1 /* $NetBSD: subr_autoconf.c,v 1.151 2008/05/27 17:50:03 ad Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.151 2008/05/27 17:50:03 ad Exp $"); 81 82 #include "opt_ddb.h" 83 #include "drvctl.h" 84 85 #include <sys/param.h> 86 #include <sys/device.h> 87 #include <sys/disklabel.h> 88 #include <sys/conf.h> 89 #include <sys/kauth.h> 90 #include <sys/malloc.h> 91 #include <sys/systm.h> 92 #include <sys/kernel.h> 93 #include <sys/errno.h> 94 #include <sys/proc.h> 95 #include <sys/reboot.h> 96 #include <sys/kthread.h> 97 #include <sys/buf.h> 98 #include <sys/dirent.h> 99 #include <sys/vnode.h> 100 #include <sys/mount.h> 101 #include <sys/namei.h> 102 #include <sys/unistd.h> 103 #include <sys/fcntl.h> 104 #include <sys/lockf.h> 105 #include <sys/callout.h> 106 #include <sys/mutex.h> 107 #include <sys/condvar.h> 108 #include <sys/devmon.h> 109 110 #include <sys/disk.h> 111 112 #include <machine/limits.h> 113 114 #include "opt_userconf.h" 115 #ifdef USERCONF 116 #include <sys/userconf.h> 117 #endif 118 119 #ifdef __i386__ 120 #include "opt_splash.h" 121 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 122 #include <dev/splash/splash.h> 123 extern struct splash_progress *splash_progress_state; 124 #endif 125 #endif 126 127 /* 128 * Autoconfiguration subroutines. 129 */ 130 131 typedef struct pmf_private { 132 int pp_nwait; 133 int pp_nlock; 134 lwp_t *pp_holder; 135 kmutex_t pp_mtx; 136 kcondvar_t pp_cv; 137 } pmf_private_t; 138 139 /* 140 * ioconf.c exports exactly two names: cfdata and cfroots. All system 141 * devices and drivers are found via these tables. 142 */ 143 extern struct cfdata cfdata[]; 144 extern const short cfroots[]; 145 146 /* 147 * List of all cfdriver structures. We use this to detect duplicates 148 * when other cfdrivers are loaded. 149 */ 150 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 151 extern struct cfdriver * const cfdriver_list_initial[]; 152 153 /* 154 * Initial list of cfattach's. 155 */ 156 extern const struct cfattachinit cfattachinit[]; 157 158 /* 159 * List of cfdata tables. We always have one such list -- the one 160 * built statically when the kernel was configured. 161 */ 162 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 163 static struct cftable initcftable; 164 165 #define ROOT ((device_t)NULL) 166 167 struct matchinfo { 168 cfsubmatch_t fn; 169 struct device *parent; 170 const int *locs; 171 void *aux; 172 struct cfdata *match; 173 int pri; 174 }; 175 176 static char *number(char *, int); 177 static void mapply(struct matchinfo *, cfdata_t); 178 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 179 static void config_devdealloc(device_t); 180 static void config_makeroom(int, struct cfdriver *); 181 static void config_devlink(device_t); 182 static void config_devunlink(device_t); 183 184 static void pmflock_debug(device_t, const char *, int); 185 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO); 186 187 static device_t deviter_next1(deviter_t *); 188 static void deviter_reinit(deviter_t *); 189 190 struct deferred_config { 191 TAILQ_ENTRY(deferred_config) dc_queue; 192 device_t dc_dev; 193 void (*dc_func)(device_t); 194 }; 195 196 TAILQ_HEAD(deferred_config_head, deferred_config); 197 198 struct deferred_config_head deferred_config_queue = 199 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 200 struct deferred_config_head interrupt_config_queue = 201 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 202 int interrupt_config_threads = 8; 203 204 static void config_process_deferred(struct deferred_config_head *, device_t); 205 206 /* Hooks to finalize configuration once all real devices have been found. */ 207 struct finalize_hook { 208 TAILQ_ENTRY(finalize_hook) f_list; 209 int (*f_func)(device_t); 210 device_t f_dev; 211 }; 212 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 213 TAILQ_HEAD_INITIALIZER(config_finalize_list); 214 static int config_finalize_done; 215 216 /* list of all devices */ 217 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 218 kcondvar_t alldevs_cv; 219 kmutex_t alldevs_mtx; 220 static int alldevs_nread = 0; 221 static int alldevs_nwrite = 0; 222 static lwp_t *alldevs_writer = NULL; 223 224 static int config_pending; /* semaphore for mountroot */ 225 static kmutex_t config_misc_lock; 226 static kcondvar_t config_misc_cv; 227 228 #define STREQ(s1, s2) \ 229 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 230 231 static int config_initialized; /* config_init() has been called. */ 232 233 static int config_do_twiddle; 234 235 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage"); 236 237 struct vnode * 238 opendisk(struct device *dv) 239 { 240 int bmajor, bminor; 241 struct vnode *tmpvn; 242 int error; 243 dev_t dev; 244 245 /* 246 * Lookup major number for disk block device. 247 */ 248 bmajor = devsw_name2blk(device_xname(dv), NULL, 0); 249 if (bmajor == -1) 250 return NULL; 251 252 bminor = minor(device_unit(dv)); 253 /* 254 * Fake a temporary vnode for the disk, open it, and read 255 * and hash the sectors. 256 */ 257 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) : 258 MAKEDISKDEV(bmajor, bminor, RAW_PART); 259 if (bdevvp(dev, &tmpvn)) 260 panic("%s: can't alloc vnode for %s", __func__, 261 device_xname(dv)); 262 error = VOP_OPEN(tmpvn, FREAD, NOCRED); 263 if (error) { 264 #ifndef DEBUG 265 /* 266 * Ignore errors caused by missing device, partition, 267 * or medium. 268 */ 269 if (error != ENXIO && error != ENODEV) 270 #endif 271 printf("%s: can't open dev %s (%d)\n", 272 __func__, device_xname(dv), error); 273 vput(tmpvn); 274 return NULL; 275 } 276 277 return tmpvn; 278 } 279 280 int 281 config_handle_wedges(struct device *dv, int par) 282 { 283 struct dkwedge_list wl; 284 struct dkwedge_info *wi; 285 struct vnode *vn; 286 char diskname[16]; 287 int i, error; 288 289 if ((vn = opendisk(dv)) == NULL) 290 return -1; 291 292 wl.dkwl_bufsize = sizeof(*wi) * 16; 293 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK); 294 295 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED); 296 VOP_CLOSE(vn, FREAD, NOCRED); 297 vput(vn); 298 if (error) { 299 #ifdef DEBUG_WEDGE 300 printf("%s: List wedges returned %d\n", 301 device_xname(dv), error); 302 #endif 303 free(wi, M_TEMP); 304 return -1; 305 } 306 307 #ifdef DEBUG_WEDGE 308 printf("%s: Returned %u(%u) wedges\n", device_xname(dv), 309 wl.dkwl_nwedges, wl.dkwl_ncopied); 310 #endif 311 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv), 312 par + 'a'); 313 314 for (i = 0; i < wl.dkwl_ncopied; i++) { 315 #ifdef DEBUG_WEDGE 316 printf("%s: Looking for %s in %s\n", 317 device_xname(dv), diskname, wi[i].dkw_wname); 318 #endif 319 if (strcmp(wi[i].dkw_wname, diskname) == 0) 320 break; 321 } 322 323 if (i == wl.dkwl_ncopied) { 324 #ifdef DEBUG_WEDGE 325 printf("%s: Cannot find wedge with parent %s\n", 326 device_xname(dv), diskname); 327 #endif 328 free(wi, M_TEMP); 329 return -1; 330 } 331 332 #ifdef DEBUG_WEDGE 333 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n", 334 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname, 335 (unsigned long long)wi[i].dkw_offset, 336 (unsigned long long)wi[i].dkw_size); 337 #endif 338 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size); 339 free(wi, M_TEMP); 340 return 0; 341 } 342 343 /* 344 * Initialize the autoconfiguration data structures. Normally this 345 * is done by configure(), but some platforms need to do this very 346 * early (to e.g. initialize the console). 347 */ 348 void 349 config_init(void) 350 { 351 const struct cfattachinit *cfai; 352 int i, j; 353 354 if (config_initialized) 355 return; 356 357 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE); 358 cv_init(&alldevs_cv, "alldevs"); 359 360 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 361 cv_init(&config_misc_cv, "cfgmisc"); 362 363 /* allcfdrivers is statically initialized. */ 364 for (i = 0; cfdriver_list_initial[i] != NULL; i++) { 365 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) 366 panic("configure: duplicate `%s' drivers", 367 cfdriver_list_initial[i]->cd_name); 368 } 369 370 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { 371 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 372 if (config_cfattach_attach(cfai->cfai_name, 373 cfai->cfai_list[j]) != 0) 374 panic("configure: duplicate `%s' attachment " 375 "of `%s' driver", 376 cfai->cfai_list[j]->ca_name, 377 cfai->cfai_name); 378 } 379 } 380 381 initcftable.ct_cfdata = cfdata; 382 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 383 384 config_initialized = 1; 385 } 386 387 void 388 config_deferred(device_t dev) 389 { 390 config_process_deferred(&deferred_config_queue, dev); 391 config_process_deferred(&interrupt_config_queue, dev); 392 } 393 394 static void 395 config_interrupts_thread(void *cookie) 396 { 397 struct deferred_config *dc; 398 399 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 400 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 401 (*dc->dc_func)(dc->dc_dev); 402 free(dc, M_DEVBUF); 403 config_pending_decr(); 404 } 405 kthread_exit(0); 406 } 407 408 /* 409 * Configure the system's hardware. 410 */ 411 void 412 configure(void) 413 { 414 extern void ssp_init(void); 415 int i, s; 416 417 /* Initialize data structures. */ 418 config_init(); 419 pmf_init(); 420 #if NDRVCTL > 0 421 drvctl_init(); 422 #endif 423 424 #ifdef USERCONF 425 if (boothowto & RB_USERCONF) 426 user_config(); 427 #endif 428 429 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 430 config_do_twiddle = 1; 431 printf_nolog("Detecting hardware..."); 432 } 433 434 /* 435 * Do the machine-dependent portion of autoconfiguration. This 436 * sets the configuration machinery here in motion by "finding" 437 * the root bus. When this function returns, we expect interrupts 438 * to be enabled. 439 */ 440 cpu_configure(); 441 442 /* Initialize SSP. */ 443 ssp_init(); 444 445 /* 446 * Now that we've found all the hardware, start the real time 447 * and statistics clocks. 448 */ 449 initclocks(); 450 451 cold = 0; /* clocks are running, we're warm now! */ 452 s = splsched(); 453 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING; 454 splx(s); 455 456 /* Boot the secondary processors. */ 457 mp_online = true; 458 #if defined(MULTIPROCESSOR) 459 cpu_boot_secondary_processors(); 460 #endif 461 462 /* Setup the runqueues and scheduler. */ 463 runq_init(); 464 sched_init(); 465 466 /* 467 * Create threads to call back and finish configuration for 468 * devices that want interrupts enabled. 469 */ 470 for (i = 0; i < interrupt_config_threads; i++) { 471 (void)kthread_create(PRI_NONE, 0, NULL, 472 config_interrupts_thread, NULL, NULL, "config"); 473 } 474 475 /* Get the threads going and into any sleeps before continuing. */ 476 yield(); 477 478 /* Lock the kernel on behalf of lwp0. */ 479 KERNEL_LOCK(1, NULL); 480 } 481 482 /* 483 * Announce device attach/detach to userland listeners. 484 */ 485 static void 486 devmon_report_device(device_t dev, bool isattach) 487 { 488 #if NDRVCTL > 0 489 prop_dictionary_t ev; 490 const char *parent; 491 const char *what; 492 device_t pdev = device_parent(dev); 493 494 ev = prop_dictionary_create(); 495 if (ev == NULL) 496 return; 497 498 what = (isattach ? "device-attach" : "device-detach"); 499 parent = (pdev == NULL ? "root" : device_xname(pdev)); 500 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 501 !prop_dictionary_set_cstring(ev, "parent", parent)) { 502 prop_object_release(ev); 503 return; 504 } 505 506 devmon_insert(what, ev); 507 #endif 508 } 509 510 /* 511 * Add a cfdriver to the system. 512 */ 513 int 514 config_cfdriver_attach(struct cfdriver *cd) 515 { 516 struct cfdriver *lcd; 517 518 /* Make sure this driver isn't already in the system. */ 519 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 520 if (STREQ(lcd->cd_name, cd->cd_name)) 521 return (EEXIST); 522 } 523 524 LIST_INIT(&cd->cd_attach); 525 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 526 527 return (0); 528 } 529 530 /* 531 * Remove a cfdriver from the system. 532 */ 533 int 534 config_cfdriver_detach(struct cfdriver *cd) 535 { 536 int i; 537 538 /* Make sure there are no active instances. */ 539 for (i = 0; i < cd->cd_ndevs; i++) { 540 if (cd->cd_devs[i] != NULL) 541 return (EBUSY); 542 } 543 544 /* ...and no attachments loaded. */ 545 if (LIST_EMPTY(&cd->cd_attach) == 0) 546 return (EBUSY); 547 548 LIST_REMOVE(cd, cd_list); 549 550 KASSERT(cd->cd_devs == NULL); 551 552 return (0); 553 } 554 555 /* 556 * Look up a cfdriver by name. 557 */ 558 struct cfdriver * 559 config_cfdriver_lookup(const char *name) 560 { 561 struct cfdriver *cd; 562 563 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 564 if (STREQ(cd->cd_name, name)) 565 return (cd); 566 } 567 568 return (NULL); 569 } 570 571 /* 572 * Add a cfattach to the specified driver. 573 */ 574 int 575 config_cfattach_attach(const char *driver, struct cfattach *ca) 576 { 577 struct cfattach *lca; 578 struct cfdriver *cd; 579 580 cd = config_cfdriver_lookup(driver); 581 if (cd == NULL) 582 return (ESRCH); 583 584 /* Make sure this attachment isn't already on this driver. */ 585 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 586 if (STREQ(lca->ca_name, ca->ca_name)) 587 return (EEXIST); 588 } 589 590 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 591 592 return (0); 593 } 594 595 /* 596 * Remove a cfattach from the specified driver. 597 */ 598 int 599 config_cfattach_detach(const char *driver, struct cfattach *ca) 600 { 601 struct cfdriver *cd; 602 device_t dev; 603 int i; 604 605 cd = config_cfdriver_lookup(driver); 606 if (cd == NULL) 607 return (ESRCH); 608 609 /* Make sure there are no active instances. */ 610 for (i = 0; i < cd->cd_ndevs; i++) { 611 if ((dev = cd->cd_devs[i]) == NULL) 612 continue; 613 if (dev->dv_cfattach == ca) 614 return (EBUSY); 615 } 616 617 LIST_REMOVE(ca, ca_list); 618 619 return (0); 620 } 621 622 /* 623 * Look up a cfattach by name. 624 */ 625 static struct cfattach * 626 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 627 { 628 struct cfattach *ca; 629 630 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 631 if (STREQ(ca->ca_name, atname)) 632 return (ca); 633 } 634 635 return (NULL); 636 } 637 638 /* 639 * Look up a cfattach by driver/attachment name. 640 */ 641 struct cfattach * 642 config_cfattach_lookup(const char *name, const char *atname) 643 { 644 struct cfdriver *cd; 645 646 cd = config_cfdriver_lookup(name); 647 if (cd == NULL) 648 return (NULL); 649 650 return (config_cfattach_lookup_cd(cd, atname)); 651 } 652 653 /* 654 * Apply the matching function and choose the best. This is used 655 * a few times and we want to keep the code small. 656 */ 657 static void 658 mapply(struct matchinfo *m, cfdata_t cf) 659 { 660 int pri; 661 662 if (m->fn != NULL) { 663 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 664 } else { 665 pri = config_match(m->parent, cf, m->aux); 666 } 667 if (pri > m->pri) { 668 m->match = cf; 669 m->pri = pri; 670 } 671 } 672 673 int 674 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 675 { 676 const struct cfiattrdata *ci; 677 const struct cflocdesc *cl; 678 int nlocs, i; 679 680 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver); 681 KASSERT(ci); 682 nlocs = ci->ci_loclen; 683 for (i = 0; i < nlocs; i++) { 684 cl = &ci->ci_locdesc[i]; 685 /* !cld_defaultstr means no default value */ 686 if ((!(cl->cld_defaultstr) 687 || (cf->cf_loc[i] != cl->cld_default)) 688 && cf->cf_loc[i] != locs[i]) 689 return (0); 690 } 691 692 return (config_match(parent, cf, aux)); 693 } 694 695 /* 696 * Helper function: check whether the driver supports the interface attribute 697 * and return its descriptor structure. 698 */ 699 static const struct cfiattrdata * 700 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 701 { 702 const struct cfiattrdata * const *cpp; 703 704 if (cd->cd_attrs == NULL) 705 return (0); 706 707 for (cpp = cd->cd_attrs; *cpp; cpp++) { 708 if (STREQ((*cpp)->ci_name, ia)) { 709 /* Match. */ 710 return (*cpp); 711 } 712 } 713 return (0); 714 } 715 716 /* 717 * Lookup an interface attribute description by name. 718 * If the driver is given, consider only its supported attributes. 719 */ 720 const struct cfiattrdata * 721 cfiattr_lookup(const char *name, const struct cfdriver *cd) 722 { 723 const struct cfdriver *d; 724 const struct cfiattrdata *ia; 725 726 if (cd) 727 return (cfdriver_get_iattr(cd, name)); 728 729 LIST_FOREACH(d, &allcfdrivers, cd_list) { 730 ia = cfdriver_get_iattr(d, name); 731 if (ia) 732 return (ia); 733 } 734 return (0); 735 } 736 737 /* 738 * Determine if `parent' is a potential parent for a device spec based 739 * on `cfp'. 740 */ 741 static int 742 cfparent_match(const device_t parent, const struct cfparent *cfp) 743 { 744 struct cfdriver *pcd; 745 746 /* We don't match root nodes here. */ 747 if (cfp == NULL) 748 return (0); 749 750 pcd = parent->dv_cfdriver; 751 KASSERT(pcd != NULL); 752 753 /* 754 * First, ensure this parent has the correct interface 755 * attribute. 756 */ 757 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 758 return (0); 759 760 /* 761 * If no specific parent device instance was specified (i.e. 762 * we're attaching to the attribute only), we're done! 763 */ 764 if (cfp->cfp_parent == NULL) 765 return (1); 766 767 /* 768 * Check the parent device's name. 769 */ 770 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 771 return (0); /* not the same parent */ 772 773 /* 774 * Make sure the unit number matches. 775 */ 776 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 777 cfp->cfp_unit == parent->dv_unit) 778 return (1); 779 780 /* Unit numbers don't match. */ 781 return (0); 782 } 783 784 /* 785 * Helper for config_cfdata_attach(): check all devices whether it could be 786 * parent any attachment in the config data table passed, and rescan. 787 */ 788 static void 789 rescan_with_cfdata(const struct cfdata *cf) 790 { 791 device_t d; 792 const struct cfdata *cf1; 793 deviter_t di; 794 795 796 /* 797 * "alldevs" is likely longer than an LKM's cfdata, so make it 798 * the outer loop. 799 */ 800 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 801 802 if (!(d->dv_cfattach->ca_rescan)) 803 continue; 804 805 for (cf1 = cf; cf1->cf_name; cf1++) { 806 807 if (!cfparent_match(d, cf1->cf_pspec)) 808 continue; 809 810 (*d->dv_cfattach->ca_rescan)(d, 811 cf1->cf_pspec->cfp_iattr, cf1->cf_loc); 812 } 813 } 814 deviter_release(&di); 815 } 816 817 /* 818 * Attach a supplemental config data table and rescan potential 819 * parent devices if required. 820 */ 821 int 822 config_cfdata_attach(cfdata_t cf, int scannow) 823 { 824 struct cftable *ct; 825 826 ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK); 827 ct->ct_cfdata = cf; 828 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 829 830 if (scannow) 831 rescan_with_cfdata(cf); 832 833 return (0); 834 } 835 836 /* 837 * Helper for config_cfdata_detach: check whether a device is 838 * found through any attachment in the config data table. 839 */ 840 static int 841 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 842 { 843 const struct cfdata *cf1; 844 845 for (cf1 = cf; cf1->cf_name; cf1++) 846 if (d->dv_cfdata == cf1) 847 return (1); 848 849 return (0); 850 } 851 852 /* 853 * Detach a supplemental config data table. Detach all devices found 854 * through that table (and thus keeping references to it) before. 855 */ 856 int 857 config_cfdata_detach(cfdata_t cf) 858 { 859 device_t d; 860 int error = 0; 861 struct cftable *ct; 862 deviter_t di; 863 864 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 865 d = deviter_next(&di)) { 866 if (!dev_in_cfdata(d, cf)) 867 continue; 868 if ((error = config_detach(d, 0)) != 0) 869 break; 870 } 871 deviter_release(&di); 872 if (error) { 873 aprint_error_dev(d, "unable to detach instance\n"); 874 return error; 875 } 876 877 TAILQ_FOREACH(ct, &allcftables, ct_list) { 878 if (ct->ct_cfdata == cf) { 879 TAILQ_REMOVE(&allcftables, ct, ct_list); 880 free(ct, M_DEVBUF); 881 return (0); 882 } 883 } 884 885 /* not found -- shouldn't happen */ 886 return (EINVAL); 887 } 888 889 /* 890 * Invoke the "match" routine for a cfdata entry on behalf of 891 * an external caller, usually a "submatch" routine. 892 */ 893 int 894 config_match(device_t parent, cfdata_t cf, void *aux) 895 { 896 struct cfattach *ca; 897 898 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 899 if (ca == NULL) { 900 /* No attachment for this entry, oh well. */ 901 return (0); 902 } 903 904 return ((*ca->ca_match)(parent, cf, aux)); 905 } 906 907 /* 908 * Iterate over all potential children of some device, calling the given 909 * function (default being the child's match function) for each one. 910 * Nonzero returns are matches; the highest value returned is considered 911 * the best match. Return the `found child' if we got a match, or NULL 912 * otherwise. The `aux' pointer is simply passed on through. 913 * 914 * Note that this function is designed so that it can be used to apply 915 * an arbitrary function to all potential children (its return value 916 * can be ignored). 917 */ 918 cfdata_t 919 config_search_loc(cfsubmatch_t fn, device_t parent, 920 const char *ifattr, const int *locs, void *aux) 921 { 922 struct cftable *ct; 923 cfdata_t cf; 924 struct matchinfo m; 925 926 KASSERT(config_initialized); 927 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 928 929 m.fn = fn; 930 m.parent = parent; 931 m.locs = locs; 932 m.aux = aux; 933 m.match = NULL; 934 m.pri = 0; 935 936 TAILQ_FOREACH(ct, &allcftables, ct_list) { 937 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 938 939 /* We don't match root nodes here. */ 940 if (!cf->cf_pspec) 941 continue; 942 943 /* 944 * Skip cf if no longer eligible, otherwise scan 945 * through parents for one matching `parent', and 946 * try match function. 947 */ 948 if (cf->cf_fstate == FSTATE_FOUND) 949 continue; 950 if (cf->cf_fstate == FSTATE_DNOTFOUND || 951 cf->cf_fstate == FSTATE_DSTAR) 952 continue; 953 954 /* 955 * If an interface attribute was specified, 956 * consider only children which attach to 957 * that attribute. 958 */ 959 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr)) 960 continue; 961 962 if (cfparent_match(parent, cf->cf_pspec)) 963 mapply(&m, cf); 964 } 965 } 966 return (m.match); 967 } 968 969 cfdata_t 970 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 971 void *aux) 972 { 973 974 return (config_search_loc(fn, parent, ifattr, NULL, aux)); 975 } 976 977 /* 978 * Find the given root device. 979 * This is much like config_search, but there is no parent. 980 * Don't bother with multiple cfdata tables; the root node 981 * must always be in the initial table. 982 */ 983 cfdata_t 984 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 985 { 986 cfdata_t cf; 987 const short *p; 988 struct matchinfo m; 989 990 m.fn = fn; 991 m.parent = ROOT; 992 m.aux = aux; 993 m.match = NULL; 994 m.pri = 0; 995 m.locs = 0; 996 /* 997 * Look at root entries for matching name. We do not bother 998 * with found-state here since only one root should ever be 999 * searched (and it must be done first). 1000 */ 1001 for (p = cfroots; *p >= 0; p++) { 1002 cf = &cfdata[*p]; 1003 if (strcmp(cf->cf_name, rootname) == 0) 1004 mapply(&m, cf); 1005 } 1006 return (m.match); 1007 } 1008 1009 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1010 1011 /* 1012 * The given `aux' argument describes a device that has been found 1013 * on the given parent, but not necessarily configured. Locate the 1014 * configuration data for that device (using the submatch function 1015 * provided, or using candidates' cd_match configuration driver 1016 * functions) and attach it, and return true. If the device was 1017 * not configured, call the given `print' function and return 0. 1018 */ 1019 device_t 1020 config_found_sm_loc(device_t parent, 1021 const char *ifattr, const int *locs, void *aux, 1022 cfprint_t print, cfsubmatch_t submatch) 1023 { 1024 cfdata_t cf; 1025 1026 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1027 if (splash_progress_state) 1028 splash_progress_update(splash_progress_state); 1029 #endif 1030 1031 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1032 return(config_attach_loc(parent, cf, locs, aux, print)); 1033 if (print) { 1034 if (config_do_twiddle) 1035 twiddle(); 1036 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1037 } 1038 1039 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1040 if (splash_progress_state) 1041 splash_progress_update(splash_progress_state); 1042 #endif 1043 1044 return (NULL); 1045 } 1046 1047 device_t 1048 config_found_ia(device_t parent, const char *ifattr, void *aux, 1049 cfprint_t print) 1050 { 1051 1052 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL)); 1053 } 1054 1055 device_t 1056 config_found(device_t parent, void *aux, cfprint_t print) 1057 { 1058 1059 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL)); 1060 } 1061 1062 /* 1063 * As above, but for root devices. 1064 */ 1065 device_t 1066 config_rootfound(const char *rootname, void *aux) 1067 { 1068 cfdata_t cf; 1069 1070 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 1071 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL)); 1072 aprint_error("root device %s not configured\n", rootname); 1073 return (NULL); 1074 } 1075 1076 /* just like sprintf(buf, "%d") except that it works from the end */ 1077 static char * 1078 number(char *ep, int n) 1079 { 1080 1081 *--ep = 0; 1082 while (n >= 10) { 1083 *--ep = (n % 10) + '0'; 1084 n /= 10; 1085 } 1086 *--ep = n + '0'; 1087 return (ep); 1088 } 1089 1090 /* 1091 * Expand the size of the cd_devs array if necessary. 1092 */ 1093 static void 1094 config_makeroom(int n, struct cfdriver *cd) 1095 { 1096 int old, new; 1097 void **nsp; 1098 1099 if (n < cd->cd_ndevs) 1100 return; 1101 1102 /* 1103 * Need to expand the array. 1104 */ 1105 old = cd->cd_ndevs; 1106 if (old == 0) 1107 new = 4; 1108 else 1109 new = old * 2; 1110 while (new <= n) 1111 new *= 2; 1112 cd->cd_ndevs = new; 1113 nsp = malloc(new * sizeof(void *), M_DEVBUF, 1114 cold ? M_NOWAIT : M_WAITOK); 1115 if (nsp == NULL) 1116 panic("config_attach: %sing dev array", 1117 old != 0 ? "expand" : "creat"); 1118 memset(nsp + old, 0, (new - old) * sizeof(void *)); 1119 if (old != 0) { 1120 memcpy(nsp, cd->cd_devs, old * sizeof(void *)); 1121 free(cd->cd_devs, M_DEVBUF); 1122 } 1123 cd->cd_devs = nsp; 1124 } 1125 1126 static void 1127 config_devlink(device_t dev) 1128 { 1129 struct cfdriver *cd = dev->dv_cfdriver; 1130 1131 /* put this device in the devices array */ 1132 config_makeroom(dev->dv_unit, cd); 1133 if (cd->cd_devs[dev->dv_unit]) 1134 panic("config_attach: duplicate %s", device_xname(dev)); 1135 cd->cd_devs[dev->dv_unit] = dev; 1136 1137 /* It is safe to add a device to the tail of the list while 1138 * readers are in the list, but not while a writer is in 1139 * the list. Wait for any writer to complete. 1140 */ 1141 mutex_enter(&alldevs_mtx); 1142 while (alldevs_nwrite != 0 && alldevs_writer != curlwp) 1143 cv_wait(&alldevs_cv, &alldevs_mtx); 1144 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */ 1145 cv_signal(&alldevs_cv); 1146 mutex_exit(&alldevs_mtx); 1147 } 1148 1149 static void 1150 config_devunlink(device_t dev) 1151 { 1152 struct cfdriver *cd = dev->dv_cfdriver; 1153 int i; 1154 1155 /* Unlink from device list. */ 1156 TAILQ_REMOVE(&alldevs, dev, dv_list); 1157 1158 /* Remove from cfdriver's array. */ 1159 cd->cd_devs[dev->dv_unit] = NULL; 1160 1161 /* 1162 * If the device now has no units in use, deallocate its softc array. 1163 */ 1164 for (i = 0; i < cd->cd_ndevs; i++) 1165 if (cd->cd_devs[i] != NULL) 1166 break; 1167 if (i == cd->cd_ndevs) { /* nothing found; deallocate */ 1168 free(cd->cd_devs, M_DEVBUF); 1169 cd->cd_devs = NULL; 1170 cd->cd_ndevs = 0; 1171 } 1172 } 1173 1174 static device_t 1175 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1176 { 1177 struct cfdriver *cd; 1178 struct cfattach *ca; 1179 size_t lname, lunit; 1180 const char *xunit; 1181 int myunit; 1182 char num[10]; 1183 device_t dev; 1184 void *dev_private; 1185 const struct cfiattrdata *ia; 1186 1187 cd = config_cfdriver_lookup(cf->cf_name); 1188 if (cd == NULL) 1189 return (NULL); 1190 1191 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1192 if (ca == NULL) 1193 return (NULL); 1194 1195 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1196 ca->ca_devsize < sizeof(struct device)) 1197 panic("config_devalloc: %s", cf->cf_atname); 1198 1199 #ifndef __BROKEN_CONFIG_UNIT_USAGE 1200 if (cf->cf_fstate == FSTATE_STAR) { 1201 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++) 1202 if (cd->cd_devs[myunit] == NULL) 1203 break; 1204 /* 1205 * myunit is now the unit of the first NULL device pointer, 1206 * or max(cd->cd_ndevs,cf->cf_unit). 1207 */ 1208 } else { 1209 myunit = cf->cf_unit; 1210 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL) 1211 return (NULL); 1212 } 1213 #else 1214 myunit = cf->cf_unit; 1215 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */ 1216 1217 /* compute length of name and decimal expansion of unit number */ 1218 lname = strlen(cd->cd_name); 1219 xunit = number(&num[sizeof(num)], myunit); 1220 lunit = &num[sizeof(num)] - xunit; 1221 if (lname + lunit > sizeof(dev->dv_xname)) 1222 panic("config_devalloc: device name too long"); 1223 1224 /* get memory for all device vars */ 1225 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1226 if (ca->ca_devsize > 0) { 1227 dev_private = malloc(ca->ca_devsize, M_DEVBUF, 1228 M_ZERO | (cold ? M_NOWAIT : M_WAITOK)); 1229 if (dev_private == NULL) 1230 panic("config_devalloc: memory allocation for device softc failed"); 1231 } else { 1232 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1233 dev_private = NULL; 1234 } 1235 1236 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1237 dev = malloc(sizeof(struct device), M_DEVBUF, 1238 M_ZERO | (cold ? M_NOWAIT : M_WAITOK)); 1239 } else { 1240 dev = dev_private; 1241 } 1242 if (dev == NULL) 1243 panic("config_devalloc: memory allocation for device_t failed"); 1244 1245 dev->dv_class = cd->cd_class; 1246 dev->dv_cfdata = cf; 1247 dev->dv_cfdriver = cd; 1248 dev->dv_cfattach = ca; 1249 dev->dv_unit = myunit; 1250 dev->dv_activity_count = 0; 1251 dev->dv_activity_handlers = NULL; 1252 dev->dv_private = dev_private; 1253 memcpy(dev->dv_xname, cd->cd_name, lname); 1254 memcpy(dev->dv_xname + lname, xunit, lunit); 1255 dev->dv_parent = parent; 1256 if (parent != NULL) 1257 dev->dv_depth = parent->dv_depth + 1; 1258 else 1259 dev->dv_depth = 0; 1260 dev->dv_flags = DVF_ACTIVE; /* always initially active */ 1261 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */ 1262 if (locs) { 1263 KASSERT(parent); /* no locators at root */ 1264 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr, 1265 parent->dv_cfdriver); 1266 dev->dv_locators = malloc(ia->ci_loclen * sizeof(int), 1267 M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); 1268 memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int)); 1269 } 1270 dev->dv_properties = prop_dictionary_create(); 1271 KASSERT(dev->dv_properties != NULL); 1272 1273 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1274 "device-driver", dev->dv_cfdriver->cd_name); 1275 prop_dictionary_set_uint16(dev->dv_properties, 1276 "device-unit", dev->dv_unit); 1277 1278 return (dev); 1279 } 1280 1281 static void 1282 config_devdealloc(device_t dev) 1283 { 1284 1285 KASSERT(dev->dv_properties != NULL); 1286 prop_object_release(dev->dv_properties); 1287 1288 if (dev->dv_activity_handlers) 1289 panic("config_devdealloc with registered handlers"); 1290 1291 if (dev->dv_locators) 1292 free(dev->dv_locators, M_DEVBUF); 1293 1294 if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL) 1295 free(dev->dv_private, M_DEVBUF); 1296 1297 free(dev, M_DEVBUF); 1298 } 1299 1300 /* 1301 * Attach a found device. 1302 */ 1303 device_t 1304 config_attach_loc(device_t parent, cfdata_t cf, 1305 const int *locs, void *aux, cfprint_t print) 1306 { 1307 device_t dev; 1308 struct cftable *ct; 1309 const char *drvname; 1310 1311 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1312 if (splash_progress_state) 1313 splash_progress_update(splash_progress_state); 1314 #endif 1315 1316 dev = config_devalloc(parent, cf, locs); 1317 if (!dev) 1318 panic("config_attach: allocation of device softc failed"); 1319 1320 /* XXX redundant - see below? */ 1321 if (cf->cf_fstate != FSTATE_STAR) { 1322 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1323 cf->cf_fstate = FSTATE_FOUND; 1324 } 1325 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1326 else 1327 cf->cf_unit++; 1328 #endif 1329 1330 config_devlink(dev); 1331 1332 if (config_do_twiddle) 1333 twiddle(); 1334 else 1335 aprint_naive("Found "); 1336 /* 1337 * We want the next two printfs for normal, verbose, and quiet, 1338 * but not silent (in which case, we're twiddling, instead). 1339 */ 1340 if (parent == ROOT) { 1341 aprint_naive("%s (root)", device_xname(dev)); 1342 aprint_normal("%s (root)", device_xname(dev)); 1343 } else { 1344 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1345 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1346 if (print) 1347 (void) (*print)(aux, NULL); 1348 } 1349 1350 /* 1351 * Before attaching, clobber any unfound devices that are 1352 * otherwise identical. 1353 * XXX code above is redundant? 1354 */ 1355 drvname = dev->dv_cfdriver->cd_name; 1356 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1357 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1358 if (STREQ(cf->cf_name, drvname) && 1359 cf->cf_unit == dev->dv_unit) { 1360 if (cf->cf_fstate == FSTATE_NOTFOUND) 1361 cf->cf_fstate = FSTATE_FOUND; 1362 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1363 /* 1364 * Bump the unit number on all starred cfdata 1365 * entries for this device. 1366 */ 1367 if (cf->cf_fstate == FSTATE_STAR) 1368 cf->cf_unit++; 1369 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1370 } 1371 } 1372 } 1373 #ifdef __HAVE_DEVICE_REGISTER 1374 device_register(dev, aux); 1375 #endif 1376 1377 /* Let userland know */ 1378 devmon_report_device(dev, true); 1379 1380 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1381 if (splash_progress_state) 1382 splash_progress_update(splash_progress_state); 1383 #endif 1384 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1385 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1386 if (splash_progress_state) 1387 splash_progress_update(splash_progress_state); 1388 #endif 1389 1390 if (!device_pmf_is_registered(dev)) 1391 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1392 1393 config_process_deferred(&deferred_config_queue, dev); 1394 return (dev); 1395 } 1396 1397 device_t 1398 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1399 { 1400 1401 return (config_attach_loc(parent, cf, NULL, aux, print)); 1402 } 1403 1404 /* 1405 * As above, but for pseudo-devices. Pseudo-devices attached in this 1406 * way are silently inserted into the device tree, and their children 1407 * attached. 1408 * 1409 * Note that because pseudo-devices are attached silently, any information 1410 * the attach routine wishes to print should be prefixed with the device 1411 * name by the attach routine. 1412 */ 1413 device_t 1414 config_attach_pseudo(cfdata_t cf) 1415 { 1416 device_t dev; 1417 1418 dev = config_devalloc(ROOT, cf, NULL); 1419 if (!dev) 1420 return (NULL); 1421 1422 /* XXX mark busy in cfdata */ 1423 1424 config_devlink(dev); 1425 1426 #if 0 /* XXXJRT not yet */ 1427 #ifdef __HAVE_DEVICE_REGISTER 1428 device_register(dev, NULL); /* like a root node */ 1429 #endif 1430 #endif 1431 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1432 config_process_deferred(&deferred_config_queue, dev); 1433 return (dev); 1434 } 1435 1436 /* 1437 * Detach a device. Optionally forced (e.g. because of hardware 1438 * removal) and quiet. Returns zero if successful, non-zero 1439 * (an error code) otherwise. 1440 * 1441 * Note that this code wants to be run from a process context, so 1442 * that the detach can sleep to allow processes which have a device 1443 * open to run and unwind their stacks. 1444 */ 1445 int 1446 config_detach(device_t dev, int flags) 1447 { 1448 struct cftable *ct; 1449 cfdata_t cf; 1450 const struct cfattach *ca; 1451 struct cfdriver *cd; 1452 #ifdef DIAGNOSTIC 1453 device_t d; 1454 #endif 1455 int rv = 0; 1456 1457 #ifdef DIAGNOSTIC 1458 if (dev->dv_cfdata != NULL && 1459 dev->dv_cfdata->cf_fstate != FSTATE_FOUND && 1460 dev->dv_cfdata->cf_fstate != FSTATE_STAR) 1461 panic("config_detach: bad device fstate"); 1462 #endif 1463 cd = dev->dv_cfdriver; 1464 KASSERT(cd != NULL); 1465 1466 ca = dev->dv_cfattach; 1467 KASSERT(ca != NULL); 1468 1469 KASSERT(curlwp != NULL); 1470 mutex_enter(&alldevs_mtx); 1471 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 1472 ; 1473 else while (alldevs_nread != 0 || 1474 (alldevs_nwrite != 0 && alldevs_writer != curlwp)) 1475 cv_wait(&alldevs_cv, &alldevs_mtx); 1476 if (alldevs_nwrite++ == 0) 1477 alldevs_writer = curlwp; 1478 mutex_exit(&alldevs_mtx); 1479 1480 /* 1481 * Ensure the device is deactivated. If the device doesn't 1482 * have an activation entry point, we allow DVF_ACTIVE to 1483 * remain set. Otherwise, if DVF_ACTIVE is still set, the 1484 * device is busy, and the detach fails. 1485 */ 1486 if (ca->ca_activate != NULL) 1487 rv = config_deactivate(dev); 1488 1489 /* 1490 * Try to detach the device. If that's not possible, then 1491 * we either panic() (for the forced but failed case), or 1492 * return an error. 1493 */ 1494 if (rv == 0) { 1495 if (ca->ca_detach != NULL) 1496 rv = (*ca->ca_detach)(dev, flags); 1497 else 1498 rv = EOPNOTSUPP; 1499 } 1500 if (rv != 0) { 1501 if ((flags & DETACH_FORCE) == 0) 1502 goto out; 1503 else 1504 panic("config_detach: forced detach of %s failed (%d)", 1505 device_xname(dev), rv); 1506 } 1507 1508 /* 1509 * The device has now been successfully detached. 1510 */ 1511 1512 /* Let userland know */ 1513 devmon_report_device(dev, false); 1514 1515 #ifdef DIAGNOSTIC 1516 /* 1517 * Sanity: If you're successfully detached, you should have no 1518 * children. (Note that because children must be attached 1519 * after parents, we only need to search the latter part of 1520 * the list.) 1521 */ 1522 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1523 d = TAILQ_NEXT(d, dv_list)) { 1524 if (d->dv_parent == dev) { 1525 printf("config_detach: detached device %s" 1526 " has children %s\n", device_xname(dev), device_xname(d)); 1527 panic("config_detach"); 1528 } 1529 } 1530 #endif 1531 1532 /* notify the parent that the child is gone */ 1533 if (dev->dv_parent) { 1534 device_t p = dev->dv_parent; 1535 if (p->dv_cfattach->ca_childdetached) 1536 (*p->dv_cfattach->ca_childdetached)(p, dev); 1537 } 1538 1539 /* 1540 * Mark cfdata to show that the unit can be reused, if possible. 1541 */ 1542 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1543 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1544 if (STREQ(cf->cf_name, cd->cd_name)) { 1545 if (cf->cf_fstate == FSTATE_FOUND && 1546 cf->cf_unit == dev->dv_unit) 1547 cf->cf_fstate = FSTATE_NOTFOUND; 1548 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1549 /* 1550 * Note that we can only re-use a starred 1551 * unit number if the unit being detached 1552 * had the last assigned unit number. 1553 */ 1554 if (cf->cf_fstate == FSTATE_STAR && 1555 cf->cf_unit == dev->dv_unit + 1) 1556 cf->cf_unit--; 1557 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1558 } 1559 } 1560 } 1561 1562 config_devunlink(dev); 1563 1564 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1565 aprint_normal_dev(dev, "detached\n"); 1566 1567 config_devdealloc(dev); 1568 1569 out: 1570 mutex_enter(&alldevs_mtx); 1571 if (--alldevs_nwrite == 0) 1572 alldevs_writer = NULL; 1573 cv_signal(&alldevs_cv); 1574 mutex_exit(&alldevs_mtx); 1575 return rv; 1576 } 1577 1578 int 1579 config_detach_children(device_t parent, int flags) 1580 { 1581 device_t dv; 1582 deviter_t di; 1583 int error = 0; 1584 1585 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1586 dv = deviter_next(&di)) { 1587 if (device_parent(dv) != parent) 1588 continue; 1589 if ((error = config_detach(dv, flags)) != 0) 1590 break; 1591 } 1592 deviter_release(&di); 1593 return error; 1594 } 1595 1596 int 1597 config_activate(device_t dev) 1598 { 1599 const struct cfattach *ca = dev->dv_cfattach; 1600 int rv = 0, oflags = dev->dv_flags; 1601 1602 if (ca->ca_activate == NULL) 1603 return (EOPNOTSUPP); 1604 1605 if ((dev->dv_flags & DVF_ACTIVE) == 0) { 1606 dev->dv_flags |= DVF_ACTIVE; 1607 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE); 1608 if (rv) 1609 dev->dv_flags = oflags; 1610 } 1611 return (rv); 1612 } 1613 1614 int 1615 config_deactivate(device_t dev) 1616 { 1617 const struct cfattach *ca = dev->dv_cfattach; 1618 int rv = 0, oflags = dev->dv_flags; 1619 1620 if (ca->ca_activate == NULL) 1621 return (EOPNOTSUPP); 1622 1623 if (dev->dv_flags & DVF_ACTIVE) { 1624 dev->dv_flags &= ~DVF_ACTIVE; 1625 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE); 1626 if (rv) 1627 dev->dv_flags = oflags; 1628 } 1629 return (rv); 1630 } 1631 1632 /* 1633 * Defer the configuration of the specified device until all 1634 * of its parent's devices have been attached. 1635 */ 1636 void 1637 config_defer(device_t dev, void (*func)(device_t)) 1638 { 1639 struct deferred_config *dc; 1640 1641 if (dev->dv_parent == NULL) 1642 panic("config_defer: can't defer config of a root device"); 1643 1644 #ifdef DIAGNOSTIC 1645 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL; 1646 dc = TAILQ_NEXT(dc, dc_queue)) { 1647 if (dc->dc_dev == dev) 1648 panic("config_defer: deferred twice"); 1649 } 1650 #endif 1651 1652 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); 1653 if (dc == NULL) 1654 panic("config_defer: unable to allocate callback"); 1655 1656 dc->dc_dev = dev; 1657 dc->dc_func = func; 1658 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1659 config_pending_incr(); 1660 } 1661 1662 /* 1663 * Defer some autoconfiguration for a device until after interrupts 1664 * are enabled. 1665 */ 1666 void 1667 config_interrupts(device_t dev, void (*func)(device_t)) 1668 { 1669 struct deferred_config *dc; 1670 1671 /* 1672 * If interrupts are enabled, callback now. 1673 */ 1674 if (cold == 0) { 1675 (*func)(dev); 1676 return; 1677 } 1678 1679 #ifdef DIAGNOSTIC 1680 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL; 1681 dc = TAILQ_NEXT(dc, dc_queue)) { 1682 if (dc->dc_dev == dev) 1683 panic("config_interrupts: deferred twice"); 1684 } 1685 #endif 1686 1687 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK); 1688 if (dc == NULL) 1689 panic("config_interrupts: unable to allocate callback"); 1690 1691 dc->dc_dev = dev; 1692 dc->dc_func = func; 1693 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1694 config_pending_incr(); 1695 } 1696 1697 /* 1698 * Process a deferred configuration queue. 1699 */ 1700 static void 1701 config_process_deferred(struct deferred_config_head *queue, 1702 device_t parent) 1703 { 1704 struct deferred_config *dc, *ndc; 1705 1706 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1707 ndc = TAILQ_NEXT(dc, dc_queue); 1708 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1709 TAILQ_REMOVE(queue, dc, dc_queue); 1710 (*dc->dc_func)(dc->dc_dev); 1711 free(dc, M_DEVBUF); 1712 config_pending_decr(); 1713 } 1714 } 1715 } 1716 1717 /* 1718 * Manipulate the config_pending semaphore. 1719 */ 1720 void 1721 config_pending_incr(void) 1722 { 1723 1724 mutex_enter(&config_misc_lock); 1725 config_pending++; 1726 mutex_exit(&config_misc_lock); 1727 } 1728 1729 void 1730 config_pending_decr(void) 1731 { 1732 1733 #ifdef DIAGNOSTIC 1734 if (config_pending == 0) 1735 panic("config_pending_decr: config_pending == 0"); 1736 #endif 1737 mutex_enter(&config_misc_lock); 1738 config_pending--; 1739 if (config_pending == 0) 1740 cv_broadcast(&config_misc_cv); 1741 mutex_exit(&config_misc_lock); 1742 } 1743 1744 /* 1745 * Register a "finalization" routine. Finalization routines are 1746 * called iteratively once all real devices have been found during 1747 * autoconfiguration, for as long as any one finalizer has done 1748 * any work. 1749 */ 1750 int 1751 config_finalize_register(device_t dev, int (*fn)(device_t)) 1752 { 1753 struct finalize_hook *f; 1754 1755 /* 1756 * If finalization has already been done, invoke the 1757 * callback function now. 1758 */ 1759 if (config_finalize_done) { 1760 while ((*fn)(dev) != 0) 1761 /* loop */ ; 1762 } 1763 1764 /* Ensure this isn't already on the list. */ 1765 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1766 if (f->f_func == fn && f->f_dev == dev) 1767 return (EEXIST); 1768 } 1769 1770 f = malloc(sizeof(*f), M_TEMP, M_WAITOK); 1771 f->f_func = fn; 1772 f->f_dev = dev; 1773 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1774 1775 return (0); 1776 } 1777 1778 void 1779 config_finalize(void) 1780 { 1781 struct finalize_hook *f; 1782 struct pdevinit *pdev; 1783 extern struct pdevinit pdevinit[]; 1784 int errcnt, rv; 1785 1786 /* 1787 * Now that device driver threads have been created, wait for 1788 * them to finish any deferred autoconfiguration. 1789 */ 1790 mutex_enter(&config_misc_lock); 1791 while (config_pending != 0) 1792 cv_wait(&config_misc_cv, &config_misc_lock); 1793 mutex_exit(&config_misc_lock); 1794 1795 /* Attach pseudo-devices. */ 1796 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 1797 (*pdev->pdev_attach)(pdev->pdev_count); 1798 1799 /* Run the hooks until none of them does any work. */ 1800 do { 1801 rv = 0; 1802 TAILQ_FOREACH(f, &config_finalize_list, f_list) 1803 rv |= (*f->f_func)(f->f_dev); 1804 } while (rv != 0); 1805 1806 config_finalize_done = 1; 1807 1808 /* Now free all the hooks. */ 1809 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 1810 TAILQ_REMOVE(&config_finalize_list, f, f_list); 1811 free(f, M_TEMP); 1812 } 1813 1814 errcnt = aprint_get_error_count(); 1815 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 1816 (boothowto & AB_VERBOSE) == 0) { 1817 if (config_do_twiddle) { 1818 config_do_twiddle = 0; 1819 printf_nolog("done.\n"); 1820 } 1821 if (errcnt != 0) { 1822 printf("WARNING: %d error%s while detecting hardware; " 1823 "check system log.\n", errcnt, 1824 errcnt == 1 ? "" : "s"); 1825 } 1826 } 1827 } 1828 1829 /* 1830 * device_lookup: 1831 * 1832 * Look up a device instance for a given driver. 1833 */ 1834 void * 1835 device_lookup(cfdriver_t cd, int unit) 1836 { 1837 1838 if (unit < 0 || unit >= cd->cd_ndevs) 1839 return (NULL); 1840 1841 return (cd->cd_devs[unit]); 1842 } 1843 1844 /* 1845 * device_lookup: 1846 * 1847 * Look up a device instance for a given driver. 1848 */ 1849 void * 1850 device_lookup_private(cfdriver_t cd, int unit) 1851 { 1852 device_t dv; 1853 1854 if (unit < 0 || unit >= cd->cd_ndevs) 1855 return NULL; 1856 1857 if ((dv = cd->cd_devs[unit]) == NULL) 1858 return NULL; 1859 1860 return dv->dv_private; 1861 } 1862 1863 /* 1864 * Accessor functions for the device_t type. 1865 */ 1866 devclass_t 1867 device_class(device_t dev) 1868 { 1869 1870 return (dev->dv_class); 1871 } 1872 1873 cfdata_t 1874 device_cfdata(device_t dev) 1875 { 1876 1877 return (dev->dv_cfdata); 1878 } 1879 1880 cfdriver_t 1881 device_cfdriver(device_t dev) 1882 { 1883 1884 return (dev->dv_cfdriver); 1885 } 1886 1887 cfattach_t 1888 device_cfattach(device_t dev) 1889 { 1890 1891 return (dev->dv_cfattach); 1892 } 1893 1894 int 1895 device_unit(device_t dev) 1896 { 1897 1898 return (dev->dv_unit); 1899 } 1900 1901 const char * 1902 device_xname(device_t dev) 1903 { 1904 1905 return (dev->dv_xname); 1906 } 1907 1908 device_t 1909 device_parent(device_t dev) 1910 { 1911 1912 return (dev->dv_parent); 1913 } 1914 1915 bool 1916 device_is_active(device_t dev) 1917 { 1918 int active_flags; 1919 1920 active_flags = DVF_ACTIVE; 1921 active_flags |= DVF_CLASS_SUSPENDED; 1922 active_flags |= DVF_DRIVER_SUSPENDED; 1923 active_flags |= DVF_BUS_SUSPENDED; 1924 1925 return ((dev->dv_flags & active_flags) == DVF_ACTIVE); 1926 } 1927 1928 bool 1929 device_is_enabled(device_t dev) 1930 { 1931 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE; 1932 } 1933 1934 bool 1935 device_has_power(device_t dev) 1936 { 1937 int active_flags; 1938 1939 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED; 1940 1941 return ((dev->dv_flags & active_flags) == DVF_ACTIVE); 1942 } 1943 1944 int 1945 device_locator(device_t dev, u_int locnum) 1946 { 1947 1948 KASSERT(dev->dv_locators != NULL); 1949 return (dev->dv_locators[locnum]); 1950 } 1951 1952 void * 1953 device_private(device_t dev) 1954 { 1955 1956 /* 1957 * The reason why device_private(NULL) is allowed is to simplify the 1958 * work of a lot of userspace request handlers (i.e., c/bdev 1959 * handlers) which grab cfdriver_t->cd_units[n]. 1960 * It avoids having them test for it to be NULL and only then calling 1961 * device_private. 1962 */ 1963 return dev == NULL ? NULL : dev->dv_private; 1964 } 1965 1966 prop_dictionary_t 1967 device_properties(device_t dev) 1968 { 1969 1970 return (dev->dv_properties); 1971 } 1972 1973 /* 1974 * device_is_a: 1975 * 1976 * Returns true if the device is an instance of the specified 1977 * driver. 1978 */ 1979 bool 1980 device_is_a(device_t dev, const char *dname) 1981 { 1982 1983 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0); 1984 } 1985 1986 /* 1987 * device_find_by_xname: 1988 * 1989 * Returns the device of the given name or NULL if it doesn't exist. 1990 */ 1991 device_t 1992 device_find_by_xname(const char *name) 1993 { 1994 device_t dv; 1995 deviter_t di; 1996 1997 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 1998 if (strcmp(device_xname(dv), name) == 0) 1999 break; 2000 } 2001 deviter_release(&di); 2002 2003 return dv; 2004 } 2005 2006 /* 2007 * device_find_by_driver_unit: 2008 * 2009 * Returns the device of the given driver name and unit or 2010 * NULL if it doesn't exist. 2011 */ 2012 device_t 2013 device_find_by_driver_unit(const char *name, int unit) 2014 { 2015 struct cfdriver *cd; 2016 2017 if ((cd = config_cfdriver_lookup(name)) == NULL) 2018 return NULL; 2019 return device_lookup(cd, unit); 2020 } 2021 2022 /* 2023 * Power management related functions. 2024 */ 2025 2026 bool 2027 device_pmf_is_registered(device_t dev) 2028 { 2029 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2030 } 2031 2032 bool 2033 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS) 2034 { 2035 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2036 return true; 2037 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2038 return false; 2039 if (*dev->dv_driver_suspend != NULL && 2040 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL)) 2041 return false; 2042 2043 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2044 return true; 2045 } 2046 2047 bool 2048 device_pmf_driver_resume(device_t dev PMF_FN_ARGS) 2049 { 2050 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2051 return true; 2052 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2053 return false; 2054 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) 2055 return false; 2056 if (*dev->dv_driver_resume != NULL && 2057 !(*dev->dv_driver_resume)(dev PMF_FN_CALL)) 2058 return false; 2059 2060 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2061 return true; 2062 } 2063 2064 bool 2065 device_pmf_driver_shutdown(device_t dev, int how) 2066 { 2067 2068 if (*dev->dv_driver_shutdown != NULL && 2069 !(*dev->dv_driver_shutdown)(dev, how)) 2070 return false; 2071 return true; 2072 } 2073 2074 bool 2075 device_pmf_driver_register(device_t dev, 2076 bool (*suspend)(device_t PMF_FN_PROTO), 2077 bool (*resume)(device_t PMF_FN_PROTO), 2078 bool (*shutdown)(device_t, int)) 2079 { 2080 pmf_private_t *pp; 2081 2082 if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL) 2083 return false; 2084 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE); 2085 cv_init(&pp->pp_cv, "pmfsusp"); 2086 dev->dv_pmf_private = pp; 2087 2088 dev->dv_driver_suspend = suspend; 2089 dev->dv_driver_resume = resume; 2090 dev->dv_driver_shutdown = shutdown; 2091 dev->dv_flags |= DVF_POWER_HANDLERS; 2092 return true; 2093 } 2094 2095 static const char * 2096 curlwp_name(void) 2097 { 2098 if (curlwp->l_name != NULL) 2099 return curlwp->l_name; 2100 else 2101 return curlwp->l_proc->p_comm; 2102 } 2103 2104 void 2105 device_pmf_driver_deregister(device_t dev) 2106 { 2107 pmf_private_t *pp = dev->dv_pmf_private; 2108 2109 dev->dv_driver_suspend = NULL; 2110 dev->dv_driver_resume = NULL; 2111 2112 dev->dv_pmf_private = NULL; 2113 2114 mutex_enter(&pp->pp_mtx); 2115 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2116 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) { 2117 /* Wake a thread that waits for the lock. That 2118 * thread will fail to acquire the lock, and then 2119 * it will wake the next thread that waits for the 2120 * lock, or else it will wake us. 2121 */ 2122 cv_signal(&pp->pp_cv); 2123 pmflock_debug(dev, __func__, __LINE__); 2124 cv_wait(&pp->pp_cv, &pp->pp_mtx); 2125 pmflock_debug(dev, __func__, __LINE__); 2126 } 2127 mutex_exit(&pp->pp_mtx); 2128 2129 cv_destroy(&pp->pp_cv); 2130 mutex_destroy(&pp->pp_mtx); 2131 free(pp, M_PMFPRIV); 2132 } 2133 2134 bool 2135 device_pmf_driver_child_register(device_t dev) 2136 { 2137 device_t parent = device_parent(dev); 2138 2139 if (parent == NULL || parent->dv_driver_child_register == NULL) 2140 return true; 2141 return (*parent->dv_driver_child_register)(dev); 2142 } 2143 2144 void 2145 device_pmf_driver_set_child_register(device_t dev, 2146 bool (*child_register)(device_t)) 2147 { 2148 dev->dv_driver_child_register = child_register; 2149 } 2150 2151 void 2152 device_pmf_self_resume(device_t dev PMF_FN_ARGS) 2153 { 2154 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2155 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0) 2156 dev->dv_flags &= ~DVF_SELF_SUSPENDED; 2157 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2158 } 2159 2160 bool 2161 device_is_self_suspended(device_t dev) 2162 { 2163 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0; 2164 } 2165 2166 void 2167 device_pmf_self_suspend(device_t dev PMF_FN_ARGS) 2168 { 2169 bool self = (flags & PMF_F_SELF) != 0; 2170 2171 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2172 2173 if (!self) 2174 dev->dv_flags &= ~DVF_SELF_SUSPENDED; 2175 else if (device_is_active(dev)) 2176 dev->dv_flags |= DVF_SELF_SUSPENDED; 2177 2178 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2179 } 2180 2181 static void 2182 pmflock_debug(device_t dev, const char *func, int line) 2183 { 2184 pmf_private_t *pp = device_pmf_private(dev); 2185 2186 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n", 2187 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait, 2188 dev->dv_flags); 2189 } 2190 2191 static void 2192 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS) 2193 { 2194 pmf_private_t *pp = device_pmf_private(dev); 2195 2196 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x " 2197 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(), 2198 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL); 2199 } 2200 2201 static bool 2202 device_pmf_lock1(device_t dev PMF_FN_ARGS) 2203 { 2204 pmf_private_t *pp = device_pmf_private(dev); 2205 2206 while (pp->pp_nlock > 0 && pp->pp_holder != curlwp && 2207 device_pmf_is_registered(dev)) { 2208 pp->pp_nwait++; 2209 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2210 cv_wait(&pp->pp_cv, &pp->pp_mtx); 2211 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2212 pp->pp_nwait--; 2213 } 2214 if (!device_pmf_is_registered(dev)) { 2215 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2216 /* We could not acquire the lock, but some other thread may 2217 * wait for it, also. Wake that thread. 2218 */ 2219 cv_signal(&pp->pp_cv); 2220 return false; 2221 } 2222 pp->pp_nlock++; 2223 pp->pp_holder = curlwp; 2224 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2225 return true; 2226 } 2227 2228 bool 2229 device_pmf_lock(device_t dev PMF_FN_ARGS) 2230 { 2231 bool rc; 2232 pmf_private_t *pp = device_pmf_private(dev); 2233 2234 mutex_enter(&pp->pp_mtx); 2235 rc = device_pmf_lock1(dev PMF_FN_CALL); 2236 mutex_exit(&pp->pp_mtx); 2237 2238 return rc; 2239 } 2240 2241 void 2242 device_pmf_unlock(device_t dev PMF_FN_ARGS) 2243 { 2244 pmf_private_t *pp = device_pmf_private(dev); 2245 2246 KASSERT(pp->pp_nlock > 0); 2247 mutex_enter(&pp->pp_mtx); 2248 if (--pp->pp_nlock == 0) 2249 pp->pp_holder = NULL; 2250 cv_signal(&pp->pp_cv); 2251 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2252 mutex_exit(&pp->pp_mtx); 2253 } 2254 2255 void * 2256 device_pmf_private(device_t dev) 2257 { 2258 return dev->dv_pmf_private; 2259 } 2260 2261 void * 2262 device_pmf_bus_private(device_t dev) 2263 { 2264 return dev->dv_bus_private; 2265 } 2266 2267 bool 2268 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS) 2269 { 2270 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2271 return true; 2272 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2273 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2274 return false; 2275 if (*dev->dv_bus_suspend != NULL && 2276 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL)) 2277 return false; 2278 2279 dev->dv_flags |= DVF_BUS_SUSPENDED; 2280 return true; 2281 } 2282 2283 bool 2284 device_pmf_bus_resume(device_t dev PMF_FN_ARGS) 2285 { 2286 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2287 return true; 2288 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) 2289 return false; 2290 if (*dev->dv_bus_resume != NULL && 2291 !(*dev->dv_bus_resume)(dev PMF_FN_CALL)) 2292 return false; 2293 2294 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2295 return true; 2296 } 2297 2298 bool 2299 device_pmf_bus_shutdown(device_t dev, int how) 2300 { 2301 2302 if (*dev->dv_bus_shutdown != NULL && 2303 !(*dev->dv_bus_shutdown)(dev, how)) 2304 return false; 2305 return true; 2306 } 2307 2308 void 2309 device_pmf_bus_register(device_t dev, void *priv, 2310 bool (*suspend)(device_t PMF_FN_PROTO), 2311 bool (*resume)(device_t PMF_FN_PROTO), 2312 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2313 { 2314 dev->dv_bus_private = priv; 2315 dev->dv_bus_resume = resume; 2316 dev->dv_bus_suspend = suspend; 2317 dev->dv_bus_shutdown = shutdown; 2318 dev->dv_bus_deregister = deregister; 2319 } 2320 2321 void 2322 device_pmf_bus_deregister(device_t dev) 2323 { 2324 if (dev->dv_bus_deregister == NULL) 2325 return; 2326 (*dev->dv_bus_deregister)(dev); 2327 dev->dv_bus_private = NULL; 2328 dev->dv_bus_suspend = NULL; 2329 dev->dv_bus_resume = NULL; 2330 dev->dv_bus_deregister = NULL; 2331 } 2332 2333 void * 2334 device_pmf_class_private(device_t dev) 2335 { 2336 return dev->dv_class_private; 2337 } 2338 2339 bool 2340 device_pmf_class_suspend(device_t dev PMF_FN_ARGS) 2341 { 2342 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2343 return true; 2344 if (*dev->dv_class_suspend != NULL && 2345 !(*dev->dv_class_suspend)(dev PMF_FN_CALL)) 2346 return false; 2347 2348 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2349 return true; 2350 } 2351 2352 bool 2353 device_pmf_class_resume(device_t dev PMF_FN_ARGS) 2354 { 2355 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2356 return true; 2357 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2358 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2359 return false; 2360 if (*dev->dv_class_resume != NULL && 2361 !(*dev->dv_class_resume)(dev PMF_FN_CALL)) 2362 return false; 2363 2364 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2365 return true; 2366 } 2367 2368 void 2369 device_pmf_class_register(device_t dev, void *priv, 2370 bool (*suspend)(device_t PMF_FN_PROTO), 2371 bool (*resume)(device_t PMF_FN_PROTO), 2372 void (*deregister)(device_t)) 2373 { 2374 dev->dv_class_private = priv; 2375 dev->dv_class_suspend = suspend; 2376 dev->dv_class_resume = resume; 2377 dev->dv_class_deregister = deregister; 2378 } 2379 2380 void 2381 device_pmf_class_deregister(device_t dev) 2382 { 2383 if (dev->dv_class_deregister == NULL) 2384 return; 2385 (*dev->dv_class_deregister)(dev); 2386 dev->dv_class_private = NULL; 2387 dev->dv_class_suspend = NULL; 2388 dev->dv_class_resume = NULL; 2389 dev->dv_class_deregister = NULL; 2390 } 2391 2392 bool 2393 device_active(device_t dev, devactive_t type) 2394 { 2395 size_t i; 2396 2397 if (dev->dv_activity_count == 0) 2398 return false; 2399 2400 for (i = 0; i < dev->dv_activity_count; ++i) 2401 (*dev->dv_activity_handlers[i])(dev, type); 2402 2403 return true; 2404 } 2405 2406 bool 2407 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2408 { 2409 void (**new_handlers)(device_t, devactive_t); 2410 void (**old_handlers)(device_t, devactive_t); 2411 size_t i, new_size; 2412 int s; 2413 2414 old_handlers = dev->dv_activity_handlers; 2415 2416 for (i = 0; i < dev->dv_activity_count; ++i) { 2417 if (old_handlers[i] == handler) 2418 panic("Double registering of idle handlers"); 2419 } 2420 2421 new_size = dev->dv_activity_count + 1; 2422 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK); 2423 2424 memcpy(new_handlers, old_handlers, 2425 sizeof(void *) * dev->dv_activity_count); 2426 new_handlers[new_size - 1] = handler; 2427 2428 s = splhigh(); 2429 dev->dv_activity_count = new_size; 2430 dev->dv_activity_handlers = new_handlers; 2431 splx(s); 2432 2433 if (old_handlers != NULL) 2434 free(old_handlers, M_DEVBUF); 2435 2436 return true; 2437 } 2438 2439 void 2440 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2441 { 2442 void (**new_handlers)(device_t, devactive_t); 2443 void (**old_handlers)(device_t, devactive_t); 2444 size_t i, new_size; 2445 int s; 2446 2447 old_handlers = dev->dv_activity_handlers; 2448 2449 for (i = 0; i < dev->dv_activity_count; ++i) { 2450 if (old_handlers[i] == handler) 2451 break; 2452 } 2453 2454 if (i == dev->dv_activity_count) 2455 return; /* XXX panic? */ 2456 2457 new_size = dev->dv_activity_count - 1; 2458 2459 if (new_size == 0) { 2460 new_handlers = NULL; 2461 } else { 2462 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, 2463 M_WAITOK); 2464 memcpy(new_handlers, old_handlers, sizeof(void *) * i); 2465 memcpy(new_handlers + i, old_handlers + i + 1, 2466 sizeof(void *) * (new_size - i)); 2467 } 2468 2469 s = splhigh(); 2470 dev->dv_activity_count = new_size; 2471 dev->dv_activity_handlers = new_handlers; 2472 splx(s); 2473 2474 free(old_handlers, M_DEVBUF); 2475 } 2476 2477 /* 2478 * Device Iteration 2479 * 2480 * deviter_t: a device iterator. Holds state for a "walk" visiting 2481 * each device_t's in the device tree. 2482 * 2483 * deviter_init(di, flags): initialize the device iterator `di' 2484 * to "walk" the device tree. deviter_next(di) will return 2485 * the first device_t in the device tree, or NULL if there are 2486 * no devices. 2487 * 2488 * `flags' is one or more of DEVITER_F_RW, indicating that the 2489 * caller intends to modify the device tree by calling 2490 * config_detach(9) on devices in the order that the iterator 2491 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2492 * nearest the "root" of the device tree to be returned, first; 2493 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2494 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2495 * indicating both that deviter_init() should not respect any 2496 * locks on the device tree, and that deviter_next(di) may run 2497 * in more than one LWP before the walk has finished. 2498 * 2499 * Only one DEVITER_F_RW iterator may be in the device tree at 2500 * once. 2501 * 2502 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2503 * 2504 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2505 * DEVITER_F_LEAVES_FIRST are used in combination. 2506 * 2507 * deviter_first(di, flags): initialize the device iterator `di' 2508 * and return the first device_t in the device tree, or NULL 2509 * if there are no devices. The statement 2510 * 2511 * dv = deviter_first(di); 2512 * 2513 * is shorthand for 2514 * 2515 * deviter_init(di); 2516 * dv = deviter_next(di); 2517 * 2518 * deviter_next(di): return the next device_t in the device tree, 2519 * or NULL if there are no more devices. deviter_next(di) 2520 * is undefined if `di' was not initialized with deviter_init() or 2521 * deviter_first(). 2522 * 2523 * deviter_release(di): stops iteration (subsequent calls to 2524 * deviter_next() will return NULL), releases any locks and 2525 * resources held by the device iterator. 2526 * 2527 * Device iteration does not return device_t's in any particular 2528 * order. An iterator will never return the same device_t twice. 2529 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2530 * is called repeatedly on the same `di', it will eventually return 2531 * NULL. It is ok to attach/detach devices during device iteration. 2532 */ 2533 void 2534 deviter_init(deviter_t *di, deviter_flags_t flags) 2535 { 2536 device_t dv; 2537 bool rw; 2538 2539 mutex_enter(&alldevs_mtx); 2540 if ((flags & DEVITER_F_SHUTDOWN) != 0) { 2541 flags |= DEVITER_F_RW; 2542 alldevs_nwrite++; 2543 alldevs_writer = NULL; 2544 alldevs_nread = 0; 2545 } else { 2546 rw = (flags & DEVITER_F_RW) != 0; 2547 2548 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 2549 ; 2550 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) || 2551 (rw && alldevs_nread != 0)) 2552 cv_wait(&alldevs_cv, &alldevs_mtx); 2553 2554 if (rw) { 2555 if (alldevs_nwrite++ == 0) 2556 alldevs_writer = curlwp; 2557 } else 2558 alldevs_nread++; 2559 } 2560 mutex_exit(&alldevs_mtx); 2561 2562 memset(di, 0, sizeof(*di)); 2563 2564 di->di_flags = flags; 2565 2566 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2567 case DEVITER_F_LEAVES_FIRST: 2568 TAILQ_FOREACH(dv, &alldevs, dv_list) 2569 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2570 break; 2571 case DEVITER_F_ROOT_FIRST: 2572 TAILQ_FOREACH(dv, &alldevs, dv_list) 2573 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2574 break; 2575 default: 2576 break; 2577 } 2578 2579 deviter_reinit(di); 2580 } 2581 2582 static void 2583 deviter_reinit(deviter_t *di) 2584 { 2585 if ((di->di_flags & DEVITER_F_RW) != 0) 2586 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2587 else 2588 di->di_prev = TAILQ_FIRST(&alldevs); 2589 } 2590 2591 device_t 2592 deviter_first(deviter_t *di, deviter_flags_t flags) 2593 { 2594 deviter_init(di, flags); 2595 return deviter_next(di); 2596 } 2597 2598 static device_t 2599 deviter_next1(deviter_t *di) 2600 { 2601 device_t dv; 2602 2603 dv = di->di_prev; 2604 2605 if (dv == NULL) 2606 ; 2607 else if ((di->di_flags & DEVITER_F_RW) != 0) 2608 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2609 else 2610 di->di_prev = TAILQ_NEXT(dv, dv_list); 2611 2612 return dv; 2613 } 2614 2615 device_t 2616 deviter_next(deviter_t *di) 2617 { 2618 device_t dv = NULL; 2619 2620 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2621 case 0: 2622 return deviter_next1(di); 2623 case DEVITER_F_LEAVES_FIRST: 2624 while (di->di_curdepth >= 0) { 2625 if ((dv = deviter_next1(di)) == NULL) { 2626 di->di_curdepth--; 2627 deviter_reinit(di); 2628 } else if (dv->dv_depth == di->di_curdepth) 2629 break; 2630 } 2631 return dv; 2632 case DEVITER_F_ROOT_FIRST: 2633 while (di->di_curdepth <= di->di_maxdepth) { 2634 if ((dv = deviter_next1(di)) == NULL) { 2635 di->di_curdepth++; 2636 deviter_reinit(di); 2637 } else if (dv->dv_depth == di->di_curdepth) 2638 break; 2639 } 2640 return dv; 2641 default: 2642 return NULL; 2643 } 2644 } 2645 2646 void 2647 deviter_release(deviter_t *di) 2648 { 2649 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2650 2651 mutex_enter(&alldevs_mtx); 2652 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 2653 --alldevs_nwrite; 2654 else { 2655 2656 if (rw) { 2657 if (--alldevs_nwrite == 0) 2658 alldevs_writer = NULL; 2659 } else 2660 --alldevs_nread; 2661 2662 cv_signal(&alldevs_cv); 2663 } 2664 mutex_exit(&alldevs_mtx); 2665 } 2666