xref: /netbsd-src/sys/kern/subr_autoconf.c (revision 4d6fc14bc9b0c5bf3e30be318c143ee82cadd108)
1 /* $NetBSD: subr_autoconf.c,v 1.280 2021/04/28 03:21:57 thorpej Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #define	__SUBR_AUTOCONF_PRIVATE	/* see <sys/device.h> */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.280 2021/04/28 03:21:57 thorpej Exp $");
83 
84 #ifdef _KERNEL_OPT
85 #include "opt_ddb.h"
86 #include "drvctl.h"
87 #endif
88 
89 #include <sys/param.h>
90 #include <sys/device.h>
91 #include <sys/disklabel.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/kmem.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/errno.h>
98 #include <sys/proc.h>
99 #include <sys/reboot.h>
100 #include <sys/kthread.h>
101 #include <sys/buf.h>
102 #include <sys/dirent.h>
103 #include <sys/mount.h>
104 #include <sys/namei.h>
105 #include <sys/unistd.h>
106 #include <sys/fcntl.h>
107 #include <sys/lockf.h>
108 #include <sys/callout.h>
109 #include <sys/devmon.h>
110 #include <sys/cpu.h>
111 #include <sys/sysctl.h>
112 #include <sys/stdarg.h>
113 
114 #include <sys/disk.h>
115 
116 #include <sys/rndsource.h>
117 
118 #include <machine/limits.h>
119 
120 /*
121  * Autoconfiguration subroutines.
122  */
123 
124 /*
125  * Device autoconfiguration timings are mixed into the entropy pool.
126  */
127 static krndsource_t rnd_autoconf_source;
128 
129 /*
130  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
131  * devices and drivers are found via these tables.
132  */
133 extern struct cfdata cfdata[];
134 extern const short cfroots[];
135 
136 /*
137  * List of all cfdriver structures.  We use this to detect duplicates
138  * when other cfdrivers are loaded.
139  */
140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
141 extern struct cfdriver * const cfdriver_list_initial[];
142 
143 /*
144  * Initial list of cfattach's.
145  */
146 extern const struct cfattachinit cfattachinit[];
147 
148 /*
149  * List of cfdata tables.  We always have one such list -- the one
150  * built statically when the kernel was configured.
151  */
152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
153 static struct cftable initcftable;
154 
155 #define	ROOT ((device_t)NULL)
156 
157 struct matchinfo {
158 	cfsubmatch_t fn;
159 	device_t parent;
160 	const int *locs;
161 	void	*aux;
162 	struct	cfdata *match;
163 	int	pri;
164 };
165 
166 struct alldevs_foray {
167 	int			af_s;
168 	struct devicelist	af_garbage;
169 };
170 
171 static char *number(char *, int);
172 static void mapply(struct matchinfo *, cfdata_t);
173 static void config_devdelete(device_t);
174 static void config_devunlink(device_t, struct devicelist *);
175 static void config_makeroom(int, struct cfdriver *);
176 static void config_devlink(device_t);
177 static void config_alldevs_enter(struct alldevs_foray *);
178 static void config_alldevs_exit(struct alldevs_foray *);
179 static void config_add_attrib_dict(device_t);
180 
181 static void config_collect_garbage(struct devicelist *);
182 static void config_dump_garbage(struct devicelist *);
183 
184 static void pmflock_debug(device_t, const char *, int);
185 
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188 
189 struct deferred_config {
190 	TAILQ_ENTRY(deferred_config) dc_queue;
191 	device_t dc_dev;
192 	void (*dc_func)(device_t);
193 };
194 
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196 
197 static struct deferred_config_head deferred_config_queue =
198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 static struct deferred_config_head interrupt_config_queue =
200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 static int interrupt_config_threads = 8;
202 static struct deferred_config_head mountroot_config_queue =
203 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
204 static int mountroot_config_threads = 2;
205 static lwp_t **mountroot_config_lwpids;
206 static size_t mountroot_config_lwpids_size;
207 bool root_is_mounted = false;
208 
209 static void config_process_deferred(struct deferred_config_head *, device_t);
210 
211 /* Hooks to finalize configuration once all real devices have been found. */
212 struct finalize_hook {
213 	TAILQ_ENTRY(finalize_hook) f_list;
214 	int (*f_func)(device_t);
215 	device_t f_dev;
216 };
217 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
218 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
219 static int config_finalize_done;
220 
221 /* list of all devices */
222 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
223 static kmutex_t alldevs_lock __cacheline_aligned;
224 static devgen_t alldevs_gen = 1;
225 static int alldevs_nread = 0;
226 static int alldevs_nwrite = 0;
227 static bool alldevs_garbage = false;
228 
229 static struct devicelist config_pending =
230     TAILQ_HEAD_INITIALIZER(config_pending);
231 static kmutex_t config_misc_lock;
232 static kcondvar_t config_misc_cv;
233 
234 static bool detachall = false;
235 
236 #define	STREQ(s1, s2)			\
237 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
238 
239 static bool config_initialized = false;	/* config_init() has been called. */
240 
241 static int config_do_twiddle;
242 static callout_t config_twiddle_ch;
243 
244 static void sysctl_detach_setup(struct sysctllog **);
245 
246 int no_devmon_insert(const char *, prop_dictionary_t);
247 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
248 
249 typedef int (*cfdriver_fn)(struct cfdriver *);
250 static int
251 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
252 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
253 	const char *style, bool dopanic)
254 {
255 	void (*pr)(const char *, ...) __printflike(1, 2) =
256 	    dopanic ? panic : printf;
257 	int i, error = 0, e2 __diagused;
258 
259 	for (i = 0; cfdriverv[i] != NULL; i++) {
260 		if ((error = drv_do(cfdriverv[i])) != 0) {
261 			pr("configure: `%s' driver %s failed: %d",
262 			    cfdriverv[i]->cd_name, style, error);
263 			goto bad;
264 		}
265 	}
266 
267 	KASSERT(error == 0);
268 	return 0;
269 
270  bad:
271 	printf("\n");
272 	for (i--; i >= 0; i--) {
273 		e2 = drv_undo(cfdriverv[i]);
274 		KASSERT(e2 == 0);
275 	}
276 
277 	return error;
278 }
279 
280 typedef int (*cfattach_fn)(const char *, struct cfattach *);
281 static int
282 frob_cfattachvec(const struct cfattachinit *cfattachv,
283 	cfattach_fn att_do, cfattach_fn att_undo,
284 	const char *style, bool dopanic)
285 {
286 	const struct cfattachinit *cfai = NULL;
287 	void (*pr)(const char *, ...) __printflike(1, 2) =
288 	    dopanic ? panic : printf;
289 	int j = 0, error = 0, e2 __diagused;
290 
291 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
292 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
293 			if ((error = att_do(cfai->cfai_name,
294 			    cfai->cfai_list[j])) != 0) {
295 				pr("configure: attachment `%s' "
296 				    "of `%s' driver %s failed: %d",
297 				    cfai->cfai_list[j]->ca_name,
298 				    cfai->cfai_name, style, error);
299 				goto bad;
300 			}
301 		}
302 	}
303 
304 	KASSERT(error == 0);
305 	return 0;
306 
307  bad:
308 	/*
309 	 * Rollback in reverse order.  dunno if super-important, but
310 	 * do that anyway.  Although the code looks a little like
311 	 * someone did a little integration (in the math sense).
312 	 */
313 	printf("\n");
314 	if (cfai) {
315 		bool last;
316 
317 		for (last = false; last == false; ) {
318 			if (cfai == &cfattachv[0])
319 				last = true;
320 			for (j--; j >= 0; j--) {
321 				e2 = att_undo(cfai->cfai_name,
322 				    cfai->cfai_list[j]);
323 				KASSERT(e2 == 0);
324 			}
325 			if (!last) {
326 				cfai--;
327 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
328 					;
329 			}
330 		}
331 	}
332 
333 	return error;
334 }
335 
336 /*
337  * Initialize the autoconfiguration data structures.  Normally this
338  * is done by configure(), but some platforms need to do this very
339  * early (to e.g. initialize the console).
340  */
341 void
342 config_init(void)
343 {
344 
345 	KASSERT(config_initialized == false);
346 
347 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
348 
349 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
350 	cv_init(&config_misc_cv, "cfgmisc");
351 
352 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
353 
354 	frob_cfdrivervec(cfdriver_list_initial,
355 	    config_cfdriver_attach, NULL, "bootstrap", true);
356 	frob_cfattachvec(cfattachinit,
357 	    config_cfattach_attach, NULL, "bootstrap", true);
358 
359 	initcftable.ct_cfdata = cfdata;
360 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
361 
362 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
363 	    RND_FLAG_COLLECT_TIME);
364 
365 	config_initialized = true;
366 }
367 
368 /*
369  * Init or fini drivers and attachments.  Either all or none
370  * are processed (via rollback).  It would be nice if this were
371  * atomic to outside consumers, but with the current state of
372  * locking ...
373  */
374 int
375 config_init_component(struct cfdriver * const *cfdriverv,
376 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
377 {
378 	int error;
379 
380 	if ((error = frob_cfdrivervec(cfdriverv,
381 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
382 		return error;
383 	if ((error = frob_cfattachvec(cfattachv,
384 	    config_cfattach_attach, config_cfattach_detach,
385 	    "init", false)) != 0) {
386 		frob_cfdrivervec(cfdriverv,
387 	            config_cfdriver_detach, NULL, "init rollback", true);
388 		return error;
389 	}
390 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
391 		frob_cfattachvec(cfattachv,
392 		    config_cfattach_detach, NULL, "init rollback", true);
393 		frob_cfdrivervec(cfdriverv,
394 	            config_cfdriver_detach, NULL, "init rollback", true);
395 		return error;
396 	}
397 
398 	return 0;
399 }
400 
401 int
402 config_fini_component(struct cfdriver * const *cfdriverv,
403 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
404 {
405 	int error;
406 
407 	if ((error = config_cfdata_detach(cfdatav)) != 0)
408 		return error;
409 	if ((error = frob_cfattachvec(cfattachv,
410 	    config_cfattach_detach, config_cfattach_attach,
411 	    "fini", false)) != 0) {
412 		if (config_cfdata_attach(cfdatav, 0) != 0)
413 			panic("config_cfdata fini rollback failed");
414 		return error;
415 	}
416 	if ((error = frob_cfdrivervec(cfdriverv,
417 	    config_cfdriver_detach, config_cfdriver_attach,
418 	    "fini", false)) != 0) {
419 		frob_cfattachvec(cfattachv,
420 	            config_cfattach_attach, NULL, "fini rollback", true);
421 		if (config_cfdata_attach(cfdatav, 0) != 0)
422 			panic("config_cfdata fini rollback failed");
423 		return error;
424 	}
425 
426 	return 0;
427 }
428 
429 void
430 config_init_mi(void)
431 {
432 
433 	if (!config_initialized)
434 		config_init();
435 
436 	sysctl_detach_setup(NULL);
437 }
438 
439 void
440 config_deferred(device_t dev)
441 {
442 	config_process_deferred(&deferred_config_queue, dev);
443 	config_process_deferred(&interrupt_config_queue, dev);
444 	config_process_deferred(&mountroot_config_queue, dev);
445 }
446 
447 static void
448 config_interrupts_thread(void *cookie)
449 {
450 	struct deferred_config *dc;
451 	device_t dev;
452 
453 	mutex_enter(&config_misc_lock);
454 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
455 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
456 		mutex_exit(&config_misc_lock);
457 
458 		dev = dc->dc_dev;
459 		(*dc->dc_func)(dev);
460 		if (!device_pmf_is_registered(dev))
461 			aprint_debug_dev(dev,
462 			    "WARNING: power management not supported\n");
463 		config_pending_decr(dev);
464 		kmem_free(dc, sizeof(*dc));
465 
466 		mutex_enter(&config_misc_lock);
467 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
468 	}
469 	mutex_exit(&config_misc_lock);
470 
471 	kthread_exit(0);
472 }
473 
474 void
475 config_create_interruptthreads(void)
476 {
477 	int i;
478 
479 	for (i = 0; i < interrupt_config_threads; i++) {
480 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
481 		    config_interrupts_thread, NULL, NULL, "configintr");
482 	}
483 }
484 
485 static void
486 config_mountroot_thread(void *cookie)
487 {
488 	struct deferred_config *dc;
489 
490 	mutex_enter(&config_misc_lock);
491 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
492 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
493 		mutex_exit(&config_misc_lock);
494 
495 		(*dc->dc_func)(dc->dc_dev);
496 		kmem_free(dc, sizeof(*dc));
497 
498 		mutex_enter(&config_misc_lock);
499 	}
500 	mutex_exit(&config_misc_lock);
501 
502 	kthread_exit(0);
503 }
504 
505 void
506 config_create_mountrootthreads(void)
507 {
508 	int i;
509 
510 	if (!root_is_mounted)
511 		root_is_mounted = true;
512 
513 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
514 				       mountroot_config_threads;
515 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
516 					     KM_NOSLEEP);
517 	KASSERT(mountroot_config_lwpids);
518 	for (i = 0; i < mountroot_config_threads; i++) {
519 		mountroot_config_lwpids[i] = 0;
520 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
521 				     NULL, config_mountroot_thread, NULL,
522 				     &mountroot_config_lwpids[i],
523 				     "configroot");
524 	}
525 }
526 
527 void
528 config_finalize_mountroot(void)
529 {
530 	int i, error;
531 
532 	for (i = 0; i < mountroot_config_threads; i++) {
533 		if (mountroot_config_lwpids[i] == 0)
534 			continue;
535 
536 		error = kthread_join(mountroot_config_lwpids[i]);
537 		if (error)
538 			printf("%s: thread %x joined with error %d\n",
539 			       __func__, i, error);
540 	}
541 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
542 }
543 
544 /*
545  * Announce device attach/detach to userland listeners.
546  */
547 
548 int
549 no_devmon_insert(const char *name, prop_dictionary_t p)
550 {
551 
552 	return ENODEV;
553 }
554 
555 static void
556 devmon_report_device(device_t dev, bool isattach)
557 {
558 	prop_dictionary_t ev, dict = device_properties(dev);
559 	const char *parent;
560 	const char *what;
561 	const char *where;
562 	device_t pdev = device_parent(dev);
563 
564 	/* If currently no drvctl device, just return */
565 	if (devmon_insert_vec == no_devmon_insert)
566 		return;
567 
568 	ev = prop_dictionary_create();
569 	if (ev == NULL)
570 		return;
571 
572 	what = (isattach ? "device-attach" : "device-detach");
573 	parent = (pdev == NULL ? "root" : device_xname(pdev));
574 	if (prop_dictionary_get_string(dict, "location", &where)) {
575 		prop_dictionary_set_string(ev, "location", where);
576 		aprint_debug("ev: %s %s at %s in [%s]\n",
577 		    what, device_xname(dev), parent, where);
578 	}
579 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
580 	    !prop_dictionary_set_string(ev, "parent", parent)) {
581 		prop_object_release(ev);
582 		return;
583 	}
584 
585 	if ((*devmon_insert_vec)(what, ev) != 0)
586 		prop_object_release(ev);
587 }
588 
589 /*
590  * Add a cfdriver to the system.
591  */
592 int
593 config_cfdriver_attach(struct cfdriver *cd)
594 {
595 	struct cfdriver *lcd;
596 
597 	/* Make sure this driver isn't already in the system. */
598 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
599 		if (STREQ(lcd->cd_name, cd->cd_name))
600 			return EEXIST;
601 	}
602 
603 	LIST_INIT(&cd->cd_attach);
604 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
605 
606 	return 0;
607 }
608 
609 /*
610  * Remove a cfdriver from the system.
611  */
612 int
613 config_cfdriver_detach(struct cfdriver *cd)
614 {
615 	struct alldevs_foray af;
616 	int i, rc = 0;
617 
618 	config_alldevs_enter(&af);
619 	/* Make sure there are no active instances. */
620 	for (i = 0; i < cd->cd_ndevs; i++) {
621 		if (cd->cd_devs[i] != NULL) {
622 			rc = EBUSY;
623 			break;
624 		}
625 	}
626 	config_alldevs_exit(&af);
627 
628 	if (rc != 0)
629 		return rc;
630 
631 	/* ...and no attachments loaded. */
632 	if (LIST_EMPTY(&cd->cd_attach) == 0)
633 		return EBUSY;
634 
635 	LIST_REMOVE(cd, cd_list);
636 
637 	KASSERT(cd->cd_devs == NULL);
638 
639 	return 0;
640 }
641 
642 /*
643  * Look up a cfdriver by name.
644  */
645 struct cfdriver *
646 config_cfdriver_lookup(const char *name)
647 {
648 	struct cfdriver *cd;
649 
650 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
651 		if (STREQ(cd->cd_name, name))
652 			return cd;
653 	}
654 
655 	return NULL;
656 }
657 
658 /*
659  * Add a cfattach to the specified driver.
660  */
661 int
662 config_cfattach_attach(const char *driver, struct cfattach *ca)
663 {
664 	struct cfattach *lca;
665 	struct cfdriver *cd;
666 
667 	cd = config_cfdriver_lookup(driver);
668 	if (cd == NULL)
669 		return ESRCH;
670 
671 	/* Make sure this attachment isn't already on this driver. */
672 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
673 		if (STREQ(lca->ca_name, ca->ca_name))
674 			return EEXIST;
675 	}
676 
677 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
678 
679 	return 0;
680 }
681 
682 /*
683  * Remove a cfattach from the specified driver.
684  */
685 int
686 config_cfattach_detach(const char *driver, struct cfattach *ca)
687 {
688 	struct alldevs_foray af;
689 	struct cfdriver *cd;
690 	device_t dev;
691 	int i, rc = 0;
692 
693 	cd = config_cfdriver_lookup(driver);
694 	if (cd == NULL)
695 		return ESRCH;
696 
697 	config_alldevs_enter(&af);
698 	/* Make sure there are no active instances. */
699 	for (i = 0; i < cd->cd_ndevs; i++) {
700 		if ((dev = cd->cd_devs[i]) == NULL)
701 			continue;
702 		if (dev->dv_cfattach == ca) {
703 			rc = EBUSY;
704 			break;
705 		}
706 	}
707 	config_alldevs_exit(&af);
708 
709 	if (rc != 0)
710 		return rc;
711 
712 	LIST_REMOVE(ca, ca_list);
713 
714 	return 0;
715 }
716 
717 /*
718  * Look up a cfattach by name.
719  */
720 static struct cfattach *
721 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
722 {
723 	struct cfattach *ca;
724 
725 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
726 		if (STREQ(ca->ca_name, atname))
727 			return ca;
728 	}
729 
730 	return NULL;
731 }
732 
733 /*
734  * Look up a cfattach by driver/attachment name.
735  */
736 struct cfattach *
737 config_cfattach_lookup(const char *name, const char *atname)
738 {
739 	struct cfdriver *cd;
740 
741 	cd = config_cfdriver_lookup(name);
742 	if (cd == NULL)
743 		return NULL;
744 
745 	return config_cfattach_lookup_cd(cd, atname);
746 }
747 
748 /*
749  * Apply the matching function and choose the best.  This is used
750  * a few times and we want to keep the code small.
751  */
752 static void
753 mapply(struct matchinfo *m, cfdata_t cf)
754 {
755 	int pri;
756 
757 	if (m->fn != NULL) {
758 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
759 	} else {
760 		pri = config_match(m->parent, cf, m->aux);
761 	}
762 	if (pri > m->pri) {
763 		m->match = cf;
764 		m->pri = pri;
765 	}
766 }
767 
768 int
769 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
770 {
771 	const struct cfiattrdata *ci;
772 	const struct cflocdesc *cl;
773 	int nlocs, i;
774 
775 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
776 	KASSERT(ci);
777 	nlocs = ci->ci_loclen;
778 	KASSERT(!nlocs || locs);
779 	for (i = 0; i < nlocs; i++) {
780 		cl = &ci->ci_locdesc[i];
781 		if (cl->cld_defaultstr != NULL &&
782 		    cf->cf_loc[i] == cl->cld_default)
783 			continue;
784 		if (cf->cf_loc[i] == locs[i])
785 			continue;
786 		return 0;
787 	}
788 
789 	return config_match(parent, cf, aux);
790 }
791 
792 /*
793  * Helper function: check whether the driver supports the interface attribute
794  * and return its descriptor structure.
795  */
796 static const struct cfiattrdata *
797 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
798 {
799 	const struct cfiattrdata * const *cpp;
800 
801 	if (cd->cd_attrs == NULL)
802 		return 0;
803 
804 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
805 		if (STREQ((*cpp)->ci_name, ia)) {
806 			/* Match. */
807 			return *cpp;
808 		}
809 	}
810 	return 0;
811 }
812 
813 #if defined(DIAGNOSTIC)
814 static int
815 cfdriver_iattr_count(const struct cfdriver *cd)
816 {
817 	const struct cfiattrdata * const *cpp;
818 	int i;
819 
820 	if (cd->cd_attrs == NULL)
821 		return 0;
822 
823 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
824 		i++;
825 	}
826 	return i;
827 }
828 #endif /* DIAGNOSTIC */
829 
830 /*
831  * Lookup an interface attribute description by name.
832  * If the driver is given, consider only its supported attributes.
833  */
834 const struct cfiattrdata *
835 cfiattr_lookup(const char *name, const struct cfdriver *cd)
836 {
837 	const struct cfdriver *d;
838 	const struct cfiattrdata *ia;
839 
840 	if (cd)
841 		return cfdriver_get_iattr(cd, name);
842 
843 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
844 		ia = cfdriver_get_iattr(d, name);
845 		if (ia)
846 			return ia;
847 	}
848 	return 0;
849 }
850 
851 /*
852  * Determine if `parent' is a potential parent for a device spec based
853  * on `cfp'.
854  */
855 static int
856 cfparent_match(const device_t parent, const struct cfparent *cfp)
857 {
858 	struct cfdriver *pcd;
859 
860 	/* We don't match root nodes here. */
861 	if (cfp == NULL)
862 		return 0;
863 
864 	pcd = parent->dv_cfdriver;
865 	KASSERT(pcd != NULL);
866 
867 	/*
868 	 * First, ensure this parent has the correct interface
869 	 * attribute.
870 	 */
871 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
872 		return 0;
873 
874 	/*
875 	 * If no specific parent device instance was specified (i.e.
876 	 * we're attaching to the attribute only), we're done!
877 	 */
878 	if (cfp->cfp_parent == NULL)
879 		return 1;
880 
881 	/*
882 	 * Check the parent device's name.
883 	 */
884 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
885 		return 0;	/* not the same parent */
886 
887 	/*
888 	 * Make sure the unit number matches.
889 	 */
890 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
891 	    cfp->cfp_unit == parent->dv_unit)
892 		return 1;
893 
894 	/* Unit numbers don't match. */
895 	return 0;
896 }
897 
898 /*
899  * Helper for config_cfdata_attach(): check all devices whether it could be
900  * parent any attachment in the config data table passed, and rescan.
901  */
902 static void
903 rescan_with_cfdata(const struct cfdata *cf)
904 {
905 	device_t d;
906 	const struct cfdata *cf1;
907 	deviter_t di;
908 
909 
910 	/*
911 	 * "alldevs" is likely longer than a modules's cfdata, so make it
912 	 * the outer loop.
913 	 */
914 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
915 
916 		if (!(d->dv_cfattach->ca_rescan))
917 			continue;
918 
919 		for (cf1 = cf; cf1->cf_name; cf1++) {
920 
921 			if (!cfparent_match(d, cf1->cf_pspec))
922 				continue;
923 
924 			(*d->dv_cfattach->ca_rescan)(d,
925 				cfdata_ifattr(cf1), cf1->cf_loc);
926 
927 			config_deferred(d);
928 		}
929 	}
930 	deviter_release(&di);
931 }
932 
933 /*
934  * Attach a supplemental config data table and rescan potential
935  * parent devices if required.
936  */
937 int
938 config_cfdata_attach(cfdata_t cf, int scannow)
939 {
940 	struct cftable *ct;
941 
942 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
943 	ct->ct_cfdata = cf;
944 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
945 
946 	if (scannow)
947 		rescan_with_cfdata(cf);
948 
949 	return 0;
950 }
951 
952 /*
953  * Helper for config_cfdata_detach: check whether a device is
954  * found through any attachment in the config data table.
955  */
956 static int
957 dev_in_cfdata(device_t d, cfdata_t cf)
958 {
959 	const struct cfdata *cf1;
960 
961 	for (cf1 = cf; cf1->cf_name; cf1++)
962 		if (d->dv_cfdata == cf1)
963 			return 1;
964 
965 	return 0;
966 }
967 
968 /*
969  * Detach a supplemental config data table. Detach all devices found
970  * through that table (and thus keeping references to it) before.
971  */
972 int
973 config_cfdata_detach(cfdata_t cf)
974 {
975 	device_t d;
976 	int error = 0;
977 	struct cftable *ct;
978 	deviter_t di;
979 
980 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
981 	     d = deviter_next(&di)) {
982 		if (!dev_in_cfdata(d, cf))
983 			continue;
984 		if ((error = config_detach(d, 0)) != 0)
985 			break;
986 	}
987 	deviter_release(&di);
988 	if (error) {
989 		aprint_error_dev(d, "unable to detach instance\n");
990 		return error;
991 	}
992 
993 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
994 		if (ct->ct_cfdata == cf) {
995 			TAILQ_REMOVE(&allcftables, ct, ct_list);
996 			kmem_free(ct, sizeof(*ct));
997 			return 0;
998 		}
999 	}
1000 
1001 	/* not found -- shouldn't happen */
1002 	return EINVAL;
1003 }
1004 
1005 /*
1006  * Invoke the "match" routine for a cfdata entry on behalf of
1007  * an external caller, usually a direct config "submatch" routine.
1008  */
1009 int
1010 config_match(device_t parent, cfdata_t cf, void *aux)
1011 {
1012 	struct cfattach *ca;
1013 
1014 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
1015 	if (ca == NULL) {
1016 		/* No attachment for this entry, oh well. */
1017 		return 0;
1018 	}
1019 
1020 	return (*ca->ca_match)(parent, cf, aux);
1021 }
1022 
1023 /*
1024  * Invoke the "probe" routine for a cfdata entry on behalf of
1025  * an external caller, usually an indirect config "search" routine.
1026  */
1027 int
1028 config_probe(device_t parent, cfdata_t cf, void *aux)
1029 {
1030 	/*
1031 	 * This is currently a synonym for config_match(), but this
1032 	 * is an implementation detail; "match" and "probe" routines
1033 	 * have different behaviors.
1034 	 *
1035 	 * XXX config_probe() should return a bool, because there is
1036 	 * XXX no match score for probe -- it's either there or it's
1037 	 * XXX not, but some ports abuse the return value as a way
1038 	 * XXX to attach "critical" devices before "non-critical"
1039 	 * XXX devices.
1040 	 */
1041 	return config_match(parent, cf, aux);
1042 }
1043 
1044 static void
1045 config_get_cfargs(cfarg_t tag,
1046 		  cfsubmatch_t *fnp,		/* output */
1047 		  const char **ifattrp,		/* output */
1048 		  const int **locsp,		/* output */
1049 		  devhandle_t *handlep,		/* output */
1050 		  va_list ap)
1051 {
1052 	cfsubmatch_t fn = NULL;
1053 	const char *ifattr = NULL;
1054 	const int *locs = NULL;
1055 	devhandle_t handle;
1056 
1057 	devhandle_invalidate(&handle);
1058 
1059 	while (tag != CFARG_EOL) {
1060 		switch (tag) {
1061 		/*
1062 		 * CFARG_SUBMATCH and CFARG_SEARCH are synonyms, but this
1063 		 * is merely an implementation detail.  They are distinct
1064 		 * from the caller's point of view.
1065 		 */
1066 		case CFARG_SUBMATCH:
1067 		case CFARG_SEARCH:
1068 			/* Only allow one function to be specified. */
1069 			if (fn != NULL) {
1070 				panic("%s: caller specified both "
1071 				    "SUBMATCH and SEARCH", __func__);
1072 			}
1073 			fn = va_arg(ap, cfsubmatch_t);
1074 			break;
1075 
1076 		case CFARG_IATTR:
1077 			ifattr = va_arg(ap, const char *);
1078 			break;
1079 
1080 		case CFARG_LOCATORS:
1081 			locs = va_arg(ap, const int *);
1082 			break;
1083 
1084 		case CFARG_DEVHANDLE:
1085 			handle = va_arg(ap, devhandle_t);
1086 			break;
1087 
1088 		default:
1089 			panic("%s: unknown cfarg tag: %d\n",
1090 			    __func__, tag);
1091 		}
1092 		tag = va_arg(ap, cfarg_t);
1093 	}
1094 
1095 	if (fnp != NULL)
1096 		*fnp = fn;
1097 	if (ifattrp != NULL)
1098 		*ifattrp = ifattr;
1099 	if (locsp != NULL)
1100 		*locsp = locs;
1101 	if (handlep != NULL)
1102 		*handlep = handle;
1103 }
1104 
1105 /*
1106  * Iterate over all potential children of some device, calling the given
1107  * function (default being the child's match function) for each one.
1108  * Nonzero returns are matches; the highest value returned is considered
1109  * the best match.  Return the `found child' if we got a match, or NULL
1110  * otherwise.  The `aux' pointer is simply passed on through.
1111  *
1112  * Note that this function is designed so that it can be used to apply
1113  * an arbitrary function to all potential children (its return value
1114  * can be ignored).
1115  */
1116 cfdata_t
1117 config_vsearch(device_t parent, void *aux, cfarg_t tag, va_list ap)
1118 {
1119 	cfsubmatch_t fn;
1120 	const char *ifattr;
1121 	const int *locs;
1122 	struct cftable *ct;
1123 	cfdata_t cf;
1124 	struct matchinfo m;
1125 
1126 	config_get_cfargs(tag, &fn, &ifattr, &locs, NULL, ap);
1127 
1128 	KASSERT(config_initialized);
1129 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1130 	KASSERT(ifattr || cfdriver_iattr_count(parent->dv_cfdriver) < 2);
1131 
1132 	m.fn = fn;
1133 	m.parent = parent;
1134 	m.locs = locs;
1135 	m.aux = aux;
1136 	m.match = NULL;
1137 	m.pri = 0;
1138 
1139 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1140 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1141 
1142 			/* We don't match root nodes here. */
1143 			if (!cf->cf_pspec)
1144 				continue;
1145 
1146 			/*
1147 			 * Skip cf if no longer eligible, otherwise scan
1148 			 * through parents for one matching `parent', and
1149 			 * try match function.
1150 			 */
1151 			if (cf->cf_fstate == FSTATE_FOUND)
1152 				continue;
1153 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1154 			    cf->cf_fstate == FSTATE_DSTAR)
1155 				continue;
1156 
1157 			/*
1158 			 * If an interface attribute was specified,
1159 			 * consider only children which attach to
1160 			 * that attribute.
1161 			 */
1162 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1163 				continue;
1164 
1165 			if (cfparent_match(parent, cf->cf_pspec))
1166 				mapply(&m, cf);
1167 		}
1168 	}
1169 	return m.match;
1170 }
1171 
1172 cfdata_t
1173 config_search(device_t parent, void *aux, cfarg_t tag, ...)
1174 {
1175 	cfdata_t cf;
1176 	va_list ap;
1177 
1178 	va_start(ap, tag);
1179 	cf = config_vsearch(parent, aux, tag, ap);
1180 	va_end(ap);
1181 
1182 	return cf;
1183 }
1184 
1185 /*
1186  * Find the given root device.
1187  * This is much like config_search, but there is no parent.
1188  * Don't bother with multiple cfdata tables; the root node
1189  * must always be in the initial table.
1190  */
1191 cfdata_t
1192 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1193 {
1194 	cfdata_t cf;
1195 	const short *p;
1196 	struct matchinfo m;
1197 
1198 	m.fn = fn;
1199 	m.parent = ROOT;
1200 	m.aux = aux;
1201 	m.match = NULL;
1202 	m.pri = 0;
1203 	m.locs = 0;
1204 	/*
1205 	 * Look at root entries for matching name.  We do not bother
1206 	 * with found-state here since only one root should ever be
1207 	 * searched (and it must be done first).
1208 	 */
1209 	for (p = cfroots; *p >= 0; p++) {
1210 		cf = &cfdata[*p];
1211 		if (strcmp(cf->cf_name, rootname) == 0)
1212 			mapply(&m, cf);
1213 	}
1214 	return m.match;
1215 }
1216 
1217 static const char * const msgs[] = {
1218 [QUIET]		=	"",
1219 [UNCONF]	=	" not configured\n",
1220 [UNSUPP]	=	" unsupported\n",
1221 };
1222 
1223 /*
1224  * The given `aux' argument describes a device that has been found
1225  * on the given parent, but not necessarily configured.  Locate the
1226  * configuration data for that device (using the submatch function
1227  * provided, or using candidates' cd_match configuration driver
1228  * functions) and attach it, and return its device_t.  If the device was
1229  * not configured, call the given `print' function and return NULL.
1230  */
1231 device_t
1232 config_vfound(device_t parent, void *aux, cfprint_t print, cfarg_t tag,
1233     va_list ap)
1234 {
1235 	cfdata_t cf;
1236 	va_list nap;
1237 
1238 	va_copy(nap, ap);
1239 	cf = config_vsearch(parent, aux, tag, nap);
1240 	va_end(nap);
1241 
1242 	if (cf != NULL) {
1243 		return config_vattach(parent, cf, aux, print, tag, ap);
1244 	}
1245 
1246 	if (print) {
1247 		if (config_do_twiddle && cold)
1248 			twiddle();
1249 
1250 		const int pret = (*print)(aux, device_xname(parent));
1251 		KASSERT(pret >= 0);
1252 		KASSERT(pret < __arraycount(msgs));
1253 		KASSERT(msgs[pret] != NULL);
1254 		aprint_normal("%s", msgs[pret]);
1255 	}
1256 
1257 	/*
1258 	 * This has the effect of mixing in a single timestamp to the
1259 	 * entropy pool.  Experiments indicate the estimator will almost
1260 	 * always attribute one bit of entropy to this sample; analysis
1261 	 * of device attach/detach timestamps on FreeBSD indicates 4
1262 	 * bits of entropy/sample so this seems appropriately conservative.
1263 	 */
1264 	rnd_add_uint32(&rnd_autoconf_source, 0);
1265 	return NULL;
1266 }
1267 
1268 device_t
1269 config_found(device_t parent, void *aux, cfprint_t print, cfarg_t tag, ...)
1270 {
1271 	device_t dev;
1272 	va_list ap;
1273 
1274 	va_start(ap, tag);
1275 	dev = config_vfound(parent, aux, print, tag, ap);
1276 	va_end(ap);
1277 
1278 	return dev;
1279 }
1280 
1281 /*
1282  * As above, but for root devices.
1283  */
1284 device_t
1285 config_rootfound(const char *rootname, void *aux)
1286 {
1287 	cfdata_t cf;
1288 
1289 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1290 		return config_attach(ROOT, cf, aux, NULL, CFARG_EOL);
1291 	aprint_error("root device %s not configured\n", rootname);
1292 	return NULL;
1293 }
1294 
1295 /* just like sprintf(buf, "%d") except that it works from the end */
1296 static char *
1297 number(char *ep, int n)
1298 {
1299 
1300 	*--ep = 0;
1301 	while (n >= 10) {
1302 		*--ep = (n % 10) + '0';
1303 		n /= 10;
1304 	}
1305 	*--ep = n + '0';
1306 	return ep;
1307 }
1308 
1309 /*
1310  * Expand the size of the cd_devs array if necessary.
1311  *
1312  * The caller must hold alldevs_lock. config_makeroom() may release and
1313  * re-acquire alldevs_lock, so callers should re-check conditions such
1314  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1315  * returns.
1316  */
1317 static void
1318 config_makeroom(int n, struct cfdriver *cd)
1319 {
1320 	int ondevs, nndevs;
1321 	device_t *osp, *nsp;
1322 
1323 	KASSERT(mutex_owned(&alldevs_lock));
1324 	alldevs_nwrite++;
1325 
1326 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1327 		;
1328 
1329 	while (n >= cd->cd_ndevs) {
1330 		/*
1331 		 * Need to expand the array.
1332 		 */
1333 		ondevs = cd->cd_ndevs;
1334 		osp = cd->cd_devs;
1335 
1336 		/*
1337 		 * Release alldevs_lock around allocation, which may
1338 		 * sleep.
1339 		 */
1340 		mutex_exit(&alldevs_lock);
1341 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
1342 		mutex_enter(&alldevs_lock);
1343 
1344 		/*
1345 		 * If another thread moved the array while we did
1346 		 * not hold alldevs_lock, try again.
1347 		 */
1348 		if (cd->cd_devs != osp) {
1349 			mutex_exit(&alldevs_lock);
1350 			kmem_free(nsp, sizeof(device_t) * nndevs);
1351 			mutex_enter(&alldevs_lock);
1352 			continue;
1353 		}
1354 
1355 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
1356 		if (ondevs != 0)
1357 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
1358 
1359 		cd->cd_ndevs = nndevs;
1360 		cd->cd_devs = nsp;
1361 		if (ondevs != 0) {
1362 			mutex_exit(&alldevs_lock);
1363 			kmem_free(osp, sizeof(device_t) * ondevs);
1364 			mutex_enter(&alldevs_lock);
1365 		}
1366 	}
1367 	KASSERT(mutex_owned(&alldevs_lock));
1368 	alldevs_nwrite--;
1369 }
1370 
1371 /*
1372  * Put dev into the devices list.
1373  */
1374 static void
1375 config_devlink(device_t dev)
1376 {
1377 
1378 	mutex_enter(&alldevs_lock);
1379 
1380 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1381 
1382 	dev->dv_add_gen = alldevs_gen;
1383 	/* It is safe to add a device to the tail of the list while
1384 	 * readers and writers are in the list.
1385 	 */
1386 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1387 	mutex_exit(&alldevs_lock);
1388 }
1389 
1390 static void
1391 config_devfree(device_t dev)
1392 {
1393 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
1394 
1395 	if (dev->dv_cfattach->ca_devsize > 0)
1396 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1397 	kmem_free(dev, sizeof(*dev));
1398 }
1399 
1400 /*
1401  * Caller must hold alldevs_lock.
1402  */
1403 static void
1404 config_devunlink(device_t dev, struct devicelist *garbage)
1405 {
1406 	struct device_garbage *dg = &dev->dv_garbage;
1407 	cfdriver_t cd = device_cfdriver(dev);
1408 	int i;
1409 
1410 	KASSERT(mutex_owned(&alldevs_lock));
1411 
1412  	/* Unlink from device list.  Link to garbage list. */
1413 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1414 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1415 
1416 	/* Remove from cfdriver's array. */
1417 	cd->cd_devs[dev->dv_unit] = NULL;
1418 
1419 	/*
1420 	 * If the device now has no units in use, unlink its softc array.
1421 	 */
1422 	for (i = 0; i < cd->cd_ndevs; i++) {
1423 		if (cd->cd_devs[i] != NULL)
1424 			break;
1425 	}
1426 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1427 	if (i == cd->cd_ndevs) {
1428 		dg->dg_ndevs = cd->cd_ndevs;
1429 		dg->dg_devs = cd->cd_devs;
1430 		cd->cd_devs = NULL;
1431 		cd->cd_ndevs = 0;
1432 	}
1433 }
1434 
1435 static void
1436 config_devdelete(device_t dev)
1437 {
1438 	struct device_garbage *dg = &dev->dv_garbage;
1439 	device_lock_t dvl = device_getlock(dev);
1440 
1441 	if (dg->dg_devs != NULL)
1442 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
1443 
1444 	cv_destroy(&dvl->dvl_cv);
1445 	mutex_destroy(&dvl->dvl_mtx);
1446 
1447 	KASSERT(dev->dv_properties != NULL);
1448 	prop_object_release(dev->dv_properties);
1449 
1450 	if (dev->dv_activity_handlers)
1451 		panic("%s with registered handlers", __func__);
1452 
1453 	if (dev->dv_locators) {
1454 		size_t amount = *--dev->dv_locators;
1455 		kmem_free(dev->dv_locators, amount);
1456 	}
1457 
1458 	config_devfree(dev);
1459 }
1460 
1461 static int
1462 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1463 {
1464 	int unit;
1465 
1466 	if (cf->cf_fstate == FSTATE_STAR) {
1467 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1468 			if (cd->cd_devs[unit] == NULL)
1469 				break;
1470 		/*
1471 		 * unit is now the unit of the first NULL device pointer,
1472 		 * or max(cd->cd_ndevs,cf->cf_unit).
1473 		 */
1474 	} else {
1475 		unit = cf->cf_unit;
1476 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1477 			unit = -1;
1478 	}
1479 	return unit;
1480 }
1481 
1482 static int
1483 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1484 {
1485 	struct alldevs_foray af;
1486 	int unit;
1487 
1488 	config_alldevs_enter(&af);
1489 	for (;;) {
1490 		unit = config_unit_nextfree(cd, cf);
1491 		if (unit == -1)
1492 			break;
1493 		if (unit < cd->cd_ndevs) {
1494 			cd->cd_devs[unit] = dev;
1495 			dev->dv_unit = unit;
1496 			break;
1497 		}
1498 		config_makeroom(unit, cd);
1499 	}
1500 	config_alldevs_exit(&af);
1501 
1502 	return unit;
1503 }
1504 
1505 static device_t
1506 config_vdevalloc(const device_t parent, const cfdata_t cf, cfarg_t tag,
1507     va_list ap)
1508 {
1509 	cfdriver_t cd;
1510 	cfattach_t ca;
1511 	size_t lname, lunit;
1512 	const char *xunit;
1513 	int myunit;
1514 	char num[10];
1515 	device_t dev;
1516 	void *dev_private;
1517 	const struct cfiattrdata *ia;
1518 	device_lock_t dvl;
1519 	const int *locs;
1520 
1521 	cd = config_cfdriver_lookup(cf->cf_name);
1522 	if (cd == NULL)
1523 		return NULL;
1524 
1525 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1526 	if (ca == NULL)
1527 		return NULL;
1528 
1529 	/* get memory for all device vars */
1530 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1531 	if (ca->ca_devsize > 0) {
1532 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1533 	} else {
1534 		dev_private = NULL;
1535 	}
1536 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1537 
1538 	/*
1539 	 * If a handle was supplied to config_attach(), we'll get it
1540 	 * assigned automatically here.  If not, then we'll get the
1541 	 * default invalid handle.
1542 	 */
1543 	config_get_cfargs(tag, NULL, NULL, &locs, &dev->dv_handle, ap);
1544 
1545 	dev->dv_class = cd->cd_class;
1546 	dev->dv_cfdata = cf;
1547 	dev->dv_cfdriver = cd;
1548 	dev->dv_cfattach = ca;
1549 	dev->dv_activity_count = 0;
1550 	dev->dv_activity_handlers = NULL;
1551 	dev->dv_private = dev_private;
1552 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1553 
1554 	myunit = config_unit_alloc(dev, cd, cf);
1555 	if (myunit == -1) {
1556 		config_devfree(dev);
1557 		return NULL;
1558 	}
1559 
1560 	/* compute length of name and decimal expansion of unit number */
1561 	lname = strlen(cd->cd_name);
1562 	xunit = number(&num[sizeof(num)], myunit);
1563 	lunit = &num[sizeof(num)] - xunit;
1564 	if (lname + lunit > sizeof(dev->dv_xname))
1565 		panic("config_vdevalloc: device name too long");
1566 
1567 	dvl = device_getlock(dev);
1568 
1569 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1570 	cv_init(&dvl->dvl_cv, "pmfsusp");
1571 
1572 	memcpy(dev->dv_xname, cd->cd_name, lname);
1573 	memcpy(dev->dv_xname + lname, xunit, lunit);
1574 	dev->dv_parent = parent;
1575 	if (parent != NULL)
1576 		dev->dv_depth = parent->dv_depth + 1;
1577 	else
1578 		dev->dv_depth = 0;
1579 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1580 	if (locs) {
1581 		KASSERT(parent); /* no locators at root */
1582 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1583 		dev->dv_locators =
1584 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
1585 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
1586 		memcpy(dev->dv_locators, locs, sizeof(int) * ia->ci_loclen);
1587 	}
1588 	dev->dv_properties = prop_dictionary_create();
1589 	KASSERT(dev->dv_properties != NULL);
1590 
1591 	prop_dictionary_set_string_nocopy(dev->dv_properties,
1592 	    "device-driver", dev->dv_cfdriver->cd_name);
1593 	prop_dictionary_set_uint16(dev->dv_properties,
1594 	    "device-unit", dev->dv_unit);
1595 	if (parent != NULL) {
1596 		prop_dictionary_set_string(dev->dv_properties,
1597 		    "device-parent", device_xname(parent));
1598 	}
1599 
1600 	if (dev->dv_cfdriver->cd_attrs != NULL)
1601 		config_add_attrib_dict(dev);
1602 
1603 	return dev;
1604 }
1605 
1606 static device_t
1607 config_devalloc(const device_t parent, const cfdata_t cf, cfarg_t tag, ...)
1608 {
1609 	device_t dev;
1610 	va_list ap;
1611 
1612 	va_start(ap, tag);
1613 	dev = config_vdevalloc(parent, cf, tag, ap);
1614 	va_end(ap);
1615 
1616 	return dev;
1617 }
1618 
1619 /*
1620  * Create an array of device attach attributes and add it
1621  * to the device's dv_properties dictionary.
1622  *
1623  * <key>interface-attributes</key>
1624  * <array>
1625  *    <dict>
1626  *       <key>attribute-name</key>
1627  *       <string>foo</string>
1628  *       <key>locators</key>
1629  *       <array>
1630  *          <dict>
1631  *             <key>loc-name</key>
1632  *             <string>foo-loc1</string>
1633  *          </dict>
1634  *          <dict>
1635  *             <key>loc-name</key>
1636  *             <string>foo-loc2</string>
1637  *             <key>default</key>
1638  *             <string>foo-loc2-default</string>
1639  *          </dict>
1640  *          ...
1641  *       </array>
1642  *    </dict>
1643  *    ...
1644  * </array>
1645  */
1646 
1647 static void
1648 config_add_attrib_dict(device_t dev)
1649 {
1650 	int i, j;
1651 	const struct cfiattrdata *ci;
1652 	prop_dictionary_t attr_dict, loc_dict;
1653 	prop_array_t attr_array, loc_array;
1654 
1655 	if ((attr_array = prop_array_create()) == NULL)
1656 		return;
1657 
1658 	for (i = 0; ; i++) {
1659 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1660 			break;
1661 		if ((attr_dict = prop_dictionary_create()) == NULL)
1662 			break;
1663 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
1664 		    ci->ci_name);
1665 
1666 		/* Create an array of the locator names and defaults */
1667 
1668 		if (ci->ci_loclen != 0 &&
1669 		    (loc_array = prop_array_create()) != NULL) {
1670 			for (j = 0; j < ci->ci_loclen; j++) {
1671 				loc_dict = prop_dictionary_create();
1672 				if (loc_dict == NULL)
1673 					continue;
1674 				prop_dictionary_set_string_nocopy(loc_dict,
1675 				    "loc-name", ci->ci_locdesc[j].cld_name);
1676 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1677 					prop_dictionary_set_string_nocopy(
1678 					    loc_dict, "default",
1679 					    ci->ci_locdesc[j].cld_defaultstr);
1680 				prop_array_set(loc_array, j, loc_dict);
1681 				prop_object_release(loc_dict);
1682 			}
1683 			prop_dictionary_set_and_rel(attr_dict, "locators",
1684 			    loc_array);
1685 		}
1686 		prop_array_add(attr_array, attr_dict);
1687 		prop_object_release(attr_dict);
1688 	}
1689 	if (i == 0)
1690 		prop_object_release(attr_array);
1691 	else
1692 		prop_dictionary_set_and_rel(dev->dv_properties,
1693 		    "interface-attributes", attr_array);
1694 
1695 	return;
1696 }
1697 
1698 /*
1699  * Attach a found device.
1700  */
1701 device_t
1702 config_vattach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
1703     cfarg_t tag, va_list ap)
1704 {
1705 	device_t dev;
1706 	struct cftable *ct;
1707 	const char *drvname;
1708 
1709 	dev = config_vdevalloc(parent, cf, tag, ap);
1710 	if (!dev)
1711 		panic("config_attach: allocation of device softc failed");
1712 
1713 	/* XXX redundant - see below? */
1714 	if (cf->cf_fstate != FSTATE_STAR) {
1715 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1716 		cf->cf_fstate = FSTATE_FOUND;
1717 	}
1718 
1719 	config_devlink(dev);
1720 
1721 	if (config_do_twiddle && cold)
1722 		twiddle();
1723 	else
1724 		aprint_naive("Found ");
1725 	/*
1726 	 * We want the next two printfs for normal, verbose, and quiet,
1727 	 * but not silent (in which case, we're twiddling, instead).
1728 	 */
1729 	if (parent == ROOT) {
1730 		aprint_naive("%s (root)", device_xname(dev));
1731 		aprint_normal("%s (root)", device_xname(dev));
1732 	} else {
1733 		aprint_naive("%s at %s", device_xname(dev),
1734 		    device_xname(parent));
1735 		aprint_normal("%s at %s", device_xname(dev),
1736 		    device_xname(parent));
1737 		if (print)
1738 			(void) (*print)(aux, NULL);
1739 	}
1740 
1741 	/*
1742 	 * Before attaching, clobber any unfound devices that are
1743 	 * otherwise identical.
1744 	 * XXX code above is redundant?
1745 	 */
1746 	drvname = dev->dv_cfdriver->cd_name;
1747 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1748 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1749 			if (STREQ(cf->cf_name, drvname) &&
1750 			    cf->cf_unit == dev->dv_unit) {
1751 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1752 					cf->cf_fstate = FSTATE_FOUND;
1753 			}
1754 		}
1755 	}
1756 	device_register(dev, aux);
1757 
1758 	/* Let userland know */
1759 	devmon_report_device(dev, true);
1760 
1761 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1762 
1763 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1764 	    && !device_pmf_is_registered(dev))
1765 		aprint_debug_dev(dev,
1766 		    "WARNING: power management not supported\n");
1767 
1768 	config_process_deferred(&deferred_config_queue, dev);
1769 
1770 	device_register_post_config(dev, aux);
1771 	return dev;
1772 }
1773 
1774 device_t
1775 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
1776     cfarg_t tag, ...)
1777 {
1778 	device_t dev;
1779 	va_list ap;
1780 
1781 	va_start(ap, tag);
1782 	dev = config_vattach(parent, cf, aux, print, tag, ap);
1783 	va_end(ap);
1784 
1785 	return dev;
1786 }
1787 
1788 /*
1789  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1790  * way are silently inserted into the device tree, and their children
1791  * attached.
1792  *
1793  * Note that because pseudo-devices are attached silently, any information
1794  * the attach routine wishes to print should be prefixed with the device
1795  * name by the attach routine.
1796  */
1797 device_t
1798 config_attach_pseudo(cfdata_t cf)
1799 {
1800 	device_t dev;
1801 
1802 	dev = config_devalloc(ROOT, cf, CFARG_EOL);
1803 	if (!dev)
1804 		return NULL;
1805 
1806 	/* XXX mark busy in cfdata */
1807 
1808 	if (cf->cf_fstate != FSTATE_STAR) {
1809 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1810 		cf->cf_fstate = FSTATE_FOUND;
1811 	}
1812 
1813 	config_devlink(dev);
1814 
1815 #if 0	/* XXXJRT not yet */
1816 	device_register(dev, NULL);	/* like a root node */
1817 #endif
1818 
1819 	/* Let userland know */
1820 	devmon_report_device(dev, true);
1821 
1822 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1823 
1824 	config_process_deferred(&deferred_config_queue, dev);
1825 	return dev;
1826 }
1827 
1828 /*
1829  * Caller must hold alldevs_lock.
1830  */
1831 static void
1832 config_collect_garbage(struct devicelist *garbage)
1833 {
1834 	device_t dv;
1835 
1836 	KASSERT(!cpu_intr_p());
1837 	KASSERT(!cpu_softintr_p());
1838 	KASSERT(mutex_owned(&alldevs_lock));
1839 
1840 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1841 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1842 			if (dv->dv_del_gen != 0)
1843 				break;
1844 		}
1845 		if (dv == NULL) {
1846 			alldevs_garbage = false;
1847 			break;
1848 		}
1849 		config_devunlink(dv, garbage);
1850 	}
1851 	KASSERT(mutex_owned(&alldevs_lock));
1852 }
1853 
1854 static void
1855 config_dump_garbage(struct devicelist *garbage)
1856 {
1857 	device_t dv;
1858 
1859 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1860 		TAILQ_REMOVE(garbage, dv, dv_list);
1861 		config_devdelete(dv);
1862 	}
1863 }
1864 
1865 /*
1866  * Detach a device.  Optionally forced (e.g. because of hardware
1867  * removal) and quiet.  Returns zero if successful, non-zero
1868  * (an error code) otherwise.
1869  *
1870  * Note that this code wants to be run from a process context, so
1871  * that the detach can sleep to allow processes which have a device
1872  * open to run and unwind their stacks.
1873  */
1874 int
1875 config_detach(device_t dev, int flags)
1876 {
1877 	struct alldevs_foray af;
1878 	struct cftable *ct;
1879 	cfdata_t cf;
1880 	const struct cfattach *ca;
1881 	struct cfdriver *cd;
1882 	device_t d __diagused;
1883 	int rv = 0;
1884 
1885 	cf = dev->dv_cfdata;
1886 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1887 		cf->cf_fstate == FSTATE_STAR),
1888 	    "config_detach: %s: bad device fstate: %d",
1889 	    device_xname(dev), cf ? cf->cf_fstate : -1);
1890 
1891 	cd = dev->dv_cfdriver;
1892 	KASSERT(cd != NULL);
1893 
1894 	ca = dev->dv_cfattach;
1895 	KASSERT(ca != NULL);
1896 
1897 	mutex_enter(&alldevs_lock);
1898 	if (dev->dv_del_gen != 0) {
1899 		mutex_exit(&alldevs_lock);
1900 #ifdef DIAGNOSTIC
1901 		printf("%s: %s is already detached\n", __func__,
1902 		    device_xname(dev));
1903 #endif /* DIAGNOSTIC */
1904 		return ENOENT;
1905 	}
1906 	alldevs_nwrite++;
1907 	mutex_exit(&alldevs_lock);
1908 
1909 	if (!detachall &&
1910 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1911 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1912 		rv = EOPNOTSUPP;
1913 	} else if (ca->ca_detach != NULL) {
1914 		rv = (*ca->ca_detach)(dev, flags);
1915 	} else
1916 		rv = EOPNOTSUPP;
1917 
1918 	/*
1919 	 * If it was not possible to detach the device, then we either
1920 	 * panic() (for the forced but failed case), or return an error.
1921 	 *
1922 	 * If it was possible to detach the device, ensure that the
1923 	 * device is deactivated.
1924 	 */
1925 	if (rv == 0)
1926 		dev->dv_flags &= ~DVF_ACTIVE;
1927 	else if ((flags & DETACH_FORCE) == 0)
1928 		goto out;
1929 	else {
1930 		panic("config_detach: forced detach of %s failed (%d)",
1931 		    device_xname(dev), rv);
1932 	}
1933 
1934 	/*
1935 	 * The device has now been successfully detached.
1936 	 */
1937 
1938 	/* Let userland know */
1939 	devmon_report_device(dev, false);
1940 
1941 #ifdef DIAGNOSTIC
1942 	/*
1943 	 * Sanity: If you're successfully detached, you should have no
1944 	 * children.  (Note that because children must be attached
1945 	 * after parents, we only need to search the latter part of
1946 	 * the list.)
1947 	 */
1948 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1949 	    d = TAILQ_NEXT(d, dv_list)) {
1950 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1951 			printf("config_detach: detached device %s"
1952 			    " has children %s\n", device_xname(dev),
1953 			    device_xname(d));
1954 			panic("config_detach");
1955 		}
1956 	}
1957 #endif
1958 
1959 	/* notify the parent that the child is gone */
1960 	if (dev->dv_parent) {
1961 		device_t p = dev->dv_parent;
1962 		if (p->dv_cfattach->ca_childdetached)
1963 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1964 	}
1965 
1966 	/*
1967 	 * Mark cfdata to show that the unit can be reused, if possible.
1968 	 */
1969 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1970 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1971 			if (STREQ(cf->cf_name, cd->cd_name)) {
1972 				if (cf->cf_fstate == FSTATE_FOUND &&
1973 				    cf->cf_unit == dev->dv_unit)
1974 					cf->cf_fstate = FSTATE_NOTFOUND;
1975 			}
1976 		}
1977 	}
1978 
1979 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1980 		aprint_normal_dev(dev, "detached\n");
1981 
1982 out:
1983 	config_alldevs_enter(&af);
1984 	KASSERT(alldevs_nwrite != 0);
1985 	--alldevs_nwrite;
1986 	if (rv == 0 && dev->dv_del_gen == 0) {
1987 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
1988 			config_devunlink(dev, &af.af_garbage);
1989 		else {
1990 			dev->dv_del_gen = alldevs_gen;
1991 			alldevs_garbage = true;
1992 		}
1993 	}
1994 	config_alldevs_exit(&af);
1995 
1996 	return rv;
1997 }
1998 
1999 int
2000 config_detach_children(device_t parent, int flags)
2001 {
2002 	device_t dv;
2003 	deviter_t di;
2004 	int error = 0;
2005 
2006 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
2007 	     dv = deviter_next(&di)) {
2008 		if (device_parent(dv) != parent)
2009 			continue;
2010 		if ((error = config_detach(dv, flags)) != 0)
2011 			break;
2012 	}
2013 	deviter_release(&di);
2014 	return error;
2015 }
2016 
2017 device_t
2018 shutdown_first(struct shutdown_state *s)
2019 {
2020 	if (!s->initialized) {
2021 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
2022 		s->initialized = true;
2023 	}
2024 	return shutdown_next(s);
2025 }
2026 
2027 device_t
2028 shutdown_next(struct shutdown_state *s)
2029 {
2030 	device_t dv;
2031 
2032 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
2033 		;
2034 
2035 	if (dv == NULL)
2036 		s->initialized = false;
2037 
2038 	return dv;
2039 }
2040 
2041 bool
2042 config_detach_all(int how)
2043 {
2044 	static struct shutdown_state s;
2045 	device_t curdev;
2046 	bool progress = false;
2047 	int flags;
2048 
2049 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
2050 		return false;
2051 
2052 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
2053 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
2054 	else
2055 		flags = DETACH_SHUTDOWN;
2056 
2057 	for (curdev = shutdown_first(&s); curdev != NULL;
2058 	     curdev = shutdown_next(&s)) {
2059 		aprint_debug(" detaching %s, ", device_xname(curdev));
2060 		if (config_detach(curdev, flags) == 0) {
2061 			progress = true;
2062 			aprint_debug("success.");
2063 		} else
2064 			aprint_debug("failed.");
2065 	}
2066 	return progress;
2067 }
2068 
2069 static bool
2070 device_is_ancestor_of(device_t ancestor, device_t descendant)
2071 {
2072 	device_t dv;
2073 
2074 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
2075 		if (device_parent(dv) == ancestor)
2076 			return true;
2077 	}
2078 	return false;
2079 }
2080 
2081 int
2082 config_deactivate(device_t dev)
2083 {
2084 	deviter_t di;
2085 	const struct cfattach *ca;
2086 	device_t descendant;
2087 	int s, rv = 0, oflags;
2088 
2089 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
2090 	     descendant != NULL;
2091 	     descendant = deviter_next(&di)) {
2092 		if (dev != descendant &&
2093 		    !device_is_ancestor_of(dev, descendant))
2094 			continue;
2095 
2096 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
2097 			continue;
2098 
2099 		ca = descendant->dv_cfattach;
2100 		oflags = descendant->dv_flags;
2101 
2102 		descendant->dv_flags &= ~DVF_ACTIVE;
2103 		if (ca->ca_activate == NULL)
2104 			continue;
2105 		s = splhigh();
2106 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
2107 		splx(s);
2108 		if (rv != 0)
2109 			descendant->dv_flags = oflags;
2110 	}
2111 	deviter_release(&di);
2112 	return rv;
2113 }
2114 
2115 /*
2116  * Defer the configuration of the specified device until all
2117  * of its parent's devices have been attached.
2118  */
2119 void
2120 config_defer(device_t dev, void (*func)(device_t))
2121 {
2122 	struct deferred_config *dc;
2123 
2124 	if (dev->dv_parent == NULL)
2125 		panic("config_defer: can't defer config of a root device");
2126 
2127 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2128 
2129 	config_pending_incr(dev);
2130 
2131 	mutex_enter(&config_misc_lock);
2132 #ifdef DIAGNOSTIC
2133 	struct deferred_config *odc;
2134 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
2135 		if (odc->dc_dev == dev)
2136 			panic("config_defer: deferred twice");
2137 	}
2138 #endif
2139 	dc->dc_dev = dev;
2140 	dc->dc_func = func;
2141 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2142 	mutex_exit(&config_misc_lock);
2143 }
2144 
2145 /*
2146  * Defer some autoconfiguration for a device until after interrupts
2147  * are enabled.
2148  */
2149 void
2150 config_interrupts(device_t dev, void (*func)(device_t))
2151 {
2152 	struct deferred_config *dc;
2153 
2154 	/*
2155 	 * If interrupts are enabled, callback now.
2156 	 */
2157 	if (cold == 0) {
2158 		(*func)(dev);
2159 		return;
2160 	}
2161 
2162 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2163 
2164 	config_pending_incr(dev);
2165 
2166 	mutex_enter(&config_misc_lock);
2167 #ifdef DIAGNOSTIC
2168 	struct deferred_config *odc;
2169 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2170 		if (odc->dc_dev == dev)
2171 			panic("config_interrupts: deferred twice");
2172 	}
2173 #endif
2174 	dc->dc_dev = dev;
2175 	dc->dc_func = func;
2176 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2177 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2178 	mutex_exit(&config_misc_lock);
2179 }
2180 
2181 /*
2182  * Defer some autoconfiguration for a device until after root file system
2183  * is mounted (to load firmware etc).
2184  */
2185 void
2186 config_mountroot(device_t dev, void (*func)(device_t))
2187 {
2188 	struct deferred_config *dc;
2189 
2190 	/*
2191 	 * If root file system is mounted, callback now.
2192 	 */
2193 	if (root_is_mounted) {
2194 		(*func)(dev);
2195 		return;
2196 	}
2197 
2198 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2199 
2200 	mutex_enter(&config_misc_lock);
2201 #ifdef DIAGNOSTIC
2202 	struct deferred_config *odc;
2203 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2204 		if (odc->dc_dev == dev)
2205 			panic("%s: deferred twice", __func__);
2206 	}
2207 #endif
2208 
2209 	dc->dc_dev = dev;
2210 	dc->dc_func = func;
2211 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2212 	mutex_exit(&config_misc_lock);
2213 }
2214 
2215 /*
2216  * Process a deferred configuration queue.
2217  */
2218 static void
2219 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2220 {
2221 	struct deferred_config *dc;
2222 
2223 	mutex_enter(&config_misc_lock);
2224 	dc = TAILQ_FIRST(queue);
2225 	while (dc) {
2226 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2227 			TAILQ_REMOVE(queue, dc, dc_queue);
2228 			mutex_exit(&config_misc_lock);
2229 
2230 			(*dc->dc_func)(dc->dc_dev);
2231 			config_pending_decr(dc->dc_dev);
2232 			kmem_free(dc, sizeof(*dc));
2233 
2234 			mutex_enter(&config_misc_lock);
2235 			/* Restart, queue might have changed */
2236 			dc = TAILQ_FIRST(queue);
2237 		} else {
2238 			dc = TAILQ_NEXT(dc, dc_queue);
2239 		}
2240 	}
2241 	mutex_exit(&config_misc_lock);
2242 }
2243 
2244 /*
2245  * Manipulate the config_pending semaphore.
2246  */
2247 void
2248 config_pending_incr(device_t dev)
2249 {
2250 
2251 	mutex_enter(&config_misc_lock);
2252 	KASSERTMSG(dev->dv_pending < INT_MAX,
2253 	    "%s: excess config_pending_incr", device_xname(dev));
2254 	if (dev->dv_pending++ == 0)
2255 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
2256 #ifdef DEBUG_AUTOCONF
2257 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2258 #endif
2259 	mutex_exit(&config_misc_lock);
2260 }
2261 
2262 void
2263 config_pending_decr(device_t dev)
2264 {
2265 
2266 	mutex_enter(&config_misc_lock);
2267 	KASSERTMSG(dev->dv_pending > 0,
2268 	    "%s: excess config_pending_decr", device_xname(dev));
2269 	if (--dev->dv_pending == 0)
2270 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
2271 #ifdef DEBUG_AUTOCONF
2272 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2273 #endif
2274 	if (TAILQ_EMPTY(&config_pending))
2275 		cv_broadcast(&config_misc_cv);
2276 	mutex_exit(&config_misc_lock);
2277 }
2278 
2279 /*
2280  * Register a "finalization" routine.  Finalization routines are
2281  * called iteratively once all real devices have been found during
2282  * autoconfiguration, for as long as any one finalizer has done
2283  * any work.
2284  */
2285 int
2286 config_finalize_register(device_t dev, int (*fn)(device_t))
2287 {
2288 	struct finalize_hook *f;
2289 
2290 	/*
2291 	 * If finalization has already been done, invoke the
2292 	 * callback function now.
2293 	 */
2294 	if (config_finalize_done) {
2295 		while ((*fn)(dev) != 0)
2296 			/* loop */ ;
2297 		return 0;
2298 	}
2299 
2300 	/* Ensure this isn't already on the list. */
2301 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2302 		if (f->f_func == fn && f->f_dev == dev)
2303 			return EEXIST;
2304 	}
2305 
2306 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
2307 	f->f_func = fn;
2308 	f->f_dev = dev;
2309 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2310 
2311 	return 0;
2312 }
2313 
2314 void
2315 config_finalize(void)
2316 {
2317 	struct finalize_hook *f;
2318 	struct pdevinit *pdev;
2319 	extern struct pdevinit pdevinit[];
2320 	int errcnt, rv;
2321 
2322 	/*
2323 	 * Now that device driver threads have been created, wait for
2324 	 * them to finish any deferred autoconfiguration.
2325 	 */
2326 	mutex_enter(&config_misc_lock);
2327 	while (!TAILQ_EMPTY(&config_pending)) {
2328 		device_t dev;
2329 		TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
2330 			aprint_debug_dev(dev, "holding up boot\n");
2331 		cv_wait(&config_misc_cv, &config_misc_lock);
2332 	}
2333 	mutex_exit(&config_misc_lock);
2334 
2335 	KERNEL_LOCK(1, NULL);
2336 
2337 	/* Attach pseudo-devices. */
2338 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2339 		(*pdev->pdev_attach)(pdev->pdev_count);
2340 
2341 	/* Run the hooks until none of them does any work. */
2342 	do {
2343 		rv = 0;
2344 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
2345 			rv |= (*f->f_func)(f->f_dev);
2346 	} while (rv != 0);
2347 
2348 	config_finalize_done = 1;
2349 
2350 	/* Now free all the hooks. */
2351 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2352 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2353 		kmem_free(f, sizeof(*f));
2354 	}
2355 
2356 	KERNEL_UNLOCK_ONE(NULL);
2357 
2358 	errcnt = aprint_get_error_count();
2359 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2360 	    (boothowto & AB_VERBOSE) == 0) {
2361 		mutex_enter(&config_misc_lock);
2362 		if (config_do_twiddle) {
2363 			config_do_twiddle = 0;
2364 			printf_nolog(" done.\n");
2365 		}
2366 		mutex_exit(&config_misc_lock);
2367 	}
2368 	if (errcnt != 0) {
2369 		printf("WARNING: %d error%s while detecting hardware; "
2370 		    "check system log.\n", errcnt,
2371 		    errcnt == 1 ? "" : "s");
2372 	}
2373 }
2374 
2375 void
2376 config_twiddle_init(void)
2377 {
2378 
2379 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2380 		config_do_twiddle = 1;
2381 	}
2382 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2383 }
2384 
2385 void
2386 config_twiddle_fn(void *cookie)
2387 {
2388 
2389 	mutex_enter(&config_misc_lock);
2390 	if (config_do_twiddle) {
2391 		twiddle();
2392 		callout_schedule(&config_twiddle_ch, mstohz(100));
2393 	}
2394 	mutex_exit(&config_misc_lock);
2395 }
2396 
2397 static void
2398 config_alldevs_enter(struct alldevs_foray *af)
2399 {
2400 	TAILQ_INIT(&af->af_garbage);
2401 	mutex_enter(&alldevs_lock);
2402 	config_collect_garbage(&af->af_garbage);
2403 }
2404 
2405 static void
2406 config_alldevs_exit(struct alldevs_foray *af)
2407 {
2408 	mutex_exit(&alldevs_lock);
2409 	config_dump_garbage(&af->af_garbage);
2410 }
2411 
2412 /*
2413  * device_lookup:
2414  *
2415  *	Look up a device instance for a given driver.
2416  */
2417 device_t
2418 device_lookup(cfdriver_t cd, int unit)
2419 {
2420 	device_t dv;
2421 
2422 	mutex_enter(&alldevs_lock);
2423 	if (unit < 0 || unit >= cd->cd_ndevs)
2424 		dv = NULL;
2425 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2426 		dv = NULL;
2427 	mutex_exit(&alldevs_lock);
2428 
2429 	return dv;
2430 }
2431 
2432 /*
2433  * device_lookup_private:
2434  *
2435  *	Look up a softc instance for a given driver.
2436  */
2437 void *
2438 device_lookup_private(cfdriver_t cd, int unit)
2439 {
2440 
2441 	return device_private(device_lookup(cd, unit));
2442 }
2443 
2444 /*
2445  * device_find_by_xname:
2446  *
2447  *	Returns the device of the given name or NULL if it doesn't exist.
2448  */
2449 device_t
2450 device_find_by_xname(const char *name)
2451 {
2452 	device_t dv;
2453 	deviter_t di;
2454 
2455 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2456 		if (strcmp(device_xname(dv), name) == 0)
2457 			break;
2458 	}
2459 	deviter_release(&di);
2460 
2461 	return dv;
2462 }
2463 
2464 /*
2465  * device_find_by_driver_unit:
2466  *
2467  *	Returns the device of the given driver name and unit or
2468  *	NULL if it doesn't exist.
2469  */
2470 device_t
2471 device_find_by_driver_unit(const char *name, int unit)
2472 {
2473 	struct cfdriver *cd;
2474 
2475 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2476 		return NULL;
2477 	return device_lookup(cd, unit);
2478 }
2479 
2480 static bool
2481 match_strcmp(const char * const s1, const char * const s2)
2482 {
2483 	return strcmp(s1, s2) == 0;
2484 }
2485 
2486 static bool
2487 match_pmatch(const char * const s1, const char * const s2)
2488 {
2489 	return pmatch(s1, s2, NULL) == 2;
2490 }
2491 
2492 static bool
2493 strarray_match_internal(const char ** const strings,
2494     unsigned int const nstrings, const char * const str,
2495     unsigned int * const indexp,
2496     bool (*match_fn)(const char *, const char *))
2497 {
2498 	unsigned int i;
2499 
2500 	if (strings == NULL || nstrings == 0) {
2501 		return false;
2502 	}
2503 
2504 	for (i = 0; i < nstrings; i++) {
2505 		if ((*match_fn)(strings[i], str)) {
2506 			*indexp = i;
2507 			return true;
2508 		}
2509 	}
2510 
2511 	return false;
2512 }
2513 
2514 static int
2515 strarray_match(const char ** const strings, unsigned int const nstrings,
2516     const char * const str)
2517 {
2518 	unsigned int idx;
2519 
2520 	if (strarray_match_internal(strings, nstrings, str, &idx,
2521 				    match_strcmp)) {
2522 		return (int)(nstrings - idx);
2523 	}
2524 	return 0;
2525 }
2526 
2527 static int
2528 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
2529     const char * const pattern)
2530 {
2531 	unsigned int idx;
2532 
2533 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
2534 				    match_pmatch)) {
2535 		return (int)(nstrings - idx);
2536 	}
2537 	return 0;
2538 }
2539 
2540 static int
2541 device_compatible_match_strarray_internal(
2542     const char **device_compats, int ndevice_compats,
2543     const struct device_compatible_entry *driver_compats,
2544     const struct device_compatible_entry **matching_entryp,
2545     int (*match_fn)(const char **, unsigned int, const char *))
2546 {
2547 	const struct device_compatible_entry *dce = NULL;
2548 	int rv;
2549 
2550 	if (ndevice_compats == 0 || device_compats == NULL ||
2551 	    driver_compats == NULL)
2552 		return 0;
2553 
2554 	for (dce = driver_compats; dce->compat != NULL; dce++) {
2555 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
2556 		if (rv != 0) {
2557 			if (matching_entryp != NULL) {
2558 				*matching_entryp = dce;
2559 			}
2560 			return rv;
2561 		}
2562 	}
2563 	return 0;
2564 }
2565 
2566 /*
2567  * device_compatible_match:
2568  *
2569  *	Match a driver's "compatible" data against a device's
2570  *	"compatible" strings.  Returns resulted weighted by
2571  *	which device "compatible" string was matched.
2572  */
2573 int
2574 device_compatible_match(const char **device_compats, int ndevice_compats,
2575     const struct device_compatible_entry *driver_compats)
2576 {
2577 	return device_compatible_match_strarray_internal(device_compats,
2578 	    ndevice_compats, driver_compats, NULL, strarray_match);
2579 }
2580 
2581 /*
2582  * device_compatible_pmatch:
2583  *
2584  *	Like device_compatible_match(), but uses pmatch(9) to compare
2585  *	the device "compatible" strings against patterns in the
2586  *	driver's "compatible" data.
2587  */
2588 int
2589 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
2590     const struct device_compatible_entry *driver_compats)
2591 {
2592 	return device_compatible_match_strarray_internal(device_compats,
2593 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
2594 }
2595 
2596 static int
2597 device_compatible_match_strlist_internal(
2598     const char * const device_compats, size_t const device_compatsize,
2599     const struct device_compatible_entry *driver_compats,
2600     const struct device_compatible_entry **matching_entryp,
2601     int (*match_fn)(const char *, size_t, const char *))
2602 {
2603 	const struct device_compatible_entry *dce = NULL;
2604 	int rv;
2605 
2606 	if (device_compats == NULL || device_compatsize == 0 ||
2607 	    driver_compats == NULL)
2608 		return 0;
2609 
2610 	for (dce = driver_compats; dce->compat != NULL; dce++) {
2611 		rv = (*match_fn)(device_compats, device_compatsize,
2612 		    dce->compat);
2613 		if (rv != 0) {
2614 			if (matching_entryp != NULL) {
2615 				*matching_entryp = dce;
2616 			}
2617 			return rv;
2618 		}
2619 	}
2620 	return 0;
2621 }
2622 
2623 /*
2624  * device_compatible_match_strlist:
2625  *
2626  *	Like device_compatible_match(), but take the device
2627  *	"compatible" strings as an OpenFirmware-style string
2628  *	list.
2629  */
2630 int
2631 device_compatible_match_strlist(
2632     const char * const device_compats, size_t const device_compatsize,
2633     const struct device_compatible_entry *driver_compats)
2634 {
2635 	return device_compatible_match_strlist_internal(device_compats,
2636 	    device_compatsize, driver_compats, NULL, strlist_match);
2637 }
2638 
2639 /*
2640  * device_compatible_pmatch_strlist:
2641  *
2642  *	Like device_compatible_pmatch(), but take the device
2643  *	"compatible" strings as an OpenFirmware-style string
2644  *	list.
2645  */
2646 int
2647 device_compatible_pmatch_strlist(
2648     const char * const device_compats, size_t const device_compatsize,
2649     const struct device_compatible_entry *driver_compats)
2650 {
2651 	return device_compatible_match_strlist_internal(device_compats,
2652 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
2653 }
2654 
2655 static int
2656 device_compatible_match_id_internal(
2657     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
2658     const struct device_compatible_entry *driver_compats,
2659     const struct device_compatible_entry **matching_entryp)
2660 {
2661 	const struct device_compatible_entry *dce = NULL;
2662 
2663 	if (mask == 0)
2664 		return 0;
2665 
2666 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
2667 		if ((id & mask) == dce->id) {
2668 			if (matching_entryp != NULL) {
2669 				*matching_entryp = dce;
2670 			}
2671 			return 1;
2672 		}
2673 	}
2674 	return 0;
2675 }
2676 
2677 /*
2678  * device_compatible_match_id:
2679  *
2680  *	Like device_compatible_match(), but takes a single
2681  *	unsigned integer device ID.
2682  */
2683 int
2684 device_compatible_match_id(
2685     uintptr_t const id, uintptr_t const sentinel_id,
2686     const struct device_compatible_entry *driver_compats)
2687 {
2688 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
2689 	    sentinel_id, driver_compats, NULL);
2690 }
2691 
2692 /*
2693  * device_compatible_lookup:
2694  *
2695  *	Look up and return the device_compatible_entry, using the
2696  *	same matching criteria used by device_compatible_match().
2697  */
2698 const struct device_compatible_entry *
2699 device_compatible_lookup(const char **device_compats, int ndevice_compats,
2700 			 const struct device_compatible_entry *driver_compats)
2701 {
2702 	const struct device_compatible_entry *dce;
2703 
2704 	if (device_compatible_match_strarray_internal(device_compats,
2705 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
2706 		return dce;
2707 	}
2708 	return NULL;
2709 }
2710 
2711 /*
2712  * device_compatible_plookup:
2713  *
2714  *	Look up and return the device_compatible_entry, using the
2715  *	same matching criteria used by device_compatible_pmatch().
2716  */
2717 const struct device_compatible_entry *
2718 device_compatible_plookup(const char **device_compats, int ndevice_compats,
2719 			  const struct device_compatible_entry *driver_compats)
2720 {
2721 	const struct device_compatible_entry *dce;
2722 
2723 	if (device_compatible_match_strarray_internal(device_compats,
2724 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
2725 		return dce;
2726 	}
2727 	return NULL;
2728 }
2729 
2730 /*
2731  * device_compatible_lookup_strlist:
2732  *
2733  *	Like device_compatible_lookup(), but take the device
2734  *	"compatible" strings as an OpenFirmware-style string
2735  *	list.
2736  */
2737 const struct device_compatible_entry *
2738 device_compatible_lookup_strlist(
2739     const char * const device_compats, size_t const device_compatsize,
2740     const struct device_compatible_entry *driver_compats)
2741 {
2742 	const struct device_compatible_entry *dce;
2743 
2744 	if (device_compatible_match_strlist_internal(device_compats,
2745 	    device_compatsize, driver_compats, &dce, strlist_match)) {
2746 		return dce;
2747 	}
2748 	return NULL;
2749 }
2750 
2751 /*
2752  * device_compatible_plookup_strlist:
2753  *
2754  *	Like device_compatible_plookup(), but take the device
2755  *	"compatible" strings as an OpenFirmware-style string
2756  *	list.
2757  */
2758 const struct device_compatible_entry *
2759 device_compatible_plookup_strlist(
2760     const char * const device_compats, size_t const device_compatsize,
2761     const struct device_compatible_entry *driver_compats)
2762 {
2763 	const struct device_compatible_entry *dce;
2764 
2765 	if (device_compatible_match_strlist_internal(device_compats,
2766 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
2767 		return dce;
2768 	}
2769 	return NULL;
2770 }
2771 
2772 /*
2773  * device_compatible_lookup_id:
2774  *
2775  *	Like device_compatible_lookup(), but takes a single
2776  *	unsigned integer device ID.
2777  */
2778 const struct device_compatible_entry *
2779 device_compatible_lookup_id(
2780     uintptr_t const id, uintptr_t const sentinel_id,
2781     const struct device_compatible_entry *driver_compats)
2782 {
2783 	const struct device_compatible_entry *dce;
2784 
2785 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
2786 	    sentinel_id, driver_compats, &dce)) {
2787 		return dce;
2788 	}
2789 	return NULL;
2790 }
2791 
2792 /*
2793  * Power management related functions.
2794  */
2795 
2796 bool
2797 device_pmf_is_registered(device_t dev)
2798 {
2799 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2800 }
2801 
2802 bool
2803 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2804 {
2805 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2806 		return true;
2807 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2808 		return false;
2809 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2810 	    dev->dv_driver_suspend != NULL &&
2811 	    !(*dev->dv_driver_suspend)(dev, qual))
2812 		return false;
2813 
2814 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2815 	return true;
2816 }
2817 
2818 bool
2819 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2820 {
2821 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2822 		return true;
2823 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2824 		return false;
2825 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2826 	    dev->dv_driver_resume != NULL &&
2827 	    !(*dev->dv_driver_resume)(dev, qual))
2828 		return false;
2829 
2830 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2831 	return true;
2832 }
2833 
2834 bool
2835 device_pmf_driver_shutdown(device_t dev, int how)
2836 {
2837 
2838 	if (*dev->dv_driver_shutdown != NULL &&
2839 	    !(*dev->dv_driver_shutdown)(dev, how))
2840 		return false;
2841 	return true;
2842 }
2843 
2844 bool
2845 device_pmf_driver_register(device_t dev,
2846     bool (*suspend)(device_t, const pmf_qual_t *),
2847     bool (*resume)(device_t, const pmf_qual_t *),
2848     bool (*shutdown)(device_t, int))
2849 {
2850 	dev->dv_driver_suspend = suspend;
2851 	dev->dv_driver_resume = resume;
2852 	dev->dv_driver_shutdown = shutdown;
2853 	dev->dv_flags |= DVF_POWER_HANDLERS;
2854 	return true;
2855 }
2856 
2857 static const char *
2858 curlwp_name(void)
2859 {
2860 	if (curlwp->l_name != NULL)
2861 		return curlwp->l_name;
2862 	else
2863 		return curlwp->l_proc->p_comm;
2864 }
2865 
2866 void
2867 device_pmf_driver_deregister(device_t dev)
2868 {
2869 	device_lock_t dvl = device_getlock(dev);
2870 
2871 	dev->dv_driver_suspend = NULL;
2872 	dev->dv_driver_resume = NULL;
2873 
2874 	mutex_enter(&dvl->dvl_mtx);
2875 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2876 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2877 		/* Wake a thread that waits for the lock.  That
2878 		 * thread will fail to acquire the lock, and then
2879 		 * it will wake the next thread that waits for the
2880 		 * lock, or else it will wake us.
2881 		 */
2882 		cv_signal(&dvl->dvl_cv);
2883 		pmflock_debug(dev, __func__, __LINE__);
2884 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2885 		pmflock_debug(dev, __func__, __LINE__);
2886 	}
2887 	mutex_exit(&dvl->dvl_mtx);
2888 }
2889 
2890 bool
2891 device_pmf_driver_child_register(device_t dev)
2892 {
2893 	device_t parent = device_parent(dev);
2894 
2895 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2896 		return true;
2897 	return (*parent->dv_driver_child_register)(dev);
2898 }
2899 
2900 void
2901 device_pmf_driver_set_child_register(device_t dev,
2902     bool (*child_register)(device_t))
2903 {
2904 	dev->dv_driver_child_register = child_register;
2905 }
2906 
2907 static void
2908 pmflock_debug(device_t dev, const char *func, int line)
2909 {
2910 	device_lock_t dvl = device_getlock(dev);
2911 
2912 	aprint_debug_dev(dev,
2913 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2914 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2915 }
2916 
2917 static bool
2918 device_pmf_lock1(device_t dev)
2919 {
2920 	device_lock_t dvl = device_getlock(dev);
2921 
2922 	while (device_pmf_is_registered(dev) &&
2923 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2924 		dvl->dvl_nwait++;
2925 		pmflock_debug(dev, __func__, __LINE__);
2926 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2927 		pmflock_debug(dev, __func__, __LINE__);
2928 		dvl->dvl_nwait--;
2929 	}
2930 	if (!device_pmf_is_registered(dev)) {
2931 		pmflock_debug(dev, __func__, __LINE__);
2932 		/* We could not acquire the lock, but some other thread may
2933 		 * wait for it, also.  Wake that thread.
2934 		 */
2935 		cv_signal(&dvl->dvl_cv);
2936 		return false;
2937 	}
2938 	dvl->dvl_nlock++;
2939 	dvl->dvl_holder = curlwp;
2940 	pmflock_debug(dev, __func__, __LINE__);
2941 	return true;
2942 }
2943 
2944 bool
2945 device_pmf_lock(device_t dev)
2946 {
2947 	bool rc;
2948 	device_lock_t dvl = device_getlock(dev);
2949 
2950 	mutex_enter(&dvl->dvl_mtx);
2951 	rc = device_pmf_lock1(dev);
2952 	mutex_exit(&dvl->dvl_mtx);
2953 
2954 	return rc;
2955 }
2956 
2957 void
2958 device_pmf_unlock(device_t dev)
2959 {
2960 	device_lock_t dvl = device_getlock(dev);
2961 
2962 	KASSERT(dvl->dvl_nlock > 0);
2963 	mutex_enter(&dvl->dvl_mtx);
2964 	if (--dvl->dvl_nlock == 0)
2965 		dvl->dvl_holder = NULL;
2966 	cv_signal(&dvl->dvl_cv);
2967 	pmflock_debug(dev, __func__, __LINE__);
2968 	mutex_exit(&dvl->dvl_mtx);
2969 }
2970 
2971 device_lock_t
2972 device_getlock(device_t dev)
2973 {
2974 	return &dev->dv_lock;
2975 }
2976 
2977 void *
2978 device_pmf_bus_private(device_t dev)
2979 {
2980 	return dev->dv_bus_private;
2981 }
2982 
2983 bool
2984 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2985 {
2986 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2987 		return true;
2988 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2989 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2990 		return false;
2991 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2992 	    dev->dv_bus_suspend != NULL &&
2993 	    !(*dev->dv_bus_suspend)(dev, qual))
2994 		return false;
2995 
2996 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2997 	return true;
2998 }
2999 
3000 bool
3001 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
3002 {
3003 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
3004 		return true;
3005 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
3006 	    dev->dv_bus_resume != NULL &&
3007 	    !(*dev->dv_bus_resume)(dev, qual))
3008 		return false;
3009 
3010 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
3011 	return true;
3012 }
3013 
3014 bool
3015 device_pmf_bus_shutdown(device_t dev, int how)
3016 {
3017 
3018 	if (*dev->dv_bus_shutdown != NULL &&
3019 	    !(*dev->dv_bus_shutdown)(dev, how))
3020 		return false;
3021 	return true;
3022 }
3023 
3024 void
3025 device_pmf_bus_register(device_t dev, void *priv,
3026     bool (*suspend)(device_t, const pmf_qual_t *),
3027     bool (*resume)(device_t, const pmf_qual_t *),
3028     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
3029 {
3030 	dev->dv_bus_private = priv;
3031 	dev->dv_bus_resume = resume;
3032 	dev->dv_bus_suspend = suspend;
3033 	dev->dv_bus_shutdown = shutdown;
3034 	dev->dv_bus_deregister = deregister;
3035 }
3036 
3037 void
3038 device_pmf_bus_deregister(device_t dev)
3039 {
3040 	if (dev->dv_bus_deregister == NULL)
3041 		return;
3042 	(*dev->dv_bus_deregister)(dev);
3043 	dev->dv_bus_private = NULL;
3044 	dev->dv_bus_suspend = NULL;
3045 	dev->dv_bus_resume = NULL;
3046 	dev->dv_bus_deregister = NULL;
3047 }
3048 
3049 void *
3050 device_pmf_class_private(device_t dev)
3051 {
3052 	return dev->dv_class_private;
3053 }
3054 
3055 bool
3056 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
3057 {
3058 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
3059 		return true;
3060 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3061 	    dev->dv_class_suspend != NULL &&
3062 	    !(*dev->dv_class_suspend)(dev, qual))
3063 		return false;
3064 
3065 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
3066 	return true;
3067 }
3068 
3069 bool
3070 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
3071 {
3072 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
3073 		return true;
3074 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
3075 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
3076 		return false;
3077 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3078 	    dev->dv_class_resume != NULL &&
3079 	    !(*dev->dv_class_resume)(dev, qual))
3080 		return false;
3081 
3082 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
3083 	return true;
3084 }
3085 
3086 void
3087 device_pmf_class_register(device_t dev, void *priv,
3088     bool (*suspend)(device_t, const pmf_qual_t *),
3089     bool (*resume)(device_t, const pmf_qual_t *),
3090     void (*deregister)(device_t))
3091 {
3092 	dev->dv_class_private = priv;
3093 	dev->dv_class_suspend = suspend;
3094 	dev->dv_class_resume = resume;
3095 	dev->dv_class_deregister = deregister;
3096 }
3097 
3098 void
3099 device_pmf_class_deregister(device_t dev)
3100 {
3101 	if (dev->dv_class_deregister == NULL)
3102 		return;
3103 	(*dev->dv_class_deregister)(dev);
3104 	dev->dv_class_private = NULL;
3105 	dev->dv_class_suspend = NULL;
3106 	dev->dv_class_resume = NULL;
3107 	dev->dv_class_deregister = NULL;
3108 }
3109 
3110 bool
3111 device_active(device_t dev, devactive_t type)
3112 {
3113 	size_t i;
3114 
3115 	if (dev->dv_activity_count == 0)
3116 		return false;
3117 
3118 	for (i = 0; i < dev->dv_activity_count; ++i) {
3119 		if (dev->dv_activity_handlers[i] == NULL)
3120 			break;
3121 		(*dev->dv_activity_handlers[i])(dev, type);
3122 	}
3123 
3124 	return true;
3125 }
3126 
3127 bool
3128 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
3129 {
3130 	void (**new_handlers)(device_t, devactive_t);
3131 	void (**old_handlers)(device_t, devactive_t);
3132 	size_t i, old_size, new_size;
3133 	int s;
3134 
3135 	old_handlers = dev->dv_activity_handlers;
3136 	old_size = dev->dv_activity_count;
3137 
3138 	KASSERT(old_size == 0 || old_handlers != NULL);
3139 
3140 	for (i = 0; i < old_size; ++i) {
3141 		KASSERT(old_handlers[i] != handler);
3142 		if (old_handlers[i] == NULL) {
3143 			old_handlers[i] = handler;
3144 			return true;
3145 		}
3146 	}
3147 
3148 	new_size = old_size + 4;
3149 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
3150 
3151 	for (i = 0; i < old_size; ++i)
3152 		new_handlers[i] = old_handlers[i];
3153 	new_handlers[old_size] = handler;
3154 	for (i = old_size+1; i < new_size; ++i)
3155 		new_handlers[i] = NULL;
3156 
3157 	s = splhigh();
3158 	dev->dv_activity_count = new_size;
3159 	dev->dv_activity_handlers = new_handlers;
3160 	splx(s);
3161 
3162 	if (old_size > 0)
3163 		kmem_free(old_handlers, sizeof(void *) * old_size);
3164 
3165 	return true;
3166 }
3167 
3168 void
3169 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
3170 {
3171 	void (**old_handlers)(device_t, devactive_t);
3172 	size_t i, old_size;
3173 	int s;
3174 
3175 	old_handlers = dev->dv_activity_handlers;
3176 	old_size = dev->dv_activity_count;
3177 
3178 	for (i = 0; i < old_size; ++i) {
3179 		if (old_handlers[i] == handler)
3180 			break;
3181 		if (old_handlers[i] == NULL)
3182 			return; /* XXX panic? */
3183 	}
3184 
3185 	if (i == old_size)
3186 		return; /* XXX panic? */
3187 
3188 	for (; i < old_size - 1; ++i) {
3189 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
3190 			continue;
3191 
3192 		if (i == 0) {
3193 			s = splhigh();
3194 			dev->dv_activity_count = 0;
3195 			dev->dv_activity_handlers = NULL;
3196 			splx(s);
3197 			kmem_free(old_handlers, sizeof(void *) * old_size);
3198 		}
3199 		return;
3200 	}
3201 	old_handlers[i] = NULL;
3202 }
3203 
3204 /* Return true iff the device_t `dev' exists at generation `gen'. */
3205 static bool
3206 device_exists_at(device_t dv, devgen_t gen)
3207 {
3208 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
3209 	    dv->dv_add_gen <= gen;
3210 }
3211 
3212 static bool
3213 deviter_visits(const deviter_t *di, device_t dv)
3214 {
3215 	return device_exists_at(dv, di->di_gen);
3216 }
3217 
3218 /*
3219  * Device Iteration
3220  *
3221  * deviter_t: a device iterator.  Holds state for a "walk" visiting
3222  *     each device_t's in the device tree.
3223  *
3224  * deviter_init(di, flags): initialize the device iterator `di'
3225  *     to "walk" the device tree.  deviter_next(di) will return
3226  *     the first device_t in the device tree, or NULL if there are
3227  *     no devices.
3228  *
3229  *     `flags' is one or more of DEVITER_F_RW, indicating that the
3230  *     caller intends to modify the device tree by calling
3231  *     config_detach(9) on devices in the order that the iterator
3232  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
3233  *     nearest the "root" of the device tree to be returned, first;
3234  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
3235  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
3236  *     indicating both that deviter_init() should not respect any
3237  *     locks on the device tree, and that deviter_next(di) may run
3238  *     in more than one LWP before the walk has finished.
3239  *
3240  *     Only one DEVITER_F_RW iterator may be in the device tree at
3241  *     once.
3242  *
3243  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
3244  *
3245  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
3246  *     DEVITER_F_LEAVES_FIRST are used in combination.
3247  *
3248  * deviter_first(di, flags): initialize the device iterator `di'
3249  *     and return the first device_t in the device tree, or NULL
3250  *     if there are no devices.  The statement
3251  *
3252  *         dv = deviter_first(di);
3253  *
3254  *     is shorthand for
3255  *
3256  *         deviter_init(di);
3257  *         dv = deviter_next(di);
3258  *
3259  * deviter_next(di): return the next device_t in the device tree,
3260  *     or NULL if there are no more devices.  deviter_next(di)
3261  *     is undefined if `di' was not initialized with deviter_init() or
3262  *     deviter_first().
3263  *
3264  * deviter_release(di): stops iteration (subsequent calls to
3265  *     deviter_next() will return NULL), releases any locks and
3266  *     resources held by the device iterator.
3267  *
3268  * Device iteration does not return device_t's in any particular
3269  * order.  An iterator will never return the same device_t twice.
3270  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
3271  * is called repeatedly on the same `di', it will eventually return
3272  * NULL.  It is ok to attach/detach devices during device iteration.
3273  */
3274 void
3275 deviter_init(deviter_t *di, deviter_flags_t flags)
3276 {
3277 	device_t dv;
3278 
3279 	memset(di, 0, sizeof(*di));
3280 
3281 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
3282 		flags |= DEVITER_F_RW;
3283 
3284 	mutex_enter(&alldevs_lock);
3285 	if ((flags & DEVITER_F_RW) != 0)
3286 		alldevs_nwrite++;
3287 	else
3288 		alldevs_nread++;
3289 	di->di_gen = alldevs_gen++;
3290 	di->di_flags = flags;
3291 
3292 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3293 	case DEVITER_F_LEAVES_FIRST:
3294 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
3295 			if (!deviter_visits(di, dv))
3296 				continue;
3297 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
3298 		}
3299 		break;
3300 	case DEVITER_F_ROOT_FIRST:
3301 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
3302 			if (!deviter_visits(di, dv))
3303 				continue;
3304 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
3305 		}
3306 		break;
3307 	default:
3308 		break;
3309 	}
3310 
3311 	deviter_reinit(di);
3312 	mutex_exit(&alldevs_lock);
3313 }
3314 
3315 static void
3316 deviter_reinit(deviter_t *di)
3317 {
3318 
3319 	KASSERT(mutex_owned(&alldevs_lock));
3320 	if ((di->di_flags & DEVITER_F_RW) != 0)
3321 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
3322 	else
3323 		di->di_prev = TAILQ_FIRST(&alldevs);
3324 }
3325 
3326 device_t
3327 deviter_first(deviter_t *di, deviter_flags_t flags)
3328 {
3329 
3330 	deviter_init(di, flags);
3331 	return deviter_next(di);
3332 }
3333 
3334 static device_t
3335 deviter_next2(deviter_t *di)
3336 {
3337 	device_t dv;
3338 
3339 	KASSERT(mutex_owned(&alldevs_lock));
3340 
3341 	dv = di->di_prev;
3342 
3343 	if (dv == NULL)
3344 		return NULL;
3345 
3346 	if ((di->di_flags & DEVITER_F_RW) != 0)
3347 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
3348 	else
3349 		di->di_prev = TAILQ_NEXT(dv, dv_list);
3350 
3351 	return dv;
3352 }
3353 
3354 static device_t
3355 deviter_next1(deviter_t *di)
3356 {
3357 	device_t dv;
3358 
3359 	KASSERT(mutex_owned(&alldevs_lock));
3360 
3361 	do {
3362 		dv = deviter_next2(di);
3363 	} while (dv != NULL && !deviter_visits(di, dv));
3364 
3365 	return dv;
3366 }
3367 
3368 device_t
3369 deviter_next(deviter_t *di)
3370 {
3371 	device_t dv = NULL;
3372 
3373 	mutex_enter(&alldevs_lock);
3374 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3375 	case 0:
3376 		dv = deviter_next1(di);
3377 		break;
3378 	case DEVITER_F_LEAVES_FIRST:
3379 		while (di->di_curdepth >= 0) {
3380 			if ((dv = deviter_next1(di)) == NULL) {
3381 				di->di_curdepth--;
3382 				deviter_reinit(di);
3383 			} else if (dv->dv_depth == di->di_curdepth)
3384 				break;
3385 		}
3386 		break;
3387 	case DEVITER_F_ROOT_FIRST:
3388 		while (di->di_curdepth <= di->di_maxdepth) {
3389 			if ((dv = deviter_next1(di)) == NULL) {
3390 				di->di_curdepth++;
3391 				deviter_reinit(di);
3392 			} else if (dv->dv_depth == di->di_curdepth)
3393 				break;
3394 		}
3395 		break;
3396 	default:
3397 		break;
3398 	}
3399 	mutex_exit(&alldevs_lock);
3400 
3401 	return dv;
3402 }
3403 
3404 void
3405 deviter_release(deviter_t *di)
3406 {
3407 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
3408 
3409 	mutex_enter(&alldevs_lock);
3410 	if (rw)
3411 		--alldevs_nwrite;
3412 	else
3413 		--alldevs_nread;
3414 	/* XXX wake a garbage-collection thread */
3415 	mutex_exit(&alldevs_lock);
3416 }
3417 
3418 const char *
3419 cfdata_ifattr(const struct cfdata *cf)
3420 {
3421 	return cf->cf_pspec->cfp_iattr;
3422 }
3423 
3424 bool
3425 ifattr_match(const char *snull, const char *t)
3426 {
3427 	return (snull == NULL) || strcmp(snull, t) == 0;
3428 }
3429 
3430 void
3431 null_childdetached(device_t self, device_t child)
3432 {
3433 	/* do nothing */
3434 }
3435 
3436 static void
3437 sysctl_detach_setup(struct sysctllog **clog)
3438 {
3439 
3440 	sysctl_createv(clog, 0, NULL, NULL,
3441 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3442 		CTLTYPE_BOOL, "detachall",
3443 		SYSCTL_DESCR("Detach all devices at shutdown"),
3444 		NULL, 0, &detachall, 0,
3445 		CTL_KERN, CTL_CREATE, CTL_EOL);
3446 }
3447