1 /* $NetBSD: subr_autoconf.c,v 1.306 2022/09/13 09:43:33 riastradh Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.306 2022/09/13 09:43:33 riastradh Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/device_impl.h> 90 #include <sys/disklabel.h> 91 #include <sys/conf.h> 92 #include <sys/kauth.h> 93 #include <sys/kmem.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/errno.h> 97 #include <sys/proc.h> 98 #include <sys/reboot.h> 99 #include <sys/kthread.h> 100 #include <sys/buf.h> 101 #include <sys/dirent.h> 102 #include <sys/mount.h> 103 #include <sys/namei.h> 104 #include <sys/unistd.h> 105 #include <sys/fcntl.h> 106 #include <sys/lockf.h> 107 #include <sys/callout.h> 108 #include <sys/devmon.h> 109 #include <sys/cpu.h> 110 #include <sys/sysctl.h> 111 #include <sys/stdarg.h> 112 #include <sys/localcount.h> 113 114 #include <sys/disk.h> 115 116 #include <sys/rndsource.h> 117 118 #include <machine/limits.h> 119 120 /* 121 * Autoconfiguration subroutines. 122 */ 123 124 /* 125 * Device autoconfiguration timings are mixed into the entropy pool. 126 */ 127 static krndsource_t rnd_autoconf_source; 128 129 /* 130 * ioconf.c exports exactly two names: cfdata and cfroots. All system 131 * devices and drivers are found via these tables. 132 */ 133 extern struct cfdata cfdata[]; 134 extern const short cfroots[]; 135 136 /* 137 * List of all cfdriver structures. We use this to detect duplicates 138 * when other cfdrivers are loaded. 139 */ 140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 141 extern struct cfdriver * const cfdriver_list_initial[]; 142 143 /* 144 * Initial list of cfattach's. 145 */ 146 extern const struct cfattachinit cfattachinit[]; 147 148 /* 149 * List of cfdata tables. We always have one such list -- the one 150 * built statically when the kernel was configured. 151 */ 152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 153 static struct cftable initcftable; 154 155 #define ROOT ((device_t)NULL) 156 157 struct matchinfo { 158 cfsubmatch_t fn; 159 device_t parent; 160 const int *locs; 161 void *aux; 162 struct cfdata *match; 163 int pri; 164 }; 165 166 struct alldevs_foray { 167 int af_s; 168 struct devicelist af_garbage; 169 }; 170 171 /* 172 * Internal version of the cfargs structure; all versions are 173 * canonicalized to this. 174 */ 175 struct cfargs_internal { 176 union { 177 cfsubmatch_t submatch;/* submatch function (direct config) */ 178 cfsearch_t search; /* search function (indirect config) */ 179 }; 180 const char * iattr; /* interface attribute */ 181 const int * locators; /* locators array */ 182 devhandle_t devhandle; /* devhandle_t (by value) */ 183 }; 184 185 static char *number(char *, int); 186 static void mapply(struct matchinfo *, cfdata_t); 187 static void config_devdelete(device_t); 188 static void config_devunlink(device_t, struct devicelist *); 189 static void config_makeroom(int, struct cfdriver *); 190 static void config_devlink(device_t); 191 static void config_alldevs_enter(struct alldevs_foray *); 192 static void config_alldevs_exit(struct alldevs_foray *); 193 static void config_add_attrib_dict(device_t); 194 static device_t config_attach_internal(device_t, cfdata_t, void *, 195 cfprint_t, const struct cfargs_internal *); 196 197 static void config_collect_garbage(struct devicelist *); 198 static void config_dump_garbage(struct devicelist *); 199 200 static void pmflock_debug(device_t, const char *, int); 201 202 static device_t deviter_next1(deviter_t *); 203 static void deviter_reinit(deviter_t *); 204 205 struct deferred_config { 206 TAILQ_ENTRY(deferred_config) dc_queue; 207 device_t dc_dev; 208 void (*dc_func)(device_t); 209 }; 210 211 TAILQ_HEAD(deferred_config_head, deferred_config); 212 213 static struct deferred_config_head deferred_config_queue = 214 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 215 static struct deferred_config_head interrupt_config_queue = 216 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 217 static int interrupt_config_threads = 8; 218 static struct deferred_config_head mountroot_config_queue = 219 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 220 static int mountroot_config_threads = 2; 221 static lwp_t **mountroot_config_lwpids; 222 static size_t mountroot_config_lwpids_size; 223 bool root_is_mounted = false; 224 225 static void config_process_deferred(struct deferred_config_head *, device_t); 226 227 /* Hooks to finalize configuration once all real devices have been found. */ 228 struct finalize_hook { 229 TAILQ_ENTRY(finalize_hook) f_list; 230 int (*f_func)(device_t); 231 device_t f_dev; 232 }; 233 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 234 TAILQ_HEAD_INITIALIZER(config_finalize_list); 235 static int config_finalize_done; 236 237 /* list of all devices */ 238 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 239 static kmutex_t alldevs_lock __cacheline_aligned; 240 static devgen_t alldevs_gen = 1; 241 static int alldevs_nread = 0; 242 static int alldevs_nwrite = 0; 243 static bool alldevs_garbage = false; 244 245 static struct devicelist config_pending = 246 TAILQ_HEAD_INITIALIZER(config_pending); 247 static kmutex_t config_misc_lock; 248 static kcondvar_t config_misc_cv; 249 250 static bool detachall = false; 251 252 #define STREQ(s1, s2) \ 253 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 254 255 static bool config_initialized = false; /* config_init() has been called. */ 256 257 static int config_do_twiddle; 258 static callout_t config_twiddle_ch; 259 260 static void sysctl_detach_setup(struct sysctllog **); 261 262 int no_devmon_insert(const char *, prop_dictionary_t); 263 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; 264 265 typedef int (*cfdriver_fn)(struct cfdriver *); 266 static int 267 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 268 cfdriver_fn drv_do, cfdriver_fn drv_undo, 269 const char *style, bool dopanic) 270 { 271 void (*pr)(const char *, ...) __printflike(1, 2) = 272 dopanic ? panic : printf; 273 int i, error = 0, e2 __diagused; 274 275 for (i = 0; cfdriverv[i] != NULL; i++) { 276 if ((error = drv_do(cfdriverv[i])) != 0) { 277 pr("configure: `%s' driver %s failed: %d", 278 cfdriverv[i]->cd_name, style, error); 279 goto bad; 280 } 281 } 282 283 KASSERT(error == 0); 284 return 0; 285 286 bad: 287 printf("\n"); 288 for (i--; i >= 0; i--) { 289 e2 = drv_undo(cfdriverv[i]); 290 KASSERT(e2 == 0); 291 } 292 293 return error; 294 } 295 296 typedef int (*cfattach_fn)(const char *, struct cfattach *); 297 static int 298 frob_cfattachvec(const struct cfattachinit *cfattachv, 299 cfattach_fn att_do, cfattach_fn att_undo, 300 const char *style, bool dopanic) 301 { 302 const struct cfattachinit *cfai = NULL; 303 void (*pr)(const char *, ...) __printflike(1, 2) = 304 dopanic ? panic : printf; 305 int j = 0, error = 0, e2 __diagused; 306 307 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 308 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 309 if ((error = att_do(cfai->cfai_name, 310 cfai->cfai_list[j])) != 0) { 311 pr("configure: attachment `%s' " 312 "of `%s' driver %s failed: %d", 313 cfai->cfai_list[j]->ca_name, 314 cfai->cfai_name, style, error); 315 goto bad; 316 } 317 } 318 } 319 320 KASSERT(error == 0); 321 return 0; 322 323 bad: 324 /* 325 * Rollback in reverse order. dunno if super-important, but 326 * do that anyway. Although the code looks a little like 327 * someone did a little integration (in the math sense). 328 */ 329 printf("\n"); 330 if (cfai) { 331 bool last; 332 333 for (last = false; last == false; ) { 334 if (cfai == &cfattachv[0]) 335 last = true; 336 for (j--; j >= 0; j--) { 337 e2 = att_undo(cfai->cfai_name, 338 cfai->cfai_list[j]); 339 KASSERT(e2 == 0); 340 } 341 if (!last) { 342 cfai--; 343 for (j = 0; cfai->cfai_list[j] != NULL; j++) 344 ; 345 } 346 } 347 } 348 349 return error; 350 } 351 352 /* 353 * Initialize the autoconfiguration data structures. Normally this 354 * is done by configure(), but some platforms need to do this very 355 * early (to e.g. initialize the console). 356 */ 357 void 358 config_init(void) 359 { 360 361 KASSERT(config_initialized == false); 362 363 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM); 364 365 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 366 cv_init(&config_misc_cv, "cfgmisc"); 367 368 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 369 370 frob_cfdrivervec(cfdriver_list_initial, 371 config_cfdriver_attach, NULL, "bootstrap", true); 372 frob_cfattachvec(cfattachinit, 373 config_cfattach_attach, NULL, "bootstrap", true); 374 375 initcftable.ct_cfdata = cfdata; 376 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 377 378 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN, 379 RND_FLAG_COLLECT_TIME); 380 381 config_initialized = true; 382 } 383 384 /* 385 * Init or fini drivers and attachments. Either all or none 386 * are processed (via rollback). It would be nice if this were 387 * atomic to outside consumers, but with the current state of 388 * locking ... 389 */ 390 int 391 config_init_component(struct cfdriver * const *cfdriverv, 392 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 393 { 394 int error; 395 396 KERNEL_LOCK(1, NULL); 397 398 if ((error = frob_cfdrivervec(cfdriverv, 399 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 400 goto out; 401 if ((error = frob_cfattachvec(cfattachv, 402 config_cfattach_attach, config_cfattach_detach, 403 "init", false)) != 0) { 404 frob_cfdrivervec(cfdriverv, 405 config_cfdriver_detach, NULL, "init rollback", true); 406 goto out; 407 } 408 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 409 frob_cfattachvec(cfattachv, 410 config_cfattach_detach, NULL, "init rollback", true); 411 frob_cfdrivervec(cfdriverv, 412 config_cfdriver_detach, NULL, "init rollback", true); 413 goto out; 414 } 415 416 /* Success! */ 417 error = 0; 418 419 out: KERNEL_UNLOCK_ONE(NULL); 420 return error; 421 } 422 423 int 424 config_fini_component(struct cfdriver * const *cfdriverv, 425 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 426 { 427 int error; 428 429 KERNEL_LOCK(1, NULL); 430 431 if ((error = config_cfdata_detach(cfdatav)) != 0) 432 goto out; 433 if ((error = frob_cfattachvec(cfattachv, 434 config_cfattach_detach, config_cfattach_attach, 435 "fini", false)) != 0) { 436 if (config_cfdata_attach(cfdatav, 0) != 0) 437 panic("config_cfdata fini rollback failed"); 438 goto out; 439 } 440 if ((error = frob_cfdrivervec(cfdriverv, 441 config_cfdriver_detach, config_cfdriver_attach, 442 "fini", false)) != 0) { 443 frob_cfattachvec(cfattachv, 444 config_cfattach_attach, NULL, "fini rollback", true); 445 if (config_cfdata_attach(cfdatav, 0) != 0) 446 panic("config_cfdata fini rollback failed"); 447 goto out; 448 } 449 450 /* Success! */ 451 error = 0; 452 453 out: KERNEL_UNLOCK_ONE(NULL); 454 return error; 455 } 456 457 void 458 config_init_mi(void) 459 { 460 461 if (!config_initialized) 462 config_init(); 463 464 sysctl_detach_setup(NULL); 465 } 466 467 void 468 config_deferred(device_t dev) 469 { 470 471 KASSERT(KERNEL_LOCKED_P()); 472 473 config_process_deferred(&deferred_config_queue, dev); 474 config_process_deferred(&interrupt_config_queue, dev); 475 config_process_deferred(&mountroot_config_queue, dev); 476 } 477 478 static void 479 config_interrupts_thread(void *cookie) 480 { 481 struct deferred_config *dc; 482 device_t dev; 483 484 mutex_enter(&config_misc_lock); 485 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 486 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 487 mutex_exit(&config_misc_lock); 488 489 dev = dc->dc_dev; 490 (*dc->dc_func)(dev); 491 if (!device_pmf_is_registered(dev)) 492 aprint_debug_dev(dev, 493 "WARNING: power management not supported\n"); 494 config_pending_decr(dev); 495 kmem_free(dc, sizeof(*dc)); 496 497 mutex_enter(&config_misc_lock); 498 } 499 mutex_exit(&config_misc_lock); 500 501 kthread_exit(0); 502 } 503 504 void 505 config_create_interruptthreads(void) 506 { 507 int i; 508 509 for (i = 0; i < interrupt_config_threads; i++) { 510 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL, 511 config_interrupts_thread, NULL, NULL, "configintr"); 512 } 513 } 514 515 static void 516 config_mountroot_thread(void *cookie) 517 { 518 struct deferred_config *dc; 519 520 mutex_enter(&config_misc_lock); 521 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 522 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 523 mutex_exit(&config_misc_lock); 524 525 (*dc->dc_func)(dc->dc_dev); 526 kmem_free(dc, sizeof(*dc)); 527 528 mutex_enter(&config_misc_lock); 529 } 530 mutex_exit(&config_misc_lock); 531 532 kthread_exit(0); 533 } 534 535 void 536 config_create_mountrootthreads(void) 537 { 538 int i; 539 540 if (!root_is_mounted) 541 root_is_mounted = true; 542 543 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * 544 mountroot_config_threads; 545 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, 546 KM_NOSLEEP); 547 KASSERT(mountroot_config_lwpids); 548 for (i = 0; i < mountroot_config_threads; i++) { 549 mountroot_config_lwpids[i] = 0; 550 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */, 551 NULL, config_mountroot_thread, NULL, 552 &mountroot_config_lwpids[i], 553 "configroot"); 554 } 555 } 556 557 void 558 config_finalize_mountroot(void) 559 { 560 int i, error; 561 562 for (i = 0; i < mountroot_config_threads; i++) { 563 if (mountroot_config_lwpids[i] == 0) 564 continue; 565 566 error = kthread_join(mountroot_config_lwpids[i]); 567 if (error) 568 printf("%s: thread %x joined with error %d\n", 569 __func__, i, error); 570 } 571 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); 572 } 573 574 /* 575 * Announce device attach/detach to userland listeners. 576 */ 577 578 int 579 no_devmon_insert(const char *name, prop_dictionary_t p) 580 { 581 582 return ENODEV; 583 } 584 585 static void 586 devmon_report_device(device_t dev, bool isattach) 587 { 588 prop_dictionary_t ev, dict = device_properties(dev); 589 const char *parent; 590 const char *what; 591 const char *where; 592 device_t pdev = device_parent(dev); 593 594 /* If currently no drvctl device, just return */ 595 if (devmon_insert_vec == no_devmon_insert) 596 return; 597 598 ev = prop_dictionary_create(); 599 if (ev == NULL) 600 return; 601 602 what = (isattach ? "device-attach" : "device-detach"); 603 parent = (pdev == NULL ? "root" : device_xname(pdev)); 604 if (prop_dictionary_get_string(dict, "location", &where)) { 605 prop_dictionary_set_string(ev, "location", where); 606 aprint_debug("ev: %s %s at %s in [%s]\n", 607 what, device_xname(dev), parent, where); 608 } 609 if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) || 610 !prop_dictionary_set_string(ev, "parent", parent)) { 611 prop_object_release(ev); 612 return; 613 } 614 615 if ((*devmon_insert_vec)(what, ev) != 0) 616 prop_object_release(ev); 617 } 618 619 /* 620 * Add a cfdriver to the system. 621 */ 622 int 623 config_cfdriver_attach(struct cfdriver *cd) 624 { 625 struct cfdriver *lcd; 626 627 /* Make sure this driver isn't already in the system. */ 628 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 629 if (STREQ(lcd->cd_name, cd->cd_name)) 630 return EEXIST; 631 } 632 633 LIST_INIT(&cd->cd_attach); 634 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 635 636 return 0; 637 } 638 639 /* 640 * Remove a cfdriver from the system. 641 */ 642 int 643 config_cfdriver_detach(struct cfdriver *cd) 644 { 645 struct alldevs_foray af; 646 int i, rc = 0; 647 648 config_alldevs_enter(&af); 649 /* Make sure there are no active instances. */ 650 for (i = 0; i < cd->cd_ndevs; i++) { 651 if (cd->cd_devs[i] != NULL) { 652 rc = EBUSY; 653 break; 654 } 655 } 656 config_alldevs_exit(&af); 657 658 if (rc != 0) 659 return rc; 660 661 /* ...and no attachments loaded. */ 662 if (LIST_EMPTY(&cd->cd_attach) == 0) 663 return EBUSY; 664 665 LIST_REMOVE(cd, cd_list); 666 667 KASSERT(cd->cd_devs == NULL); 668 669 return 0; 670 } 671 672 /* 673 * Look up a cfdriver by name. 674 */ 675 struct cfdriver * 676 config_cfdriver_lookup(const char *name) 677 { 678 struct cfdriver *cd; 679 680 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 681 if (STREQ(cd->cd_name, name)) 682 return cd; 683 } 684 685 return NULL; 686 } 687 688 /* 689 * Add a cfattach to the specified driver. 690 */ 691 int 692 config_cfattach_attach(const char *driver, struct cfattach *ca) 693 { 694 struct cfattach *lca; 695 struct cfdriver *cd; 696 697 cd = config_cfdriver_lookup(driver); 698 if (cd == NULL) 699 return ESRCH; 700 701 /* Make sure this attachment isn't already on this driver. */ 702 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 703 if (STREQ(lca->ca_name, ca->ca_name)) 704 return EEXIST; 705 } 706 707 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 708 709 return 0; 710 } 711 712 /* 713 * Remove a cfattach from the specified driver. 714 */ 715 int 716 config_cfattach_detach(const char *driver, struct cfattach *ca) 717 { 718 struct alldevs_foray af; 719 struct cfdriver *cd; 720 device_t dev; 721 int i, rc = 0; 722 723 cd = config_cfdriver_lookup(driver); 724 if (cd == NULL) 725 return ESRCH; 726 727 config_alldevs_enter(&af); 728 /* Make sure there are no active instances. */ 729 for (i = 0; i < cd->cd_ndevs; i++) { 730 if ((dev = cd->cd_devs[i]) == NULL) 731 continue; 732 if (dev->dv_cfattach == ca) { 733 rc = EBUSY; 734 break; 735 } 736 } 737 config_alldevs_exit(&af); 738 739 if (rc != 0) 740 return rc; 741 742 LIST_REMOVE(ca, ca_list); 743 744 return 0; 745 } 746 747 /* 748 * Look up a cfattach by name. 749 */ 750 static struct cfattach * 751 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 752 { 753 struct cfattach *ca; 754 755 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 756 if (STREQ(ca->ca_name, atname)) 757 return ca; 758 } 759 760 return NULL; 761 } 762 763 /* 764 * Look up a cfattach by driver/attachment name. 765 */ 766 struct cfattach * 767 config_cfattach_lookup(const char *name, const char *atname) 768 { 769 struct cfdriver *cd; 770 771 cd = config_cfdriver_lookup(name); 772 if (cd == NULL) 773 return NULL; 774 775 return config_cfattach_lookup_cd(cd, atname); 776 } 777 778 /* 779 * Apply the matching function and choose the best. This is used 780 * a few times and we want to keep the code small. 781 */ 782 static void 783 mapply(struct matchinfo *m, cfdata_t cf) 784 { 785 int pri; 786 787 if (m->fn != NULL) { 788 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 789 } else { 790 pri = config_match(m->parent, cf, m->aux); 791 } 792 if (pri > m->pri) { 793 m->match = cf; 794 m->pri = pri; 795 } 796 } 797 798 int 799 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 800 { 801 const struct cfiattrdata *ci; 802 const struct cflocdesc *cl; 803 int nlocs, i; 804 805 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 806 KASSERT(ci); 807 nlocs = ci->ci_loclen; 808 KASSERT(!nlocs || locs); 809 for (i = 0; i < nlocs; i++) { 810 cl = &ci->ci_locdesc[i]; 811 if (cl->cld_defaultstr != NULL && 812 cf->cf_loc[i] == cl->cld_default) 813 continue; 814 if (cf->cf_loc[i] == locs[i]) 815 continue; 816 return 0; 817 } 818 819 return config_match(parent, cf, aux); 820 } 821 822 /* 823 * Helper function: check whether the driver supports the interface attribute 824 * and return its descriptor structure. 825 */ 826 static const struct cfiattrdata * 827 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 828 { 829 const struct cfiattrdata * const *cpp; 830 831 if (cd->cd_attrs == NULL) 832 return 0; 833 834 for (cpp = cd->cd_attrs; *cpp; cpp++) { 835 if (STREQ((*cpp)->ci_name, ia)) { 836 /* Match. */ 837 return *cpp; 838 } 839 } 840 return 0; 841 } 842 843 static int __diagused 844 cfdriver_iattr_count(const struct cfdriver *cd) 845 { 846 const struct cfiattrdata * const *cpp; 847 int i; 848 849 if (cd->cd_attrs == NULL) 850 return 0; 851 852 for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) { 853 i++; 854 } 855 return i; 856 } 857 858 /* 859 * Lookup an interface attribute description by name. 860 * If the driver is given, consider only its supported attributes. 861 */ 862 const struct cfiattrdata * 863 cfiattr_lookup(const char *name, const struct cfdriver *cd) 864 { 865 const struct cfdriver *d; 866 const struct cfiattrdata *ia; 867 868 if (cd) 869 return cfdriver_get_iattr(cd, name); 870 871 LIST_FOREACH(d, &allcfdrivers, cd_list) { 872 ia = cfdriver_get_iattr(d, name); 873 if (ia) 874 return ia; 875 } 876 return 0; 877 } 878 879 /* 880 * Determine if `parent' is a potential parent for a device spec based 881 * on `cfp'. 882 */ 883 static int 884 cfparent_match(const device_t parent, const struct cfparent *cfp) 885 { 886 struct cfdriver *pcd; 887 888 /* We don't match root nodes here. */ 889 if (cfp == NULL) 890 return 0; 891 892 pcd = parent->dv_cfdriver; 893 KASSERT(pcd != NULL); 894 895 /* 896 * First, ensure this parent has the correct interface 897 * attribute. 898 */ 899 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 900 return 0; 901 902 /* 903 * If no specific parent device instance was specified (i.e. 904 * we're attaching to the attribute only), we're done! 905 */ 906 if (cfp->cfp_parent == NULL) 907 return 1; 908 909 /* 910 * Check the parent device's name. 911 */ 912 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 913 return 0; /* not the same parent */ 914 915 /* 916 * Make sure the unit number matches. 917 */ 918 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 919 cfp->cfp_unit == parent->dv_unit) 920 return 1; 921 922 /* Unit numbers don't match. */ 923 return 0; 924 } 925 926 /* 927 * Helper for config_cfdata_attach(): check all devices whether it could be 928 * parent any attachment in the config data table passed, and rescan. 929 */ 930 static void 931 rescan_with_cfdata(const struct cfdata *cf) 932 { 933 device_t d; 934 const struct cfdata *cf1; 935 deviter_t di; 936 937 KASSERT(KERNEL_LOCKED_P()); 938 939 /* 940 * "alldevs" is likely longer than a modules's cfdata, so make it 941 * the outer loop. 942 */ 943 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 944 945 if (!(d->dv_cfattach->ca_rescan)) 946 continue; 947 948 for (cf1 = cf; cf1->cf_name; cf1++) { 949 950 if (!cfparent_match(d, cf1->cf_pspec)) 951 continue; 952 953 (*d->dv_cfattach->ca_rescan)(d, 954 cfdata_ifattr(cf1), cf1->cf_loc); 955 956 config_deferred(d); 957 } 958 } 959 deviter_release(&di); 960 } 961 962 /* 963 * Attach a supplemental config data table and rescan potential 964 * parent devices if required. 965 */ 966 int 967 config_cfdata_attach(cfdata_t cf, int scannow) 968 { 969 struct cftable *ct; 970 971 KERNEL_LOCK(1, NULL); 972 973 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 974 ct->ct_cfdata = cf; 975 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 976 977 if (scannow) 978 rescan_with_cfdata(cf); 979 980 KERNEL_UNLOCK_ONE(NULL); 981 982 return 0; 983 } 984 985 /* 986 * Helper for config_cfdata_detach: check whether a device is 987 * found through any attachment in the config data table. 988 */ 989 static int 990 dev_in_cfdata(device_t d, cfdata_t cf) 991 { 992 const struct cfdata *cf1; 993 994 for (cf1 = cf; cf1->cf_name; cf1++) 995 if (d->dv_cfdata == cf1) 996 return 1; 997 998 return 0; 999 } 1000 1001 /* 1002 * Detach a supplemental config data table. Detach all devices found 1003 * through that table (and thus keeping references to it) before. 1004 */ 1005 int 1006 config_cfdata_detach(cfdata_t cf) 1007 { 1008 device_t d; 1009 int error = 0; 1010 struct cftable *ct; 1011 deviter_t di; 1012 1013 KERNEL_LOCK(1, NULL); 1014 1015 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 1016 d = deviter_next(&di)) { 1017 if (!dev_in_cfdata(d, cf)) 1018 continue; 1019 if ((error = config_detach(d, 0)) != 0) 1020 break; 1021 } 1022 deviter_release(&di); 1023 if (error) { 1024 aprint_error_dev(d, "unable to detach instance\n"); 1025 goto out; 1026 } 1027 1028 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1029 if (ct->ct_cfdata == cf) { 1030 TAILQ_REMOVE(&allcftables, ct, ct_list); 1031 kmem_free(ct, sizeof(*ct)); 1032 error = 0; 1033 goto out; 1034 } 1035 } 1036 1037 /* not found -- shouldn't happen */ 1038 error = EINVAL; 1039 1040 out: KERNEL_UNLOCK_ONE(NULL); 1041 return error; 1042 } 1043 1044 /* 1045 * Invoke the "match" routine for a cfdata entry on behalf of 1046 * an external caller, usually a direct config "submatch" routine. 1047 */ 1048 int 1049 config_match(device_t parent, cfdata_t cf, void *aux) 1050 { 1051 struct cfattach *ca; 1052 1053 KASSERT(KERNEL_LOCKED_P()); 1054 1055 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 1056 if (ca == NULL) { 1057 /* No attachment for this entry, oh well. */ 1058 return 0; 1059 } 1060 1061 return (*ca->ca_match)(parent, cf, aux); 1062 } 1063 1064 /* 1065 * Invoke the "probe" routine for a cfdata entry on behalf of 1066 * an external caller, usually an indirect config "search" routine. 1067 */ 1068 int 1069 config_probe(device_t parent, cfdata_t cf, void *aux) 1070 { 1071 /* 1072 * This is currently a synonym for config_match(), but this 1073 * is an implementation detail; "match" and "probe" routines 1074 * have different behaviors. 1075 * 1076 * XXX config_probe() should return a bool, because there is 1077 * XXX no match score for probe -- it's either there or it's 1078 * XXX not, but some ports abuse the return value as a way 1079 * XXX to attach "critical" devices before "non-critical" 1080 * XXX devices. 1081 */ 1082 return config_match(parent, cf, aux); 1083 } 1084 1085 static struct cfargs_internal * 1086 cfargs_canonicalize(const struct cfargs * const cfargs, 1087 struct cfargs_internal * const store) 1088 { 1089 struct cfargs_internal *args = store; 1090 1091 memset(args, 0, sizeof(*args)); 1092 1093 /* If none specified, are all-NULL pointers are good. */ 1094 if (cfargs == NULL) { 1095 return args; 1096 } 1097 1098 /* 1099 * Only one arguments version is recognized at this time. 1100 */ 1101 if (cfargs->cfargs_version != CFARGS_VERSION) { 1102 panic("cfargs_canonicalize: unknown version %lu\n", 1103 (unsigned long)cfargs->cfargs_version); 1104 } 1105 1106 /* 1107 * submatch and search are mutually-exclusive. 1108 */ 1109 if (cfargs->submatch != NULL && cfargs->search != NULL) { 1110 panic("cfargs_canonicalize: submatch and search are " 1111 "mutually-exclusive"); 1112 } 1113 if (cfargs->submatch != NULL) { 1114 args->submatch = cfargs->submatch; 1115 } else if (cfargs->search != NULL) { 1116 args->search = cfargs->search; 1117 } 1118 1119 args->iattr = cfargs->iattr; 1120 args->locators = cfargs->locators; 1121 args->devhandle = cfargs->devhandle; 1122 1123 return args; 1124 } 1125 1126 /* 1127 * Iterate over all potential children of some device, calling the given 1128 * function (default being the child's match function) for each one. 1129 * Nonzero returns are matches; the highest value returned is considered 1130 * the best match. Return the `found child' if we got a match, or NULL 1131 * otherwise. The `aux' pointer is simply passed on through. 1132 * 1133 * Note that this function is designed so that it can be used to apply 1134 * an arbitrary function to all potential children (its return value 1135 * can be ignored). 1136 */ 1137 static cfdata_t 1138 config_search_internal(device_t parent, void *aux, 1139 const struct cfargs_internal * const args) 1140 { 1141 struct cftable *ct; 1142 cfdata_t cf; 1143 struct matchinfo m; 1144 1145 KASSERT(config_initialized); 1146 KASSERT(!args->iattr || 1147 cfdriver_get_iattr(parent->dv_cfdriver, args->iattr)); 1148 KASSERT(args->iattr || 1149 cfdriver_iattr_count(parent->dv_cfdriver) < 2); 1150 1151 m.fn = args->submatch; /* N.B. union */ 1152 m.parent = parent; 1153 m.locs = args->locators; 1154 m.aux = aux; 1155 m.match = NULL; 1156 m.pri = 0; 1157 1158 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1159 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1160 1161 /* We don't match root nodes here. */ 1162 if (!cf->cf_pspec) 1163 continue; 1164 1165 /* 1166 * Skip cf if no longer eligible, otherwise scan 1167 * through parents for one matching `parent', and 1168 * try match function. 1169 */ 1170 if (cf->cf_fstate == FSTATE_FOUND) 1171 continue; 1172 if (cf->cf_fstate == FSTATE_DNOTFOUND || 1173 cf->cf_fstate == FSTATE_DSTAR) 1174 continue; 1175 1176 /* 1177 * If an interface attribute was specified, 1178 * consider only children which attach to 1179 * that attribute. 1180 */ 1181 if (args->iattr != NULL && 1182 !STREQ(args->iattr, cfdata_ifattr(cf))) 1183 continue; 1184 1185 if (cfparent_match(parent, cf->cf_pspec)) 1186 mapply(&m, cf); 1187 } 1188 } 1189 rnd_add_uint32(&rnd_autoconf_source, 0); 1190 return m.match; 1191 } 1192 1193 cfdata_t 1194 config_search(device_t parent, void *aux, const struct cfargs *cfargs) 1195 { 1196 cfdata_t cf; 1197 struct cfargs_internal store; 1198 1199 cf = config_search_internal(parent, aux, 1200 cfargs_canonicalize(cfargs, &store)); 1201 1202 return cf; 1203 } 1204 1205 /* 1206 * Find the given root device. 1207 * This is much like config_search, but there is no parent. 1208 * Don't bother with multiple cfdata tables; the root node 1209 * must always be in the initial table. 1210 */ 1211 cfdata_t 1212 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1213 { 1214 cfdata_t cf; 1215 const short *p; 1216 struct matchinfo m; 1217 1218 m.fn = fn; 1219 m.parent = ROOT; 1220 m.aux = aux; 1221 m.match = NULL; 1222 m.pri = 0; 1223 m.locs = 0; 1224 /* 1225 * Look at root entries for matching name. We do not bother 1226 * with found-state here since only one root should ever be 1227 * searched (and it must be done first). 1228 */ 1229 for (p = cfroots; *p >= 0; p++) { 1230 cf = &cfdata[*p]; 1231 if (strcmp(cf->cf_name, rootname) == 0) 1232 mapply(&m, cf); 1233 } 1234 return m.match; 1235 } 1236 1237 static const char * const msgs[] = { 1238 [QUIET] = "", 1239 [UNCONF] = " not configured\n", 1240 [UNSUPP] = " unsupported\n", 1241 }; 1242 1243 /* 1244 * The given `aux' argument describes a device that has been found 1245 * on the given parent, but not necessarily configured. Locate the 1246 * configuration data for that device (using the submatch function 1247 * provided, or using candidates' cd_match configuration driver 1248 * functions) and attach it, and return its device_t. If the device was 1249 * not configured, call the given `print' function and return NULL. 1250 */ 1251 device_t 1252 config_found(device_t parent, void *aux, cfprint_t print, 1253 const struct cfargs * const cfargs) 1254 { 1255 cfdata_t cf; 1256 struct cfargs_internal store; 1257 const struct cfargs_internal * const args = 1258 cfargs_canonicalize(cfargs, &store); 1259 1260 cf = config_search_internal(parent, aux, args); 1261 if (cf != NULL) { 1262 return config_attach_internal(parent, cf, aux, print, args); 1263 } 1264 1265 if (print) { 1266 if (config_do_twiddle && cold) 1267 twiddle(); 1268 1269 const int pret = (*print)(aux, device_xname(parent)); 1270 KASSERT(pret >= 0); 1271 KASSERT(pret < __arraycount(msgs)); 1272 KASSERT(msgs[pret] != NULL); 1273 aprint_normal("%s", msgs[pret]); 1274 } 1275 1276 return NULL; 1277 } 1278 1279 /* 1280 * As above, but for root devices. 1281 */ 1282 device_t 1283 config_rootfound(const char *rootname, void *aux) 1284 { 1285 cfdata_t cf; 1286 device_t dev = NULL; 1287 1288 KERNEL_LOCK(1, NULL); 1289 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1290 dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE); 1291 else 1292 aprint_error("root device %s not configured\n", rootname); 1293 KERNEL_UNLOCK_ONE(NULL); 1294 return dev; 1295 } 1296 1297 /* just like sprintf(buf, "%d") except that it works from the end */ 1298 static char * 1299 number(char *ep, int n) 1300 { 1301 1302 *--ep = 0; 1303 while (n >= 10) { 1304 *--ep = (n % 10) + '0'; 1305 n /= 10; 1306 } 1307 *--ep = n + '0'; 1308 return ep; 1309 } 1310 1311 /* 1312 * Expand the size of the cd_devs array if necessary. 1313 * 1314 * The caller must hold alldevs_lock. config_makeroom() may release and 1315 * re-acquire alldevs_lock, so callers should re-check conditions such 1316 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1317 * returns. 1318 */ 1319 static void 1320 config_makeroom(int n, struct cfdriver *cd) 1321 { 1322 int ondevs, nndevs; 1323 device_t *osp, *nsp; 1324 1325 KASSERT(mutex_owned(&alldevs_lock)); 1326 alldevs_nwrite++; 1327 1328 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1329 ; 1330 1331 while (n >= cd->cd_ndevs) { 1332 /* 1333 * Need to expand the array. 1334 */ 1335 ondevs = cd->cd_ndevs; 1336 osp = cd->cd_devs; 1337 1338 /* 1339 * Release alldevs_lock around allocation, which may 1340 * sleep. 1341 */ 1342 mutex_exit(&alldevs_lock); 1343 nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP); 1344 mutex_enter(&alldevs_lock); 1345 1346 /* 1347 * If another thread moved the array while we did 1348 * not hold alldevs_lock, try again. 1349 */ 1350 if (cd->cd_devs != osp) { 1351 mutex_exit(&alldevs_lock); 1352 kmem_free(nsp, sizeof(device_t) * nndevs); 1353 mutex_enter(&alldevs_lock); 1354 continue; 1355 } 1356 1357 memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs)); 1358 if (ondevs != 0) 1359 memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs); 1360 1361 cd->cd_ndevs = nndevs; 1362 cd->cd_devs = nsp; 1363 if (ondevs != 0) { 1364 mutex_exit(&alldevs_lock); 1365 kmem_free(osp, sizeof(device_t) * ondevs); 1366 mutex_enter(&alldevs_lock); 1367 } 1368 } 1369 KASSERT(mutex_owned(&alldevs_lock)); 1370 alldevs_nwrite--; 1371 } 1372 1373 /* 1374 * Put dev into the devices list. 1375 */ 1376 static void 1377 config_devlink(device_t dev) 1378 { 1379 1380 mutex_enter(&alldevs_lock); 1381 1382 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1383 1384 dev->dv_add_gen = alldevs_gen; 1385 /* It is safe to add a device to the tail of the list while 1386 * readers and writers are in the list. 1387 */ 1388 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1389 mutex_exit(&alldevs_lock); 1390 } 1391 1392 static void 1393 config_devfree(device_t dev) 1394 { 1395 1396 KASSERT(dev->dv_flags & DVF_PRIV_ALLOC); 1397 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1398 1399 if (dev->dv_cfattach->ca_devsize > 0) 1400 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1401 kmem_free(dev, sizeof(*dev)); 1402 } 1403 1404 /* 1405 * Caller must hold alldevs_lock. 1406 */ 1407 static void 1408 config_devunlink(device_t dev, struct devicelist *garbage) 1409 { 1410 struct device_garbage *dg = &dev->dv_garbage; 1411 cfdriver_t cd = device_cfdriver(dev); 1412 int i; 1413 1414 KASSERT(mutex_owned(&alldevs_lock)); 1415 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1416 1417 /* Unlink from device list. Link to garbage list. */ 1418 TAILQ_REMOVE(&alldevs, dev, dv_list); 1419 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1420 1421 /* Remove from cfdriver's array. */ 1422 cd->cd_devs[dev->dv_unit] = NULL; 1423 1424 /* 1425 * If the device now has no units in use, unlink its softc array. 1426 */ 1427 for (i = 0; i < cd->cd_ndevs; i++) { 1428 if (cd->cd_devs[i] != NULL) 1429 break; 1430 } 1431 /* Nothing found. Unlink, now. Deallocate, later. */ 1432 if (i == cd->cd_ndevs) { 1433 dg->dg_ndevs = cd->cd_ndevs; 1434 dg->dg_devs = cd->cd_devs; 1435 cd->cd_devs = NULL; 1436 cd->cd_ndevs = 0; 1437 } 1438 } 1439 1440 static void 1441 config_devdelete(device_t dev) 1442 { 1443 struct device_garbage *dg = &dev->dv_garbage; 1444 device_lock_t dvl = device_getlock(dev); 1445 1446 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1447 1448 if (dg->dg_devs != NULL) 1449 kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs); 1450 1451 localcount_fini(dev->dv_localcount); 1452 kmem_free(dev->dv_localcount, sizeof(*dev->dv_localcount)); 1453 1454 cv_destroy(&dvl->dvl_cv); 1455 mutex_destroy(&dvl->dvl_mtx); 1456 1457 KASSERT(dev->dv_properties != NULL); 1458 prop_object_release(dev->dv_properties); 1459 1460 if (dev->dv_activity_handlers) 1461 panic("%s with registered handlers", __func__); 1462 1463 if (dev->dv_locators) { 1464 size_t amount = *--dev->dv_locators; 1465 kmem_free(dev->dv_locators, amount); 1466 } 1467 1468 config_devfree(dev); 1469 } 1470 1471 static int 1472 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1473 { 1474 int unit = cf->cf_unit; 1475 1476 if (unit < 0) 1477 return -1; 1478 if (cf->cf_fstate == FSTATE_STAR) { 1479 for (; unit < cd->cd_ndevs; unit++) 1480 if (cd->cd_devs[unit] == NULL) 1481 break; 1482 /* 1483 * unit is now the unit of the first NULL device pointer, 1484 * or max(cd->cd_ndevs,cf->cf_unit). 1485 */ 1486 } else { 1487 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1488 unit = -1; 1489 } 1490 return unit; 1491 } 1492 1493 static int 1494 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1495 { 1496 struct alldevs_foray af; 1497 int unit; 1498 1499 config_alldevs_enter(&af); 1500 for (;;) { 1501 unit = config_unit_nextfree(cd, cf); 1502 if (unit == -1) 1503 break; 1504 if (unit < cd->cd_ndevs) { 1505 cd->cd_devs[unit] = dev; 1506 dev->dv_unit = unit; 1507 break; 1508 } 1509 config_makeroom(unit, cd); 1510 } 1511 config_alldevs_exit(&af); 1512 1513 return unit; 1514 } 1515 1516 static device_t 1517 config_devalloc(const device_t parent, const cfdata_t cf, 1518 const struct cfargs_internal * const args) 1519 { 1520 cfdriver_t cd; 1521 cfattach_t ca; 1522 size_t lname, lunit; 1523 const char *xunit; 1524 int myunit; 1525 char num[10]; 1526 device_t dev; 1527 void *dev_private; 1528 const struct cfiattrdata *ia; 1529 device_lock_t dvl; 1530 1531 cd = config_cfdriver_lookup(cf->cf_name); 1532 if (cd == NULL) 1533 return NULL; 1534 1535 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1536 if (ca == NULL) 1537 return NULL; 1538 1539 /* get memory for all device vars */ 1540 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1541 if (ca->ca_devsize > 0) { 1542 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1543 } else { 1544 dev_private = NULL; 1545 } 1546 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1547 1548 dev->dv_handle = args->devhandle; 1549 1550 dev->dv_class = cd->cd_class; 1551 dev->dv_cfdata = cf; 1552 dev->dv_cfdriver = cd; 1553 dev->dv_cfattach = ca; 1554 dev->dv_activity_count = 0; 1555 dev->dv_activity_handlers = NULL; 1556 dev->dv_private = dev_private; 1557 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1558 dev->dv_attaching = curlwp; 1559 1560 myunit = config_unit_alloc(dev, cd, cf); 1561 if (myunit == -1) { 1562 config_devfree(dev); 1563 return NULL; 1564 } 1565 1566 /* compute length of name and decimal expansion of unit number */ 1567 lname = strlen(cd->cd_name); 1568 xunit = number(&num[sizeof(num)], myunit); 1569 lunit = &num[sizeof(num)] - xunit; 1570 if (lname + lunit > sizeof(dev->dv_xname)) 1571 panic("config_devalloc: device name too long"); 1572 1573 dvl = device_getlock(dev); 1574 1575 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1576 cv_init(&dvl->dvl_cv, "pmfsusp"); 1577 1578 memcpy(dev->dv_xname, cd->cd_name, lname); 1579 memcpy(dev->dv_xname + lname, xunit, lunit); 1580 dev->dv_parent = parent; 1581 if (parent != NULL) 1582 dev->dv_depth = parent->dv_depth + 1; 1583 else 1584 dev->dv_depth = 0; 1585 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1586 if (args->locators) { 1587 KASSERT(parent); /* no locators at root */ 1588 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1589 dev->dv_locators = 1590 kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP); 1591 *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1); 1592 memcpy(dev->dv_locators, args->locators, 1593 sizeof(int) * ia->ci_loclen); 1594 } 1595 dev->dv_properties = prop_dictionary_create(); 1596 KASSERT(dev->dv_properties != NULL); 1597 1598 prop_dictionary_set_string_nocopy(dev->dv_properties, 1599 "device-driver", dev->dv_cfdriver->cd_name); 1600 prop_dictionary_set_uint16(dev->dv_properties, 1601 "device-unit", dev->dv_unit); 1602 if (parent != NULL) { 1603 prop_dictionary_set_string(dev->dv_properties, 1604 "device-parent", device_xname(parent)); 1605 } 1606 1607 dev->dv_localcount = kmem_zalloc(sizeof(*dev->dv_localcount), 1608 KM_SLEEP); 1609 localcount_init(dev->dv_localcount); 1610 1611 if (dev->dv_cfdriver->cd_attrs != NULL) 1612 config_add_attrib_dict(dev); 1613 1614 return dev; 1615 } 1616 1617 /* 1618 * Create an array of device attach attributes and add it 1619 * to the device's dv_properties dictionary. 1620 * 1621 * <key>interface-attributes</key> 1622 * <array> 1623 * <dict> 1624 * <key>attribute-name</key> 1625 * <string>foo</string> 1626 * <key>locators</key> 1627 * <array> 1628 * <dict> 1629 * <key>loc-name</key> 1630 * <string>foo-loc1</string> 1631 * </dict> 1632 * <dict> 1633 * <key>loc-name</key> 1634 * <string>foo-loc2</string> 1635 * <key>default</key> 1636 * <string>foo-loc2-default</string> 1637 * </dict> 1638 * ... 1639 * </array> 1640 * </dict> 1641 * ... 1642 * </array> 1643 */ 1644 1645 static void 1646 config_add_attrib_dict(device_t dev) 1647 { 1648 int i, j; 1649 const struct cfiattrdata *ci; 1650 prop_dictionary_t attr_dict, loc_dict; 1651 prop_array_t attr_array, loc_array; 1652 1653 if ((attr_array = prop_array_create()) == NULL) 1654 return; 1655 1656 for (i = 0; ; i++) { 1657 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1658 break; 1659 if ((attr_dict = prop_dictionary_create()) == NULL) 1660 break; 1661 prop_dictionary_set_string_nocopy(attr_dict, "attribute-name", 1662 ci->ci_name); 1663 1664 /* Create an array of the locator names and defaults */ 1665 1666 if (ci->ci_loclen != 0 && 1667 (loc_array = prop_array_create()) != NULL) { 1668 for (j = 0; j < ci->ci_loclen; j++) { 1669 loc_dict = prop_dictionary_create(); 1670 if (loc_dict == NULL) 1671 continue; 1672 prop_dictionary_set_string_nocopy(loc_dict, 1673 "loc-name", ci->ci_locdesc[j].cld_name); 1674 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1675 prop_dictionary_set_string_nocopy( 1676 loc_dict, "default", 1677 ci->ci_locdesc[j].cld_defaultstr); 1678 prop_array_set(loc_array, j, loc_dict); 1679 prop_object_release(loc_dict); 1680 } 1681 prop_dictionary_set_and_rel(attr_dict, "locators", 1682 loc_array); 1683 } 1684 prop_array_add(attr_array, attr_dict); 1685 prop_object_release(attr_dict); 1686 } 1687 if (i == 0) 1688 prop_object_release(attr_array); 1689 else 1690 prop_dictionary_set_and_rel(dev->dv_properties, 1691 "interface-attributes", attr_array); 1692 1693 return; 1694 } 1695 1696 /* 1697 * Attach a found device. 1698 */ 1699 static device_t 1700 config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1701 const struct cfargs_internal * const args) 1702 { 1703 device_t dev; 1704 struct cftable *ct; 1705 const char *drvname; 1706 bool deferred; 1707 1708 KASSERT(KERNEL_LOCKED_P()); 1709 1710 dev = config_devalloc(parent, cf, args); 1711 if (!dev) 1712 panic("config_attach: allocation of device softc failed"); 1713 1714 /* XXX redundant - see below? */ 1715 if (cf->cf_fstate != FSTATE_STAR) { 1716 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1717 cf->cf_fstate = FSTATE_FOUND; 1718 } 1719 1720 config_devlink(dev); 1721 1722 if (config_do_twiddle && cold) 1723 twiddle(); 1724 else 1725 aprint_naive("Found "); 1726 /* 1727 * We want the next two printfs for normal, verbose, and quiet, 1728 * but not silent (in which case, we're twiddling, instead). 1729 */ 1730 if (parent == ROOT) { 1731 aprint_naive("%s (root)", device_xname(dev)); 1732 aprint_normal("%s (root)", device_xname(dev)); 1733 } else { 1734 aprint_naive("%s at %s", device_xname(dev), 1735 device_xname(parent)); 1736 aprint_normal("%s at %s", device_xname(dev), 1737 device_xname(parent)); 1738 if (print) 1739 (void) (*print)(aux, NULL); 1740 } 1741 1742 /* 1743 * Before attaching, clobber any unfound devices that are 1744 * otherwise identical. 1745 * XXX code above is redundant? 1746 */ 1747 drvname = dev->dv_cfdriver->cd_name; 1748 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1749 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1750 if (STREQ(cf->cf_name, drvname) && 1751 cf->cf_unit == dev->dv_unit) { 1752 if (cf->cf_fstate == FSTATE_NOTFOUND) 1753 cf->cf_fstate = FSTATE_FOUND; 1754 } 1755 } 1756 } 1757 device_register(dev, aux); 1758 1759 /* Let userland know */ 1760 devmon_report_device(dev, true); 1761 1762 /* 1763 * Prevent detach until the driver's attach function, and all 1764 * deferred actions, have finished. 1765 */ 1766 config_pending_incr(dev); 1767 1768 /* Call the driver's attach function. */ 1769 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1770 1771 /* 1772 * Allow other threads to acquire references to the device now 1773 * that the driver's attach function is done. 1774 */ 1775 mutex_enter(&config_misc_lock); 1776 KASSERT(dev->dv_attaching == curlwp); 1777 dev->dv_attaching = NULL; 1778 cv_broadcast(&config_misc_cv); 1779 mutex_exit(&config_misc_lock); 1780 1781 /* 1782 * Synchronous parts of attach are done. Allow detach, unless 1783 * the driver's attach function scheduled deferred actions. 1784 */ 1785 config_pending_decr(dev); 1786 1787 mutex_enter(&config_misc_lock); 1788 deferred = (dev->dv_pending != 0); 1789 mutex_exit(&config_misc_lock); 1790 1791 if (!deferred && !device_pmf_is_registered(dev)) 1792 aprint_debug_dev(dev, 1793 "WARNING: power management not supported\n"); 1794 1795 config_process_deferred(&deferred_config_queue, dev); 1796 1797 device_register_post_config(dev, aux); 1798 rnd_add_uint32(&rnd_autoconf_source, 0); 1799 return dev; 1800 } 1801 1802 device_t 1803 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1804 const struct cfargs *cfargs) 1805 { 1806 struct cfargs_internal store; 1807 1808 KASSERT(KERNEL_LOCKED_P()); 1809 1810 return config_attach_internal(parent, cf, aux, print, 1811 cfargs_canonicalize(cfargs, &store)); 1812 } 1813 1814 /* 1815 * As above, but for pseudo-devices. Pseudo-devices attached in this 1816 * way are silently inserted into the device tree, and their children 1817 * attached. 1818 * 1819 * Note that because pseudo-devices are attached silently, any information 1820 * the attach routine wishes to print should be prefixed with the device 1821 * name by the attach routine. 1822 */ 1823 device_t 1824 config_attach_pseudo(cfdata_t cf) 1825 { 1826 device_t dev; 1827 1828 KERNEL_LOCK(1, NULL); 1829 1830 struct cfargs_internal args = { }; 1831 dev = config_devalloc(ROOT, cf, &args); 1832 if (!dev) 1833 goto out; 1834 1835 /* XXX mark busy in cfdata */ 1836 1837 if (cf->cf_fstate != FSTATE_STAR) { 1838 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1839 cf->cf_fstate = FSTATE_FOUND; 1840 } 1841 1842 config_devlink(dev); 1843 1844 #if 0 /* XXXJRT not yet */ 1845 device_register(dev, NULL); /* like a root node */ 1846 #endif 1847 1848 /* Let userland know */ 1849 devmon_report_device(dev, true); 1850 1851 /* 1852 * Prevent detach until the driver's attach function, and all 1853 * deferred actions, have finished. 1854 */ 1855 config_pending_incr(dev); 1856 1857 /* Call the driver's attach function. */ 1858 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1859 1860 /* 1861 * Allow other threads to acquire references to the device now 1862 * that the driver's attach function is done. 1863 */ 1864 mutex_enter(&config_misc_lock); 1865 KASSERT(dev->dv_attaching == curlwp); 1866 dev->dv_attaching = NULL; 1867 cv_broadcast(&config_misc_cv); 1868 mutex_exit(&config_misc_lock); 1869 1870 /* 1871 * Synchronous parts of attach are done. Allow detach, unless 1872 * the driver's attach function scheduled deferred actions. 1873 */ 1874 config_pending_decr(dev); 1875 1876 config_process_deferred(&deferred_config_queue, dev); 1877 1878 out: KERNEL_UNLOCK_ONE(NULL); 1879 return dev; 1880 } 1881 1882 /* 1883 * Caller must hold alldevs_lock. 1884 */ 1885 static void 1886 config_collect_garbage(struct devicelist *garbage) 1887 { 1888 device_t dv; 1889 1890 KASSERT(!cpu_intr_p()); 1891 KASSERT(!cpu_softintr_p()); 1892 KASSERT(mutex_owned(&alldevs_lock)); 1893 1894 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1895 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1896 if (dv->dv_del_gen != 0) 1897 break; 1898 } 1899 if (dv == NULL) { 1900 alldevs_garbage = false; 1901 break; 1902 } 1903 config_devunlink(dv, garbage); 1904 } 1905 KASSERT(mutex_owned(&alldevs_lock)); 1906 } 1907 1908 static void 1909 config_dump_garbage(struct devicelist *garbage) 1910 { 1911 device_t dv; 1912 1913 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1914 TAILQ_REMOVE(garbage, dv, dv_list); 1915 config_devdelete(dv); 1916 } 1917 } 1918 1919 static int 1920 config_detach_enter(device_t dev) 1921 { 1922 struct lwp *l __diagused; 1923 int error = 0; 1924 1925 mutex_enter(&config_misc_lock); 1926 1927 /* 1928 * Wait until attach has fully completed, and until any 1929 * concurrent detach (e.g., drvctl racing with USB event 1930 * thread) has completed. 1931 * 1932 * Caller must hold alldevs_nread or alldevs_nwrite (e.g., via 1933 * deviter) to ensure the winner of the race doesn't free the 1934 * device leading the loser of the race into use-after-free. 1935 * 1936 * XXX Not all callers do this! 1937 */ 1938 while (dev->dv_pending || dev->dv_detaching) { 1939 KASSERTMSG(dev->dv_detaching != curlwp, 1940 "recursively detaching %s", device_xname(dev)); 1941 error = cv_wait_sig(&config_misc_cv, &config_misc_lock); 1942 if (error) 1943 goto out; 1944 } 1945 1946 /* 1947 * Attach has completed, and no other concurrent detach is 1948 * running. Claim the device for detaching. This will cause 1949 * all new attempts to acquire references to block. 1950 */ 1951 KASSERTMSG((l = dev->dv_attaching) == NULL, 1952 "lwp %ld [%s] @ %p attaching %s", 1953 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 1954 device_xname(dev)); 1955 KASSERTMSG((l = dev->dv_detaching) == NULL, 1956 "lwp %ld [%s] @ %p detaching %s", 1957 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 1958 device_xname(dev)); 1959 dev->dv_detaching = curlwp; 1960 1961 out: mutex_exit(&config_misc_lock); 1962 return error; 1963 } 1964 1965 static void 1966 config_detach_exit(device_t dev) 1967 { 1968 struct lwp *l __diagused; 1969 1970 mutex_enter(&config_misc_lock); 1971 KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s", 1972 device_xname(dev)); 1973 KASSERTMSG((l = dev->dv_detaching) == curlwp, 1974 "lwp %ld [%s] @ %p detaching %s", 1975 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 1976 device_xname(dev)); 1977 dev->dv_detaching = NULL; 1978 cv_broadcast(&config_misc_cv); 1979 mutex_exit(&config_misc_lock); 1980 } 1981 1982 /* 1983 * Detach a device. Optionally forced (e.g. because of hardware 1984 * removal) and quiet. Returns zero if successful, non-zero 1985 * (an error code) otherwise. 1986 * 1987 * Note that this code wants to be run from a process context, so 1988 * that the detach can sleep to allow processes which have a device 1989 * open to run and unwind their stacks. 1990 */ 1991 int 1992 config_detach(device_t dev, int flags) 1993 { 1994 struct alldevs_foray af; 1995 struct cftable *ct; 1996 cfdata_t cf; 1997 const struct cfattach *ca; 1998 struct cfdriver *cd; 1999 device_t d __diagused; 2000 int rv = 0; 2001 2002 KERNEL_LOCK(1, NULL); 2003 2004 cf = dev->dv_cfdata; 2005 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND || 2006 cf->cf_fstate == FSTATE_STAR), 2007 "config_detach: %s: bad device fstate: %d", 2008 device_xname(dev), cf ? cf->cf_fstate : -1); 2009 2010 cd = dev->dv_cfdriver; 2011 KASSERT(cd != NULL); 2012 2013 ca = dev->dv_cfattach; 2014 KASSERT(ca != NULL); 2015 2016 /* 2017 * Only one detach at a time, please -- and not until fully 2018 * attached. 2019 */ 2020 rv = config_detach_enter(dev); 2021 if (rv) { 2022 KERNEL_UNLOCK_ONE(NULL); 2023 return rv; 2024 } 2025 2026 mutex_enter(&alldevs_lock); 2027 if (dev->dv_del_gen != 0) { 2028 mutex_exit(&alldevs_lock); 2029 #ifdef DIAGNOSTIC 2030 printf("%s: %s is already detached\n", __func__, 2031 device_xname(dev)); 2032 #endif /* DIAGNOSTIC */ 2033 config_detach_exit(dev); 2034 KERNEL_UNLOCK_ONE(NULL); 2035 return ENOENT; 2036 } 2037 alldevs_nwrite++; 2038 mutex_exit(&alldevs_lock); 2039 2040 /* 2041 * Call the driver's .ca_detach function, unless it has none or 2042 * we are skipping it because it's unforced shutdown time and 2043 * the driver didn't ask to detach on shutdown. 2044 */ 2045 if (!detachall && 2046 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 2047 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 2048 rv = EOPNOTSUPP; 2049 } else if (ca->ca_detach != NULL) { 2050 rv = (*ca->ca_detach)(dev, flags); 2051 } else 2052 rv = EOPNOTSUPP; 2053 2054 KASSERTMSG(!dev->dv_detach_done, "%s detached twice, error=%d", 2055 device_xname(dev), rv); 2056 2057 /* 2058 * If it was not possible to detach the device, then we either 2059 * panic() (for the forced but failed case), or return an error. 2060 */ 2061 if (rv) { 2062 /* 2063 * Detach failed -- likely EOPNOTSUPP or EBUSY. Driver 2064 * must not have called config_detach_commit. 2065 */ 2066 KASSERTMSG(!dev->dv_detach_committed, 2067 "%s committed to detaching and then backed out, error=%d", 2068 device_xname(dev), rv); 2069 if (flags & DETACH_FORCE) { 2070 panic("config_detach: forced detach of %s failed (%d)", 2071 device_xname(dev), rv); 2072 } 2073 goto out; 2074 } 2075 2076 /* 2077 * The device has now been successfully detached. 2078 */ 2079 dev->dv_detach_done = true; 2080 2081 /* 2082 * If .ca_detach didn't commit to detach, then do that for it. 2083 * This wakes any pending device_lookup_acquire calls so they 2084 * will fail. 2085 */ 2086 config_detach_commit(dev); 2087 2088 /* 2089 * If it was possible to detach the device, ensure that the 2090 * device is deactivated. 2091 */ 2092 dev->dv_flags &= ~DVF_ACTIVE; /* XXXSMP */ 2093 2094 /* 2095 * Wait for all device_lookup_acquire references -- mostly, for 2096 * all attempts to open the device -- to drain. It is the 2097 * responsibility of .ca_detach to ensure anything with open 2098 * references will be interrupted and release them promptly, 2099 * not block indefinitely. All new attempts to acquire 2100 * references will fail, as config_detach_commit has arranged 2101 * by now. 2102 */ 2103 mutex_enter(&config_misc_lock); 2104 localcount_drain(dev->dv_localcount, 2105 &config_misc_cv, &config_misc_lock); 2106 mutex_exit(&config_misc_lock); 2107 2108 /* Let userland know */ 2109 devmon_report_device(dev, false); 2110 2111 #ifdef DIAGNOSTIC 2112 /* 2113 * Sanity: If you're successfully detached, you should have no 2114 * children. (Note that because children must be attached 2115 * after parents, we only need to search the latter part of 2116 * the list.) 2117 */ 2118 mutex_enter(&alldevs_lock); 2119 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 2120 d = TAILQ_NEXT(d, dv_list)) { 2121 if (d->dv_parent == dev && d->dv_del_gen == 0) { 2122 printf("config_detach: detached device %s" 2123 " has children %s\n", device_xname(dev), 2124 device_xname(d)); 2125 panic("config_detach"); 2126 } 2127 } 2128 mutex_exit(&alldevs_lock); 2129 #endif 2130 2131 /* notify the parent that the child is gone */ 2132 if (dev->dv_parent) { 2133 device_t p = dev->dv_parent; 2134 if (p->dv_cfattach->ca_childdetached) 2135 (*p->dv_cfattach->ca_childdetached)(p, dev); 2136 } 2137 2138 /* 2139 * Mark cfdata to show that the unit can be reused, if possible. 2140 */ 2141 TAILQ_FOREACH(ct, &allcftables, ct_list) { 2142 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 2143 if (STREQ(cf->cf_name, cd->cd_name)) { 2144 if (cf->cf_fstate == FSTATE_FOUND && 2145 cf->cf_unit == dev->dv_unit) 2146 cf->cf_fstate = FSTATE_NOTFOUND; 2147 } 2148 } 2149 } 2150 2151 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 2152 aprint_normal_dev(dev, "detached\n"); 2153 2154 out: 2155 config_detach_exit(dev); 2156 2157 config_alldevs_enter(&af); 2158 KASSERT(alldevs_nwrite != 0); 2159 --alldevs_nwrite; 2160 if (rv == 0 && dev->dv_del_gen == 0) { 2161 if (alldevs_nwrite == 0 && alldevs_nread == 0) 2162 config_devunlink(dev, &af.af_garbage); 2163 else { 2164 dev->dv_del_gen = alldevs_gen; 2165 alldevs_garbage = true; 2166 } 2167 } 2168 config_alldevs_exit(&af); 2169 2170 KERNEL_UNLOCK_ONE(NULL); 2171 2172 return rv; 2173 } 2174 2175 /* 2176 * config_detach_commit(dev) 2177 * 2178 * Issued by a driver's .ca_detach routine to notify anyone 2179 * waiting in device_lookup_acquire that the driver is committed 2180 * to detaching the device, which allows device_lookup_acquire to 2181 * wake up and fail immediately. 2182 * 2183 * Safe to call multiple times -- idempotent. Must be called 2184 * during config_detach_enter/exit. Safe to use with 2185 * device_lookup because the device is not actually removed from 2186 * the table until after config_detach_exit. 2187 */ 2188 void 2189 config_detach_commit(device_t dev) 2190 { 2191 struct lwp *l __diagused; 2192 2193 mutex_enter(&config_misc_lock); 2194 KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s", 2195 device_xname(dev)); 2196 KASSERTMSG((l = dev->dv_detaching) == curlwp, 2197 "lwp %ld [%s] @ %p detaching %s", 2198 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 2199 device_xname(dev)); 2200 dev->dv_detach_committed = true; 2201 cv_broadcast(&config_misc_cv); 2202 mutex_exit(&config_misc_lock); 2203 } 2204 2205 int 2206 config_detach_children(device_t parent, int flags) 2207 { 2208 device_t dv; 2209 deviter_t di; 2210 int error = 0; 2211 2212 KASSERT(KERNEL_LOCKED_P()); 2213 2214 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 2215 dv = deviter_next(&di)) { 2216 if (device_parent(dv) != parent) 2217 continue; 2218 if ((error = config_detach(dv, flags)) != 0) 2219 break; 2220 } 2221 deviter_release(&di); 2222 return error; 2223 } 2224 2225 device_t 2226 shutdown_first(struct shutdown_state *s) 2227 { 2228 if (!s->initialized) { 2229 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 2230 s->initialized = true; 2231 } 2232 return shutdown_next(s); 2233 } 2234 2235 device_t 2236 shutdown_next(struct shutdown_state *s) 2237 { 2238 device_t dv; 2239 2240 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 2241 ; 2242 2243 if (dv == NULL) 2244 s->initialized = false; 2245 2246 return dv; 2247 } 2248 2249 bool 2250 config_detach_all(int how) 2251 { 2252 static struct shutdown_state s; 2253 device_t curdev; 2254 bool progress = false; 2255 int flags; 2256 2257 KERNEL_LOCK(1, NULL); 2258 2259 if ((how & (RB_NOSYNC|RB_DUMP)) != 0) 2260 goto out; 2261 2262 if ((how & RB_POWERDOWN) == RB_POWERDOWN) 2263 flags = DETACH_SHUTDOWN | DETACH_POWEROFF; 2264 else 2265 flags = DETACH_SHUTDOWN; 2266 2267 for (curdev = shutdown_first(&s); curdev != NULL; 2268 curdev = shutdown_next(&s)) { 2269 aprint_debug(" detaching %s, ", device_xname(curdev)); 2270 if (config_detach(curdev, flags) == 0) { 2271 progress = true; 2272 aprint_debug("success."); 2273 } else 2274 aprint_debug("failed."); 2275 } 2276 2277 out: KERNEL_UNLOCK_ONE(NULL); 2278 return progress; 2279 } 2280 2281 static bool 2282 device_is_ancestor_of(device_t ancestor, device_t descendant) 2283 { 2284 device_t dv; 2285 2286 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 2287 if (device_parent(dv) == ancestor) 2288 return true; 2289 } 2290 return false; 2291 } 2292 2293 int 2294 config_deactivate(device_t dev) 2295 { 2296 deviter_t di; 2297 const struct cfattach *ca; 2298 device_t descendant; 2299 int s, rv = 0, oflags; 2300 2301 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 2302 descendant != NULL; 2303 descendant = deviter_next(&di)) { 2304 if (dev != descendant && 2305 !device_is_ancestor_of(dev, descendant)) 2306 continue; 2307 2308 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 2309 continue; 2310 2311 ca = descendant->dv_cfattach; 2312 oflags = descendant->dv_flags; 2313 2314 descendant->dv_flags &= ~DVF_ACTIVE; 2315 if (ca->ca_activate == NULL) 2316 continue; 2317 s = splhigh(); 2318 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 2319 splx(s); 2320 if (rv != 0) 2321 descendant->dv_flags = oflags; 2322 } 2323 deviter_release(&di); 2324 return rv; 2325 } 2326 2327 /* 2328 * Defer the configuration of the specified device until all 2329 * of its parent's devices have been attached. 2330 */ 2331 void 2332 config_defer(device_t dev, void (*func)(device_t)) 2333 { 2334 struct deferred_config *dc; 2335 2336 if (dev->dv_parent == NULL) 2337 panic("config_defer: can't defer config of a root device"); 2338 2339 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2340 2341 config_pending_incr(dev); 2342 2343 mutex_enter(&config_misc_lock); 2344 #ifdef DIAGNOSTIC 2345 struct deferred_config *odc; 2346 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) { 2347 if (odc->dc_dev == dev) 2348 panic("config_defer: deferred twice"); 2349 } 2350 #endif 2351 dc->dc_dev = dev; 2352 dc->dc_func = func; 2353 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 2354 mutex_exit(&config_misc_lock); 2355 } 2356 2357 /* 2358 * Defer some autoconfiguration for a device until after interrupts 2359 * are enabled. 2360 */ 2361 void 2362 config_interrupts(device_t dev, void (*func)(device_t)) 2363 { 2364 struct deferred_config *dc; 2365 2366 /* 2367 * If interrupts are enabled, callback now. 2368 */ 2369 if (cold == 0) { 2370 (*func)(dev); 2371 return; 2372 } 2373 2374 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2375 2376 config_pending_incr(dev); 2377 2378 mutex_enter(&config_misc_lock); 2379 #ifdef DIAGNOSTIC 2380 struct deferred_config *odc; 2381 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) { 2382 if (odc->dc_dev == dev) 2383 panic("config_interrupts: deferred twice"); 2384 } 2385 #endif 2386 dc->dc_dev = dev; 2387 dc->dc_func = func; 2388 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 2389 mutex_exit(&config_misc_lock); 2390 } 2391 2392 /* 2393 * Defer some autoconfiguration for a device until after root file system 2394 * is mounted (to load firmware etc). 2395 */ 2396 void 2397 config_mountroot(device_t dev, void (*func)(device_t)) 2398 { 2399 struct deferred_config *dc; 2400 2401 /* 2402 * If root file system is mounted, callback now. 2403 */ 2404 if (root_is_mounted) { 2405 (*func)(dev); 2406 return; 2407 } 2408 2409 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2410 2411 mutex_enter(&config_misc_lock); 2412 #ifdef DIAGNOSTIC 2413 struct deferred_config *odc; 2414 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) { 2415 if (odc->dc_dev == dev) 2416 panic("%s: deferred twice", __func__); 2417 } 2418 #endif 2419 2420 dc->dc_dev = dev; 2421 dc->dc_func = func; 2422 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 2423 mutex_exit(&config_misc_lock); 2424 } 2425 2426 /* 2427 * Process a deferred configuration queue. 2428 */ 2429 static void 2430 config_process_deferred(struct deferred_config_head *queue, device_t parent) 2431 { 2432 struct deferred_config *dc; 2433 2434 KASSERT(KERNEL_LOCKED_P()); 2435 2436 mutex_enter(&config_misc_lock); 2437 dc = TAILQ_FIRST(queue); 2438 while (dc) { 2439 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2440 TAILQ_REMOVE(queue, dc, dc_queue); 2441 mutex_exit(&config_misc_lock); 2442 2443 (*dc->dc_func)(dc->dc_dev); 2444 config_pending_decr(dc->dc_dev); 2445 kmem_free(dc, sizeof(*dc)); 2446 2447 mutex_enter(&config_misc_lock); 2448 /* Restart, queue might have changed */ 2449 dc = TAILQ_FIRST(queue); 2450 } else { 2451 dc = TAILQ_NEXT(dc, dc_queue); 2452 } 2453 } 2454 mutex_exit(&config_misc_lock); 2455 } 2456 2457 /* 2458 * Manipulate the config_pending semaphore. 2459 */ 2460 void 2461 config_pending_incr(device_t dev) 2462 { 2463 2464 mutex_enter(&config_misc_lock); 2465 KASSERTMSG(dev->dv_pending < INT_MAX, 2466 "%s: excess config_pending_incr", device_xname(dev)); 2467 if (dev->dv_pending++ == 0) 2468 TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list); 2469 #ifdef DEBUG_AUTOCONF 2470 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending); 2471 #endif 2472 mutex_exit(&config_misc_lock); 2473 } 2474 2475 void 2476 config_pending_decr(device_t dev) 2477 { 2478 2479 mutex_enter(&config_misc_lock); 2480 KASSERTMSG(dev->dv_pending > 0, 2481 "%s: excess config_pending_decr", device_xname(dev)); 2482 if (--dev->dv_pending == 0) { 2483 TAILQ_REMOVE(&config_pending, dev, dv_pending_list); 2484 cv_broadcast(&config_misc_cv); 2485 } 2486 #ifdef DEBUG_AUTOCONF 2487 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending); 2488 #endif 2489 mutex_exit(&config_misc_lock); 2490 } 2491 2492 /* 2493 * Register a "finalization" routine. Finalization routines are 2494 * called iteratively once all real devices have been found during 2495 * autoconfiguration, for as long as any one finalizer has done 2496 * any work. 2497 */ 2498 int 2499 config_finalize_register(device_t dev, int (*fn)(device_t)) 2500 { 2501 struct finalize_hook *f; 2502 int error = 0; 2503 2504 KERNEL_LOCK(1, NULL); 2505 2506 /* 2507 * If finalization has already been done, invoke the 2508 * callback function now. 2509 */ 2510 if (config_finalize_done) { 2511 while ((*fn)(dev) != 0) 2512 /* loop */ ; 2513 goto out; 2514 } 2515 2516 /* Ensure this isn't already on the list. */ 2517 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2518 if (f->f_func == fn && f->f_dev == dev) { 2519 error = EEXIST; 2520 goto out; 2521 } 2522 } 2523 2524 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2525 f->f_func = fn; 2526 f->f_dev = dev; 2527 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2528 2529 /* Success! */ 2530 error = 0; 2531 2532 out: KERNEL_UNLOCK_ONE(NULL); 2533 return error; 2534 } 2535 2536 void 2537 config_finalize(void) 2538 { 2539 struct finalize_hook *f; 2540 struct pdevinit *pdev; 2541 extern struct pdevinit pdevinit[]; 2542 int errcnt, rv; 2543 2544 /* 2545 * Now that device driver threads have been created, wait for 2546 * them to finish any deferred autoconfiguration. 2547 */ 2548 mutex_enter(&config_misc_lock); 2549 while (!TAILQ_EMPTY(&config_pending)) { 2550 device_t dev; 2551 int error; 2552 2553 error = cv_timedwait(&config_misc_cv, &config_misc_lock, 2554 mstohz(1000)); 2555 if (error == EWOULDBLOCK) { 2556 aprint_debug("waiting for devices:"); 2557 TAILQ_FOREACH(dev, &config_pending, dv_pending_list) 2558 aprint_debug(" %s", device_xname(dev)); 2559 aprint_debug("\n"); 2560 } 2561 } 2562 mutex_exit(&config_misc_lock); 2563 2564 KERNEL_LOCK(1, NULL); 2565 2566 /* Attach pseudo-devices. */ 2567 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2568 (*pdev->pdev_attach)(pdev->pdev_count); 2569 2570 /* Run the hooks until none of them does any work. */ 2571 do { 2572 rv = 0; 2573 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2574 rv |= (*f->f_func)(f->f_dev); 2575 } while (rv != 0); 2576 2577 config_finalize_done = 1; 2578 2579 /* Now free all the hooks. */ 2580 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2581 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2582 kmem_free(f, sizeof(*f)); 2583 } 2584 2585 KERNEL_UNLOCK_ONE(NULL); 2586 2587 errcnt = aprint_get_error_count(); 2588 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2589 (boothowto & AB_VERBOSE) == 0) { 2590 mutex_enter(&config_misc_lock); 2591 if (config_do_twiddle) { 2592 config_do_twiddle = 0; 2593 printf_nolog(" done.\n"); 2594 } 2595 mutex_exit(&config_misc_lock); 2596 } 2597 if (errcnt != 0) { 2598 printf("WARNING: %d error%s while detecting hardware; " 2599 "check system log.\n", errcnt, 2600 errcnt == 1 ? "" : "s"); 2601 } 2602 } 2603 2604 void 2605 config_twiddle_init(void) 2606 { 2607 2608 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2609 config_do_twiddle = 1; 2610 } 2611 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2612 } 2613 2614 void 2615 config_twiddle_fn(void *cookie) 2616 { 2617 2618 mutex_enter(&config_misc_lock); 2619 if (config_do_twiddle) { 2620 twiddle(); 2621 callout_schedule(&config_twiddle_ch, mstohz(100)); 2622 } 2623 mutex_exit(&config_misc_lock); 2624 } 2625 2626 static void 2627 config_alldevs_enter(struct alldevs_foray *af) 2628 { 2629 TAILQ_INIT(&af->af_garbage); 2630 mutex_enter(&alldevs_lock); 2631 config_collect_garbage(&af->af_garbage); 2632 } 2633 2634 static void 2635 config_alldevs_exit(struct alldevs_foray *af) 2636 { 2637 mutex_exit(&alldevs_lock); 2638 config_dump_garbage(&af->af_garbage); 2639 } 2640 2641 /* 2642 * device_lookup: 2643 * 2644 * Look up a device instance for a given driver. 2645 * 2646 * Caller is responsible for ensuring the device's state is 2647 * stable, either by holding a reference already obtained with 2648 * device_lookup_acquire or by otherwise ensuring the device is 2649 * attached and can't be detached (e.g., holding an open device 2650 * node and ensuring *_detach calls vdevgone). 2651 * 2652 * XXX Find a way to assert this. 2653 * 2654 * Safe for use up to and including interrupt context at IPL_VM. 2655 * Never sleeps. 2656 */ 2657 device_t 2658 device_lookup(cfdriver_t cd, int unit) 2659 { 2660 device_t dv; 2661 2662 mutex_enter(&alldevs_lock); 2663 if (unit < 0 || unit >= cd->cd_ndevs) 2664 dv = NULL; 2665 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2666 dv = NULL; 2667 mutex_exit(&alldevs_lock); 2668 2669 return dv; 2670 } 2671 2672 /* 2673 * device_lookup_private: 2674 * 2675 * Look up a softc instance for a given driver. 2676 */ 2677 void * 2678 device_lookup_private(cfdriver_t cd, int unit) 2679 { 2680 2681 return device_private(device_lookup(cd, unit)); 2682 } 2683 2684 /* 2685 * device_lookup_acquire: 2686 * 2687 * Look up a device instance for a given driver, and return a 2688 * reference to it that must be released by device_release. 2689 * 2690 * => If the device is still attaching, blocks until *_attach has 2691 * returned. 2692 * 2693 * => If the device is detaching, blocks until *_detach has 2694 * returned. May succeed or fail in that case, depending on 2695 * whether *_detach has backed out (EBUSY) or committed to 2696 * detaching. 2697 * 2698 * May sleep. 2699 */ 2700 device_t 2701 device_lookup_acquire(cfdriver_t cd, int unit) 2702 { 2703 device_t dv; 2704 2705 ASSERT_SLEEPABLE(); 2706 2707 /* XXX This should have a pserialized fast path -- TBD. */ 2708 mutex_enter(&config_misc_lock); 2709 mutex_enter(&alldevs_lock); 2710 retry: if (unit < 0 || unit >= cd->cd_ndevs || 2711 (dv = cd->cd_devs[unit]) == NULL || 2712 dv->dv_del_gen != 0 || 2713 dv->dv_detach_committed) { 2714 dv = NULL; 2715 } else { 2716 /* 2717 * Wait for the device to stabilize, if attaching or 2718 * detaching. Either way we must wait for *_attach or 2719 * *_detach to complete, and either way we must retry: 2720 * even if detaching, *_detach might fail (EBUSY) so 2721 * the device may still be there. 2722 */ 2723 if ((dv->dv_attaching != NULL && dv->dv_attaching != curlwp) || 2724 dv->dv_detaching != NULL) { 2725 mutex_exit(&alldevs_lock); 2726 cv_wait(&config_misc_cv, &config_misc_lock); 2727 mutex_enter(&alldevs_lock); 2728 goto retry; 2729 } 2730 localcount_acquire(dv->dv_localcount); 2731 } 2732 mutex_exit(&alldevs_lock); 2733 mutex_exit(&config_misc_lock); 2734 2735 return dv; 2736 } 2737 2738 /* 2739 * device_release: 2740 * 2741 * Release a reference to a device acquired with 2742 * device_lookup_acquire. 2743 */ 2744 void 2745 device_release(device_t dv) 2746 { 2747 2748 localcount_release(dv->dv_localcount, 2749 &config_misc_cv, &config_misc_lock); 2750 } 2751 2752 /* 2753 * device_find_by_xname: 2754 * 2755 * Returns the device of the given name or NULL if it doesn't exist. 2756 */ 2757 device_t 2758 device_find_by_xname(const char *name) 2759 { 2760 device_t dv; 2761 deviter_t di; 2762 2763 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2764 if (strcmp(device_xname(dv), name) == 0) 2765 break; 2766 } 2767 deviter_release(&di); 2768 2769 return dv; 2770 } 2771 2772 /* 2773 * device_find_by_driver_unit: 2774 * 2775 * Returns the device of the given driver name and unit or 2776 * NULL if it doesn't exist. 2777 */ 2778 device_t 2779 device_find_by_driver_unit(const char *name, int unit) 2780 { 2781 struct cfdriver *cd; 2782 2783 if ((cd = config_cfdriver_lookup(name)) == NULL) 2784 return NULL; 2785 return device_lookup(cd, unit); 2786 } 2787 2788 static bool 2789 match_strcmp(const char * const s1, const char * const s2) 2790 { 2791 return strcmp(s1, s2) == 0; 2792 } 2793 2794 static bool 2795 match_pmatch(const char * const s1, const char * const s2) 2796 { 2797 return pmatch(s1, s2, NULL) == 2; 2798 } 2799 2800 static bool 2801 strarray_match_internal(const char ** const strings, 2802 unsigned int const nstrings, const char * const str, 2803 unsigned int * const indexp, 2804 bool (*match_fn)(const char *, const char *)) 2805 { 2806 unsigned int i; 2807 2808 if (strings == NULL || nstrings == 0) { 2809 return false; 2810 } 2811 2812 for (i = 0; i < nstrings; i++) { 2813 if ((*match_fn)(strings[i], str)) { 2814 *indexp = i; 2815 return true; 2816 } 2817 } 2818 2819 return false; 2820 } 2821 2822 static int 2823 strarray_match(const char ** const strings, unsigned int const nstrings, 2824 const char * const str) 2825 { 2826 unsigned int idx; 2827 2828 if (strarray_match_internal(strings, nstrings, str, &idx, 2829 match_strcmp)) { 2830 return (int)(nstrings - idx); 2831 } 2832 return 0; 2833 } 2834 2835 static int 2836 strarray_pmatch(const char ** const strings, unsigned int const nstrings, 2837 const char * const pattern) 2838 { 2839 unsigned int idx; 2840 2841 if (strarray_match_internal(strings, nstrings, pattern, &idx, 2842 match_pmatch)) { 2843 return (int)(nstrings - idx); 2844 } 2845 return 0; 2846 } 2847 2848 static int 2849 device_compatible_match_strarray_internal( 2850 const char **device_compats, int ndevice_compats, 2851 const struct device_compatible_entry *driver_compats, 2852 const struct device_compatible_entry **matching_entryp, 2853 int (*match_fn)(const char **, unsigned int, const char *)) 2854 { 2855 const struct device_compatible_entry *dce = NULL; 2856 int rv; 2857 2858 if (ndevice_compats == 0 || device_compats == NULL || 2859 driver_compats == NULL) 2860 return 0; 2861 2862 for (dce = driver_compats; dce->compat != NULL; dce++) { 2863 rv = (*match_fn)(device_compats, ndevice_compats, dce->compat); 2864 if (rv != 0) { 2865 if (matching_entryp != NULL) { 2866 *matching_entryp = dce; 2867 } 2868 return rv; 2869 } 2870 } 2871 return 0; 2872 } 2873 2874 /* 2875 * device_compatible_match: 2876 * 2877 * Match a driver's "compatible" data against a device's 2878 * "compatible" strings. Returns resulted weighted by 2879 * which device "compatible" string was matched. 2880 */ 2881 int 2882 device_compatible_match(const char **device_compats, int ndevice_compats, 2883 const struct device_compatible_entry *driver_compats) 2884 { 2885 return device_compatible_match_strarray_internal(device_compats, 2886 ndevice_compats, driver_compats, NULL, strarray_match); 2887 } 2888 2889 /* 2890 * device_compatible_pmatch: 2891 * 2892 * Like device_compatible_match(), but uses pmatch(9) to compare 2893 * the device "compatible" strings against patterns in the 2894 * driver's "compatible" data. 2895 */ 2896 int 2897 device_compatible_pmatch(const char **device_compats, int ndevice_compats, 2898 const struct device_compatible_entry *driver_compats) 2899 { 2900 return device_compatible_match_strarray_internal(device_compats, 2901 ndevice_compats, driver_compats, NULL, strarray_pmatch); 2902 } 2903 2904 static int 2905 device_compatible_match_strlist_internal( 2906 const char * const device_compats, size_t const device_compatsize, 2907 const struct device_compatible_entry *driver_compats, 2908 const struct device_compatible_entry **matching_entryp, 2909 int (*match_fn)(const char *, size_t, const char *)) 2910 { 2911 const struct device_compatible_entry *dce = NULL; 2912 int rv; 2913 2914 if (device_compats == NULL || device_compatsize == 0 || 2915 driver_compats == NULL) 2916 return 0; 2917 2918 for (dce = driver_compats; dce->compat != NULL; dce++) { 2919 rv = (*match_fn)(device_compats, device_compatsize, 2920 dce->compat); 2921 if (rv != 0) { 2922 if (matching_entryp != NULL) { 2923 *matching_entryp = dce; 2924 } 2925 return rv; 2926 } 2927 } 2928 return 0; 2929 } 2930 2931 /* 2932 * device_compatible_match_strlist: 2933 * 2934 * Like device_compatible_match(), but take the device 2935 * "compatible" strings as an OpenFirmware-style string 2936 * list. 2937 */ 2938 int 2939 device_compatible_match_strlist( 2940 const char * const device_compats, size_t const device_compatsize, 2941 const struct device_compatible_entry *driver_compats) 2942 { 2943 return device_compatible_match_strlist_internal(device_compats, 2944 device_compatsize, driver_compats, NULL, strlist_match); 2945 } 2946 2947 /* 2948 * device_compatible_pmatch_strlist: 2949 * 2950 * Like device_compatible_pmatch(), but take the device 2951 * "compatible" strings as an OpenFirmware-style string 2952 * list. 2953 */ 2954 int 2955 device_compatible_pmatch_strlist( 2956 const char * const device_compats, size_t const device_compatsize, 2957 const struct device_compatible_entry *driver_compats) 2958 { 2959 return device_compatible_match_strlist_internal(device_compats, 2960 device_compatsize, driver_compats, NULL, strlist_pmatch); 2961 } 2962 2963 static int 2964 device_compatible_match_id_internal( 2965 uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id, 2966 const struct device_compatible_entry *driver_compats, 2967 const struct device_compatible_entry **matching_entryp) 2968 { 2969 const struct device_compatible_entry *dce = NULL; 2970 2971 if (mask == 0) 2972 return 0; 2973 2974 for (dce = driver_compats; dce->id != sentinel_id; dce++) { 2975 if ((id & mask) == dce->id) { 2976 if (matching_entryp != NULL) { 2977 *matching_entryp = dce; 2978 } 2979 return 1; 2980 } 2981 } 2982 return 0; 2983 } 2984 2985 /* 2986 * device_compatible_match_id: 2987 * 2988 * Like device_compatible_match(), but takes a single 2989 * unsigned integer device ID. 2990 */ 2991 int 2992 device_compatible_match_id( 2993 uintptr_t const id, uintptr_t const sentinel_id, 2994 const struct device_compatible_entry *driver_compats) 2995 { 2996 return device_compatible_match_id_internal(id, (uintptr_t)-1, 2997 sentinel_id, driver_compats, NULL); 2998 } 2999 3000 /* 3001 * device_compatible_lookup: 3002 * 3003 * Look up and return the device_compatible_entry, using the 3004 * same matching criteria used by device_compatible_match(). 3005 */ 3006 const struct device_compatible_entry * 3007 device_compatible_lookup(const char **device_compats, int ndevice_compats, 3008 const struct device_compatible_entry *driver_compats) 3009 { 3010 const struct device_compatible_entry *dce; 3011 3012 if (device_compatible_match_strarray_internal(device_compats, 3013 ndevice_compats, driver_compats, &dce, strarray_match)) { 3014 return dce; 3015 } 3016 return NULL; 3017 } 3018 3019 /* 3020 * device_compatible_plookup: 3021 * 3022 * Look up and return the device_compatible_entry, using the 3023 * same matching criteria used by device_compatible_pmatch(). 3024 */ 3025 const struct device_compatible_entry * 3026 device_compatible_plookup(const char **device_compats, int ndevice_compats, 3027 const struct device_compatible_entry *driver_compats) 3028 { 3029 const struct device_compatible_entry *dce; 3030 3031 if (device_compatible_match_strarray_internal(device_compats, 3032 ndevice_compats, driver_compats, &dce, strarray_pmatch)) { 3033 return dce; 3034 } 3035 return NULL; 3036 } 3037 3038 /* 3039 * device_compatible_lookup_strlist: 3040 * 3041 * Like device_compatible_lookup(), but take the device 3042 * "compatible" strings as an OpenFirmware-style string 3043 * list. 3044 */ 3045 const struct device_compatible_entry * 3046 device_compatible_lookup_strlist( 3047 const char * const device_compats, size_t const device_compatsize, 3048 const struct device_compatible_entry *driver_compats) 3049 { 3050 const struct device_compatible_entry *dce; 3051 3052 if (device_compatible_match_strlist_internal(device_compats, 3053 device_compatsize, driver_compats, &dce, strlist_match)) { 3054 return dce; 3055 } 3056 return NULL; 3057 } 3058 3059 /* 3060 * device_compatible_plookup_strlist: 3061 * 3062 * Like device_compatible_plookup(), but take the device 3063 * "compatible" strings as an OpenFirmware-style string 3064 * list. 3065 */ 3066 const struct device_compatible_entry * 3067 device_compatible_plookup_strlist( 3068 const char * const device_compats, size_t const device_compatsize, 3069 const struct device_compatible_entry *driver_compats) 3070 { 3071 const struct device_compatible_entry *dce; 3072 3073 if (device_compatible_match_strlist_internal(device_compats, 3074 device_compatsize, driver_compats, &dce, strlist_pmatch)) { 3075 return dce; 3076 } 3077 return NULL; 3078 } 3079 3080 /* 3081 * device_compatible_lookup_id: 3082 * 3083 * Like device_compatible_lookup(), but takes a single 3084 * unsigned integer device ID. 3085 */ 3086 const struct device_compatible_entry * 3087 device_compatible_lookup_id( 3088 uintptr_t const id, uintptr_t const sentinel_id, 3089 const struct device_compatible_entry *driver_compats) 3090 { 3091 const struct device_compatible_entry *dce; 3092 3093 if (device_compatible_match_id_internal(id, (uintptr_t)-1, 3094 sentinel_id, driver_compats, &dce)) { 3095 return dce; 3096 } 3097 return NULL; 3098 } 3099 3100 /* 3101 * Power management related functions. 3102 */ 3103 3104 bool 3105 device_pmf_is_registered(device_t dev) 3106 { 3107 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 3108 } 3109 3110 bool 3111 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 3112 { 3113 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 3114 return true; 3115 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 3116 return false; 3117 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 3118 dev->dv_driver_suspend != NULL && 3119 !(*dev->dv_driver_suspend)(dev, qual)) 3120 return false; 3121 3122 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 3123 return true; 3124 } 3125 3126 bool 3127 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 3128 { 3129 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 3130 return true; 3131 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 3132 return false; 3133 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 3134 dev->dv_driver_resume != NULL && 3135 !(*dev->dv_driver_resume)(dev, qual)) 3136 return false; 3137 3138 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 3139 return true; 3140 } 3141 3142 bool 3143 device_pmf_driver_shutdown(device_t dev, int how) 3144 { 3145 3146 if (*dev->dv_driver_shutdown != NULL && 3147 !(*dev->dv_driver_shutdown)(dev, how)) 3148 return false; 3149 return true; 3150 } 3151 3152 void 3153 device_pmf_driver_register(device_t dev, 3154 bool (*suspend)(device_t, const pmf_qual_t *), 3155 bool (*resume)(device_t, const pmf_qual_t *), 3156 bool (*shutdown)(device_t, int)) 3157 { 3158 3159 dev->dv_driver_suspend = suspend; 3160 dev->dv_driver_resume = resume; 3161 dev->dv_driver_shutdown = shutdown; 3162 dev->dv_flags |= DVF_POWER_HANDLERS; 3163 } 3164 3165 void 3166 device_pmf_driver_deregister(device_t dev) 3167 { 3168 device_lock_t dvl = device_getlock(dev); 3169 3170 dev->dv_driver_suspend = NULL; 3171 dev->dv_driver_resume = NULL; 3172 3173 mutex_enter(&dvl->dvl_mtx); 3174 dev->dv_flags &= ~DVF_POWER_HANDLERS; 3175 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 3176 /* Wake a thread that waits for the lock. That 3177 * thread will fail to acquire the lock, and then 3178 * it will wake the next thread that waits for the 3179 * lock, or else it will wake us. 3180 */ 3181 cv_signal(&dvl->dvl_cv); 3182 pmflock_debug(dev, __func__, __LINE__); 3183 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 3184 pmflock_debug(dev, __func__, __LINE__); 3185 } 3186 mutex_exit(&dvl->dvl_mtx); 3187 } 3188 3189 void 3190 device_pmf_driver_child_register(device_t dev) 3191 { 3192 device_t parent = device_parent(dev); 3193 3194 if (parent == NULL || parent->dv_driver_child_register == NULL) 3195 return; 3196 (*parent->dv_driver_child_register)(dev); 3197 } 3198 3199 void 3200 device_pmf_driver_set_child_register(device_t dev, 3201 void (*child_register)(device_t)) 3202 { 3203 dev->dv_driver_child_register = child_register; 3204 } 3205 3206 static void 3207 pmflock_debug(device_t dev, const char *func, int line) 3208 { 3209 #ifdef PMFLOCK_DEBUG 3210 device_lock_t dvl = device_getlock(dev); 3211 const char *curlwp_name; 3212 3213 if (curlwp->l_name != NULL) 3214 curlwp_name = curlwp->l_name; 3215 else 3216 curlwp_name = curlwp->l_proc->p_comm; 3217 3218 aprint_debug_dev(dev, 3219 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line, 3220 curlwp_name, dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags); 3221 #endif /* PMFLOCK_DEBUG */ 3222 } 3223 3224 static bool 3225 device_pmf_lock1(device_t dev) 3226 { 3227 device_lock_t dvl = device_getlock(dev); 3228 3229 while (device_pmf_is_registered(dev) && 3230 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 3231 dvl->dvl_nwait++; 3232 pmflock_debug(dev, __func__, __LINE__); 3233 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 3234 pmflock_debug(dev, __func__, __LINE__); 3235 dvl->dvl_nwait--; 3236 } 3237 if (!device_pmf_is_registered(dev)) { 3238 pmflock_debug(dev, __func__, __LINE__); 3239 /* We could not acquire the lock, but some other thread may 3240 * wait for it, also. Wake that thread. 3241 */ 3242 cv_signal(&dvl->dvl_cv); 3243 return false; 3244 } 3245 dvl->dvl_nlock++; 3246 dvl->dvl_holder = curlwp; 3247 pmflock_debug(dev, __func__, __LINE__); 3248 return true; 3249 } 3250 3251 bool 3252 device_pmf_lock(device_t dev) 3253 { 3254 bool rc; 3255 device_lock_t dvl = device_getlock(dev); 3256 3257 mutex_enter(&dvl->dvl_mtx); 3258 rc = device_pmf_lock1(dev); 3259 mutex_exit(&dvl->dvl_mtx); 3260 3261 return rc; 3262 } 3263 3264 void 3265 device_pmf_unlock(device_t dev) 3266 { 3267 device_lock_t dvl = device_getlock(dev); 3268 3269 KASSERT(dvl->dvl_nlock > 0); 3270 mutex_enter(&dvl->dvl_mtx); 3271 if (--dvl->dvl_nlock == 0) 3272 dvl->dvl_holder = NULL; 3273 cv_signal(&dvl->dvl_cv); 3274 pmflock_debug(dev, __func__, __LINE__); 3275 mutex_exit(&dvl->dvl_mtx); 3276 } 3277 3278 device_lock_t 3279 device_getlock(device_t dev) 3280 { 3281 return &dev->dv_lock; 3282 } 3283 3284 void * 3285 device_pmf_bus_private(device_t dev) 3286 { 3287 return dev->dv_bus_private; 3288 } 3289 3290 bool 3291 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 3292 { 3293 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 3294 return true; 3295 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 3296 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 3297 return false; 3298 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 3299 dev->dv_bus_suspend != NULL && 3300 !(*dev->dv_bus_suspend)(dev, qual)) 3301 return false; 3302 3303 dev->dv_flags |= DVF_BUS_SUSPENDED; 3304 return true; 3305 } 3306 3307 bool 3308 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 3309 { 3310 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 3311 return true; 3312 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 3313 dev->dv_bus_resume != NULL && 3314 !(*dev->dv_bus_resume)(dev, qual)) 3315 return false; 3316 3317 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 3318 return true; 3319 } 3320 3321 bool 3322 device_pmf_bus_shutdown(device_t dev, int how) 3323 { 3324 3325 if (*dev->dv_bus_shutdown != NULL && 3326 !(*dev->dv_bus_shutdown)(dev, how)) 3327 return false; 3328 return true; 3329 } 3330 3331 void 3332 device_pmf_bus_register(device_t dev, void *priv, 3333 bool (*suspend)(device_t, const pmf_qual_t *), 3334 bool (*resume)(device_t, const pmf_qual_t *), 3335 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 3336 { 3337 dev->dv_bus_private = priv; 3338 dev->dv_bus_resume = resume; 3339 dev->dv_bus_suspend = suspend; 3340 dev->dv_bus_shutdown = shutdown; 3341 dev->dv_bus_deregister = deregister; 3342 } 3343 3344 void 3345 device_pmf_bus_deregister(device_t dev) 3346 { 3347 if (dev->dv_bus_deregister == NULL) 3348 return; 3349 (*dev->dv_bus_deregister)(dev); 3350 dev->dv_bus_private = NULL; 3351 dev->dv_bus_suspend = NULL; 3352 dev->dv_bus_resume = NULL; 3353 dev->dv_bus_deregister = NULL; 3354 } 3355 3356 void * 3357 device_pmf_class_private(device_t dev) 3358 { 3359 return dev->dv_class_private; 3360 } 3361 3362 bool 3363 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 3364 { 3365 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 3366 return true; 3367 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 3368 dev->dv_class_suspend != NULL && 3369 !(*dev->dv_class_suspend)(dev, qual)) 3370 return false; 3371 3372 dev->dv_flags |= DVF_CLASS_SUSPENDED; 3373 return true; 3374 } 3375 3376 bool 3377 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 3378 { 3379 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 3380 return true; 3381 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 3382 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 3383 return false; 3384 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 3385 dev->dv_class_resume != NULL && 3386 !(*dev->dv_class_resume)(dev, qual)) 3387 return false; 3388 3389 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 3390 return true; 3391 } 3392 3393 void 3394 device_pmf_class_register(device_t dev, void *priv, 3395 bool (*suspend)(device_t, const pmf_qual_t *), 3396 bool (*resume)(device_t, const pmf_qual_t *), 3397 void (*deregister)(device_t)) 3398 { 3399 dev->dv_class_private = priv; 3400 dev->dv_class_suspend = suspend; 3401 dev->dv_class_resume = resume; 3402 dev->dv_class_deregister = deregister; 3403 } 3404 3405 void 3406 device_pmf_class_deregister(device_t dev) 3407 { 3408 if (dev->dv_class_deregister == NULL) 3409 return; 3410 (*dev->dv_class_deregister)(dev); 3411 dev->dv_class_private = NULL; 3412 dev->dv_class_suspend = NULL; 3413 dev->dv_class_resume = NULL; 3414 dev->dv_class_deregister = NULL; 3415 } 3416 3417 bool 3418 device_active(device_t dev, devactive_t type) 3419 { 3420 size_t i; 3421 3422 if (dev->dv_activity_count == 0) 3423 return false; 3424 3425 for (i = 0; i < dev->dv_activity_count; ++i) { 3426 if (dev->dv_activity_handlers[i] == NULL) 3427 break; 3428 (*dev->dv_activity_handlers[i])(dev, type); 3429 } 3430 3431 return true; 3432 } 3433 3434 bool 3435 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 3436 { 3437 void (**new_handlers)(device_t, devactive_t); 3438 void (**old_handlers)(device_t, devactive_t); 3439 size_t i, old_size, new_size; 3440 int s; 3441 3442 old_handlers = dev->dv_activity_handlers; 3443 old_size = dev->dv_activity_count; 3444 3445 KASSERT(old_size == 0 || old_handlers != NULL); 3446 3447 for (i = 0; i < old_size; ++i) { 3448 KASSERT(old_handlers[i] != handler); 3449 if (old_handlers[i] == NULL) { 3450 old_handlers[i] = handler; 3451 return true; 3452 } 3453 } 3454 3455 new_size = old_size + 4; 3456 new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP); 3457 3458 for (i = 0; i < old_size; ++i) 3459 new_handlers[i] = old_handlers[i]; 3460 new_handlers[old_size] = handler; 3461 for (i = old_size+1; i < new_size; ++i) 3462 new_handlers[i] = NULL; 3463 3464 s = splhigh(); 3465 dev->dv_activity_count = new_size; 3466 dev->dv_activity_handlers = new_handlers; 3467 splx(s); 3468 3469 if (old_size > 0) 3470 kmem_free(old_handlers, sizeof(void *) * old_size); 3471 3472 return true; 3473 } 3474 3475 void 3476 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 3477 { 3478 void (**old_handlers)(device_t, devactive_t); 3479 size_t i, old_size; 3480 int s; 3481 3482 old_handlers = dev->dv_activity_handlers; 3483 old_size = dev->dv_activity_count; 3484 3485 for (i = 0; i < old_size; ++i) { 3486 if (old_handlers[i] == handler) 3487 break; 3488 if (old_handlers[i] == NULL) 3489 return; /* XXX panic? */ 3490 } 3491 3492 if (i == old_size) 3493 return; /* XXX panic? */ 3494 3495 for (; i < old_size - 1; ++i) { 3496 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 3497 continue; 3498 3499 if (i == 0) { 3500 s = splhigh(); 3501 dev->dv_activity_count = 0; 3502 dev->dv_activity_handlers = NULL; 3503 splx(s); 3504 kmem_free(old_handlers, sizeof(void *) * old_size); 3505 } 3506 return; 3507 } 3508 old_handlers[i] = NULL; 3509 } 3510 3511 /* Return true iff the device_t `dev' exists at generation `gen'. */ 3512 static bool 3513 device_exists_at(device_t dv, devgen_t gen) 3514 { 3515 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 3516 dv->dv_add_gen <= gen; 3517 } 3518 3519 static bool 3520 deviter_visits(const deviter_t *di, device_t dv) 3521 { 3522 return device_exists_at(dv, di->di_gen); 3523 } 3524 3525 /* 3526 * Device Iteration 3527 * 3528 * deviter_t: a device iterator. Holds state for a "walk" visiting 3529 * each device_t's in the device tree. 3530 * 3531 * deviter_init(di, flags): initialize the device iterator `di' 3532 * to "walk" the device tree. deviter_next(di) will return 3533 * the first device_t in the device tree, or NULL if there are 3534 * no devices. 3535 * 3536 * `flags' is one or more of DEVITER_F_RW, indicating that the 3537 * caller intends to modify the device tree by calling 3538 * config_detach(9) on devices in the order that the iterator 3539 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 3540 * nearest the "root" of the device tree to be returned, first; 3541 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 3542 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 3543 * indicating both that deviter_init() should not respect any 3544 * locks on the device tree, and that deviter_next(di) may run 3545 * in more than one LWP before the walk has finished. 3546 * 3547 * Only one DEVITER_F_RW iterator may be in the device tree at 3548 * once. 3549 * 3550 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 3551 * 3552 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 3553 * DEVITER_F_LEAVES_FIRST are used in combination. 3554 * 3555 * deviter_first(di, flags): initialize the device iterator `di' 3556 * and return the first device_t in the device tree, or NULL 3557 * if there are no devices. The statement 3558 * 3559 * dv = deviter_first(di); 3560 * 3561 * is shorthand for 3562 * 3563 * deviter_init(di); 3564 * dv = deviter_next(di); 3565 * 3566 * deviter_next(di): return the next device_t in the device tree, 3567 * or NULL if there are no more devices. deviter_next(di) 3568 * is undefined if `di' was not initialized with deviter_init() or 3569 * deviter_first(). 3570 * 3571 * deviter_release(di): stops iteration (subsequent calls to 3572 * deviter_next() will return NULL), releases any locks and 3573 * resources held by the device iterator. 3574 * 3575 * Device iteration does not return device_t's in any particular 3576 * order. An iterator will never return the same device_t twice. 3577 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 3578 * is called repeatedly on the same `di', it will eventually return 3579 * NULL. It is ok to attach/detach devices during device iteration. 3580 */ 3581 void 3582 deviter_init(deviter_t *di, deviter_flags_t flags) 3583 { 3584 device_t dv; 3585 3586 memset(di, 0, sizeof(*di)); 3587 3588 if ((flags & DEVITER_F_SHUTDOWN) != 0) 3589 flags |= DEVITER_F_RW; 3590 3591 mutex_enter(&alldevs_lock); 3592 if ((flags & DEVITER_F_RW) != 0) 3593 alldevs_nwrite++; 3594 else 3595 alldevs_nread++; 3596 di->di_gen = alldevs_gen++; 3597 di->di_flags = flags; 3598 3599 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 3600 case DEVITER_F_LEAVES_FIRST: 3601 TAILQ_FOREACH(dv, &alldevs, dv_list) { 3602 if (!deviter_visits(di, dv)) 3603 continue; 3604 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 3605 } 3606 break; 3607 case DEVITER_F_ROOT_FIRST: 3608 TAILQ_FOREACH(dv, &alldevs, dv_list) { 3609 if (!deviter_visits(di, dv)) 3610 continue; 3611 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 3612 } 3613 break; 3614 default: 3615 break; 3616 } 3617 3618 deviter_reinit(di); 3619 mutex_exit(&alldevs_lock); 3620 } 3621 3622 static void 3623 deviter_reinit(deviter_t *di) 3624 { 3625 3626 KASSERT(mutex_owned(&alldevs_lock)); 3627 if ((di->di_flags & DEVITER_F_RW) != 0) 3628 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 3629 else 3630 di->di_prev = TAILQ_FIRST(&alldevs); 3631 } 3632 3633 device_t 3634 deviter_first(deviter_t *di, deviter_flags_t flags) 3635 { 3636 3637 deviter_init(di, flags); 3638 return deviter_next(di); 3639 } 3640 3641 static device_t 3642 deviter_next2(deviter_t *di) 3643 { 3644 device_t dv; 3645 3646 KASSERT(mutex_owned(&alldevs_lock)); 3647 3648 dv = di->di_prev; 3649 3650 if (dv == NULL) 3651 return NULL; 3652 3653 if ((di->di_flags & DEVITER_F_RW) != 0) 3654 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 3655 else 3656 di->di_prev = TAILQ_NEXT(dv, dv_list); 3657 3658 return dv; 3659 } 3660 3661 static device_t 3662 deviter_next1(deviter_t *di) 3663 { 3664 device_t dv; 3665 3666 KASSERT(mutex_owned(&alldevs_lock)); 3667 3668 do { 3669 dv = deviter_next2(di); 3670 } while (dv != NULL && !deviter_visits(di, dv)); 3671 3672 return dv; 3673 } 3674 3675 device_t 3676 deviter_next(deviter_t *di) 3677 { 3678 device_t dv = NULL; 3679 3680 mutex_enter(&alldevs_lock); 3681 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 3682 case 0: 3683 dv = deviter_next1(di); 3684 break; 3685 case DEVITER_F_LEAVES_FIRST: 3686 while (di->di_curdepth >= 0) { 3687 if ((dv = deviter_next1(di)) == NULL) { 3688 di->di_curdepth--; 3689 deviter_reinit(di); 3690 } else if (dv->dv_depth == di->di_curdepth) 3691 break; 3692 } 3693 break; 3694 case DEVITER_F_ROOT_FIRST: 3695 while (di->di_curdepth <= di->di_maxdepth) { 3696 if ((dv = deviter_next1(di)) == NULL) { 3697 di->di_curdepth++; 3698 deviter_reinit(di); 3699 } else if (dv->dv_depth == di->di_curdepth) 3700 break; 3701 } 3702 break; 3703 default: 3704 break; 3705 } 3706 mutex_exit(&alldevs_lock); 3707 3708 return dv; 3709 } 3710 3711 void 3712 deviter_release(deviter_t *di) 3713 { 3714 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 3715 3716 mutex_enter(&alldevs_lock); 3717 if (rw) 3718 --alldevs_nwrite; 3719 else 3720 --alldevs_nread; 3721 /* XXX wake a garbage-collection thread */ 3722 mutex_exit(&alldevs_lock); 3723 } 3724 3725 const char * 3726 cfdata_ifattr(const struct cfdata *cf) 3727 { 3728 return cf->cf_pspec->cfp_iattr; 3729 } 3730 3731 bool 3732 ifattr_match(const char *snull, const char *t) 3733 { 3734 return (snull == NULL) || strcmp(snull, t) == 0; 3735 } 3736 3737 void 3738 null_childdetached(device_t self, device_t child) 3739 { 3740 /* do nothing */ 3741 } 3742 3743 static void 3744 sysctl_detach_setup(struct sysctllog **clog) 3745 { 3746 3747 sysctl_createv(clog, 0, NULL, NULL, 3748 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3749 CTLTYPE_BOOL, "detachall", 3750 SYSCTL_DESCR("Detach all devices at shutdown"), 3751 NULL, 0, &detachall, 0, 3752 CTL_KERN, CTL_CREATE, CTL_EOL); 3753 } 3754