(dev, aux); 1304 #endif 1305 1306 /* Let userland know */ 1307 devmon_report_device(dev, true); 1308 1309 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1310 if (splash_progress_state) 1311 splash_progress_update(splash_progress_state); 1312 #endif 1313 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1314 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1315 if (splash_progress_state) 1316 splash_progress_update(splash_progress_state); 1317 #endif 1318 1319 if (!device_pmf_is_registered(dev)) 1320 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1321 1322 config_process_deferred(&deferred_config_queue, dev); 1323 1324 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG 1325 device_register_post_config(dev, aux); 1326 #endif 1327 return dev; 1328 } 1329 1330 device_t 1331 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1332 { 1333 1334 return config_attach_loc(parent, cf, NULL, aux, print); 1335 } 1336 1337 /* 1338 * As above, but for pseudo-devices. Pseudo-devices attached in this 1339 * way are silently inserted into the device tree, and their children 1340 * attached. 1341 * 1342 * Note that because pseudo-devices are attached silently, any information 1343 * the attach routine wishes to print should be prefixed with the device 1344 * name by the attach routine. 1345 */ 1346 device_t 1347 config_attach_pseudo(cfdata_t cf) 1348 { 1349 device_t dev; 1350 1351 dev = config_devalloc(ROOT, cf, NULL); 1352 if (!dev) 1353 return NULL; 1354 1355 /* XXX mark busy in cfdata */ 1356 1357 if (cf->cf_fstate != FSTATE_STAR) { 1358 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1359 cf->cf_fstate = FSTATE_FOUND; 1360 } 1361 1362 config_devlink(dev); 1363 1364 #if 0 /* XXXJRT not yet */ 1365 #ifdef __HAVE_DEVICE_REGISTER 1366 device_register(dev, NULL); /* like a root node */ 1367 #endif 1368 #endif 1369 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1370 config_process_deferred(&deferred_config_queue, dev); 1371 return dev; 1372 } 1373 1374 /* 1375 * Caller must hold alldevs_mtx. 1376 */ 1377 static void 1378 config_collect_garbage(struct devicelist *garbage) 1379 { 1380 device_t dv; 1381 1382 KASSERT(!cpu_intr_p()); 1383 KASSERT(!cpu_softintr_p()); 1384 KASSERT(mutex_owned(&alldevs_mtx)); 1385 1386 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1387 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1388 if (dv->dv_del_gen != 0) 1389 break; 1390 } 1391 if (dv == NULL) { 1392 alldevs_garbage = false; 1393 break; 1394 } 1395 config_devunlink(dv, garbage); 1396 } 1397 KASSERT(mutex_owned(&alldevs_mtx)); 1398 } 1399 1400 static void 1401 config_dump_garbage(struct devicelist *garbage) 1402 { 1403 device_t dv; 1404 1405 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1406 TAILQ_REMOVE(garbage, dv, dv_list); 1407 config_devdelete(dv); 1408 } 1409 } 1410 1411 /* 1412 * Detach a device. Optionally forced (e.g. because of hardware 1413 * removal) and quiet. Returns zero if successful, non-zero 1414 * (an error code) otherwise. 1415 * 1416 * Note that this code wants to be run from a process context, so 1417 * that the detach can sleep to allow processes which have a device 1418 * open to run and unwind their stacks. 1419 */ 1420 int 1421 config_detach(device_t dev, int flags) 1422 { 1423 struct alldevs_foray af; 1424 struct cftable *ct; 1425 cfdata_t cf; 1426 const struct cfattach *ca; 1427 struct cfdriver *cd; 1428 #ifdef DIAGNOSTIC 1429 device_t d; 1430 #endif 1431 int rv = 0, s; 1432 1433 #ifdef DIAGNOSTIC 1434 cf = dev->dv_cfdata; 1435 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1436 cf->cf_fstate != FSTATE_STAR) 1437 panic("config_detach: %s: bad device fstate %d", 1438 device_xname(dev), cf ? cf->cf_fstate : -1); 1439 #endif 1440 cd = dev->dv_cfdriver; 1441 KASSERT(cd != NULL); 1442 1443 ca = dev->dv_cfattach; 1444 KASSERT(ca != NULL); 1445 1446 s = config_alldevs_lock(); 1447 if (dev->dv_del_gen != 0) { 1448 config_alldevs_unlock(s); 1449 #ifdef DIAGNOSTIC 1450 printf("%s: %s is already detached\n", __func__, 1451 device_xname(dev)); 1452 #endif /* DIAGNOSTIC */ 1453 return ENOENT; 1454 } 1455 alldevs_nwrite++; 1456 config_alldevs_unlock(s); 1457 1458 if (!detachall && 1459 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1460 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1461 rv = EOPNOTSUPP; 1462 } else if (ca->ca_detach != NULL) { 1463 rv = (*ca->ca_detach)(dev, flags); 1464 } else 1465 rv = EOPNOTSUPP; 1466 1467 /* 1468 * If it was not possible to detach the device, then we either 1469 * panic() (for the forced but failed case), or return an error. 1470 * 1471 * If it was possible to detach the device, ensure that the 1472 * device is deactivated. 1473 */ 1474 if (rv == 0) 1475 dev->dv_flags &= ~DVF_ACTIVE; 1476 else if ((flags & DETACH_FORCE) == 0) 1477 goto out; 1478 else { 1479 panic("config_detach: forced detach of %s failed (%d)", 1480 device_xname(dev), rv); 1481 } 1482 1483 /* 1484 * The device has now been successfully detached. 1485 */ 1486 1487 /* Let userland know */ 1488 devmon_report_device(dev, false); 1489 1490 #ifdef DIAGNOSTIC 1491 /* 1492 * Sanity: If you're successfully detached, you should have no 1493 * children. (Note that because children must be attached 1494 * after parents, we only need to search the latter part of 1495 * the list.) 1496 */ 1497 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1498 d = TAILQ_NEXT(d, dv_list)) { 1499 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1500 printf("config_detach: detached device %s" 1501 " has children %s\n", device_xname(dev), device_xname(d)); 1502 panic("config_detach"); 1503 } 1504 } 1505 #endif 1506 1507 /* notify the parent that the child is gone */ 1508 if (dev->dv_parent) { 1509 device_t p = dev->dv_parent; 1510 if (p->dv_cfattach->ca_childdetached) 1511 (*p->dv_cfattach->ca_childdetached)(p, dev); 1512 } 1513 1514 /* 1515 * Mark cfdata to show that the unit can be reused, if possible. 1516 */ 1517 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1518 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1519 if (STREQ(cf->cf_name, cd->cd_name)) { 1520 if (cf->cf_fstate == FSTATE_FOUND && 1521 cf->cf_unit == dev->dv_unit) 1522 cf->cf_fstate = FSTATE_NOTFOUND; 1523 } 1524 } 1525 } 1526 1527 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1528 aprint_normal_dev(dev, "detached\n"); 1529 1530 out: 1531 config_alldevs_enter(&af); 1532 KASSERT(alldevs_nwrite != 0); 1533 --alldevs_nwrite; 1534 if (rv == 0 && dev->dv_del_gen == 0) 1535 config_devunlink(dev, &af.af_garbage); 1536 config_alldevs_exit(&af); 1537 1538 return rv; 1539 } 1540 1541 int 1542 config_detach_children(device_t parent, int flags) 1543 { 1544 device_t dv; 1545 deviter_t di; 1546 int error = 0; 1547 1548 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1549 dv = deviter_next(&di)) { 1550 if (device_parent(dv) != parent) 1551 continue; 1552 if ((error = config_detach(dv, flags)) != 0) 1553 break; 1554 } 1555 deviter_release(&di); 1556 return error; 1557 } 1558 1559 device_t 1560 shutdown_first(struct shutdown_state *s) 1561 { 1562 if (!s->initialized) { 1563 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1564 s->initialized = true; 1565 } 1566 return shutdown_next(s); 1567 } 1568 1569 device_t 1570 shutdown_next(struct shutdown_state *s) 1571 { 1572 device_t dv; 1573 1574 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1575 ; 1576 1577 if (dv == NULL) 1578 s->initialized = false; 1579 1580 return dv; 1581 } 1582 1583 bool 1584 config_detach_all(int how) 1585 { 1586 static struct shutdown_state s; 1587 device_t curdev; 1588 bool progress = false; 1589 1590 if ((how & RB_NOSYNC) != 0) 1591 return false; 1592 1593 for (curdev = shutdown_first(&s); curdev != NULL; 1594 curdev = shutdown_next(&s)) { 1595 aprint_debug(" detaching %s, ", device_xname(curdev)); 1596 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1597 progress = true; 1598 aprint_debug("success."); 1599 } else 1600 aprint_debug("failed."); 1601 } 1602 return progress; 1603 } 1604 1605 static bool 1606 device_is_ancestor_of(device_t ancestor, device_t descendant) 1607 { 1608 device_t dv; 1609 1610 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1611 if (device_parent(dv) == ancestor) 1612 return true; 1613 } 1614 return false; 1615 } 1616 1617 int 1618 config_deactivate(device_t dev) 1619 { 1620 deviter_t di; 1621 const struct cfattach *ca; 1622 device_t descendant; 1623 int s, rv = 0, oflags; 1624 1625 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1626 descendant != NULL; 1627 descendant = deviter_next(&di)) { 1628 if (dev != descendant && 1629 !device_is_ancestor_of(dev, descendant)) 1630 continue; 1631 1632 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1633 continue; 1634 1635 ca = descendant->dv_cfattach; 1636 oflags = descendant->dv_flags; 1637 1638 descendant->dv_flags &= ~DVF_ACTIVE; 1639 if (ca->ca_activate == NULL) 1640 continue; 1641 s = splhigh(); 1642 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1643 splx(s); 1644 if (rv != 0) 1645 descendant->dv_flags = oflags; 1646 } 1647 deviter_release(&di); 1648 return rv; 1649 } 1650 1651 /* 1652 * Defer the configuration of the specified device until all 1653 * of its parent's devices have been attached. 1654 */ 1655 void 1656 config_defer(device_t dev, void (*func)(device_t)) 1657 { 1658 struct deferred_config *dc; 1659 1660 if (dev->dv_parent == NULL) 1661 panic("config_defer: can't defer config of a root device"); 1662 1663 #ifdef DIAGNOSTIC 1664 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1665 if (dc->dc_dev == dev) 1666 panic("config_defer: deferred twice"); 1667 } 1668 #endif 1669 1670 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1671 if (dc == NULL) 1672 panic("config_defer: unable to allocate callback"); 1673 1674 dc->dc_dev = dev; 1675 dc->dc_func = func; 1676 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1677 config_pending_incr(); 1678 } 1679 1680 /* 1681 * Defer some autoconfiguration for a device until after interrupts 1682 * are enabled. 1683 */ 1684 void 1685 config_interrupts(device_t dev, void (*func)(device_t)) 1686 { 1687 struct deferred_config *dc; 1688 1689 /* 1690 * If interrupts are enabled, callback now. 1691 */ 1692 if (cold == 0) { 1693 (*func)(dev); 1694 return; 1695 } 1696 1697 #ifdef DIAGNOSTIC 1698 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1699 if (dc->dc_dev == dev) 1700 panic("config_interrupts: deferred twice"); 1701 } 1702 #endif 1703 1704 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1705 if (dc == NULL) 1706 panic("config_interrupts: unable to allocate callback"); 1707 1708 dc->dc_dev = dev; 1709 dc->dc_func = func; 1710 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1711 config_pending_incr(); 1712 } 1713 1714 /* 1715 * Process a deferred configuration queue. 1716 */ 1717 static void 1718 config_process_deferred(struct deferred_config_head *queue, 1719 device_t parent) 1720 { 1721 struct deferred_config *dc, *ndc; 1722 1723 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1724 ndc = TAILQ_NEXT(dc, dc_queue); 1725 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1726 TAILQ_REMOVE(queue, dc, dc_queue); 1727 (*dc->dc_func)(dc->dc_dev); 1728 kmem_free(dc, sizeof(*dc)); 1729 config_pending_decr(); 1730 } 1731 } 1732 } 1733 1734 /* 1735 * Manipulate the config_pending semaphore. 1736 */ 1737 void 1738 config_pending_incr(void) 1739 { 1740 1741 mutex_enter(&config_misc_lock); 1742 config_pending++; 1743 mutex_exit(&config_misc_lock); 1744 } 1745 1746 void 1747 config_pending_decr(void) 1748 { 1749 1750 #ifdef DIAGNOSTIC 1751 if (config_pending == 0) 1752 panic("config_pending_decr: config_pending == 0"); 1753 #endif 1754 mutex_enter(&config_misc_lock); 1755 config_pending--; 1756 if (config_pending == 0) 1757 cv_broadcast(&config_misc_cv); 1758 mutex_exit(&config_misc_lock); 1759 } 1760 1761 /* 1762 * Register a "finalization" routine. Finalization routines are 1763 * called iteratively once all real devices have been found during 1764 * autoconfiguration, for as long as any one finalizer has done 1765 * any work. 1766 */ 1767 int 1768 config_finalize_register(device_t dev, int (*fn)(device_t)) 1769 { 1770 struct finalize_hook *f; 1771 1772 /* 1773 * If finalization has already been done, invoke the 1774 * callback function now. 1775 */ 1776 if (config_finalize_done) { 1777 while ((*fn)(dev) != 0) 1778 /* loop */ ; 1779 } 1780 1781 /* Ensure this isn't already on the list. */ 1782 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1783 if (f->f_func == fn && f->f_dev == dev) 1784 return EEXIST; 1785 } 1786 1787 f = kmem_alloc(sizeof(*f), KM_SLEEP); 1788 f->f_func = fn; 1789 f->f_dev = dev; 1790 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1791 1792 return 0; 1793 } 1794 1795 void 1796 config_finalize(void) 1797 { 1798 struct finalize_hook *f; 1799 struct pdevinit *pdev; 1800 extern struct pdevinit pdevinit[]; 1801 int errcnt, rv; 1802 1803 /* 1804 * Now that device driver threads have been created, wait for 1805 * them to finish any deferred autoconfiguration. 1806 */ 1807 mutex_enter(&config_misc_lock); 1808 while (config_pending != 0) 1809 cv_wait(&config_misc_cv, &config_misc_lock); 1810 mutex_exit(&config_misc_lock); 1811 1812 KERNEL_LOCK(1, NULL); 1813 1814 /* Attach pseudo-devices. */ 1815 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 1816 (*pdev->pdev_attach)(pdev->pdev_count); 1817 1818 /* Run the hooks until none of them does any work. */ 1819 do { 1820 rv = 0; 1821 TAILQ_FOREACH(f, &config_finalize_list, f_list) 1822 rv |= (*f->f_func)(f->f_dev); 1823 } while (rv != 0); 1824 1825 config_finalize_done = 1; 1826 1827 /* Now free all the hooks. */ 1828 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 1829 TAILQ_REMOVE(&config_finalize_list, f, f_list); 1830 kmem_free(f, sizeof(*f)); 1831 } 1832 1833 KERNEL_UNLOCK_ONE(NULL); 1834 1835 errcnt = aprint_get_error_count(); 1836 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 1837 (boothowto & AB_VERBOSE) == 0) { 1838 mutex_enter(&config_misc_lock); 1839 if (config_do_twiddle) { 1840 config_do_twiddle = 0; 1841 printf_nolog(" done.\n"); 1842 } 1843 mutex_exit(&config_misc_lock); 1844 if (errcnt != 0) { 1845 printf("WARNING: %d error%s while detecting hardware; " 1846 "check system log.\n", errcnt, 1847 errcnt == 1 ? "" : "s"); 1848 } 1849 } 1850 } 1851 1852 void 1853 config_twiddle_init() 1854 { 1855 1856 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 1857 config_do_twiddle = 1; 1858 } 1859 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 1860 } 1861 1862 void 1863 config_twiddle_fn(void *cookie) 1864 { 1865 1866 mutex_enter(&config_misc_lock); 1867 if (config_do_twiddle) { 1868 twiddle(); 1869 callout_schedule(&config_twiddle_ch, mstohz(100)); 1870 } 1871 mutex_exit(&config_misc_lock); 1872 } 1873 1874 static int 1875 config_alldevs_lock(void) 1876 { 1877 int s; 1878 1879 s = splhigh(); 1880 mutex_enter(&alldevs_mtx); 1881 return s; 1882 } 1883 1884 static void 1885 config_alldevs_enter(struct alldevs_foray *af) 1886 { 1887 TAILQ_INIT(&af->af_garbage); 1888 af->af_s = config_alldevs_lock(); 1889 config_collect_garbage(&af->af_garbage); 1890 } 1891 1892 static void 1893 config_alldevs_exit(struct alldevs_foray *af) 1894 { 1895 config_alldevs_unlock(af->af_s); 1896 config_dump_garbage(&af->af_garbage); 1897 } 1898 1899 static void 1900 config_alldevs_unlock(int s) 1901 { 1902 mutex_exit(&alldevs_mtx); 1903 splx(s); 1904 } 1905 1906 /* 1907 * device_lookup: 1908 * 1909 * Look up a device instance for a given driver. 1910 */ 1911 device_t 1912 device_lookup(cfdriver_t cd, int unit) 1913 { 1914 device_t dv; 1915 int s; 1916 1917 s = config_alldevs_lock(); 1918 KASSERT(mutex_owned(&alldevs_mtx)); 1919 if (unit < 0 || unit >= cd->cd_ndevs) 1920 dv = NULL; 1921 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 1922 dv = NULL; 1923 config_alldevs_unlock(s); 1924 1925 return dv; 1926 } 1927 1928 /* 1929 * device_lookup_private: 1930 * 1931 * Look up a softc instance for a given driver. 1932 */ 1933 void * 1934 device_lookup_private(cfdriver_t cd, int unit) 1935 { 1936 1937 return device_private(device_lookup(cd, unit)); 1938 } 1939 1940 /* 1941 * device_find_by_xname: 1942 * 1943 * Returns the device of the given name or NULL if it doesn't exist. 1944 */ 1945 device_t 1946 device_find_by_xname(const char *name) 1947 { 1948 device_t dv; 1949 deviter_t di; 1950 1951 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 1952 if (strcmp(device_xname(dv), name) == 0) 1953 break; 1954 } 1955 deviter_release(&di); 1956 1957 return dv; 1958 } 1959 1960 /* 1961 * device_find_by_driver_unit: 1962 * 1963 * Returns the device of the given driver name and unit or 1964 * NULL if it doesn't exist. 1965 */ 1966 device_t 1967 device_find_by_driver_unit(const char *name, int unit) 1968 { 1969 struct cfdriver *cd; 1970 1971 if ((cd = config_cfdriver_lookup(name)) == NULL) 1972 return NULL; 1973 return device_lookup(cd, unit); 1974 } 1975 1976 /* 1977 * Power management related functions. 1978 */ 1979 1980 bool 1981 device_pmf_is_registered(device_t dev) 1982 { 1983 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 1984 } 1985 1986 bool 1987 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 1988 { 1989 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 1990 return true; 1991 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 1992 return false; 1993 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 1994 dev->dv_driver_suspend != NULL && 1995 !(*dev->dv_driver_suspend)(dev, qual)) 1996 return false; 1997 1998 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 1999 return true; 2000 } 2001 2002 bool 2003 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2004 { 2005 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2006 return true; 2007 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2008 return false; 2009 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2010 dev->dv_driver_resume != NULL && 2011 !(*dev->dv_driver_resume)(dev, qual)) 2012 return false; 2013 2014 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2015 return true; 2016 } 2017 2018 bool 2019 device_pmf_driver_shutdown(device_t dev, int how) 2020 { 2021 2022 if (*dev->dv_driver_shutdown != NULL && 2023 !(*dev->dv_driver_shutdown)(dev, how)) 2024 return false; 2025 return true; 2026 } 2027 2028 bool 2029 device_pmf_driver_register(device_t dev, 2030 bool (*suspend)(device_t, const pmf_qual_t *), 2031 bool (*resume)(device_t, const pmf_qual_t *), 2032 bool (*shutdown)(device_t, int)) 2033 { 2034 dev->dv_driver_suspend = suspend; 2035 dev->dv_driver_resume = resume; 2036 dev->dv_driver_shutdown = shutdown; 2037 dev->dv_flags |= DVF_POWER_HANDLERS; 2038 return true; 2039 } 2040 2041 static const char * 2042 curlwp_name(void) 2043 { 2044 if (curlwp->l_name != NULL) 2045 return curlwp->l_name; 2046 else 2047 return curlwp->l_proc->p_comm; 2048 } 2049 2050 void 2051 device_pmf_driver_deregister(device_t dev) 2052 { 2053 device_lock_t dvl = device_getlock(dev); 2054 2055 dev->dv_driver_suspend = NULL; 2056 dev->dv_driver_resume = NULL; 2057 2058 mutex_enter(&dvl->dvl_mtx); 2059 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2060 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2061 /* Wake a thread that waits for the lock. That 2062 * thread will fail to acquire the lock, and then 2063 * it will wake the next thread that waits for the 2064 * lock, or else it will wake us. 2065 */ 2066 cv_signal(&dvl->dvl_cv); 2067 pmflock_debug(dev, __func__, __LINE__); 2068 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2069 pmflock_debug(dev, __func__, __LINE__); 2070 } 2071 mutex_exit(&dvl->dvl_mtx); 2072 } 2073 2074 bool 2075 device_pmf_driver_child_register(device_t dev) 2076 { 2077 device_t parent = device_parent(dev); 2078 2079 if (parent == NULL || parent->dv_driver_child_register == NULL) 2080 return true; 2081 return (*parent->dv_driver_child_register)(dev); 2082 } 2083 2084 void 2085 device_pmf_driver_set_child_register(device_t dev, 2086 bool (*child_register)(device_t)) 2087 { 2088 dev->dv_driver_child_register = child_register; 2089 } 2090 2091 static void 2092 pmflock_debug(device_t dev, const char *func, int line) 2093 { 2094 device_lock_t dvl = device_getlock(dev); 2095 2096 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2097 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2098 dev->dv_flags); 2099 } 2100 2101 static bool 2102 device_pmf_lock1(device_t dev) 2103 { 2104 device_lock_t dvl = device_getlock(dev); 2105 2106 while (device_pmf_is_registered(dev) && 2107 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2108 dvl->dvl_nwait++; 2109 pmflock_debug(dev, __func__, __LINE__); 2110 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2111 pmflock_debug(dev, __func__, __LINE__); 2112 dvl->dvl_nwait--; 2113 } 2114 if (!device_pmf_is_registered(dev)) { 2115 pmflock_debug(dev, __func__, __LINE__); 2116 /* We could not acquire the lock, but some other thread may 2117 * wait for it, also. Wake that thread. 2118 */ 2119 cv_signal(&dvl->dvl_cv); 2120 return false; 2121 } 2122 dvl->dvl_nlock++; 2123 dvl->dvl_holder = curlwp; 2124 pmflock_debug(dev, __func__, __LINE__); 2125 return true; 2126 } 2127 2128 bool 2129 device_pmf_lock(device_t dev) 2130 { 2131 bool rc; 2132 device_lock_t dvl = device_getlock(dev); 2133 2134 mutex_enter(&dvl->dvl_mtx); 2135 rc = device_pmf_lock1(dev); 2136 mutex_exit(&dvl->dvl_mtx); 2137 2138 return rc; 2139 } 2140 2141 void 2142 device_pmf_unlock(device_t dev) 2143 { 2144 device_lock_t dvl = device_getlock(dev); 2145 2146 KASSERT(dvl->dvl_nlock > 0); 2147 mutex_enter(&dvl->dvl_mtx); 2148 if (--dvl->dvl_nlock == 0) 2149 dvl->dvl_holder = NULL; 2150 cv_signal(&dvl->dvl_cv); 2151 pmflock_debug(dev, __func__, __LINE__); 2152 mutex_exit(&dvl->dvl_mtx); 2153 } 2154 2155 device_lock_t 2156 device_getlock(device_t dev) 2157 { 2158 return &dev->dv_lock; 2159 } 2160 2161 void * 2162 device_pmf_bus_private(device_t dev) 2163 { 2164 return dev->dv_bus_private; 2165 } 2166 2167 bool 2168 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2169 { 2170 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2171 return true; 2172 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2173 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2174 return false; 2175 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2176 dev->dv_bus_suspend != NULL && 2177 !(*dev->dv_bus_suspend)(dev, qual)) 2178 return false; 2179 2180 dev->dv_flags |= DVF_BUS_SUSPENDED; 2181 return true; 2182 } 2183 2184 bool 2185 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2186 { 2187 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2188 return true; 2189 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2190 dev->dv_bus_resume != NULL && 2191 !(*dev->dv_bus_resume)(dev, qual)) 2192 return false; 2193 2194 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2195 return true; 2196 } 2197 2198 bool 2199 device_pmf_bus_shutdown(device_t dev, int how) 2200 { 2201 2202 if (*dev->dv_bus_shutdown != NULL && 2203 !(*dev->dv_bus_shutdown)(dev, how)) 2204 return false; 2205 return true; 2206 } 2207 2208 void 2209 device_pmf_bus_register(device_t dev, void *priv, 2210 bool (*suspend)(device_t, const pmf_qual_t *), 2211 bool (*resume)(device_t, const pmf_qual_t *), 2212 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2213 { 2214 dev->dv_bus_private = priv; 2215 dev->dv_bus_resume = resume; 2216 dev->dv_bus_suspend = suspend; 2217 dev->dv_bus_shutdown = shutdown; 2218 dev->dv_bus_deregister = deregister; 2219 } 2220 2221 void 2222 device_pmf_bus_deregister(device_t dev) 2223 { 2224 if (dev->dv_bus_deregister == NULL) 2225 return; 2226 (*dev->dv_bus_deregister)(dev); 2227 dev->dv_bus_private = NULL; 2228 dev->dv_bus_suspend = NULL; 2229 dev->dv_bus_resume = NULL; 2230 dev->dv_bus_deregister = NULL; 2231 } 2232 2233 void * 2234 device_pmf_class_private(device_t dev) 2235 { 2236 return dev->dv_class_private; 2237 } 2238 2239 bool 2240 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2241 { 2242 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2243 return true; 2244 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2245 dev->dv_class_suspend != NULL && 2246 !(*dev->dv_class_suspend)(dev, qual)) 2247 return false; 2248 2249 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2250 return true; 2251 } 2252 2253 bool 2254 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2255 { 2256 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2257 return true; 2258 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2259 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2260 return false; 2261 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2262 dev->dv_class_resume != NULL && 2263 !(*dev->dv_class_resume)(dev, qual)) 2264 return false; 2265 2266 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2267 return true; 2268 } 2269 2270 void 2271 device_pmf_class_register(device_t dev, void *priv, 2272 bool (*suspend)(device_t, const pmf_qual_t *), 2273 bool (*resume)(device_t, const pmf_qual_t *), 2274 void (*deregister)(device_t)) 2275 { 2276 dev->dv_class_private = priv; 2277 dev->dv_class_suspend = suspend; 2278 dev->dv_class_resume = resume; 2279 dev->dv_class_deregister = deregister; 2280 } 2281 2282 void 2283 device_pmf_class_deregister(device_t dev) 2284 { 2285 if (dev->dv_class_deregister == NULL) 2286 return; 2287 (*dev->dv_class_deregister)(dev); 2288 dev->dv_class_private = NULL; 2289 dev->dv_class_suspend = NULL; 2290 dev->dv_class_resume = NULL; 2291 dev->dv_class_deregister = NULL; 2292 } 2293 2294 bool 2295 device_active(device_t dev, devactive_t type) 2296 { 2297 size_t i; 2298 2299 if (dev->dv_activity_count == 0) 2300 return false; 2301 2302 for (i = 0; i < dev->dv_activity_count; ++i) { 2303 if (dev->dv_activity_handlers[i] == NULL) 2304 break; 2305 (*dev->dv_activity_handlers[i])(dev, type); 2306 } 2307 2308 return true; 2309 } 2310 2311 bool 2312 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2313 { 2314 void (**new_handlers)(device_t, devactive_t); 2315 void (**old_handlers)(device_t, devactive_t); 2316 size_t i, old_size, new_size; 2317 int s; 2318 2319 old_handlers = dev->dv_activity_handlers; 2320 old_size = dev->dv_activity_count; 2321 2322 for (i = 0; i < old_size; ++i) { 2323 KASSERT(old_handlers[i] != handler); 2324 if (old_handlers[i] == NULL) { 2325 old_handlers[i] = handler; 2326 return true; 2327 } 2328 } 2329 2330 new_size = old_size + 4; 2331 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2332 2333 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2334 new_handlers[old_size] = handler; 2335 memset(new_handlers + old_size + 1, 0, 2336 sizeof(int [new_size - (old_size+1)])); 2337 2338 s = splhigh(); 2339 dev->dv_activity_count = new_size; 2340 dev->dv_activity_handlers = new_handlers; 2341 splx(s); 2342 2343 if (old_handlers != NULL) 2344 kmem_free(old_handlers, sizeof(void * [old_size])); 2345 2346 return true; 2347 } 2348 2349 void 2350 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2351 { 2352 void (**old_handlers)(device_t, devactive_t); 2353 size_t i, old_size; 2354 int s; 2355 2356 old_handlers = dev->dv_activity_handlers; 2357 old_size = dev->dv_activity_count; 2358 2359 for (i = 0; i < old_size; ++i) { 2360 if (old_handlers[i] == handler) 2361 break; 2362 if (old_handlers[i] == NULL) 2363 return; /* XXX panic? */ 2364 } 2365 2366 if (i == old_size) 2367 return; /* XXX panic? */ 2368 2369 for (; i < old_size - 1; ++i) { 2370 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2371 continue; 2372 2373 if (i == 0) { 2374 s = splhigh(); 2375 dev->dv_activity_count = 0; 2376 dev->dv_activity_handlers = NULL; 2377 splx(s); 2378 kmem_free(old_handlers, sizeof(void *[old_size])); 2379 } 2380 return; 2381 } 2382 old_handlers[i] = NULL; 2383 } 2384 2385 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2386 static bool 2387 device_exists_at(device_t dv, devgen_t gen) 2388 { 2389 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2390 dv->dv_add_gen <= gen; 2391 } 2392 2393 static bool 2394 deviter_visits(const deviter_t *di, device_t dv) 2395 { 2396 return device_exists_at(dv, di->di_gen); 2397 } 2398 2399 /* 2400 * Device Iteration 2401 * 2402 * deviter_t: a device iterator. Holds state for a "walk" visiting 2403 * each device_t's in the device tree. 2404 * 2405 * deviter_init(di, flags): initialize the device iterator `di' 2406 * to "walk" the device tree. deviter_next(di) will return 2407 * the first device_t in the device tree, or NULL if there are 2408 * no devices. 2409 * 2410 * `flags' is one or more of DEVITER_F_RW, indicating that the 2411 * caller intends to modify the device tree by calling 2412 * config_detach(9) on devices in the order that the iterator 2413 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2414 * nearest the "root" of the device tree to be returned, first; 2415 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2416 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2417 * indicating both that deviter_init() should not respect any 2418 * locks on the device tree, and that deviter_next(di) may run 2419 * in more than one LWP before the walk has finished. 2420 * 2421 * Only one DEVITER_F_RW iterator may be in the device tree at 2422 * once. 2423 * 2424 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2425 * 2426 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2427 * DEVITER_F_LEAVES_FIRST are used in combination. 2428 * 2429 * deviter_first(di, flags): initialize the device iterator `di' 2430 * and return the first device_t in the device tree, or NULL 2431 * if there are no devices. The statement 2432 * 2433 * dv = deviter_first(di); 2434 * 2435 * is shorthand for 2436 * 2437 * deviter_init(di); 2438 * dv = deviter_next(di); 2439 * 2440 * deviter_next(di): return the next device_t in the device tree, 2441 * or NULL if there are no more devices. deviter_next(di) 2442 * is undefined if `di' was not initialized with deviter_init() or 2443 * deviter_first(). 2444 * 2445 * deviter_release(di): stops iteration (subsequent calls to 2446 * deviter_next() will return NULL), releases any locks and 2447 * resources held by the device iterator. 2448 * 2449 * Device iteration does not return device_t's in any particular 2450 * order. An iterator will never return the same device_t twice. 2451 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2452 * is called repeatedly on the same `di', it will eventually return 2453 * NULL. It is ok to attach/detach devices during device iteration. 2454 */ 2455 void 2456 deviter_init(deviter_t *di, deviter_flags_t flags) 2457 { 2458 device_t dv; 2459 int s; 2460 2461 memset(di, 0, sizeof(*di)); 2462 2463 s = config_alldevs_lock(); 2464 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2465 flags |= DEVITER_F_RW; 2466 2467 if ((flags & DEVITER_F_RW) != 0) 2468 alldevs_nwrite++; 2469 else 2470 alldevs_nread++; 2471 di->di_gen = alldevs_gen++; 2472 config_alldevs_unlock(s); 2473 2474 di->di_flags = flags; 2475 2476 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2477 case DEVITER_F_LEAVES_FIRST: 2478 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2479 if (!deviter_visits(di, dv)) 2480 continue; 2481 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2482 } 2483 break; 2484 case DEVITER_F_ROOT_FIRST: 2485 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2486 if (!deviter_visits(di, dv)) 2487 continue; 2488 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2489 } 2490 break; 2491 default: 2492 break; 2493 } 2494 2495 deviter_reinit(di); 2496 } 2497 2498 static void 2499 deviter_reinit(deviter_t *di) 2500 { 2501 if ((di->di_flags & DEVITER_F_RW) != 0) 2502 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2503 else 2504 di->di_prev = TAILQ_FIRST(&alldevs); 2505 } 2506 2507 device_t 2508 deviter_first(deviter_t *di, deviter_flags_t flags) 2509 { 2510 deviter_init(di, flags); 2511 return deviter_next(di); 2512 } 2513 2514 static device_t 2515 deviter_next2(deviter_t *di) 2516 { 2517 device_t dv; 2518 2519 dv = di->di_prev; 2520 2521 if (dv == NULL) 2522 return NULL; 2523 2524 if ((di->di_flags & DEVITER_F_RW) != 0) 2525 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2526 else 2527 di->di_prev = TAILQ_NEXT(dv, dv_list); 2528 2529 return dv; 2530 } 2531 2532 static device_t 2533 deviter_next1(deviter_t *di) 2534 { 2535 device_t dv; 2536 2537 do { 2538 dv = deviter_next2(di); 2539 } while (dv != NULL && !deviter_visits(di, dv)); 2540 2541 return dv; 2542 } 2543 2544 device_t 2545 deviter_next(deviter_t *di) 2546 { 2547 device_t dv = NULL; 2548 2549 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2550 case 0: 2551 return deviter_next1(di); 2552 case DEVITER_F_LEAVES_FIRST: 2553 while (di->di_curdepth >= 0) { 2554 if ((dv = deviter_next1(di)) == NULL) { 2555 di->di_curdepth--; 2556 deviter_reinit(di); 2557 } else if (dv->dv_depth == di->di_curdepth) 2558 break; 2559 } 2560 return dv; 2561 case DEVITER_F_ROOT_FIRST: 2562 while (di->di_curdepth <= di->di_maxdepth) { 2563 if ((dv = deviter_next1(di)) == NULL) { 2564 di->di_curdepth++; 2565 deviter_reinit(di); 2566 } else if (dv->dv_depth == di->di_curdepth) 2567 break; 2568 } 2569 return dv; 2570 default: 2571 return NULL; 2572 } 2573 } 2574 2575 void 2576 deviter_release(deviter_t *di) 2577 { 2578 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2579 int s; 2580 2581 s = config_alldevs_lock(); 2582 if (rw) 2583 --alldevs_nwrite; 2584 else 2585 --alldevs_nread; 2586 /* XXX wake a garbage-collection thread */ 2587 config_alldevs_unlock(s); 2588 } 2589 2590 const char * 2591 cfdata_ifattr(const struct cfdata *cf) 2592 { 2593 return cf->cf_pspec->cfp_iattr; 2594 } 2595 2596 bool 2597 ifattr_match(const char *snull, const char *t) 2598 { 2599 return (snull == NULL) || strcmp(snull, t) == 0; 2600 } 2601 2602 void 2603 null_childdetached(device_t self, device_t child) 2604 { 2605 /* do nothing */ 2606 } 2607 2608 static void 2609 sysctl_detach_setup(struct sysctllog **clog) 2610 { 2611 const struct sysctlnode *node = NULL; 2612 2613 sysctl_createv(clog, 0, NULL, &node, 2614 CTLFLAG_PERMANENT, 2615 CTLTYPE_NODE, "kern", NULL, 2616 NULL, 0, NULL, 0, 2617 CTL_KERN, CTL_EOL); 2618 2619 if (node == NULL) 2620 return; 2621 2622 sysctl_createv(clog, 0, &node, NULL, 2623 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2624 CTLTYPE_INT, "detachall", 2625 SYSCTL_DESCR("Detach all devices at shutdown"), 2626 NULL, 0, &detachall, 0, 2627 CTL_CREATE, CTL_EOL); 2628 } 2629