xref: /netbsd-src/sys/kern/subr_autoconf.c (revision 4b71a66d0f279143147d63ebfcfd8a59499a3684)
1 /* $NetBSD: subr_autoconf.c,v 1.151 2008/05/27 17:50:03 ad Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.151 2008/05/27 17:50:03 ad Exp $");
81 
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84 
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/systm.h>
92 #include <sys/kernel.h>
93 #include <sys/errno.h>
94 #include <sys/proc.h>
95 #include <sys/reboot.h>
96 #include <sys/kthread.h>
97 #include <sys/buf.h>
98 #include <sys/dirent.h>
99 #include <sys/vnode.h>
100 #include <sys/mount.h>
101 #include <sys/namei.h>
102 #include <sys/unistd.h>
103 #include <sys/fcntl.h>
104 #include <sys/lockf.h>
105 #include <sys/callout.h>
106 #include <sys/mutex.h>
107 #include <sys/condvar.h>
108 #include <sys/devmon.h>
109 
110 #include <sys/disk.h>
111 
112 #include <machine/limits.h>
113 
114 #include "opt_userconf.h"
115 #ifdef USERCONF
116 #include <sys/userconf.h>
117 #endif
118 
119 #ifdef __i386__
120 #include "opt_splash.h"
121 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
122 #include <dev/splash/splash.h>
123 extern struct splash_progress *splash_progress_state;
124 #endif
125 #endif
126 
127 /*
128  * Autoconfiguration subroutines.
129  */
130 
131 typedef struct pmf_private {
132 	int		pp_nwait;
133 	int		pp_nlock;
134 	lwp_t		*pp_holder;
135 	kmutex_t	pp_mtx;
136 	kcondvar_t	pp_cv;
137 } pmf_private_t;
138 
139 /*
140  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
141  * devices and drivers are found via these tables.
142  */
143 extern struct cfdata cfdata[];
144 extern const short cfroots[];
145 
146 /*
147  * List of all cfdriver structures.  We use this to detect duplicates
148  * when other cfdrivers are loaded.
149  */
150 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
151 extern struct cfdriver * const cfdriver_list_initial[];
152 
153 /*
154  * Initial list of cfattach's.
155  */
156 extern const struct cfattachinit cfattachinit[];
157 
158 /*
159  * List of cfdata tables.  We always have one such list -- the one
160  * built statically when the kernel was configured.
161  */
162 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
163 static struct cftable initcftable;
164 
165 #define	ROOT ((device_t)NULL)
166 
167 struct matchinfo {
168 	cfsubmatch_t fn;
169 	struct	device *parent;
170 	const int *locs;
171 	void	*aux;
172 	struct	cfdata *match;
173 	int	pri;
174 };
175 
176 static char *number(char *, int);
177 static void mapply(struct matchinfo *, cfdata_t);
178 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
179 static void config_devdealloc(device_t);
180 static void config_makeroom(int, struct cfdriver *);
181 static void config_devlink(device_t);
182 static void config_devunlink(device_t);
183 
184 static void pmflock_debug(device_t, const char *, int);
185 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
186 
187 static device_t deviter_next1(deviter_t *);
188 static void deviter_reinit(deviter_t *);
189 
190 struct deferred_config {
191 	TAILQ_ENTRY(deferred_config) dc_queue;
192 	device_t dc_dev;
193 	void (*dc_func)(device_t);
194 };
195 
196 TAILQ_HEAD(deferred_config_head, deferred_config);
197 
198 struct deferred_config_head deferred_config_queue =
199 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
200 struct deferred_config_head interrupt_config_queue =
201 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
202 int interrupt_config_threads = 8;
203 
204 static void config_process_deferred(struct deferred_config_head *, device_t);
205 
206 /* Hooks to finalize configuration once all real devices have been found. */
207 struct finalize_hook {
208 	TAILQ_ENTRY(finalize_hook) f_list;
209 	int (*f_func)(device_t);
210 	device_t f_dev;
211 };
212 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
213 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
214 static int config_finalize_done;
215 
216 /* list of all devices */
217 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
218 kcondvar_t alldevs_cv;
219 kmutex_t alldevs_mtx;
220 static int alldevs_nread = 0;
221 static int alldevs_nwrite = 0;
222 static lwp_t *alldevs_writer = NULL;
223 
224 static int config_pending;		/* semaphore for mountroot */
225 static kmutex_t config_misc_lock;
226 static kcondvar_t config_misc_cv;
227 
228 #define	STREQ(s1, s2)			\
229 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
230 
231 static int config_initialized;		/* config_init() has been called. */
232 
233 static int config_do_twiddle;
234 
235 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
236 
237 struct vnode *
238 opendisk(struct device *dv)
239 {
240 	int bmajor, bminor;
241 	struct vnode *tmpvn;
242 	int error;
243 	dev_t dev;
244 
245 	/*
246 	 * Lookup major number for disk block device.
247 	 */
248 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
249 	if (bmajor == -1)
250 		return NULL;
251 
252 	bminor = minor(device_unit(dv));
253 	/*
254 	 * Fake a temporary vnode for the disk, open it, and read
255 	 * and hash the sectors.
256 	 */
257 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
258 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
259 	if (bdevvp(dev, &tmpvn))
260 		panic("%s: can't alloc vnode for %s", __func__,
261 		    device_xname(dv));
262 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
263 	if (error) {
264 #ifndef DEBUG
265 		/*
266 		 * Ignore errors caused by missing device, partition,
267 		 * or medium.
268 		 */
269 		if (error != ENXIO && error != ENODEV)
270 #endif
271 			printf("%s: can't open dev %s (%d)\n",
272 			    __func__, device_xname(dv), error);
273 		vput(tmpvn);
274 		return NULL;
275 	}
276 
277 	return tmpvn;
278 }
279 
280 int
281 config_handle_wedges(struct device *dv, int par)
282 {
283 	struct dkwedge_list wl;
284 	struct dkwedge_info *wi;
285 	struct vnode *vn;
286 	char diskname[16];
287 	int i, error;
288 
289 	if ((vn = opendisk(dv)) == NULL)
290 		return -1;
291 
292 	wl.dkwl_bufsize = sizeof(*wi) * 16;
293 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
294 
295 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
296 	VOP_CLOSE(vn, FREAD, NOCRED);
297 	vput(vn);
298 	if (error) {
299 #ifdef DEBUG_WEDGE
300 		printf("%s: List wedges returned %d\n",
301 		    device_xname(dv), error);
302 #endif
303 		free(wi, M_TEMP);
304 		return -1;
305 	}
306 
307 #ifdef DEBUG_WEDGE
308 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
309 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
310 #endif
311 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
312 	    par + 'a');
313 
314 	for (i = 0; i < wl.dkwl_ncopied; i++) {
315 #ifdef DEBUG_WEDGE
316 		printf("%s: Looking for %s in %s\n",
317 		    device_xname(dv), diskname, wi[i].dkw_wname);
318 #endif
319 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
320 			break;
321 	}
322 
323 	if (i == wl.dkwl_ncopied) {
324 #ifdef DEBUG_WEDGE
325 		printf("%s: Cannot find wedge with parent %s\n",
326 		    device_xname(dv), diskname);
327 #endif
328 		free(wi, M_TEMP);
329 		return -1;
330 	}
331 
332 #ifdef DEBUG_WEDGE
333 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
334 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
335 		(unsigned long long)wi[i].dkw_offset,
336 		(unsigned long long)wi[i].dkw_size);
337 #endif
338 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
339 	free(wi, M_TEMP);
340 	return 0;
341 }
342 
343 /*
344  * Initialize the autoconfiguration data structures.  Normally this
345  * is done by configure(), but some platforms need to do this very
346  * early (to e.g. initialize the console).
347  */
348 void
349 config_init(void)
350 {
351 	const struct cfattachinit *cfai;
352 	int i, j;
353 
354 	if (config_initialized)
355 		return;
356 
357 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
358 	cv_init(&alldevs_cv, "alldevs");
359 
360 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
361 	cv_init(&config_misc_cv, "cfgmisc");
362 
363 	/* allcfdrivers is statically initialized. */
364 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
365 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
366 			panic("configure: duplicate `%s' drivers",
367 			    cfdriver_list_initial[i]->cd_name);
368 	}
369 
370 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
371 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
372 			if (config_cfattach_attach(cfai->cfai_name,
373 						   cfai->cfai_list[j]) != 0)
374 				panic("configure: duplicate `%s' attachment "
375 				    "of `%s' driver",
376 				    cfai->cfai_list[j]->ca_name,
377 				    cfai->cfai_name);
378 		}
379 	}
380 
381 	initcftable.ct_cfdata = cfdata;
382 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
383 
384 	config_initialized = 1;
385 }
386 
387 void
388 config_deferred(device_t dev)
389 {
390 	config_process_deferred(&deferred_config_queue, dev);
391 	config_process_deferred(&interrupt_config_queue, dev);
392 }
393 
394 static void
395 config_interrupts_thread(void *cookie)
396 {
397 	struct deferred_config *dc;
398 
399 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
400 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
401 		(*dc->dc_func)(dc->dc_dev);
402 		free(dc, M_DEVBUF);
403 		config_pending_decr();
404 	}
405 	kthread_exit(0);
406 }
407 
408 /*
409  * Configure the system's hardware.
410  */
411 void
412 configure(void)
413 {
414 	extern void ssp_init(void);
415 	int i, s;
416 
417 	/* Initialize data structures. */
418 	config_init();
419 	pmf_init();
420 #if NDRVCTL > 0
421 	drvctl_init();
422 #endif
423 
424 #ifdef USERCONF
425 	if (boothowto & RB_USERCONF)
426 		user_config();
427 #endif
428 
429 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
430 		config_do_twiddle = 1;
431 		printf_nolog("Detecting hardware...");
432 	}
433 
434 	/*
435 	 * Do the machine-dependent portion of autoconfiguration.  This
436 	 * sets the configuration machinery here in motion by "finding"
437 	 * the root bus.  When this function returns, we expect interrupts
438 	 * to be enabled.
439 	 */
440 	cpu_configure();
441 
442 	/* Initialize SSP. */
443 	ssp_init();
444 
445 	/*
446 	 * Now that we've found all the hardware, start the real time
447 	 * and statistics clocks.
448 	 */
449 	initclocks();
450 
451 	cold = 0;	/* clocks are running, we're warm now! */
452 	s = splsched();
453 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
454 	splx(s);
455 
456 	/* Boot the secondary processors. */
457 	mp_online = true;
458 #if defined(MULTIPROCESSOR)
459 	cpu_boot_secondary_processors();
460 #endif
461 
462 	/* Setup the runqueues and scheduler. */
463 	runq_init();
464 	sched_init();
465 
466 	/*
467 	 * Create threads to call back and finish configuration for
468 	 * devices that want interrupts enabled.
469 	 */
470 	for (i = 0; i < interrupt_config_threads; i++) {
471 		(void)kthread_create(PRI_NONE, 0, NULL,
472 		    config_interrupts_thread, NULL, NULL, "config");
473 	}
474 
475 	/* Get the threads going and into any sleeps before continuing. */
476 	yield();
477 
478 	/* Lock the kernel on behalf of lwp0. */
479 	KERNEL_LOCK(1, NULL);
480 }
481 
482 /*
483  * Announce device attach/detach to userland listeners.
484  */
485 static void
486 devmon_report_device(device_t dev, bool isattach)
487 {
488 #if NDRVCTL > 0
489 	prop_dictionary_t ev;
490 	const char *parent;
491 	const char *what;
492 	device_t pdev = device_parent(dev);
493 
494 	ev = prop_dictionary_create();
495 	if (ev == NULL)
496 		return;
497 
498 	what = (isattach ? "device-attach" : "device-detach");
499 	parent = (pdev == NULL ? "root" : device_xname(pdev));
500 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
501 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
502 		prop_object_release(ev);
503 		return;
504 	}
505 
506 	devmon_insert(what, ev);
507 #endif
508 }
509 
510 /*
511  * Add a cfdriver to the system.
512  */
513 int
514 config_cfdriver_attach(struct cfdriver *cd)
515 {
516 	struct cfdriver *lcd;
517 
518 	/* Make sure this driver isn't already in the system. */
519 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
520 		if (STREQ(lcd->cd_name, cd->cd_name))
521 			return (EEXIST);
522 	}
523 
524 	LIST_INIT(&cd->cd_attach);
525 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
526 
527 	return (0);
528 }
529 
530 /*
531  * Remove a cfdriver from the system.
532  */
533 int
534 config_cfdriver_detach(struct cfdriver *cd)
535 {
536 	int i;
537 
538 	/* Make sure there are no active instances. */
539 	for (i = 0; i < cd->cd_ndevs; i++) {
540 		if (cd->cd_devs[i] != NULL)
541 			return (EBUSY);
542 	}
543 
544 	/* ...and no attachments loaded. */
545 	if (LIST_EMPTY(&cd->cd_attach) == 0)
546 		return (EBUSY);
547 
548 	LIST_REMOVE(cd, cd_list);
549 
550 	KASSERT(cd->cd_devs == NULL);
551 
552 	return (0);
553 }
554 
555 /*
556  * Look up a cfdriver by name.
557  */
558 struct cfdriver *
559 config_cfdriver_lookup(const char *name)
560 {
561 	struct cfdriver *cd;
562 
563 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
564 		if (STREQ(cd->cd_name, name))
565 			return (cd);
566 	}
567 
568 	return (NULL);
569 }
570 
571 /*
572  * Add a cfattach to the specified driver.
573  */
574 int
575 config_cfattach_attach(const char *driver, struct cfattach *ca)
576 {
577 	struct cfattach *lca;
578 	struct cfdriver *cd;
579 
580 	cd = config_cfdriver_lookup(driver);
581 	if (cd == NULL)
582 		return (ESRCH);
583 
584 	/* Make sure this attachment isn't already on this driver. */
585 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
586 		if (STREQ(lca->ca_name, ca->ca_name))
587 			return (EEXIST);
588 	}
589 
590 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
591 
592 	return (0);
593 }
594 
595 /*
596  * Remove a cfattach from the specified driver.
597  */
598 int
599 config_cfattach_detach(const char *driver, struct cfattach *ca)
600 {
601 	struct cfdriver *cd;
602 	device_t dev;
603 	int i;
604 
605 	cd = config_cfdriver_lookup(driver);
606 	if (cd == NULL)
607 		return (ESRCH);
608 
609 	/* Make sure there are no active instances. */
610 	for (i = 0; i < cd->cd_ndevs; i++) {
611 		if ((dev = cd->cd_devs[i]) == NULL)
612 			continue;
613 		if (dev->dv_cfattach == ca)
614 			return (EBUSY);
615 	}
616 
617 	LIST_REMOVE(ca, ca_list);
618 
619 	return (0);
620 }
621 
622 /*
623  * Look up a cfattach by name.
624  */
625 static struct cfattach *
626 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
627 {
628 	struct cfattach *ca;
629 
630 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
631 		if (STREQ(ca->ca_name, atname))
632 			return (ca);
633 	}
634 
635 	return (NULL);
636 }
637 
638 /*
639  * Look up a cfattach by driver/attachment name.
640  */
641 struct cfattach *
642 config_cfattach_lookup(const char *name, const char *atname)
643 {
644 	struct cfdriver *cd;
645 
646 	cd = config_cfdriver_lookup(name);
647 	if (cd == NULL)
648 		return (NULL);
649 
650 	return (config_cfattach_lookup_cd(cd, atname));
651 }
652 
653 /*
654  * Apply the matching function and choose the best.  This is used
655  * a few times and we want to keep the code small.
656  */
657 static void
658 mapply(struct matchinfo *m, cfdata_t cf)
659 {
660 	int pri;
661 
662 	if (m->fn != NULL) {
663 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
664 	} else {
665 		pri = config_match(m->parent, cf, m->aux);
666 	}
667 	if (pri > m->pri) {
668 		m->match = cf;
669 		m->pri = pri;
670 	}
671 }
672 
673 int
674 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
675 {
676 	const struct cfiattrdata *ci;
677 	const struct cflocdesc *cl;
678 	int nlocs, i;
679 
680 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
681 	KASSERT(ci);
682 	nlocs = ci->ci_loclen;
683 	for (i = 0; i < nlocs; i++) {
684 		cl = &ci->ci_locdesc[i];
685 		/* !cld_defaultstr means no default value */
686 		if ((!(cl->cld_defaultstr)
687 		     || (cf->cf_loc[i] != cl->cld_default))
688 		    && cf->cf_loc[i] != locs[i])
689 			return (0);
690 	}
691 
692 	return (config_match(parent, cf, aux));
693 }
694 
695 /*
696  * Helper function: check whether the driver supports the interface attribute
697  * and return its descriptor structure.
698  */
699 static const struct cfiattrdata *
700 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
701 {
702 	const struct cfiattrdata * const *cpp;
703 
704 	if (cd->cd_attrs == NULL)
705 		return (0);
706 
707 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
708 		if (STREQ((*cpp)->ci_name, ia)) {
709 			/* Match. */
710 			return (*cpp);
711 		}
712 	}
713 	return (0);
714 }
715 
716 /*
717  * Lookup an interface attribute description by name.
718  * If the driver is given, consider only its supported attributes.
719  */
720 const struct cfiattrdata *
721 cfiattr_lookup(const char *name, const struct cfdriver *cd)
722 {
723 	const struct cfdriver *d;
724 	const struct cfiattrdata *ia;
725 
726 	if (cd)
727 		return (cfdriver_get_iattr(cd, name));
728 
729 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
730 		ia = cfdriver_get_iattr(d, name);
731 		if (ia)
732 			return (ia);
733 	}
734 	return (0);
735 }
736 
737 /*
738  * Determine if `parent' is a potential parent for a device spec based
739  * on `cfp'.
740  */
741 static int
742 cfparent_match(const device_t parent, const struct cfparent *cfp)
743 {
744 	struct cfdriver *pcd;
745 
746 	/* We don't match root nodes here. */
747 	if (cfp == NULL)
748 		return (0);
749 
750 	pcd = parent->dv_cfdriver;
751 	KASSERT(pcd != NULL);
752 
753 	/*
754 	 * First, ensure this parent has the correct interface
755 	 * attribute.
756 	 */
757 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
758 		return (0);
759 
760 	/*
761 	 * If no specific parent device instance was specified (i.e.
762 	 * we're attaching to the attribute only), we're done!
763 	 */
764 	if (cfp->cfp_parent == NULL)
765 		return (1);
766 
767 	/*
768 	 * Check the parent device's name.
769 	 */
770 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
771 		return (0);	/* not the same parent */
772 
773 	/*
774 	 * Make sure the unit number matches.
775 	 */
776 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
777 	    cfp->cfp_unit == parent->dv_unit)
778 		return (1);
779 
780 	/* Unit numbers don't match. */
781 	return (0);
782 }
783 
784 /*
785  * Helper for config_cfdata_attach(): check all devices whether it could be
786  * parent any attachment in the config data table passed, and rescan.
787  */
788 static void
789 rescan_with_cfdata(const struct cfdata *cf)
790 {
791 	device_t d;
792 	const struct cfdata *cf1;
793 	deviter_t di;
794 
795 
796 	/*
797 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
798 	 * the outer loop.
799 	 */
800 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
801 
802 		if (!(d->dv_cfattach->ca_rescan))
803 			continue;
804 
805 		for (cf1 = cf; cf1->cf_name; cf1++) {
806 
807 			if (!cfparent_match(d, cf1->cf_pspec))
808 				continue;
809 
810 			(*d->dv_cfattach->ca_rescan)(d,
811 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
812 		}
813 	}
814 	deviter_release(&di);
815 }
816 
817 /*
818  * Attach a supplemental config data table and rescan potential
819  * parent devices if required.
820  */
821 int
822 config_cfdata_attach(cfdata_t cf, int scannow)
823 {
824 	struct cftable *ct;
825 
826 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
827 	ct->ct_cfdata = cf;
828 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
829 
830 	if (scannow)
831 		rescan_with_cfdata(cf);
832 
833 	return (0);
834 }
835 
836 /*
837  * Helper for config_cfdata_detach: check whether a device is
838  * found through any attachment in the config data table.
839  */
840 static int
841 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
842 {
843 	const struct cfdata *cf1;
844 
845 	for (cf1 = cf; cf1->cf_name; cf1++)
846 		if (d->dv_cfdata == cf1)
847 			return (1);
848 
849 	return (0);
850 }
851 
852 /*
853  * Detach a supplemental config data table. Detach all devices found
854  * through that table (and thus keeping references to it) before.
855  */
856 int
857 config_cfdata_detach(cfdata_t cf)
858 {
859 	device_t d;
860 	int error = 0;
861 	struct cftable *ct;
862 	deviter_t di;
863 
864 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
865 	     d = deviter_next(&di)) {
866 		if (!dev_in_cfdata(d, cf))
867 			continue;
868 		if ((error = config_detach(d, 0)) != 0)
869 			break;
870 	}
871 	deviter_release(&di);
872 	if (error) {
873 		aprint_error_dev(d, "unable to detach instance\n");
874 		return error;
875 	}
876 
877 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
878 		if (ct->ct_cfdata == cf) {
879 			TAILQ_REMOVE(&allcftables, ct, ct_list);
880 			free(ct, M_DEVBUF);
881 			return (0);
882 		}
883 	}
884 
885 	/* not found -- shouldn't happen */
886 	return (EINVAL);
887 }
888 
889 /*
890  * Invoke the "match" routine for a cfdata entry on behalf of
891  * an external caller, usually a "submatch" routine.
892  */
893 int
894 config_match(device_t parent, cfdata_t cf, void *aux)
895 {
896 	struct cfattach *ca;
897 
898 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
899 	if (ca == NULL) {
900 		/* No attachment for this entry, oh well. */
901 		return (0);
902 	}
903 
904 	return ((*ca->ca_match)(parent, cf, aux));
905 }
906 
907 /*
908  * Iterate over all potential children of some device, calling the given
909  * function (default being the child's match function) for each one.
910  * Nonzero returns are matches; the highest value returned is considered
911  * the best match.  Return the `found child' if we got a match, or NULL
912  * otherwise.  The `aux' pointer is simply passed on through.
913  *
914  * Note that this function is designed so that it can be used to apply
915  * an arbitrary function to all potential children (its return value
916  * can be ignored).
917  */
918 cfdata_t
919 config_search_loc(cfsubmatch_t fn, device_t parent,
920 		  const char *ifattr, const int *locs, void *aux)
921 {
922 	struct cftable *ct;
923 	cfdata_t cf;
924 	struct matchinfo m;
925 
926 	KASSERT(config_initialized);
927 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
928 
929 	m.fn = fn;
930 	m.parent = parent;
931 	m.locs = locs;
932 	m.aux = aux;
933 	m.match = NULL;
934 	m.pri = 0;
935 
936 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
937 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
938 
939 			/* We don't match root nodes here. */
940 			if (!cf->cf_pspec)
941 				continue;
942 
943 			/*
944 			 * Skip cf if no longer eligible, otherwise scan
945 			 * through parents for one matching `parent', and
946 			 * try match function.
947 			 */
948 			if (cf->cf_fstate == FSTATE_FOUND)
949 				continue;
950 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
951 			    cf->cf_fstate == FSTATE_DSTAR)
952 				continue;
953 
954 			/*
955 			 * If an interface attribute was specified,
956 			 * consider only children which attach to
957 			 * that attribute.
958 			 */
959 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
960 				continue;
961 
962 			if (cfparent_match(parent, cf->cf_pspec))
963 				mapply(&m, cf);
964 		}
965 	}
966 	return (m.match);
967 }
968 
969 cfdata_t
970 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
971     void *aux)
972 {
973 
974 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
975 }
976 
977 /*
978  * Find the given root device.
979  * This is much like config_search, but there is no parent.
980  * Don't bother with multiple cfdata tables; the root node
981  * must always be in the initial table.
982  */
983 cfdata_t
984 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
985 {
986 	cfdata_t cf;
987 	const short *p;
988 	struct matchinfo m;
989 
990 	m.fn = fn;
991 	m.parent = ROOT;
992 	m.aux = aux;
993 	m.match = NULL;
994 	m.pri = 0;
995 	m.locs = 0;
996 	/*
997 	 * Look at root entries for matching name.  We do not bother
998 	 * with found-state here since only one root should ever be
999 	 * searched (and it must be done first).
1000 	 */
1001 	for (p = cfroots; *p >= 0; p++) {
1002 		cf = &cfdata[*p];
1003 		if (strcmp(cf->cf_name, rootname) == 0)
1004 			mapply(&m, cf);
1005 	}
1006 	return (m.match);
1007 }
1008 
1009 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1010 
1011 /*
1012  * The given `aux' argument describes a device that has been found
1013  * on the given parent, but not necessarily configured.  Locate the
1014  * configuration data for that device (using the submatch function
1015  * provided, or using candidates' cd_match configuration driver
1016  * functions) and attach it, and return true.  If the device was
1017  * not configured, call the given `print' function and return 0.
1018  */
1019 device_t
1020 config_found_sm_loc(device_t parent,
1021 		const char *ifattr, const int *locs, void *aux,
1022 		cfprint_t print, cfsubmatch_t submatch)
1023 {
1024 	cfdata_t cf;
1025 
1026 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1027 	if (splash_progress_state)
1028 		splash_progress_update(splash_progress_state);
1029 #endif
1030 
1031 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1032 		return(config_attach_loc(parent, cf, locs, aux, print));
1033 	if (print) {
1034 		if (config_do_twiddle)
1035 			twiddle();
1036 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1037 	}
1038 
1039 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1040 	if (splash_progress_state)
1041 		splash_progress_update(splash_progress_state);
1042 #endif
1043 
1044 	return (NULL);
1045 }
1046 
1047 device_t
1048 config_found_ia(device_t parent, const char *ifattr, void *aux,
1049     cfprint_t print)
1050 {
1051 
1052 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1053 }
1054 
1055 device_t
1056 config_found(device_t parent, void *aux, cfprint_t print)
1057 {
1058 
1059 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1060 }
1061 
1062 /*
1063  * As above, but for root devices.
1064  */
1065 device_t
1066 config_rootfound(const char *rootname, void *aux)
1067 {
1068 	cfdata_t cf;
1069 
1070 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1071 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1072 	aprint_error("root device %s not configured\n", rootname);
1073 	return (NULL);
1074 }
1075 
1076 /* just like sprintf(buf, "%d") except that it works from the end */
1077 static char *
1078 number(char *ep, int n)
1079 {
1080 
1081 	*--ep = 0;
1082 	while (n >= 10) {
1083 		*--ep = (n % 10) + '0';
1084 		n /= 10;
1085 	}
1086 	*--ep = n + '0';
1087 	return (ep);
1088 }
1089 
1090 /*
1091  * Expand the size of the cd_devs array if necessary.
1092  */
1093 static void
1094 config_makeroom(int n, struct cfdriver *cd)
1095 {
1096 	int old, new;
1097 	void **nsp;
1098 
1099 	if (n < cd->cd_ndevs)
1100 		return;
1101 
1102 	/*
1103 	 * Need to expand the array.
1104 	 */
1105 	old = cd->cd_ndevs;
1106 	if (old == 0)
1107 		new = 4;
1108 	else
1109 		new = old * 2;
1110 	while (new <= n)
1111 		new *= 2;
1112 	cd->cd_ndevs = new;
1113 	nsp = malloc(new * sizeof(void *), M_DEVBUF,
1114 	    cold ? M_NOWAIT : M_WAITOK);
1115 	if (nsp == NULL)
1116 		panic("config_attach: %sing dev array",
1117 		    old != 0 ? "expand" : "creat");
1118 	memset(nsp + old, 0, (new - old) * sizeof(void *));
1119 	if (old != 0) {
1120 		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
1121 		free(cd->cd_devs, M_DEVBUF);
1122 	}
1123 	cd->cd_devs = nsp;
1124 }
1125 
1126 static void
1127 config_devlink(device_t dev)
1128 {
1129 	struct cfdriver *cd = dev->dv_cfdriver;
1130 
1131 	/* put this device in the devices array */
1132 	config_makeroom(dev->dv_unit, cd);
1133 	if (cd->cd_devs[dev->dv_unit])
1134 		panic("config_attach: duplicate %s", device_xname(dev));
1135 	cd->cd_devs[dev->dv_unit] = dev;
1136 
1137 	/* It is safe to add a device to the tail of the list while
1138 	 * readers are in the list, but not while a writer is in
1139 	 * the list.  Wait for any writer to complete.
1140 	 */
1141 	mutex_enter(&alldevs_mtx);
1142 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1143 		cv_wait(&alldevs_cv, &alldevs_mtx);
1144 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
1145 	cv_signal(&alldevs_cv);
1146 	mutex_exit(&alldevs_mtx);
1147 }
1148 
1149 static void
1150 config_devunlink(device_t dev)
1151 {
1152 	struct cfdriver *cd = dev->dv_cfdriver;
1153 	int i;
1154 
1155 	/* Unlink from device list. */
1156 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1157 
1158 	/* Remove from cfdriver's array. */
1159 	cd->cd_devs[dev->dv_unit] = NULL;
1160 
1161 	/*
1162 	 * If the device now has no units in use, deallocate its softc array.
1163 	 */
1164 	for (i = 0; i < cd->cd_ndevs; i++)
1165 		if (cd->cd_devs[i] != NULL)
1166 			break;
1167 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
1168 		free(cd->cd_devs, M_DEVBUF);
1169 		cd->cd_devs = NULL;
1170 		cd->cd_ndevs = 0;
1171 	}
1172 }
1173 
1174 static device_t
1175 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1176 {
1177 	struct cfdriver *cd;
1178 	struct cfattach *ca;
1179 	size_t lname, lunit;
1180 	const char *xunit;
1181 	int myunit;
1182 	char num[10];
1183 	device_t dev;
1184 	void *dev_private;
1185 	const struct cfiattrdata *ia;
1186 
1187 	cd = config_cfdriver_lookup(cf->cf_name);
1188 	if (cd == NULL)
1189 		return (NULL);
1190 
1191 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1192 	if (ca == NULL)
1193 		return (NULL);
1194 
1195 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1196 	    ca->ca_devsize < sizeof(struct device))
1197 		panic("config_devalloc: %s", cf->cf_atname);
1198 
1199 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1200 	if (cf->cf_fstate == FSTATE_STAR) {
1201 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1202 			if (cd->cd_devs[myunit] == NULL)
1203 				break;
1204 		/*
1205 		 * myunit is now the unit of the first NULL device pointer,
1206 		 * or max(cd->cd_ndevs,cf->cf_unit).
1207 		 */
1208 	} else {
1209 		myunit = cf->cf_unit;
1210 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1211 			return (NULL);
1212 	}
1213 #else
1214 	myunit = cf->cf_unit;
1215 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1216 
1217 	/* compute length of name and decimal expansion of unit number */
1218 	lname = strlen(cd->cd_name);
1219 	xunit = number(&num[sizeof(num)], myunit);
1220 	lunit = &num[sizeof(num)] - xunit;
1221 	if (lname + lunit > sizeof(dev->dv_xname))
1222 		panic("config_devalloc: device name too long");
1223 
1224 	/* get memory for all device vars */
1225 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1226 	if (ca->ca_devsize > 0) {
1227 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
1228 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1229 		if (dev_private == NULL)
1230 			panic("config_devalloc: memory allocation for device softc failed");
1231 	} else {
1232 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1233 		dev_private = NULL;
1234 	}
1235 
1236 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1237 		dev = malloc(sizeof(struct device), M_DEVBUF,
1238 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1239 	} else {
1240 		dev = dev_private;
1241 	}
1242 	if (dev == NULL)
1243 		panic("config_devalloc: memory allocation for device_t failed");
1244 
1245 	dev->dv_class = cd->cd_class;
1246 	dev->dv_cfdata = cf;
1247 	dev->dv_cfdriver = cd;
1248 	dev->dv_cfattach = ca;
1249 	dev->dv_unit = myunit;
1250 	dev->dv_activity_count = 0;
1251 	dev->dv_activity_handlers = NULL;
1252 	dev->dv_private = dev_private;
1253 	memcpy(dev->dv_xname, cd->cd_name, lname);
1254 	memcpy(dev->dv_xname + lname, xunit, lunit);
1255 	dev->dv_parent = parent;
1256 	if (parent != NULL)
1257 		dev->dv_depth = parent->dv_depth + 1;
1258 	else
1259 		dev->dv_depth = 0;
1260 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
1261 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
1262 	if (locs) {
1263 		KASSERT(parent); /* no locators at root */
1264 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1265 				    parent->dv_cfdriver);
1266 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
1267 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1268 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
1269 	}
1270 	dev->dv_properties = prop_dictionary_create();
1271 	KASSERT(dev->dv_properties != NULL);
1272 
1273 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1274 	    "device-driver", dev->dv_cfdriver->cd_name);
1275 	prop_dictionary_set_uint16(dev->dv_properties,
1276 	    "device-unit", dev->dv_unit);
1277 
1278 	return (dev);
1279 }
1280 
1281 static void
1282 config_devdealloc(device_t dev)
1283 {
1284 
1285 	KASSERT(dev->dv_properties != NULL);
1286 	prop_object_release(dev->dv_properties);
1287 
1288 	if (dev->dv_activity_handlers)
1289 		panic("config_devdealloc with registered handlers");
1290 
1291 	if (dev->dv_locators)
1292 		free(dev->dv_locators, M_DEVBUF);
1293 
1294 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
1295 		free(dev->dv_private, M_DEVBUF);
1296 
1297 	free(dev, M_DEVBUF);
1298 }
1299 
1300 /*
1301  * Attach a found device.
1302  */
1303 device_t
1304 config_attach_loc(device_t parent, cfdata_t cf,
1305 	const int *locs, void *aux, cfprint_t print)
1306 {
1307 	device_t dev;
1308 	struct cftable *ct;
1309 	const char *drvname;
1310 
1311 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1312 	if (splash_progress_state)
1313 		splash_progress_update(splash_progress_state);
1314 #endif
1315 
1316 	dev = config_devalloc(parent, cf, locs);
1317 	if (!dev)
1318 		panic("config_attach: allocation of device softc failed");
1319 
1320 	/* XXX redundant - see below? */
1321 	if (cf->cf_fstate != FSTATE_STAR) {
1322 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1323 		cf->cf_fstate = FSTATE_FOUND;
1324 	}
1325 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1326 	  else
1327 		cf->cf_unit++;
1328 #endif
1329 
1330 	config_devlink(dev);
1331 
1332 	if (config_do_twiddle)
1333 		twiddle();
1334 	else
1335 		aprint_naive("Found ");
1336 	/*
1337 	 * We want the next two printfs for normal, verbose, and quiet,
1338 	 * but not silent (in which case, we're twiddling, instead).
1339 	 */
1340 	if (parent == ROOT) {
1341 		aprint_naive("%s (root)", device_xname(dev));
1342 		aprint_normal("%s (root)", device_xname(dev));
1343 	} else {
1344 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1345 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1346 		if (print)
1347 			(void) (*print)(aux, NULL);
1348 	}
1349 
1350 	/*
1351 	 * Before attaching, clobber any unfound devices that are
1352 	 * otherwise identical.
1353 	 * XXX code above is redundant?
1354 	 */
1355 	drvname = dev->dv_cfdriver->cd_name;
1356 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1357 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1358 			if (STREQ(cf->cf_name, drvname) &&
1359 			    cf->cf_unit == dev->dv_unit) {
1360 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1361 					cf->cf_fstate = FSTATE_FOUND;
1362 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1363 				/*
1364 				 * Bump the unit number on all starred cfdata
1365 				 * entries for this device.
1366 				 */
1367 				if (cf->cf_fstate == FSTATE_STAR)
1368 					cf->cf_unit++;
1369 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1370 			}
1371 		}
1372 	}
1373 #ifdef __HAVE_DEVICE_REGISTER
1374 	device_register(dev, aux);
1375 #endif
1376 
1377 	/* Let userland know */
1378 	devmon_report_device(dev, true);
1379 
1380 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1381 	if (splash_progress_state)
1382 		splash_progress_update(splash_progress_state);
1383 #endif
1384 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1385 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1386 	if (splash_progress_state)
1387 		splash_progress_update(splash_progress_state);
1388 #endif
1389 
1390 	if (!device_pmf_is_registered(dev))
1391 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1392 
1393 	config_process_deferred(&deferred_config_queue, dev);
1394 	return (dev);
1395 }
1396 
1397 device_t
1398 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1399 {
1400 
1401 	return (config_attach_loc(parent, cf, NULL, aux, print));
1402 }
1403 
1404 /*
1405  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1406  * way are silently inserted into the device tree, and their children
1407  * attached.
1408  *
1409  * Note that because pseudo-devices are attached silently, any information
1410  * the attach routine wishes to print should be prefixed with the device
1411  * name by the attach routine.
1412  */
1413 device_t
1414 config_attach_pseudo(cfdata_t cf)
1415 {
1416 	device_t dev;
1417 
1418 	dev = config_devalloc(ROOT, cf, NULL);
1419 	if (!dev)
1420 		return (NULL);
1421 
1422 	/* XXX mark busy in cfdata */
1423 
1424 	config_devlink(dev);
1425 
1426 #if 0	/* XXXJRT not yet */
1427 #ifdef __HAVE_DEVICE_REGISTER
1428 	device_register(dev, NULL);	/* like a root node */
1429 #endif
1430 #endif
1431 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1432 	config_process_deferred(&deferred_config_queue, dev);
1433 	return (dev);
1434 }
1435 
1436 /*
1437  * Detach a device.  Optionally forced (e.g. because of hardware
1438  * removal) and quiet.  Returns zero if successful, non-zero
1439  * (an error code) otherwise.
1440  *
1441  * Note that this code wants to be run from a process context, so
1442  * that the detach can sleep to allow processes which have a device
1443  * open to run and unwind their stacks.
1444  */
1445 int
1446 config_detach(device_t dev, int flags)
1447 {
1448 	struct cftable *ct;
1449 	cfdata_t cf;
1450 	const struct cfattach *ca;
1451 	struct cfdriver *cd;
1452 #ifdef DIAGNOSTIC
1453 	device_t d;
1454 #endif
1455 	int rv = 0;
1456 
1457 #ifdef DIAGNOSTIC
1458 	if (dev->dv_cfdata != NULL &&
1459 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
1460 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
1461 		panic("config_detach: bad device fstate");
1462 #endif
1463 	cd = dev->dv_cfdriver;
1464 	KASSERT(cd != NULL);
1465 
1466 	ca = dev->dv_cfattach;
1467 	KASSERT(ca != NULL);
1468 
1469 	KASSERT(curlwp != NULL);
1470 	mutex_enter(&alldevs_mtx);
1471 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1472 		;
1473 	else while (alldevs_nread != 0 ||
1474 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1475 		cv_wait(&alldevs_cv, &alldevs_mtx);
1476 	if (alldevs_nwrite++ == 0)
1477 		alldevs_writer = curlwp;
1478 	mutex_exit(&alldevs_mtx);
1479 
1480 	/*
1481 	 * Ensure the device is deactivated.  If the device doesn't
1482 	 * have an activation entry point, we allow DVF_ACTIVE to
1483 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
1484 	 * device is busy, and the detach fails.
1485 	 */
1486 	if (ca->ca_activate != NULL)
1487 		rv = config_deactivate(dev);
1488 
1489 	/*
1490 	 * Try to detach the device.  If that's not possible, then
1491 	 * we either panic() (for the forced but failed case), or
1492 	 * return an error.
1493 	 */
1494 	if (rv == 0) {
1495 		if (ca->ca_detach != NULL)
1496 			rv = (*ca->ca_detach)(dev, flags);
1497 		else
1498 			rv = EOPNOTSUPP;
1499 	}
1500 	if (rv != 0) {
1501 		if ((flags & DETACH_FORCE) == 0)
1502 			goto out;
1503 		else
1504 			panic("config_detach: forced detach of %s failed (%d)",
1505 			    device_xname(dev), rv);
1506 	}
1507 
1508 	/*
1509 	 * The device has now been successfully detached.
1510 	 */
1511 
1512 	/* Let userland know */
1513 	devmon_report_device(dev, false);
1514 
1515 #ifdef DIAGNOSTIC
1516 	/*
1517 	 * Sanity: If you're successfully detached, you should have no
1518 	 * children.  (Note that because children must be attached
1519 	 * after parents, we only need to search the latter part of
1520 	 * the list.)
1521 	 */
1522 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1523 	    d = TAILQ_NEXT(d, dv_list)) {
1524 		if (d->dv_parent == dev) {
1525 			printf("config_detach: detached device %s"
1526 			    " has children %s\n", device_xname(dev), device_xname(d));
1527 			panic("config_detach");
1528 		}
1529 	}
1530 #endif
1531 
1532 	/* notify the parent that the child is gone */
1533 	if (dev->dv_parent) {
1534 		device_t p = dev->dv_parent;
1535 		if (p->dv_cfattach->ca_childdetached)
1536 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1537 	}
1538 
1539 	/*
1540 	 * Mark cfdata to show that the unit can be reused, if possible.
1541 	 */
1542 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1543 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1544 			if (STREQ(cf->cf_name, cd->cd_name)) {
1545 				if (cf->cf_fstate == FSTATE_FOUND &&
1546 				    cf->cf_unit == dev->dv_unit)
1547 					cf->cf_fstate = FSTATE_NOTFOUND;
1548 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1549 				/*
1550 				 * Note that we can only re-use a starred
1551 				 * unit number if the unit being detached
1552 				 * had the last assigned unit number.
1553 				 */
1554 				if (cf->cf_fstate == FSTATE_STAR &&
1555 				    cf->cf_unit == dev->dv_unit + 1)
1556 					cf->cf_unit--;
1557 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1558 			}
1559 		}
1560 	}
1561 
1562 	config_devunlink(dev);
1563 
1564 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1565 		aprint_normal_dev(dev, "detached\n");
1566 
1567 	config_devdealloc(dev);
1568 
1569 out:
1570 	mutex_enter(&alldevs_mtx);
1571 	if (--alldevs_nwrite == 0)
1572 		alldevs_writer = NULL;
1573 	cv_signal(&alldevs_cv);
1574 	mutex_exit(&alldevs_mtx);
1575 	return rv;
1576 }
1577 
1578 int
1579 config_detach_children(device_t parent, int flags)
1580 {
1581 	device_t dv;
1582 	deviter_t di;
1583 	int error = 0;
1584 
1585 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1586 	     dv = deviter_next(&di)) {
1587 		if (device_parent(dv) != parent)
1588 			continue;
1589 		if ((error = config_detach(dv, flags)) != 0)
1590 			break;
1591 	}
1592 	deviter_release(&di);
1593 	return error;
1594 }
1595 
1596 int
1597 config_activate(device_t dev)
1598 {
1599 	const struct cfattach *ca = dev->dv_cfattach;
1600 	int rv = 0, oflags = dev->dv_flags;
1601 
1602 	if (ca->ca_activate == NULL)
1603 		return (EOPNOTSUPP);
1604 
1605 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1606 		dev->dv_flags |= DVF_ACTIVE;
1607 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1608 		if (rv)
1609 			dev->dv_flags = oflags;
1610 	}
1611 	return (rv);
1612 }
1613 
1614 int
1615 config_deactivate(device_t dev)
1616 {
1617 	const struct cfattach *ca = dev->dv_cfattach;
1618 	int rv = 0, oflags = dev->dv_flags;
1619 
1620 	if (ca->ca_activate == NULL)
1621 		return (EOPNOTSUPP);
1622 
1623 	if (dev->dv_flags & DVF_ACTIVE) {
1624 		dev->dv_flags &= ~DVF_ACTIVE;
1625 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1626 		if (rv)
1627 			dev->dv_flags = oflags;
1628 	}
1629 	return (rv);
1630 }
1631 
1632 /*
1633  * Defer the configuration of the specified device until all
1634  * of its parent's devices have been attached.
1635  */
1636 void
1637 config_defer(device_t dev, void (*func)(device_t))
1638 {
1639 	struct deferred_config *dc;
1640 
1641 	if (dev->dv_parent == NULL)
1642 		panic("config_defer: can't defer config of a root device");
1643 
1644 #ifdef DIAGNOSTIC
1645 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1646 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1647 		if (dc->dc_dev == dev)
1648 			panic("config_defer: deferred twice");
1649 	}
1650 #endif
1651 
1652 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1653 	if (dc == NULL)
1654 		panic("config_defer: unable to allocate callback");
1655 
1656 	dc->dc_dev = dev;
1657 	dc->dc_func = func;
1658 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1659 	config_pending_incr();
1660 }
1661 
1662 /*
1663  * Defer some autoconfiguration for a device until after interrupts
1664  * are enabled.
1665  */
1666 void
1667 config_interrupts(device_t dev, void (*func)(device_t))
1668 {
1669 	struct deferred_config *dc;
1670 
1671 	/*
1672 	 * If interrupts are enabled, callback now.
1673 	 */
1674 	if (cold == 0) {
1675 		(*func)(dev);
1676 		return;
1677 	}
1678 
1679 #ifdef DIAGNOSTIC
1680 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1681 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1682 		if (dc->dc_dev == dev)
1683 			panic("config_interrupts: deferred twice");
1684 	}
1685 #endif
1686 
1687 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1688 	if (dc == NULL)
1689 		panic("config_interrupts: unable to allocate callback");
1690 
1691 	dc->dc_dev = dev;
1692 	dc->dc_func = func;
1693 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1694 	config_pending_incr();
1695 }
1696 
1697 /*
1698  * Process a deferred configuration queue.
1699  */
1700 static void
1701 config_process_deferred(struct deferred_config_head *queue,
1702     device_t parent)
1703 {
1704 	struct deferred_config *dc, *ndc;
1705 
1706 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1707 		ndc = TAILQ_NEXT(dc, dc_queue);
1708 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1709 			TAILQ_REMOVE(queue, dc, dc_queue);
1710 			(*dc->dc_func)(dc->dc_dev);
1711 			free(dc, M_DEVBUF);
1712 			config_pending_decr();
1713 		}
1714 	}
1715 }
1716 
1717 /*
1718  * Manipulate the config_pending semaphore.
1719  */
1720 void
1721 config_pending_incr(void)
1722 {
1723 
1724 	mutex_enter(&config_misc_lock);
1725 	config_pending++;
1726 	mutex_exit(&config_misc_lock);
1727 }
1728 
1729 void
1730 config_pending_decr(void)
1731 {
1732 
1733 #ifdef DIAGNOSTIC
1734 	if (config_pending == 0)
1735 		panic("config_pending_decr: config_pending == 0");
1736 #endif
1737 	mutex_enter(&config_misc_lock);
1738 	config_pending--;
1739 	if (config_pending == 0)
1740 		cv_broadcast(&config_misc_cv);
1741 	mutex_exit(&config_misc_lock);
1742 }
1743 
1744 /*
1745  * Register a "finalization" routine.  Finalization routines are
1746  * called iteratively once all real devices have been found during
1747  * autoconfiguration, for as long as any one finalizer has done
1748  * any work.
1749  */
1750 int
1751 config_finalize_register(device_t dev, int (*fn)(device_t))
1752 {
1753 	struct finalize_hook *f;
1754 
1755 	/*
1756 	 * If finalization has already been done, invoke the
1757 	 * callback function now.
1758 	 */
1759 	if (config_finalize_done) {
1760 		while ((*fn)(dev) != 0)
1761 			/* loop */ ;
1762 	}
1763 
1764 	/* Ensure this isn't already on the list. */
1765 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1766 		if (f->f_func == fn && f->f_dev == dev)
1767 			return (EEXIST);
1768 	}
1769 
1770 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
1771 	f->f_func = fn;
1772 	f->f_dev = dev;
1773 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1774 
1775 	return (0);
1776 }
1777 
1778 void
1779 config_finalize(void)
1780 {
1781 	struct finalize_hook *f;
1782 	struct pdevinit *pdev;
1783 	extern struct pdevinit pdevinit[];
1784 	int errcnt, rv;
1785 
1786 	/*
1787 	 * Now that device driver threads have been created, wait for
1788 	 * them to finish any deferred autoconfiguration.
1789 	 */
1790 	mutex_enter(&config_misc_lock);
1791 	while (config_pending != 0)
1792 		cv_wait(&config_misc_cv, &config_misc_lock);
1793 	mutex_exit(&config_misc_lock);
1794 
1795 	/* Attach pseudo-devices. */
1796 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1797 		(*pdev->pdev_attach)(pdev->pdev_count);
1798 
1799 	/* Run the hooks until none of them does any work. */
1800 	do {
1801 		rv = 0;
1802 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1803 			rv |= (*f->f_func)(f->f_dev);
1804 	} while (rv != 0);
1805 
1806 	config_finalize_done = 1;
1807 
1808 	/* Now free all the hooks. */
1809 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1810 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1811 		free(f, M_TEMP);
1812 	}
1813 
1814 	errcnt = aprint_get_error_count();
1815 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1816 	    (boothowto & AB_VERBOSE) == 0) {
1817 		if (config_do_twiddle) {
1818 			config_do_twiddle = 0;
1819 			printf_nolog("done.\n");
1820 		}
1821 		if (errcnt != 0) {
1822 			printf("WARNING: %d error%s while detecting hardware; "
1823 			    "check system log.\n", errcnt,
1824 			    errcnt == 1 ? "" : "s");
1825 		}
1826 	}
1827 }
1828 
1829 /*
1830  * device_lookup:
1831  *
1832  *	Look up a device instance for a given driver.
1833  */
1834 void *
1835 device_lookup(cfdriver_t cd, int unit)
1836 {
1837 
1838 	if (unit < 0 || unit >= cd->cd_ndevs)
1839 		return (NULL);
1840 
1841 	return (cd->cd_devs[unit]);
1842 }
1843 
1844 /*
1845  * device_lookup:
1846  *
1847  *	Look up a device instance for a given driver.
1848  */
1849 void *
1850 device_lookup_private(cfdriver_t cd, int unit)
1851 {
1852 	device_t dv;
1853 
1854 	if (unit < 0 || unit >= cd->cd_ndevs)
1855 		return NULL;
1856 
1857 	if ((dv = cd->cd_devs[unit]) == NULL)
1858 		return NULL;
1859 
1860 	return dv->dv_private;
1861 }
1862 
1863 /*
1864  * Accessor functions for the device_t type.
1865  */
1866 devclass_t
1867 device_class(device_t dev)
1868 {
1869 
1870 	return (dev->dv_class);
1871 }
1872 
1873 cfdata_t
1874 device_cfdata(device_t dev)
1875 {
1876 
1877 	return (dev->dv_cfdata);
1878 }
1879 
1880 cfdriver_t
1881 device_cfdriver(device_t dev)
1882 {
1883 
1884 	return (dev->dv_cfdriver);
1885 }
1886 
1887 cfattach_t
1888 device_cfattach(device_t dev)
1889 {
1890 
1891 	return (dev->dv_cfattach);
1892 }
1893 
1894 int
1895 device_unit(device_t dev)
1896 {
1897 
1898 	return (dev->dv_unit);
1899 }
1900 
1901 const char *
1902 device_xname(device_t dev)
1903 {
1904 
1905 	return (dev->dv_xname);
1906 }
1907 
1908 device_t
1909 device_parent(device_t dev)
1910 {
1911 
1912 	return (dev->dv_parent);
1913 }
1914 
1915 bool
1916 device_is_active(device_t dev)
1917 {
1918 	int active_flags;
1919 
1920 	active_flags = DVF_ACTIVE;
1921 	active_flags |= DVF_CLASS_SUSPENDED;
1922 	active_flags |= DVF_DRIVER_SUSPENDED;
1923 	active_flags |= DVF_BUS_SUSPENDED;
1924 
1925 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1926 }
1927 
1928 bool
1929 device_is_enabled(device_t dev)
1930 {
1931 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1932 }
1933 
1934 bool
1935 device_has_power(device_t dev)
1936 {
1937 	int active_flags;
1938 
1939 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1940 
1941 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1942 }
1943 
1944 int
1945 device_locator(device_t dev, u_int locnum)
1946 {
1947 
1948 	KASSERT(dev->dv_locators != NULL);
1949 	return (dev->dv_locators[locnum]);
1950 }
1951 
1952 void *
1953 device_private(device_t dev)
1954 {
1955 
1956 	/*
1957 	 * The reason why device_private(NULL) is allowed is to simplify the
1958 	 * work of a lot of userspace request handlers (i.e., c/bdev
1959 	 * handlers) which grab cfdriver_t->cd_units[n].
1960 	 * It avoids having them test for it to be NULL and only then calling
1961 	 * device_private.
1962 	 */
1963 	return dev == NULL ? NULL : dev->dv_private;
1964 }
1965 
1966 prop_dictionary_t
1967 device_properties(device_t dev)
1968 {
1969 
1970 	return (dev->dv_properties);
1971 }
1972 
1973 /*
1974  * device_is_a:
1975  *
1976  *	Returns true if the device is an instance of the specified
1977  *	driver.
1978  */
1979 bool
1980 device_is_a(device_t dev, const char *dname)
1981 {
1982 
1983 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1984 }
1985 
1986 /*
1987  * device_find_by_xname:
1988  *
1989  *	Returns the device of the given name or NULL if it doesn't exist.
1990  */
1991 device_t
1992 device_find_by_xname(const char *name)
1993 {
1994 	device_t dv;
1995 	deviter_t di;
1996 
1997 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
1998 		if (strcmp(device_xname(dv), name) == 0)
1999 			break;
2000 	}
2001 	deviter_release(&di);
2002 
2003 	return dv;
2004 }
2005 
2006 /*
2007  * device_find_by_driver_unit:
2008  *
2009  *	Returns the device of the given driver name and unit or
2010  *	NULL if it doesn't exist.
2011  */
2012 device_t
2013 device_find_by_driver_unit(const char *name, int unit)
2014 {
2015 	struct cfdriver *cd;
2016 
2017 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2018 		return NULL;
2019 	return device_lookup(cd, unit);
2020 }
2021 
2022 /*
2023  * Power management related functions.
2024  */
2025 
2026 bool
2027 device_pmf_is_registered(device_t dev)
2028 {
2029 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2030 }
2031 
2032 bool
2033 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2034 {
2035 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2036 		return true;
2037 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2038 		return false;
2039 	if (*dev->dv_driver_suspend != NULL &&
2040 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2041 		return false;
2042 
2043 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2044 	return true;
2045 }
2046 
2047 bool
2048 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2049 {
2050 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2051 		return true;
2052 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2053 		return false;
2054 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2055 		return false;
2056 	if (*dev->dv_driver_resume != NULL &&
2057 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2058 		return false;
2059 
2060 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2061 	return true;
2062 }
2063 
2064 bool
2065 device_pmf_driver_shutdown(device_t dev, int how)
2066 {
2067 
2068 	if (*dev->dv_driver_shutdown != NULL &&
2069 	    !(*dev->dv_driver_shutdown)(dev, how))
2070 		return false;
2071 	return true;
2072 }
2073 
2074 bool
2075 device_pmf_driver_register(device_t dev,
2076     bool (*suspend)(device_t PMF_FN_PROTO),
2077     bool (*resume)(device_t PMF_FN_PROTO),
2078     bool (*shutdown)(device_t, int))
2079 {
2080 	pmf_private_t *pp;
2081 
2082 	if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
2083 		return false;
2084 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2085 	cv_init(&pp->pp_cv, "pmfsusp");
2086 	dev->dv_pmf_private = pp;
2087 
2088 	dev->dv_driver_suspend = suspend;
2089 	dev->dv_driver_resume = resume;
2090 	dev->dv_driver_shutdown = shutdown;
2091 	dev->dv_flags |= DVF_POWER_HANDLERS;
2092 	return true;
2093 }
2094 
2095 static const char *
2096 curlwp_name(void)
2097 {
2098 	if (curlwp->l_name != NULL)
2099 		return curlwp->l_name;
2100 	else
2101 		return curlwp->l_proc->p_comm;
2102 }
2103 
2104 void
2105 device_pmf_driver_deregister(device_t dev)
2106 {
2107 	pmf_private_t *pp = dev->dv_pmf_private;
2108 
2109 	dev->dv_driver_suspend = NULL;
2110 	dev->dv_driver_resume = NULL;
2111 
2112 	dev->dv_pmf_private = NULL;
2113 
2114 	mutex_enter(&pp->pp_mtx);
2115 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2116 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2117 		/* Wake a thread that waits for the lock.  That
2118 		 * thread will fail to acquire the lock, and then
2119 		 * it will wake the next thread that waits for the
2120 		 * lock, or else it will wake us.
2121 		 */
2122 		cv_signal(&pp->pp_cv);
2123 		pmflock_debug(dev, __func__, __LINE__);
2124 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2125 		pmflock_debug(dev, __func__, __LINE__);
2126 	}
2127 	mutex_exit(&pp->pp_mtx);
2128 
2129 	cv_destroy(&pp->pp_cv);
2130 	mutex_destroy(&pp->pp_mtx);
2131 	free(pp, M_PMFPRIV);
2132 }
2133 
2134 bool
2135 device_pmf_driver_child_register(device_t dev)
2136 {
2137 	device_t parent = device_parent(dev);
2138 
2139 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2140 		return true;
2141 	return (*parent->dv_driver_child_register)(dev);
2142 }
2143 
2144 void
2145 device_pmf_driver_set_child_register(device_t dev,
2146     bool (*child_register)(device_t))
2147 {
2148 	dev->dv_driver_child_register = child_register;
2149 }
2150 
2151 void
2152 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2153 {
2154 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2155 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2156 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2157 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2158 }
2159 
2160 bool
2161 device_is_self_suspended(device_t dev)
2162 {
2163 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2164 }
2165 
2166 void
2167 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2168 {
2169 	bool self = (flags & PMF_F_SELF) != 0;
2170 
2171 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2172 
2173 	if (!self)
2174 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2175 	else if (device_is_active(dev))
2176 		dev->dv_flags |= DVF_SELF_SUSPENDED;
2177 
2178 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2179 }
2180 
2181 static void
2182 pmflock_debug(device_t dev, const char *func, int line)
2183 {
2184 	pmf_private_t *pp = device_pmf_private(dev);
2185 
2186 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2187 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2188 	    dev->dv_flags);
2189 }
2190 
2191 static void
2192 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2193 {
2194 	pmf_private_t *pp = device_pmf_private(dev);
2195 
2196 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2197 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2198 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2199 }
2200 
2201 static bool
2202 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2203 {
2204 	pmf_private_t *pp = device_pmf_private(dev);
2205 
2206 	while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
2207 	       device_pmf_is_registered(dev)) {
2208 		pp->pp_nwait++;
2209 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2210 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2211 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2212 		pp->pp_nwait--;
2213 	}
2214 	if (!device_pmf_is_registered(dev)) {
2215 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2216 		/* We could not acquire the lock, but some other thread may
2217 		 * wait for it, also.  Wake that thread.
2218 		 */
2219 		cv_signal(&pp->pp_cv);
2220 		return false;
2221 	}
2222 	pp->pp_nlock++;
2223 	pp->pp_holder = curlwp;
2224 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2225 	return true;
2226 }
2227 
2228 bool
2229 device_pmf_lock(device_t dev PMF_FN_ARGS)
2230 {
2231 	bool rc;
2232 	pmf_private_t *pp = device_pmf_private(dev);
2233 
2234 	mutex_enter(&pp->pp_mtx);
2235 	rc = device_pmf_lock1(dev PMF_FN_CALL);
2236 	mutex_exit(&pp->pp_mtx);
2237 
2238 	return rc;
2239 }
2240 
2241 void
2242 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2243 {
2244 	pmf_private_t *pp = device_pmf_private(dev);
2245 
2246 	KASSERT(pp->pp_nlock > 0);
2247 	mutex_enter(&pp->pp_mtx);
2248 	if (--pp->pp_nlock == 0)
2249 		pp->pp_holder = NULL;
2250 	cv_signal(&pp->pp_cv);
2251 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2252 	mutex_exit(&pp->pp_mtx);
2253 }
2254 
2255 void *
2256 device_pmf_private(device_t dev)
2257 {
2258 	return dev->dv_pmf_private;
2259 }
2260 
2261 void *
2262 device_pmf_bus_private(device_t dev)
2263 {
2264 	return dev->dv_bus_private;
2265 }
2266 
2267 bool
2268 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2269 {
2270 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2271 		return true;
2272 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2273 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2274 		return false;
2275 	if (*dev->dv_bus_suspend != NULL &&
2276 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2277 		return false;
2278 
2279 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2280 	return true;
2281 }
2282 
2283 bool
2284 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2285 {
2286 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2287 		return true;
2288 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2289 		return false;
2290 	if (*dev->dv_bus_resume != NULL &&
2291 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2292 		return false;
2293 
2294 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2295 	return true;
2296 }
2297 
2298 bool
2299 device_pmf_bus_shutdown(device_t dev, int how)
2300 {
2301 
2302 	if (*dev->dv_bus_shutdown != NULL &&
2303 	    !(*dev->dv_bus_shutdown)(dev, how))
2304 		return false;
2305 	return true;
2306 }
2307 
2308 void
2309 device_pmf_bus_register(device_t dev, void *priv,
2310     bool (*suspend)(device_t PMF_FN_PROTO),
2311     bool (*resume)(device_t PMF_FN_PROTO),
2312     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2313 {
2314 	dev->dv_bus_private = priv;
2315 	dev->dv_bus_resume = resume;
2316 	dev->dv_bus_suspend = suspend;
2317 	dev->dv_bus_shutdown = shutdown;
2318 	dev->dv_bus_deregister = deregister;
2319 }
2320 
2321 void
2322 device_pmf_bus_deregister(device_t dev)
2323 {
2324 	if (dev->dv_bus_deregister == NULL)
2325 		return;
2326 	(*dev->dv_bus_deregister)(dev);
2327 	dev->dv_bus_private = NULL;
2328 	dev->dv_bus_suspend = NULL;
2329 	dev->dv_bus_resume = NULL;
2330 	dev->dv_bus_deregister = NULL;
2331 }
2332 
2333 void *
2334 device_pmf_class_private(device_t dev)
2335 {
2336 	return dev->dv_class_private;
2337 }
2338 
2339 bool
2340 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2341 {
2342 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2343 		return true;
2344 	if (*dev->dv_class_suspend != NULL &&
2345 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2346 		return false;
2347 
2348 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2349 	return true;
2350 }
2351 
2352 bool
2353 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2354 {
2355 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2356 		return true;
2357 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2358 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2359 		return false;
2360 	if (*dev->dv_class_resume != NULL &&
2361 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2362 		return false;
2363 
2364 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2365 	return true;
2366 }
2367 
2368 void
2369 device_pmf_class_register(device_t dev, void *priv,
2370     bool (*suspend)(device_t PMF_FN_PROTO),
2371     bool (*resume)(device_t PMF_FN_PROTO),
2372     void (*deregister)(device_t))
2373 {
2374 	dev->dv_class_private = priv;
2375 	dev->dv_class_suspend = suspend;
2376 	dev->dv_class_resume = resume;
2377 	dev->dv_class_deregister = deregister;
2378 }
2379 
2380 void
2381 device_pmf_class_deregister(device_t dev)
2382 {
2383 	if (dev->dv_class_deregister == NULL)
2384 		return;
2385 	(*dev->dv_class_deregister)(dev);
2386 	dev->dv_class_private = NULL;
2387 	dev->dv_class_suspend = NULL;
2388 	dev->dv_class_resume = NULL;
2389 	dev->dv_class_deregister = NULL;
2390 }
2391 
2392 bool
2393 device_active(device_t dev, devactive_t type)
2394 {
2395 	size_t i;
2396 
2397 	if (dev->dv_activity_count == 0)
2398 		return false;
2399 
2400 	for (i = 0; i < dev->dv_activity_count; ++i)
2401 		(*dev->dv_activity_handlers[i])(dev, type);
2402 
2403 	return true;
2404 }
2405 
2406 bool
2407 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2408 {
2409 	void (**new_handlers)(device_t, devactive_t);
2410 	void (**old_handlers)(device_t, devactive_t);
2411 	size_t i, new_size;
2412 	int s;
2413 
2414 	old_handlers = dev->dv_activity_handlers;
2415 
2416 	for (i = 0; i < dev->dv_activity_count; ++i) {
2417 		if (old_handlers[i] == handler)
2418 			panic("Double registering of idle handlers");
2419 	}
2420 
2421 	new_size = dev->dv_activity_count + 1;
2422 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
2423 
2424 	memcpy(new_handlers, old_handlers,
2425 	    sizeof(void *) * dev->dv_activity_count);
2426 	new_handlers[new_size - 1] = handler;
2427 
2428 	s = splhigh();
2429 	dev->dv_activity_count = new_size;
2430 	dev->dv_activity_handlers = new_handlers;
2431 	splx(s);
2432 
2433 	if (old_handlers != NULL)
2434 		free(old_handlers, M_DEVBUF);
2435 
2436 	return true;
2437 }
2438 
2439 void
2440 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2441 {
2442 	void (**new_handlers)(device_t, devactive_t);
2443 	void (**old_handlers)(device_t, devactive_t);
2444 	size_t i, new_size;
2445 	int s;
2446 
2447 	old_handlers = dev->dv_activity_handlers;
2448 
2449 	for (i = 0; i < dev->dv_activity_count; ++i) {
2450 		if (old_handlers[i] == handler)
2451 			break;
2452 	}
2453 
2454 	if (i == dev->dv_activity_count)
2455 		return; /* XXX panic? */
2456 
2457 	new_size = dev->dv_activity_count - 1;
2458 
2459 	if (new_size == 0) {
2460 		new_handlers = NULL;
2461 	} else {
2462 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
2463 		    M_WAITOK);
2464 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
2465 		memcpy(new_handlers + i, old_handlers + i + 1,
2466 		    sizeof(void *) * (new_size - i));
2467 	}
2468 
2469 	s = splhigh();
2470 	dev->dv_activity_count = new_size;
2471 	dev->dv_activity_handlers = new_handlers;
2472 	splx(s);
2473 
2474 	free(old_handlers, M_DEVBUF);
2475 }
2476 
2477 /*
2478  * Device Iteration
2479  *
2480  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2481  *     each device_t's in the device tree.
2482  *
2483  * deviter_init(di, flags): initialize the device iterator `di'
2484  *     to "walk" the device tree.  deviter_next(di) will return
2485  *     the first device_t in the device tree, or NULL if there are
2486  *     no devices.
2487  *
2488  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2489  *     caller intends to modify the device tree by calling
2490  *     config_detach(9) on devices in the order that the iterator
2491  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2492  *     nearest the "root" of the device tree to be returned, first;
2493  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2494  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2495  *     indicating both that deviter_init() should not respect any
2496  *     locks on the device tree, and that deviter_next(di) may run
2497  *     in more than one LWP before the walk has finished.
2498  *
2499  *     Only one DEVITER_F_RW iterator may be in the device tree at
2500  *     once.
2501  *
2502  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2503  *
2504  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2505  *     DEVITER_F_LEAVES_FIRST are used in combination.
2506  *
2507  * deviter_first(di, flags): initialize the device iterator `di'
2508  *     and return the first device_t in the device tree, or NULL
2509  *     if there are no devices.  The statement
2510  *
2511  *         dv = deviter_first(di);
2512  *
2513  *     is shorthand for
2514  *
2515  *         deviter_init(di);
2516  *         dv = deviter_next(di);
2517  *
2518  * deviter_next(di): return the next device_t in the device tree,
2519  *     or NULL if there are no more devices.  deviter_next(di)
2520  *     is undefined if `di' was not initialized with deviter_init() or
2521  *     deviter_first().
2522  *
2523  * deviter_release(di): stops iteration (subsequent calls to
2524  *     deviter_next() will return NULL), releases any locks and
2525  *     resources held by the device iterator.
2526  *
2527  * Device iteration does not return device_t's in any particular
2528  * order.  An iterator will never return the same device_t twice.
2529  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2530  * is called repeatedly on the same `di', it will eventually return
2531  * NULL.  It is ok to attach/detach devices during device iteration.
2532  */
2533 void
2534 deviter_init(deviter_t *di, deviter_flags_t flags)
2535 {
2536 	device_t dv;
2537 	bool rw;
2538 
2539 	mutex_enter(&alldevs_mtx);
2540 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2541 		flags |= DEVITER_F_RW;
2542 		alldevs_nwrite++;
2543 		alldevs_writer = NULL;
2544 		alldevs_nread = 0;
2545 	} else {
2546 		rw = (flags & DEVITER_F_RW) != 0;
2547 
2548 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2549 			;
2550 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2551 		       (rw && alldevs_nread != 0))
2552 			cv_wait(&alldevs_cv, &alldevs_mtx);
2553 
2554 		if (rw) {
2555 			if (alldevs_nwrite++ == 0)
2556 				alldevs_writer = curlwp;
2557 		} else
2558 			alldevs_nread++;
2559 	}
2560 	mutex_exit(&alldevs_mtx);
2561 
2562 	memset(di, 0, sizeof(*di));
2563 
2564 	di->di_flags = flags;
2565 
2566 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2567 	case DEVITER_F_LEAVES_FIRST:
2568 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2569 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2570 		break;
2571 	case DEVITER_F_ROOT_FIRST:
2572 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2573 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2574 		break;
2575 	default:
2576 		break;
2577 	}
2578 
2579 	deviter_reinit(di);
2580 }
2581 
2582 static void
2583 deviter_reinit(deviter_t *di)
2584 {
2585 	if ((di->di_flags & DEVITER_F_RW) != 0)
2586 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2587 	else
2588 		di->di_prev = TAILQ_FIRST(&alldevs);
2589 }
2590 
2591 device_t
2592 deviter_first(deviter_t *di, deviter_flags_t flags)
2593 {
2594 	deviter_init(di, flags);
2595 	return deviter_next(di);
2596 }
2597 
2598 static device_t
2599 deviter_next1(deviter_t *di)
2600 {
2601 	device_t dv;
2602 
2603 	dv = di->di_prev;
2604 
2605 	if (dv == NULL)
2606 		;
2607 	else if ((di->di_flags & DEVITER_F_RW) != 0)
2608 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2609 	else
2610 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2611 
2612 	return dv;
2613 }
2614 
2615 device_t
2616 deviter_next(deviter_t *di)
2617 {
2618 	device_t dv = NULL;
2619 
2620 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2621 	case 0:
2622 		return deviter_next1(di);
2623 	case DEVITER_F_LEAVES_FIRST:
2624 		while (di->di_curdepth >= 0) {
2625 			if ((dv = deviter_next1(di)) == NULL) {
2626 				di->di_curdepth--;
2627 				deviter_reinit(di);
2628 			} else if (dv->dv_depth == di->di_curdepth)
2629 				break;
2630 		}
2631 		return dv;
2632 	case DEVITER_F_ROOT_FIRST:
2633 		while (di->di_curdepth <= di->di_maxdepth) {
2634 			if ((dv = deviter_next1(di)) == NULL) {
2635 				di->di_curdepth++;
2636 				deviter_reinit(di);
2637 			} else if (dv->dv_depth == di->di_curdepth)
2638 				break;
2639 		}
2640 		return dv;
2641 	default:
2642 		return NULL;
2643 	}
2644 }
2645 
2646 void
2647 deviter_release(deviter_t *di)
2648 {
2649 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2650 
2651 	mutex_enter(&alldevs_mtx);
2652 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2653 		--alldevs_nwrite;
2654 	else {
2655 
2656 		if (rw) {
2657 			if (--alldevs_nwrite == 0)
2658 				alldevs_writer = NULL;
2659 		} else
2660 			--alldevs_nread;
2661 
2662 		cv_signal(&alldevs_cv);
2663 	}
2664 	mutex_exit(&alldevs_mtx);
2665 }
2666