1 /* $NetBSD: subr_autoconf.c,v 1.309 2023/04/16 11:18:25 riastradh Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.309 2023/04/16 11:18:25 riastradh Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/device_impl.h> 90 #include <sys/disklabel.h> 91 #include <sys/conf.h> 92 #include <sys/kauth.h> 93 #include <sys/kmem.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/errno.h> 97 #include <sys/proc.h> 98 #include <sys/reboot.h> 99 #include <sys/kthread.h> 100 #include <sys/buf.h> 101 #include <sys/dirent.h> 102 #include <sys/mount.h> 103 #include <sys/namei.h> 104 #include <sys/unistd.h> 105 #include <sys/fcntl.h> 106 #include <sys/lockf.h> 107 #include <sys/callout.h> 108 #include <sys/devmon.h> 109 #include <sys/cpu.h> 110 #include <sys/sysctl.h> 111 #include <sys/stdarg.h> 112 #include <sys/localcount.h> 113 114 #include <sys/disk.h> 115 116 #include <sys/rndsource.h> 117 118 #include <machine/limits.h> 119 120 /* 121 * Autoconfiguration subroutines. 122 */ 123 124 /* 125 * Device autoconfiguration timings are mixed into the entropy pool. 126 */ 127 static krndsource_t rnd_autoconf_source; 128 129 /* 130 * ioconf.c exports exactly two names: cfdata and cfroots. All system 131 * devices and drivers are found via these tables. 132 */ 133 extern struct cfdata cfdata[]; 134 extern const short cfroots[]; 135 136 /* 137 * List of all cfdriver structures. We use this to detect duplicates 138 * when other cfdrivers are loaded. 139 */ 140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 141 extern struct cfdriver * const cfdriver_list_initial[]; 142 143 /* 144 * Initial list of cfattach's. 145 */ 146 extern const struct cfattachinit cfattachinit[]; 147 148 /* 149 * List of cfdata tables. We always have one such list -- the one 150 * built statically when the kernel was configured. 151 */ 152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 153 static struct cftable initcftable; 154 155 #define ROOT ((device_t)NULL) 156 157 struct matchinfo { 158 cfsubmatch_t fn; 159 device_t parent; 160 const int *locs; 161 void *aux; 162 struct cfdata *match; 163 int pri; 164 }; 165 166 struct alldevs_foray { 167 int af_s; 168 struct devicelist af_garbage; 169 }; 170 171 /* 172 * Internal version of the cfargs structure; all versions are 173 * canonicalized to this. 174 */ 175 struct cfargs_internal { 176 union { 177 cfsubmatch_t submatch;/* submatch function (direct config) */ 178 cfsearch_t search; /* search function (indirect config) */ 179 }; 180 const char * iattr; /* interface attribute */ 181 const int * locators; /* locators array */ 182 devhandle_t devhandle; /* devhandle_t (by value) */ 183 }; 184 185 static char *number(char *, int); 186 static void mapply(struct matchinfo *, cfdata_t); 187 static void config_devdelete(device_t); 188 static void config_devunlink(device_t, struct devicelist *); 189 static void config_makeroom(int, struct cfdriver *); 190 static void config_devlink(device_t); 191 static void config_alldevs_enter(struct alldevs_foray *); 192 static void config_alldevs_exit(struct alldevs_foray *); 193 static void config_add_attrib_dict(device_t); 194 static device_t config_attach_internal(device_t, cfdata_t, void *, 195 cfprint_t, const struct cfargs_internal *); 196 197 static void config_collect_garbage(struct devicelist *); 198 static void config_dump_garbage(struct devicelist *); 199 200 static void pmflock_debug(device_t, const char *, int); 201 202 static device_t deviter_next1(deviter_t *); 203 static void deviter_reinit(deviter_t *); 204 205 struct deferred_config { 206 TAILQ_ENTRY(deferred_config) dc_queue; 207 device_t dc_dev; 208 void (*dc_func)(device_t); 209 }; 210 211 TAILQ_HEAD(deferred_config_head, deferred_config); 212 213 static struct deferred_config_head deferred_config_queue = 214 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 215 static struct deferred_config_head interrupt_config_queue = 216 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 217 static int interrupt_config_threads = 8; 218 static struct deferred_config_head mountroot_config_queue = 219 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 220 static int mountroot_config_threads = 2; 221 static lwp_t **mountroot_config_lwpids; 222 static size_t mountroot_config_lwpids_size; 223 bool root_is_mounted = false; 224 225 static void config_process_deferred(struct deferred_config_head *, device_t); 226 227 /* Hooks to finalize configuration once all real devices have been found. */ 228 struct finalize_hook { 229 TAILQ_ENTRY(finalize_hook) f_list; 230 int (*f_func)(device_t); 231 device_t f_dev; 232 }; 233 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 234 TAILQ_HEAD_INITIALIZER(config_finalize_list); 235 static int config_finalize_done; 236 237 /* list of all devices */ 238 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 239 static kmutex_t alldevs_lock __cacheline_aligned; 240 static devgen_t alldevs_gen = 1; 241 static int alldevs_nread = 0; 242 static int alldevs_nwrite = 0; 243 static bool alldevs_garbage = false; 244 245 static struct devicelist config_pending = 246 TAILQ_HEAD_INITIALIZER(config_pending); 247 static kmutex_t config_misc_lock; 248 static kcondvar_t config_misc_cv; 249 250 static bool detachall = false; 251 252 #define STREQ(s1, s2) \ 253 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 254 255 static bool config_initialized = false; /* config_init() has been called. */ 256 257 static int config_do_twiddle; 258 static callout_t config_twiddle_ch; 259 260 static void sysctl_detach_setup(struct sysctllog **); 261 262 int no_devmon_insert(const char *, prop_dictionary_t); 263 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; 264 265 typedef int (*cfdriver_fn)(struct cfdriver *); 266 static int 267 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 268 cfdriver_fn drv_do, cfdriver_fn drv_undo, 269 const char *style, bool dopanic) 270 { 271 void (*pr)(const char *, ...) __printflike(1, 2) = 272 dopanic ? panic : printf; 273 int i, error = 0, e2 __diagused; 274 275 for (i = 0; cfdriverv[i] != NULL; i++) { 276 if ((error = drv_do(cfdriverv[i])) != 0) { 277 pr("configure: `%s' driver %s failed: %d", 278 cfdriverv[i]->cd_name, style, error); 279 goto bad; 280 } 281 } 282 283 KASSERT(error == 0); 284 return 0; 285 286 bad: 287 printf("\n"); 288 for (i--; i >= 0; i--) { 289 e2 = drv_undo(cfdriverv[i]); 290 KASSERT(e2 == 0); 291 } 292 293 return error; 294 } 295 296 typedef int (*cfattach_fn)(const char *, struct cfattach *); 297 static int 298 frob_cfattachvec(const struct cfattachinit *cfattachv, 299 cfattach_fn att_do, cfattach_fn att_undo, 300 const char *style, bool dopanic) 301 { 302 const struct cfattachinit *cfai = NULL; 303 void (*pr)(const char *, ...) __printflike(1, 2) = 304 dopanic ? panic : printf; 305 int j = 0, error = 0, e2 __diagused; 306 307 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 308 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 309 if ((error = att_do(cfai->cfai_name, 310 cfai->cfai_list[j])) != 0) { 311 pr("configure: attachment `%s' " 312 "of `%s' driver %s failed: %d", 313 cfai->cfai_list[j]->ca_name, 314 cfai->cfai_name, style, error); 315 goto bad; 316 } 317 } 318 } 319 320 KASSERT(error == 0); 321 return 0; 322 323 bad: 324 /* 325 * Rollback in reverse order. dunno if super-important, but 326 * do that anyway. Although the code looks a little like 327 * someone did a little integration (in the math sense). 328 */ 329 printf("\n"); 330 if (cfai) { 331 bool last; 332 333 for (last = false; last == false; ) { 334 if (cfai == &cfattachv[0]) 335 last = true; 336 for (j--; j >= 0; j--) { 337 e2 = att_undo(cfai->cfai_name, 338 cfai->cfai_list[j]); 339 KASSERT(e2 == 0); 340 } 341 if (!last) { 342 cfai--; 343 for (j = 0; cfai->cfai_list[j] != NULL; j++) 344 ; 345 } 346 } 347 } 348 349 return error; 350 } 351 352 /* 353 * Initialize the autoconfiguration data structures. Normally this 354 * is done by configure(), but some platforms need to do this very 355 * early (to e.g. initialize the console). 356 */ 357 void 358 config_init(void) 359 { 360 361 KASSERT(config_initialized == false); 362 363 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM); 364 365 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 366 cv_init(&config_misc_cv, "cfgmisc"); 367 368 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 369 370 frob_cfdrivervec(cfdriver_list_initial, 371 config_cfdriver_attach, NULL, "bootstrap", true); 372 frob_cfattachvec(cfattachinit, 373 config_cfattach_attach, NULL, "bootstrap", true); 374 375 initcftable.ct_cfdata = cfdata; 376 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 377 378 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN, 379 RND_FLAG_COLLECT_TIME); 380 381 config_initialized = true; 382 } 383 384 /* 385 * Init or fini drivers and attachments. Either all or none 386 * are processed (via rollback). It would be nice if this were 387 * atomic to outside consumers, but with the current state of 388 * locking ... 389 */ 390 int 391 config_init_component(struct cfdriver * const *cfdriverv, 392 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 393 { 394 int error; 395 396 KERNEL_LOCK(1, NULL); 397 398 if ((error = frob_cfdrivervec(cfdriverv, 399 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 400 goto out; 401 if ((error = frob_cfattachvec(cfattachv, 402 config_cfattach_attach, config_cfattach_detach, 403 "init", false)) != 0) { 404 frob_cfdrivervec(cfdriverv, 405 config_cfdriver_detach, NULL, "init rollback", true); 406 goto out; 407 } 408 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 409 frob_cfattachvec(cfattachv, 410 config_cfattach_detach, NULL, "init rollback", true); 411 frob_cfdrivervec(cfdriverv, 412 config_cfdriver_detach, NULL, "init rollback", true); 413 goto out; 414 } 415 416 /* Success! */ 417 error = 0; 418 419 out: KERNEL_UNLOCK_ONE(NULL); 420 return error; 421 } 422 423 int 424 config_fini_component(struct cfdriver * const *cfdriverv, 425 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 426 { 427 int error; 428 429 KERNEL_LOCK(1, NULL); 430 431 if ((error = config_cfdata_detach(cfdatav)) != 0) 432 goto out; 433 if ((error = frob_cfattachvec(cfattachv, 434 config_cfattach_detach, config_cfattach_attach, 435 "fini", false)) != 0) { 436 if (config_cfdata_attach(cfdatav, 0) != 0) 437 panic("config_cfdata fini rollback failed"); 438 goto out; 439 } 440 if ((error = frob_cfdrivervec(cfdriverv, 441 config_cfdriver_detach, config_cfdriver_attach, 442 "fini", false)) != 0) { 443 frob_cfattachvec(cfattachv, 444 config_cfattach_attach, NULL, "fini rollback", true); 445 if (config_cfdata_attach(cfdatav, 0) != 0) 446 panic("config_cfdata fini rollback failed"); 447 goto out; 448 } 449 450 /* Success! */ 451 error = 0; 452 453 out: KERNEL_UNLOCK_ONE(NULL); 454 return error; 455 } 456 457 void 458 config_init_mi(void) 459 { 460 461 if (!config_initialized) 462 config_init(); 463 464 sysctl_detach_setup(NULL); 465 } 466 467 void 468 config_deferred(device_t dev) 469 { 470 471 KASSERT(KERNEL_LOCKED_P()); 472 473 config_process_deferred(&deferred_config_queue, dev); 474 config_process_deferred(&interrupt_config_queue, dev); 475 config_process_deferred(&mountroot_config_queue, dev); 476 } 477 478 static void 479 config_interrupts_thread(void *cookie) 480 { 481 struct deferred_config *dc; 482 device_t dev; 483 484 mutex_enter(&config_misc_lock); 485 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 486 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 487 mutex_exit(&config_misc_lock); 488 489 dev = dc->dc_dev; 490 (*dc->dc_func)(dev); 491 if (!device_pmf_is_registered(dev)) 492 aprint_debug_dev(dev, 493 "WARNING: power management not supported\n"); 494 config_pending_decr(dev); 495 kmem_free(dc, sizeof(*dc)); 496 497 mutex_enter(&config_misc_lock); 498 } 499 mutex_exit(&config_misc_lock); 500 501 kthread_exit(0); 502 } 503 504 void 505 config_create_interruptthreads(void) 506 { 507 int i; 508 509 for (i = 0; i < interrupt_config_threads; i++) { 510 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL, 511 config_interrupts_thread, NULL, NULL, "configintr"); 512 } 513 } 514 515 static void 516 config_mountroot_thread(void *cookie) 517 { 518 struct deferred_config *dc; 519 520 mutex_enter(&config_misc_lock); 521 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 522 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 523 mutex_exit(&config_misc_lock); 524 525 (*dc->dc_func)(dc->dc_dev); 526 kmem_free(dc, sizeof(*dc)); 527 528 mutex_enter(&config_misc_lock); 529 } 530 mutex_exit(&config_misc_lock); 531 532 kthread_exit(0); 533 } 534 535 void 536 config_create_mountrootthreads(void) 537 { 538 int i; 539 540 if (!root_is_mounted) 541 root_is_mounted = true; 542 543 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * 544 mountroot_config_threads; 545 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, 546 KM_NOSLEEP); 547 KASSERT(mountroot_config_lwpids); 548 for (i = 0; i < mountroot_config_threads; i++) { 549 mountroot_config_lwpids[i] = 0; 550 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */, 551 NULL, config_mountroot_thread, NULL, 552 &mountroot_config_lwpids[i], 553 "configroot"); 554 } 555 } 556 557 void 558 config_finalize_mountroot(void) 559 { 560 int i, error; 561 562 for (i = 0; i < mountroot_config_threads; i++) { 563 if (mountroot_config_lwpids[i] == 0) 564 continue; 565 566 error = kthread_join(mountroot_config_lwpids[i]); 567 if (error) 568 printf("%s: thread %x joined with error %d\n", 569 __func__, i, error); 570 } 571 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); 572 } 573 574 /* 575 * Announce device attach/detach to userland listeners. 576 */ 577 578 int 579 no_devmon_insert(const char *name, prop_dictionary_t p) 580 { 581 582 return ENODEV; 583 } 584 585 static void 586 devmon_report_device(device_t dev, bool isattach) 587 { 588 prop_dictionary_t ev, dict = device_properties(dev); 589 const char *parent; 590 const char *what; 591 const char *where; 592 device_t pdev = device_parent(dev); 593 594 /* If currently no drvctl device, just return */ 595 if (devmon_insert_vec == no_devmon_insert) 596 return; 597 598 ev = prop_dictionary_create(); 599 if (ev == NULL) 600 return; 601 602 what = (isattach ? "device-attach" : "device-detach"); 603 parent = (pdev == NULL ? "root" : device_xname(pdev)); 604 if (prop_dictionary_get_string(dict, "location", &where)) { 605 prop_dictionary_set_string(ev, "location", where); 606 aprint_debug("ev: %s %s at %s in [%s]\n", 607 what, device_xname(dev), parent, where); 608 } 609 if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) || 610 !prop_dictionary_set_string(ev, "parent", parent)) { 611 prop_object_release(ev); 612 return; 613 } 614 615 if ((*devmon_insert_vec)(what, ev) != 0) 616 prop_object_release(ev); 617 } 618 619 /* 620 * Add a cfdriver to the system. 621 */ 622 int 623 config_cfdriver_attach(struct cfdriver *cd) 624 { 625 struct cfdriver *lcd; 626 627 /* Make sure this driver isn't already in the system. */ 628 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 629 if (STREQ(lcd->cd_name, cd->cd_name)) 630 return EEXIST; 631 } 632 633 LIST_INIT(&cd->cd_attach); 634 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 635 636 return 0; 637 } 638 639 /* 640 * Remove a cfdriver from the system. 641 */ 642 int 643 config_cfdriver_detach(struct cfdriver *cd) 644 { 645 struct alldevs_foray af; 646 int i, rc = 0; 647 648 config_alldevs_enter(&af); 649 /* Make sure there are no active instances. */ 650 for (i = 0; i < cd->cd_ndevs; i++) { 651 if (cd->cd_devs[i] != NULL) { 652 rc = EBUSY; 653 break; 654 } 655 } 656 config_alldevs_exit(&af); 657 658 if (rc != 0) 659 return rc; 660 661 /* ...and no attachments loaded. */ 662 if (LIST_EMPTY(&cd->cd_attach) == 0) 663 return EBUSY; 664 665 LIST_REMOVE(cd, cd_list); 666 667 KASSERT(cd->cd_devs == NULL); 668 669 return 0; 670 } 671 672 /* 673 * Look up a cfdriver by name. 674 */ 675 struct cfdriver * 676 config_cfdriver_lookup(const char *name) 677 { 678 struct cfdriver *cd; 679 680 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 681 if (STREQ(cd->cd_name, name)) 682 return cd; 683 } 684 685 return NULL; 686 } 687 688 /* 689 * Add a cfattach to the specified driver. 690 */ 691 int 692 config_cfattach_attach(const char *driver, struct cfattach *ca) 693 { 694 struct cfattach *lca; 695 struct cfdriver *cd; 696 697 cd = config_cfdriver_lookup(driver); 698 if (cd == NULL) 699 return ESRCH; 700 701 /* Make sure this attachment isn't already on this driver. */ 702 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 703 if (STREQ(lca->ca_name, ca->ca_name)) 704 return EEXIST; 705 } 706 707 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 708 709 return 0; 710 } 711 712 /* 713 * Remove a cfattach from the specified driver. 714 */ 715 int 716 config_cfattach_detach(const char *driver, struct cfattach *ca) 717 { 718 struct alldevs_foray af; 719 struct cfdriver *cd; 720 device_t dev; 721 int i, rc = 0; 722 723 cd = config_cfdriver_lookup(driver); 724 if (cd == NULL) 725 return ESRCH; 726 727 config_alldevs_enter(&af); 728 /* Make sure there are no active instances. */ 729 for (i = 0; i < cd->cd_ndevs; i++) { 730 if ((dev = cd->cd_devs[i]) == NULL) 731 continue; 732 if (dev->dv_cfattach == ca) { 733 rc = EBUSY; 734 break; 735 } 736 } 737 config_alldevs_exit(&af); 738 739 if (rc != 0) 740 return rc; 741 742 LIST_REMOVE(ca, ca_list); 743 744 return 0; 745 } 746 747 /* 748 * Look up a cfattach by name. 749 */ 750 static struct cfattach * 751 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 752 { 753 struct cfattach *ca; 754 755 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 756 if (STREQ(ca->ca_name, atname)) 757 return ca; 758 } 759 760 return NULL; 761 } 762 763 /* 764 * Look up a cfattach by driver/attachment name. 765 */ 766 struct cfattach * 767 config_cfattach_lookup(const char *name, const char *atname) 768 { 769 struct cfdriver *cd; 770 771 cd = config_cfdriver_lookup(name); 772 if (cd == NULL) 773 return NULL; 774 775 return config_cfattach_lookup_cd(cd, atname); 776 } 777 778 /* 779 * Apply the matching function and choose the best. This is used 780 * a few times and we want to keep the code small. 781 */ 782 static void 783 mapply(struct matchinfo *m, cfdata_t cf) 784 { 785 int pri; 786 787 if (m->fn != NULL) { 788 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 789 } else { 790 pri = config_match(m->parent, cf, m->aux); 791 } 792 if (pri > m->pri) { 793 m->match = cf; 794 m->pri = pri; 795 } 796 } 797 798 int 799 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 800 { 801 const struct cfiattrdata *ci; 802 const struct cflocdesc *cl; 803 int nlocs, i; 804 805 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 806 KASSERT(ci); 807 nlocs = ci->ci_loclen; 808 KASSERT(!nlocs || locs); 809 for (i = 0; i < nlocs; i++) { 810 cl = &ci->ci_locdesc[i]; 811 if (cl->cld_defaultstr != NULL && 812 cf->cf_loc[i] == cl->cld_default) 813 continue; 814 if (cf->cf_loc[i] == locs[i]) 815 continue; 816 return 0; 817 } 818 819 return config_match(parent, cf, aux); 820 } 821 822 /* 823 * Helper function: check whether the driver supports the interface attribute 824 * and return its descriptor structure. 825 */ 826 static const struct cfiattrdata * 827 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 828 { 829 const struct cfiattrdata * const *cpp; 830 831 if (cd->cd_attrs == NULL) 832 return 0; 833 834 for (cpp = cd->cd_attrs; *cpp; cpp++) { 835 if (STREQ((*cpp)->ci_name, ia)) { 836 /* Match. */ 837 return *cpp; 838 } 839 } 840 return 0; 841 } 842 843 static int __diagused 844 cfdriver_iattr_count(const struct cfdriver *cd) 845 { 846 const struct cfiattrdata * const *cpp; 847 int i; 848 849 if (cd->cd_attrs == NULL) 850 return 0; 851 852 for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) { 853 i++; 854 } 855 return i; 856 } 857 858 /* 859 * Lookup an interface attribute description by name. 860 * If the driver is given, consider only its supported attributes. 861 */ 862 const struct cfiattrdata * 863 cfiattr_lookup(const char *name, const struct cfdriver *cd) 864 { 865 const struct cfdriver *d; 866 const struct cfiattrdata *ia; 867 868 if (cd) 869 return cfdriver_get_iattr(cd, name); 870 871 LIST_FOREACH(d, &allcfdrivers, cd_list) { 872 ia = cfdriver_get_iattr(d, name); 873 if (ia) 874 return ia; 875 } 876 return 0; 877 } 878 879 /* 880 * Determine if `parent' is a potential parent for a device spec based 881 * on `cfp'. 882 */ 883 static int 884 cfparent_match(const device_t parent, const struct cfparent *cfp) 885 { 886 struct cfdriver *pcd; 887 888 /* We don't match root nodes here. */ 889 if (cfp == NULL) 890 return 0; 891 892 pcd = parent->dv_cfdriver; 893 KASSERT(pcd != NULL); 894 895 /* 896 * First, ensure this parent has the correct interface 897 * attribute. 898 */ 899 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 900 return 0; 901 902 /* 903 * If no specific parent device instance was specified (i.e. 904 * we're attaching to the attribute only), we're done! 905 */ 906 if (cfp->cfp_parent == NULL) 907 return 1; 908 909 /* 910 * Check the parent device's name. 911 */ 912 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 913 return 0; /* not the same parent */ 914 915 /* 916 * Make sure the unit number matches. 917 */ 918 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 919 cfp->cfp_unit == parent->dv_unit) 920 return 1; 921 922 /* Unit numbers don't match. */ 923 return 0; 924 } 925 926 /* 927 * Helper for config_cfdata_attach(): check all devices whether it could be 928 * parent any attachment in the config data table passed, and rescan. 929 */ 930 static void 931 rescan_with_cfdata(const struct cfdata *cf) 932 { 933 device_t d; 934 const struct cfdata *cf1; 935 deviter_t di; 936 937 KASSERT(KERNEL_LOCKED_P()); 938 939 /* 940 * "alldevs" is likely longer than a modules's cfdata, so make it 941 * the outer loop. 942 */ 943 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 944 945 if (!(d->dv_cfattach->ca_rescan)) 946 continue; 947 948 for (cf1 = cf; cf1->cf_name; cf1++) { 949 950 if (!cfparent_match(d, cf1->cf_pspec)) 951 continue; 952 953 (*d->dv_cfattach->ca_rescan)(d, 954 cfdata_ifattr(cf1), cf1->cf_loc); 955 956 config_deferred(d); 957 } 958 } 959 deviter_release(&di); 960 } 961 962 /* 963 * Attach a supplemental config data table and rescan potential 964 * parent devices if required. 965 */ 966 int 967 config_cfdata_attach(cfdata_t cf, int scannow) 968 { 969 struct cftable *ct; 970 971 KERNEL_LOCK(1, NULL); 972 973 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 974 ct->ct_cfdata = cf; 975 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 976 977 if (scannow) 978 rescan_with_cfdata(cf); 979 980 KERNEL_UNLOCK_ONE(NULL); 981 982 return 0; 983 } 984 985 /* 986 * Helper for config_cfdata_detach: check whether a device is 987 * found through any attachment in the config data table. 988 */ 989 static int 990 dev_in_cfdata(device_t d, cfdata_t cf) 991 { 992 const struct cfdata *cf1; 993 994 for (cf1 = cf; cf1->cf_name; cf1++) 995 if (d->dv_cfdata == cf1) 996 return 1; 997 998 return 0; 999 } 1000 1001 /* 1002 * Detach a supplemental config data table. Detach all devices found 1003 * through that table (and thus keeping references to it) before. 1004 */ 1005 int 1006 config_cfdata_detach(cfdata_t cf) 1007 { 1008 device_t d; 1009 int error = 0; 1010 struct cftable *ct; 1011 deviter_t di; 1012 1013 KERNEL_LOCK(1, NULL); 1014 1015 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 1016 d = deviter_next(&di)) { 1017 if (!dev_in_cfdata(d, cf)) 1018 continue; 1019 if ((error = config_detach(d, 0)) != 0) 1020 break; 1021 } 1022 deviter_release(&di); 1023 if (error) { 1024 aprint_error_dev(d, "unable to detach instance\n"); 1025 goto out; 1026 } 1027 1028 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1029 if (ct->ct_cfdata == cf) { 1030 TAILQ_REMOVE(&allcftables, ct, ct_list); 1031 kmem_free(ct, sizeof(*ct)); 1032 error = 0; 1033 goto out; 1034 } 1035 } 1036 1037 /* not found -- shouldn't happen */ 1038 error = EINVAL; 1039 1040 out: KERNEL_UNLOCK_ONE(NULL); 1041 return error; 1042 } 1043 1044 /* 1045 * Invoke the "match" routine for a cfdata entry on behalf of 1046 * an external caller, usually a direct config "submatch" routine. 1047 */ 1048 int 1049 config_match(device_t parent, cfdata_t cf, void *aux) 1050 { 1051 struct cfattach *ca; 1052 1053 KASSERT(KERNEL_LOCKED_P()); 1054 1055 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 1056 if (ca == NULL) { 1057 /* No attachment for this entry, oh well. */ 1058 return 0; 1059 } 1060 1061 return (*ca->ca_match)(parent, cf, aux); 1062 } 1063 1064 /* 1065 * Invoke the "probe" routine for a cfdata entry on behalf of 1066 * an external caller, usually an indirect config "search" routine. 1067 */ 1068 int 1069 config_probe(device_t parent, cfdata_t cf, void *aux) 1070 { 1071 /* 1072 * This is currently a synonym for config_match(), but this 1073 * is an implementation detail; "match" and "probe" routines 1074 * have different behaviors. 1075 * 1076 * XXX config_probe() should return a bool, because there is 1077 * XXX no match score for probe -- it's either there or it's 1078 * XXX not, but some ports abuse the return value as a way 1079 * XXX to attach "critical" devices before "non-critical" 1080 * XXX devices. 1081 */ 1082 return config_match(parent, cf, aux); 1083 } 1084 1085 static struct cfargs_internal * 1086 cfargs_canonicalize(const struct cfargs * const cfargs, 1087 struct cfargs_internal * const store) 1088 { 1089 struct cfargs_internal *args = store; 1090 1091 memset(args, 0, sizeof(*args)); 1092 1093 /* If none specified, are all-NULL pointers are good. */ 1094 if (cfargs == NULL) { 1095 return args; 1096 } 1097 1098 /* 1099 * Only one arguments version is recognized at this time. 1100 */ 1101 if (cfargs->cfargs_version != CFARGS_VERSION) { 1102 panic("cfargs_canonicalize: unknown version %lu\n", 1103 (unsigned long)cfargs->cfargs_version); 1104 } 1105 1106 /* 1107 * submatch and search are mutually-exclusive. 1108 */ 1109 if (cfargs->submatch != NULL && cfargs->search != NULL) { 1110 panic("cfargs_canonicalize: submatch and search are " 1111 "mutually-exclusive"); 1112 } 1113 if (cfargs->submatch != NULL) { 1114 args->submatch = cfargs->submatch; 1115 } else if (cfargs->search != NULL) { 1116 args->search = cfargs->search; 1117 } 1118 1119 args->iattr = cfargs->iattr; 1120 args->locators = cfargs->locators; 1121 args->devhandle = cfargs->devhandle; 1122 1123 return args; 1124 } 1125 1126 /* 1127 * Iterate over all potential children of some device, calling the given 1128 * function (default being the child's match function) for each one. 1129 * Nonzero returns are matches; the highest value returned is considered 1130 * the best match. Return the `found child' if we got a match, or NULL 1131 * otherwise. The `aux' pointer is simply passed on through. 1132 * 1133 * Note that this function is designed so that it can be used to apply 1134 * an arbitrary function to all potential children (its return value 1135 * can be ignored). 1136 */ 1137 static cfdata_t 1138 config_search_internal(device_t parent, void *aux, 1139 const struct cfargs_internal * const args) 1140 { 1141 struct cftable *ct; 1142 cfdata_t cf; 1143 struct matchinfo m; 1144 1145 KASSERT(config_initialized); 1146 KASSERTMSG((!args->iattr || 1147 cfdriver_get_iattr(parent->dv_cfdriver, args->iattr)), 1148 "%s searched for child at interface attribute %s," 1149 " but device %s(4) has no such interface attribute in config(5)", 1150 device_xname(parent), args->iattr, 1151 parent->dv_cfdriver->cd_name); 1152 KASSERTMSG((args->iattr || 1153 cfdriver_iattr_count(parent->dv_cfdriver) < 2), 1154 "%s searched for child without interface attribute," 1155 " needed to disambiguate among the %d declared for in %s(4)" 1156 " in config(5)", 1157 device_xname(parent), 1158 cfdriver_iattr_count(parent->dv_cfdriver), 1159 parent->dv_cfdriver->cd_name); 1160 1161 m.fn = args->submatch; /* N.B. union */ 1162 m.parent = parent; 1163 m.locs = args->locators; 1164 m.aux = aux; 1165 m.match = NULL; 1166 m.pri = 0; 1167 1168 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1169 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1170 1171 /* We don't match root nodes here. */ 1172 if (!cf->cf_pspec) 1173 continue; 1174 1175 /* 1176 * Skip cf if no longer eligible, otherwise scan 1177 * through parents for one matching `parent', and 1178 * try match function. 1179 */ 1180 if (cf->cf_fstate == FSTATE_FOUND) 1181 continue; 1182 if (cf->cf_fstate == FSTATE_DNOTFOUND || 1183 cf->cf_fstate == FSTATE_DSTAR) 1184 continue; 1185 1186 /* 1187 * If an interface attribute was specified, 1188 * consider only children which attach to 1189 * that attribute. 1190 */ 1191 if (args->iattr != NULL && 1192 !STREQ(args->iattr, cfdata_ifattr(cf))) 1193 continue; 1194 1195 if (cfparent_match(parent, cf->cf_pspec)) 1196 mapply(&m, cf); 1197 } 1198 } 1199 rnd_add_uint32(&rnd_autoconf_source, 0); 1200 return m.match; 1201 } 1202 1203 cfdata_t 1204 config_search(device_t parent, void *aux, const struct cfargs *cfargs) 1205 { 1206 cfdata_t cf; 1207 struct cfargs_internal store; 1208 1209 cf = config_search_internal(parent, aux, 1210 cfargs_canonicalize(cfargs, &store)); 1211 1212 return cf; 1213 } 1214 1215 /* 1216 * Find the given root device. 1217 * This is much like config_search, but there is no parent. 1218 * Don't bother with multiple cfdata tables; the root node 1219 * must always be in the initial table. 1220 */ 1221 cfdata_t 1222 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1223 { 1224 cfdata_t cf; 1225 const short *p; 1226 struct matchinfo m; 1227 1228 m.fn = fn; 1229 m.parent = ROOT; 1230 m.aux = aux; 1231 m.match = NULL; 1232 m.pri = 0; 1233 m.locs = 0; 1234 /* 1235 * Look at root entries for matching name. We do not bother 1236 * with found-state here since only one root should ever be 1237 * searched (and it must be done first). 1238 */ 1239 for (p = cfroots; *p >= 0; p++) { 1240 cf = &cfdata[*p]; 1241 if (strcmp(cf->cf_name, rootname) == 0) 1242 mapply(&m, cf); 1243 } 1244 return m.match; 1245 } 1246 1247 static const char * const msgs[] = { 1248 [QUIET] = "", 1249 [UNCONF] = " not configured\n", 1250 [UNSUPP] = " unsupported\n", 1251 }; 1252 1253 /* 1254 * The given `aux' argument describes a device that has been found 1255 * on the given parent, but not necessarily configured. Locate the 1256 * configuration data for that device (using the submatch function 1257 * provided, or using candidates' cd_match configuration driver 1258 * functions) and attach it, and return its device_t. If the device was 1259 * not configured, call the given `print' function and return NULL. 1260 */ 1261 device_t 1262 config_found(device_t parent, void *aux, cfprint_t print, 1263 const struct cfargs * const cfargs) 1264 { 1265 cfdata_t cf; 1266 struct cfargs_internal store; 1267 const struct cfargs_internal * const args = 1268 cfargs_canonicalize(cfargs, &store); 1269 1270 cf = config_search_internal(parent, aux, args); 1271 if (cf != NULL) { 1272 return config_attach_internal(parent, cf, aux, print, args); 1273 } 1274 1275 if (print) { 1276 if (config_do_twiddle && cold) 1277 twiddle(); 1278 1279 const int pret = (*print)(aux, device_xname(parent)); 1280 KASSERT(pret >= 0); 1281 KASSERT(pret < __arraycount(msgs)); 1282 KASSERT(msgs[pret] != NULL); 1283 aprint_normal("%s", msgs[pret]); 1284 } 1285 1286 return NULL; 1287 } 1288 1289 /* 1290 * As above, but for root devices. 1291 */ 1292 device_t 1293 config_rootfound(const char *rootname, void *aux) 1294 { 1295 cfdata_t cf; 1296 device_t dev = NULL; 1297 1298 KERNEL_LOCK(1, NULL); 1299 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1300 dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE); 1301 else 1302 aprint_error("root device %s not configured\n", rootname); 1303 KERNEL_UNLOCK_ONE(NULL); 1304 return dev; 1305 } 1306 1307 /* just like sprintf(buf, "%d") except that it works from the end */ 1308 static char * 1309 number(char *ep, int n) 1310 { 1311 1312 *--ep = 0; 1313 while (n >= 10) { 1314 *--ep = (n % 10) + '0'; 1315 n /= 10; 1316 } 1317 *--ep = n + '0'; 1318 return ep; 1319 } 1320 1321 /* 1322 * Expand the size of the cd_devs array if necessary. 1323 * 1324 * The caller must hold alldevs_lock. config_makeroom() may release and 1325 * re-acquire alldevs_lock, so callers should re-check conditions such 1326 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1327 * returns. 1328 */ 1329 static void 1330 config_makeroom(int n, struct cfdriver *cd) 1331 { 1332 int ondevs, nndevs; 1333 device_t *osp, *nsp; 1334 1335 KASSERT(mutex_owned(&alldevs_lock)); 1336 alldevs_nwrite++; 1337 1338 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1339 ; 1340 1341 while (n >= cd->cd_ndevs) { 1342 /* 1343 * Need to expand the array. 1344 */ 1345 ondevs = cd->cd_ndevs; 1346 osp = cd->cd_devs; 1347 1348 /* 1349 * Release alldevs_lock around allocation, which may 1350 * sleep. 1351 */ 1352 mutex_exit(&alldevs_lock); 1353 nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP); 1354 mutex_enter(&alldevs_lock); 1355 1356 /* 1357 * If another thread moved the array while we did 1358 * not hold alldevs_lock, try again. 1359 */ 1360 if (cd->cd_devs != osp || cd->cd_ndevs != ondevs) { 1361 mutex_exit(&alldevs_lock); 1362 kmem_free(nsp, sizeof(device_t) * nndevs); 1363 mutex_enter(&alldevs_lock); 1364 continue; 1365 } 1366 1367 memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs)); 1368 if (ondevs != 0) 1369 memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs); 1370 1371 cd->cd_ndevs = nndevs; 1372 cd->cd_devs = nsp; 1373 if (ondevs != 0) { 1374 mutex_exit(&alldevs_lock); 1375 kmem_free(osp, sizeof(device_t) * ondevs); 1376 mutex_enter(&alldevs_lock); 1377 } 1378 } 1379 KASSERT(mutex_owned(&alldevs_lock)); 1380 alldevs_nwrite--; 1381 } 1382 1383 /* 1384 * Put dev into the devices list. 1385 */ 1386 static void 1387 config_devlink(device_t dev) 1388 { 1389 1390 mutex_enter(&alldevs_lock); 1391 1392 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1393 1394 dev->dv_add_gen = alldevs_gen; 1395 /* It is safe to add a device to the tail of the list while 1396 * readers and writers are in the list. 1397 */ 1398 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1399 mutex_exit(&alldevs_lock); 1400 } 1401 1402 static void 1403 config_devfree(device_t dev) 1404 { 1405 1406 KASSERT(dev->dv_flags & DVF_PRIV_ALLOC); 1407 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1408 1409 if (dev->dv_cfattach->ca_devsize > 0) 1410 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1411 kmem_free(dev, sizeof(*dev)); 1412 } 1413 1414 /* 1415 * Caller must hold alldevs_lock. 1416 */ 1417 static void 1418 config_devunlink(device_t dev, struct devicelist *garbage) 1419 { 1420 struct device_garbage *dg = &dev->dv_garbage; 1421 cfdriver_t cd = device_cfdriver(dev); 1422 int i; 1423 1424 KASSERT(mutex_owned(&alldevs_lock)); 1425 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1426 1427 /* Unlink from device list. Link to garbage list. */ 1428 TAILQ_REMOVE(&alldevs, dev, dv_list); 1429 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1430 1431 /* Remove from cfdriver's array. */ 1432 cd->cd_devs[dev->dv_unit] = NULL; 1433 1434 /* 1435 * If the device now has no units in use, unlink its softc array. 1436 */ 1437 for (i = 0; i < cd->cd_ndevs; i++) { 1438 if (cd->cd_devs[i] != NULL) 1439 break; 1440 } 1441 /* Nothing found. Unlink, now. Deallocate, later. */ 1442 if (i == cd->cd_ndevs) { 1443 dg->dg_ndevs = cd->cd_ndevs; 1444 dg->dg_devs = cd->cd_devs; 1445 cd->cd_devs = NULL; 1446 cd->cd_ndevs = 0; 1447 } 1448 } 1449 1450 static void 1451 config_devdelete(device_t dev) 1452 { 1453 struct device_garbage *dg = &dev->dv_garbage; 1454 device_lock_t dvl = device_getlock(dev); 1455 1456 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1457 1458 if (dg->dg_devs != NULL) 1459 kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs); 1460 1461 localcount_fini(dev->dv_localcount); 1462 kmem_free(dev->dv_localcount, sizeof(*dev->dv_localcount)); 1463 1464 cv_destroy(&dvl->dvl_cv); 1465 mutex_destroy(&dvl->dvl_mtx); 1466 1467 KASSERT(dev->dv_properties != NULL); 1468 prop_object_release(dev->dv_properties); 1469 1470 if (dev->dv_activity_handlers) 1471 panic("%s with registered handlers", __func__); 1472 1473 if (dev->dv_locators) { 1474 size_t amount = *--dev->dv_locators; 1475 kmem_free(dev->dv_locators, amount); 1476 } 1477 1478 config_devfree(dev); 1479 } 1480 1481 static int 1482 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1483 { 1484 int unit = cf->cf_unit; 1485 1486 KASSERT(mutex_owned(&alldevs_lock)); 1487 1488 if (unit < 0) 1489 return -1; 1490 if (cf->cf_fstate == FSTATE_STAR) { 1491 for (; unit < cd->cd_ndevs; unit++) 1492 if (cd->cd_devs[unit] == NULL) 1493 break; 1494 /* 1495 * unit is now the unit of the first NULL device pointer, 1496 * or max(cd->cd_ndevs,cf->cf_unit). 1497 */ 1498 } else { 1499 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1500 unit = -1; 1501 } 1502 return unit; 1503 } 1504 1505 static int 1506 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1507 { 1508 struct alldevs_foray af; 1509 int unit; 1510 1511 config_alldevs_enter(&af); 1512 for (;;) { 1513 unit = config_unit_nextfree(cd, cf); 1514 if (unit == -1) 1515 break; 1516 if (unit < cd->cd_ndevs) { 1517 cd->cd_devs[unit] = dev; 1518 dev->dv_unit = unit; 1519 break; 1520 } 1521 config_makeroom(unit, cd); 1522 } 1523 config_alldevs_exit(&af); 1524 1525 return unit; 1526 } 1527 1528 static device_t 1529 config_devalloc(const device_t parent, const cfdata_t cf, 1530 const struct cfargs_internal * const args) 1531 { 1532 cfdriver_t cd; 1533 cfattach_t ca; 1534 size_t lname, lunit; 1535 const char *xunit; 1536 int myunit; 1537 char num[10]; 1538 device_t dev; 1539 void *dev_private; 1540 const struct cfiattrdata *ia; 1541 device_lock_t dvl; 1542 1543 cd = config_cfdriver_lookup(cf->cf_name); 1544 if (cd == NULL) 1545 return NULL; 1546 1547 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1548 if (ca == NULL) 1549 return NULL; 1550 1551 /* get memory for all device vars */ 1552 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1553 if (ca->ca_devsize > 0) { 1554 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1555 } else { 1556 dev_private = NULL; 1557 } 1558 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1559 1560 dev->dv_handle = args->devhandle; 1561 1562 dev->dv_class = cd->cd_class; 1563 dev->dv_cfdata = cf; 1564 dev->dv_cfdriver = cd; 1565 dev->dv_cfattach = ca; 1566 dev->dv_activity_count = 0; 1567 dev->dv_activity_handlers = NULL; 1568 dev->dv_private = dev_private; 1569 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1570 dev->dv_attaching = curlwp; 1571 1572 myunit = config_unit_alloc(dev, cd, cf); 1573 if (myunit == -1) { 1574 config_devfree(dev); 1575 return NULL; 1576 } 1577 1578 /* compute length of name and decimal expansion of unit number */ 1579 lname = strlen(cd->cd_name); 1580 xunit = number(&num[sizeof(num)], myunit); 1581 lunit = &num[sizeof(num)] - xunit; 1582 if (lname + lunit > sizeof(dev->dv_xname)) 1583 panic("config_devalloc: device name too long"); 1584 1585 dvl = device_getlock(dev); 1586 1587 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1588 cv_init(&dvl->dvl_cv, "pmfsusp"); 1589 1590 memcpy(dev->dv_xname, cd->cd_name, lname); 1591 memcpy(dev->dv_xname + lname, xunit, lunit); 1592 dev->dv_parent = parent; 1593 if (parent != NULL) 1594 dev->dv_depth = parent->dv_depth + 1; 1595 else 1596 dev->dv_depth = 0; 1597 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1598 if (args->locators) { 1599 KASSERT(parent); /* no locators at root */ 1600 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1601 dev->dv_locators = 1602 kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP); 1603 *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1); 1604 memcpy(dev->dv_locators, args->locators, 1605 sizeof(int) * ia->ci_loclen); 1606 } 1607 dev->dv_properties = prop_dictionary_create(); 1608 KASSERT(dev->dv_properties != NULL); 1609 1610 prop_dictionary_set_string_nocopy(dev->dv_properties, 1611 "device-driver", dev->dv_cfdriver->cd_name); 1612 prop_dictionary_set_uint16(dev->dv_properties, 1613 "device-unit", dev->dv_unit); 1614 if (parent != NULL) { 1615 prop_dictionary_set_string(dev->dv_properties, 1616 "device-parent", device_xname(parent)); 1617 } 1618 1619 dev->dv_localcount = kmem_zalloc(sizeof(*dev->dv_localcount), 1620 KM_SLEEP); 1621 localcount_init(dev->dv_localcount); 1622 1623 if (dev->dv_cfdriver->cd_attrs != NULL) 1624 config_add_attrib_dict(dev); 1625 1626 return dev; 1627 } 1628 1629 /* 1630 * Create an array of device attach attributes and add it 1631 * to the device's dv_properties dictionary. 1632 * 1633 * <key>interface-attributes</key> 1634 * <array> 1635 * <dict> 1636 * <key>attribute-name</key> 1637 * <string>foo</string> 1638 * <key>locators</key> 1639 * <array> 1640 * <dict> 1641 * <key>loc-name</key> 1642 * <string>foo-loc1</string> 1643 * </dict> 1644 * <dict> 1645 * <key>loc-name</key> 1646 * <string>foo-loc2</string> 1647 * <key>default</key> 1648 * <string>foo-loc2-default</string> 1649 * </dict> 1650 * ... 1651 * </array> 1652 * </dict> 1653 * ... 1654 * </array> 1655 */ 1656 1657 static void 1658 config_add_attrib_dict(device_t dev) 1659 { 1660 int i, j; 1661 const struct cfiattrdata *ci; 1662 prop_dictionary_t attr_dict, loc_dict; 1663 prop_array_t attr_array, loc_array; 1664 1665 if ((attr_array = prop_array_create()) == NULL) 1666 return; 1667 1668 for (i = 0; ; i++) { 1669 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1670 break; 1671 if ((attr_dict = prop_dictionary_create()) == NULL) 1672 break; 1673 prop_dictionary_set_string_nocopy(attr_dict, "attribute-name", 1674 ci->ci_name); 1675 1676 /* Create an array of the locator names and defaults */ 1677 1678 if (ci->ci_loclen != 0 && 1679 (loc_array = prop_array_create()) != NULL) { 1680 for (j = 0; j < ci->ci_loclen; j++) { 1681 loc_dict = prop_dictionary_create(); 1682 if (loc_dict == NULL) 1683 continue; 1684 prop_dictionary_set_string_nocopy(loc_dict, 1685 "loc-name", ci->ci_locdesc[j].cld_name); 1686 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1687 prop_dictionary_set_string_nocopy( 1688 loc_dict, "default", 1689 ci->ci_locdesc[j].cld_defaultstr); 1690 prop_array_set(loc_array, j, loc_dict); 1691 prop_object_release(loc_dict); 1692 } 1693 prop_dictionary_set_and_rel(attr_dict, "locators", 1694 loc_array); 1695 } 1696 prop_array_add(attr_array, attr_dict); 1697 prop_object_release(attr_dict); 1698 } 1699 if (i == 0) 1700 prop_object_release(attr_array); 1701 else 1702 prop_dictionary_set_and_rel(dev->dv_properties, 1703 "interface-attributes", attr_array); 1704 1705 return; 1706 } 1707 1708 /* 1709 * Attach a found device. 1710 */ 1711 static device_t 1712 config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1713 const struct cfargs_internal * const args) 1714 { 1715 device_t dev; 1716 struct cftable *ct; 1717 const char *drvname; 1718 bool deferred; 1719 1720 KASSERT(KERNEL_LOCKED_P()); 1721 1722 dev = config_devalloc(parent, cf, args); 1723 if (!dev) 1724 panic("config_attach: allocation of device softc failed"); 1725 1726 /* XXX redundant - see below? */ 1727 if (cf->cf_fstate != FSTATE_STAR) { 1728 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1729 cf->cf_fstate = FSTATE_FOUND; 1730 } 1731 1732 config_devlink(dev); 1733 1734 if (config_do_twiddle && cold) 1735 twiddle(); 1736 else 1737 aprint_naive("Found "); 1738 /* 1739 * We want the next two printfs for normal, verbose, and quiet, 1740 * but not silent (in which case, we're twiddling, instead). 1741 */ 1742 if (parent == ROOT) { 1743 aprint_naive("%s (root)", device_xname(dev)); 1744 aprint_normal("%s (root)", device_xname(dev)); 1745 } else { 1746 aprint_naive("%s at %s", device_xname(dev), 1747 device_xname(parent)); 1748 aprint_normal("%s at %s", device_xname(dev), 1749 device_xname(parent)); 1750 if (print) 1751 (void) (*print)(aux, NULL); 1752 } 1753 1754 /* 1755 * Before attaching, clobber any unfound devices that are 1756 * otherwise identical. 1757 * XXX code above is redundant? 1758 */ 1759 drvname = dev->dv_cfdriver->cd_name; 1760 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1761 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1762 if (STREQ(cf->cf_name, drvname) && 1763 cf->cf_unit == dev->dv_unit) { 1764 if (cf->cf_fstate == FSTATE_NOTFOUND) 1765 cf->cf_fstate = FSTATE_FOUND; 1766 } 1767 } 1768 } 1769 device_register(dev, aux); 1770 1771 /* Let userland know */ 1772 devmon_report_device(dev, true); 1773 1774 /* 1775 * Prevent detach until the driver's attach function, and all 1776 * deferred actions, have finished. 1777 */ 1778 config_pending_incr(dev); 1779 1780 /* Call the driver's attach function. */ 1781 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1782 1783 /* 1784 * Allow other threads to acquire references to the device now 1785 * that the driver's attach function is done. 1786 */ 1787 mutex_enter(&config_misc_lock); 1788 KASSERT(dev->dv_attaching == curlwp); 1789 dev->dv_attaching = NULL; 1790 cv_broadcast(&config_misc_cv); 1791 mutex_exit(&config_misc_lock); 1792 1793 /* 1794 * Synchronous parts of attach are done. Allow detach, unless 1795 * the driver's attach function scheduled deferred actions. 1796 */ 1797 config_pending_decr(dev); 1798 1799 mutex_enter(&config_misc_lock); 1800 deferred = (dev->dv_pending != 0); 1801 mutex_exit(&config_misc_lock); 1802 1803 if (!deferred && !device_pmf_is_registered(dev)) 1804 aprint_debug_dev(dev, 1805 "WARNING: power management not supported\n"); 1806 1807 config_process_deferred(&deferred_config_queue, dev); 1808 1809 device_register_post_config(dev, aux); 1810 rnd_add_uint32(&rnd_autoconf_source, 0); 1811 return dev; 1812 } 1813 1814 device_t 1815 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1816 const struct cfargs *cfargs) 1817 { 1818 struct cfargs_internal store; 1819 1820 KASSERT(KERNEL_LOCKED_P()); 1821 1822 return config_attach_internal(parent, cf, aux, print, 1823 cfargs_canonicalize(cfargs, &store)); 1824 } 1825 1826 /* 1827 * As above, but for pseudo-devices. Pseudo-devices attached in this 1828 * way are silently inserted into the device tree, and their children 1829 * attached. 1830 * 1831 * Note that because pseudo-devices are attached silently, any information 1832 * the attach routine wishes to print should be prefixed with the device 1833 * name by the attach routine. 1834 */ 1835 device_t 1836 config_attach_pseudo(cfdata_t cf) 1837 { 1838 device_t dev; 1839 1840 KERNEL_LOCK(1, NULL); 1841 1842 struct cfargs_internal args = { }; 1843 dev = config_devalloc(ROOT, cf, &args); 1844 if (!dev) 1845 goto out; 1846 1847 /* XXX mark busy in cfdata */ 1848 1849 if (cf->cf_fstate != FSTATE_STAR) { 1850 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1851 cf->cf_fstate = FSTATE_FOUND; 1852 } 1853 1854 config_devlink(dev); 1855 1856 #if 0 /* XXXJRT not yet */ 1857 device_register(dev, NULL); /* like a root node */ 1858 #endif 1859 1860 /* Let userland know */ 1861 devmon_report_device(dev, true); 1862 1863 /* 1864 * Prevent detach until the driver's attach function, and all 1865 * deferred actions, have finished. 1866 */ 1867 config_pending_incr(dev); 1868 1869 /* Call the driver's attach function. */ 1870 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1871 1872 /* 1873 * Allow other threads to acquire references to the device now 1874 * that the driver's attach function is done. 1875 */ 1876 mutex_enter(&config_misc_lock); 1877 KASSERT(dev->dv_attaching == curlwp); 1878 dev->dv_attaching = NULL; 1879 cv_broadcast(&config_misc_cv); 1880 mutex_exit(&config_misc_lock); 1881 1882 /* 1883 * Synchronous parts of attach are done. Allow detach, unless 1884 * the driver's attach function scheduled deferred actions. 1885 */ 1886 config_pending_decr(dev); 1887 1888 config_process_deferred(&deferred_config_queue, dev); 1889 1890 out: KERNEL_UNLOCK_ONE(NULL); 1891 return dev; 1892 } 1893 1894 /* 1895 * Caller must hold alldevs_lock. 1896 */ 1897 static void 1898 config_collect_garbage(struct devicelist *garbage) 1899 { 1900 device_t dv; 1901 1902 KASSERT(!cpu_intr_p()); 1903 KASSERT(!cpu_softintr_p()); 1904 KASSERT(mutex_owned(&alldevs_lock)); 1905 1906 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1907 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1908 if (dv->dv_del_gen != 0) 1909 break; 1910 } 1911 if (dv == NULL) { 1912 alldevs_garbage = false; 1913 break; 1914 } 1915 config_devunlink(dv, garbage); 1916 } 1917 KASSERT(mutex_owned(&alldevs_lock)); 1918 } 1919 1920 static void 1921 config_dump_garbage(struct devicelist *garbage) 1922 { 1923 device_t dv; 1924 1925 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1926 TAILQ_REMOVE(garbage, dv, dv_list); 1927 config_devdelete(dv); 1928 } 1929 } 1930 1931 static int 1932 config_detach_enter(device_t dev) 1933 { 1934 struct lwp *l __diagused; 1935 int error = 0; 1936 1937 mutex_enter(&config_misc_lock); 1938 1939 /* 1940 * Wait until attach has fully completed, and until any 1941 * concurrent detach (e.g., drvctl racing with USB event 1942 * thread) has completed. 1943 * 1944 * Caller must hold alldevs_nread or alldevs_nwrite (e.g., via 1945 * deviter) to ensure the winner of the race doesn't free the 1946 * device leading the loser of the race into use-after-free. 1947 * 1948 * XXX Not all callers do this! 1949 */ 1950 while (dev->dv_pending || dev->dv_detaching) { 1951 KASSERTMSG(dev->dv_detaching != curlwp, 1952 "recursively detaching %s", device_xname(dev)); 1953 error = cv_wait_sig(&config_misc_cv, &config_misc_lock); 1954 if (error) 1955 goto out; 1956 } 1957 1958 /* 1959 * Attach has completed, and no other concurrent detach is 1960 * running. Claim the device for detaching. This will cause 1961 * all new attempts to acquire references to block. 1962 */ 1963 KASSERTMSG((l = dev->dv_attaching) == NULL, 1964 "lwp %ld [%s] @ %p attaching %s", 1965 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 1966 device_xname(dev)); 1967 KASSERTMSG((l = dev->dv_detaching) == NULL, 1968 "lwp %ld [%s] @ %p detaching %s", 1969 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 1970 device_xname(dev)); 1971 dev->dv_detaching = curlwp; 1972 1973 out: mutex_exit(&config_misc_lock); 1974 return error; 1975 } 1976 1977 static void 1978 config_detach_exit(device_t dev) 1979 { 1980 struct lwp *l __diagused; 1981 1982 mutex_enter(&config_misc_lock); 1983 KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s", 1984 device_xname(dev)); 1985 KASSERTMSG((l = dev->dv_detaching) == curlwp, 1986 "lwp %ld [%s] @ %p detaching %s", 1987 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 1988 device_xname(dev)); 1989 dev->dv_detaching = NULL; 1990 cv_broadcast(&config_misc_cv); 1991 mutex_exit(&config_misc_lock); 1992 } 1993 1994 /* 1995 * Detach a device. Optionally forced (e.g. because of hardware 1996 * removal) and quiet. Returns zero if successful, non-zero 1997 * (an error code) otherwise. 1998 * 1999 * Note that this code wants to be run from a process context, so 2000 * that the detach can sleep to allow processes which have a device 2001 * open to run and unwind their stacks. 2002 */ 2003 int 2004 config_detach(device_t dev, int flags) 2005 { 2006 struct alldevs_foray af; 2007 struct cftable *ct; 2008 cfdata_t cf; 2009 const struct cfattach *ca; 2010 struct cfdriver *cd; 2011 device_t d __diagused; 2012 int rv = 0; 2013 2014 KERNEL_LOCK(1, NULL); 2015 2016 cf = dev->dv_cfdata; 2017 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND || 2018 cf->cf_fstate == FSTATE_STAR), 2019 "config_detach: %s: bad device fstate: %d", 2020 device_xname(dev), cf ? cf->cf_fstate : -1); 2021 2022 cd = dev->dv_cfdriver; 2023 KASSERT(cd != NULL); 2024 2025 ca = dev->dv_cfattach; 2026 KASSERT(ca != NULL); 2027 2028 /* 2029 * Only one detach at a time, please -- and not until fully 2030 * attached. 2031 */ 2032 rv = config_detach_enter(dev); 2033 if (rv) { 2034 KERNEL_UNLOCK_ONE(NULL); 2035 return rv; 2036 } 2037 2038 mutex_enter(&alldevs_lock); 2039 if (dev->dv_del_gen != 0) { 2040 mutex_exit(&alldevs_lock); 2041 #ifdef DIAGNOSTIC 2042 printf("%s: %s is already detached\n", __func__, 2043 device_xname(dev)); 2044 #endif /* DIAGNOSTIC */ 2045 config_detach_exit(dev); 2046 KERNEL_UNLOCK_ONE(NULL); 2047 return ENOENT; 2048 } 2049 alldevs_nwrite++; 2050 mutex_exit(&alldevs_lock); 2051 2052 /* 2053 * Call the driver's .ca_detach function, unless it has none or 2054 * we are skipping it because it's unforced shutdown time and 2055 * the driver didn't ask to detach on shutdown. 2056 */ 2057 if (!detachall && 2058 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 2059 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 2060 rv = EOPNOTSUPP; 2061 } else if (ca->ca_detach != NULL) { 2062 rv = (*ca->ca_detach)(dev, flags); 2063 } else 2064 rv = EOPNOTSUPP; 2065 2066 KASSERTMSG(!dev->dv_detach_done, "%s detached twice, error=%d", 2067 device_xname(dev), rv); 2068 2069 /* 2070 * If it was not possible to detach the device, then we either 2071 * panic() (for the forced but failed case), or return an error. 2072 */ 2073 if (rv) { 2074 /* 2075 * Detach failed -- likely EOPNOTSUPP or EBUSY. Driver 2076 * must not have called config_detach_commit. 2077 */ 2078 KASSERTMSG(!dev->dv_detach_committed, 2079 "%s committed to detaching and then backed out, error=%d", 2080 device_xname(dev), rv); 2081 if (flags & DETACH_FORCE) { 2082 panic("config_detach: forced detach of %s failed (%d)", 2083 device_xname(dev), rv); 2084 } 2085 goto out; 2086 } 2087 2088 /* 2089 * The device has now been successfully detached. 2090 */ 2091 dev->dv_detach_done = true; 2092 2093 /* 2094 * If .ca_detach didn't commit to detach, then do that for it. 2095 * This wakes any pending device_lookup_acquire calls so they 2096 * will fail. 2097 */ 2098 config_detach_commit(dev); 2099 2100 /* 2101 * If it was possible to detach the device, ensure that the 2102 * device is deactivated. 2103 */ 2104 dev->dv_flags &= ~DVF_ACTIVE; /* XXXSMP */ 2105 2106 /* 2107 * Wait for all device_lookup_acquire references -- mostly, for 2108 * all attempts to open the device -- to drain. It is the 2109 * responsibility of .ca_detach to ensure anything with open 2110 * references will be interrupted and release them promptly, 2111 * not block indefinitely. All new attempts to acquire 2112 * references will fail, as config_detach_commit has arranged 2113 * by now. 2114 */ 2115 mutex_enter(&config_misc_lock); 2116 localcount_drain(dev->dv_localcount, 2117 &config_misc_cv, &config_misc_lock); 2118 mutex_exit(&config_misc_lock); 2119 2120 /* Let userland know */ 2121 devmon_report_device(dev, false); 2122 2123 #ifdef DIAGNOSTIC 2124 /* 2125 * Sanity: If you're successfully detached, you should have no 2126 * children. (Note that because children must be attached 2127 * after parents, we only need to search the latter part of 2128 * the list.) 2129 */ 2130 mutex_enter(&alldevs_lock); 2131 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 2132 d = TAILQ_NEXT(d, dv_list)) { 2133 if (d->dv_parent == dev && d->dv_del_gen == 0) { 2134 printf("config_detach: detached device %s" 2135 " has children %s\n", device_xname(dev), 2136 device_xname(d)); 2137 panic("config_detach"); 2138 } 2139 } 2140 mutex_exit(&alldevs_lock); 2141 #endif 2142 2143 /* notify the parent that the child is gone */ 2144 if (dev->dv_parent) { 2145 device_t p = dev->dv_parent; 2146 if (p->dv_cfattach->ca_childdetached) 2147 (*p->dv_cfattach->ca_childdetached)(p, dev); 2148 } 2149 2150 /* 2151 * Mark cfdata to show that the unit can be reused, if possible. 2152 */ 2153 TAILQ_FOREACH(ct, &allcftables, ct_list) { 2154 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 2155 if (STREQ(cf->cf_name, cd->cd_name)) { 2156 if (cf->cf_fstate == FSTATE_FOUND && 2157 cf->cf_unit == dev->dv_unit) 2158 cf->cf_fstate = FSTATE_NOTFOUND; 2159 } 2160 } 2161 } 2162 2163 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 2164 aprint_normal_dev(dev, "detached\n"); 2165 2166 out: 2167 config_detach_exit(dev); 2168 2169 config_alldevs_enter(&af); 2170 KASSERT(alldevs_nwrite != 0); 2171 --alldevs_nwrite; 2172 if (rv == 0 && dev->dv_del_gen == 0) { 2173 if (alldevs_nwrite == 0 && alldevs_nread == 0) 2174 config_devunlink(dev, &af.af_garbage); 2175 else { 2176 dev->dv_del_gen = alldevs_gen; 2177 alldevs_garbage = true; 2178 } 2179 } 2180 config_alldevs_exit(&af); 2181 2182 KERNEL_UNLOCK_ONE(NULL); 2183 2184 return rv; 2185 } 2186 2187 /* 2188 * config_detach_commit(dev) 2189 * 2190 * Issued by a driver's .ca_detach routine to notify anyone 2191 * waiting in device_lookup_acquire that the driver is committed 2192 * to detaching the device, which allows device_lookup_acquire to 2193 * wake up and fail immediately. 2194 * 2195 * Safe to call multiple times -- idempotent. Must be called 2196 * during config_detach_enter/exit. Safe to use with 2197 * device_lookup because the device is not actually removed from 2198 * the table until after config_detach_exit. 2199 */ 2200 void 2201 config_detach_commit(device_t dev) 2202 { 2203 struct lwp *l __diagused; 2204 2205 mutex_enter(&config_misc_lock); 2206 KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s", 2207 device_xname(dev)); 2208 KASSERTMSG((l = dev->dv_detaching) == curlwp, 2209 "lwp %ld [%s] @ %p detaching %s", 2210 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 2211 device_xname(dev)); 2212 dev->dv_detach_committed = true; 2213 cv_broadcast(&config_misc_cv); 2214 mutex_exit(&config_misc_lock); 2215 } 2216 2217 int 2218 config_detach_children(device_t parent, int flags) 2219 { 2220 device_t dv; 2221 deviter_t di; 2222 int error = 0; 2223 2224 KASSERT(KERNEL_LOCKED_P()); 2225 2226 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 2227 dv = deviter_next(&di)) { 2228 if (device_parent(dv) != parent) 2229 continue; 2230 if ((error = config_detach(dv, flags)) != 0) 2231 break; 2232 } 2233 deviter_release(&di); 2234 return error; 2235 } 2236 2237 device_t 2238 shutdown_first(struct shutdown_state *s) 2239 { 2240 if (!s->initialized) { 2241 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 2242 s->initialized = true; 2243 } 2244 return shutdown_next(s); 2245 } 2246 2247 device_t 2248 shutdown_next(struct shutdown_state *s) 2249 { 2250 device_t dv; 2251 2252 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 2253 ; 2254 2255 if (dv == NULL) 2256 s->initialized = false; 2257 2258 return dv; 2259 } 2260 2261 bool 2262 config_detach_all(int how) 2263 { 2264 static struct shutdown_state s; 2265 device_t curdev; 2266 bool progress = false; 2267 int flags; 2268 2269 KERNEL_LOCK(1, NULL); 2270 2271 if ((how & (RB_NOSYNC|RB_DUMP)) != 0) 2272 goto out; 2273 2274 if ((how & RB_POWERDOWN) == RB_POWERDOWN) 2275 flags = DETACH_SHUTDOWN | DETACH_POWEROFF; 2276 else 2277 flags = DETACH_SHUTDOWN; 2278 2279 for (curdev = shutdown_first(&s); curdev != NULL; 2280 curdev = shutdown_next(&s)) { 2281 aprint_debug(" detaching %s, ", device_xname(curdev)); 2282 if (config_detach(curdev, flags) == 0) { 2283 progress = true; 2284 aprint_debug("success."); 2285 } else 2286 aprint_debug("failed."); 2287 } 2288 2289 out: KERNEL_UNLOCK_ONE(NULL); 2290 return progress; 2291 } 2292 2293 static bool 2294 device_is_ancestor_of(device_t ancestor, device_t descendant) 2295 { 2296 device_t dv; 2297 2298 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 2299 if (device_parent(dv) == ancestor) 2300 return true; 2301 } 2302 return false; 2303 } 2304 2305 int 2306 config_deactivate(device_t dev) 2307 { 2308 deviter_t di; 2309 const struct cfattach *ca; 2310 device_t descendant; 2311 int s, rv = 0, oflags; 2312 2313 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 2314 descendant != NULL; 2315 descendant = deviter_next(&di)) { 2316 if (dev != descendant && 2317 !device_is_ancestor_of(dev, descendant)) 2318 continue; 2319 2320 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 2321 continue; 2322 2323 ca = descendant->dv_cfattach; 2324 oflags = descendant->dv_flags; 2325 2326 descendant->dv_flags &= ~DVF_ACTIVE; 2327 if (ca->ca_activate == NULL) 2328 continue; 2329 s = splhigh(); 2330 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 2331 splx(s); 2332 if (rv != 0) 2333 descendant->dv_flags = oflags; 2334 } 2335 deviter_release(&di); 2336 return rv; 2337 } 2338 2339 /* 2340 * Defer the configuration of the specified device until all 2341 * of its parent's devices have been attached. 2342 */ 2343 void 2344 config_defer(device_t dev, void (*func)(device_t)) 2345 { 2346 struct deferred_config *dc; 2347 2348 if (dev->dv_parent == NULL) 2349 panic("config_defer: can't defer config of a root device"); 2350 2351 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2352 2353 config_pending_incr(dev); 2354 2355 mutex_enter(&config_misc_lock); 2356 #ifdef DIAGNOSTIC 2357 struct deferred_config *odc; 2358 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) { 2359 if (odc->dc_dev == dev) 2360 panic("config_defer: deferred twice"); 2361 } 2362 #endif 2363 dc->dc_dev = dev; 2364 dc->dc_func = func; 2365 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 2366 mutex_exit(&config_misc_lock); 2367 } 2368 2369 /* 2370 * Defer some autoconfiguration for a device until after interrupts 2371 * are enabled. 2372 */ 2373 void 2374 config_interrupts(device_t dev, void (*func)(device_t)) 2375 { 2376 struct deferred_config *dc; 2377 2378 /* 2379 * If interrupts are enabled, callback now. 2380 */ 2381 if (cold == 0) { 2382 (*func)(dev); 2383 return; 2384 } 2385 2386 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2387 2388 config_pending_incr(dev); 2389 2390 mutex_enter(&config_misc_lock); 2391 #ifdef DIAGNOSTIC 2392 struct deferred_config *odc; 2393 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) { 2394 if (odc->dc_dev == dev) 2395 panic("config_interrupts: deferred twice"); 2396 } 2397 #endif 2398 dc->dc_dev = dev; 2399 dc->dc_func = func; 2400 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 2401 mutex_exit(&config_misc_lock); 2402 } 2403 2404 /* 2405 * Defer some autoconfiguration for a device until after root file system 2406 * is mounted (to load firmware etc). 2407 */ 2408 void 2409 config_mountroot(device_t dev, void (*func)(device_t)) 2410 { 2411 struct deferred_config *dc; 2412 2413 /* 2414 * If root file system is mounted, callback now. 2415 */ 2416 if (root_is_mounted) { 2417 (*func)(dev); 2418 return; 2419 } 2420 2421 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2422 2423 mutex_enter(&config_misc_lock); 2424 #ifdef DIAGNOSTIC 2425 struct deferred_config *odc; 2426 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) { 2427 if (odc->dc_dev == dev) 2428 panic("%s: deferred twice", __func__); 2429 } 2430 #endif 2431 2432 dc->dc_dev = dev; 2433 dc->dc_func = func; 2434 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 2435 mutex_exit(&config_misc_lock); 2436 } 2437 2438 /* 2439 * Process a deferred configuration queue. 2440 */ 2441 static void 2442 config_process_deferred(struct deferred_config_head *queue, device_t parent) 2443 { 2444 struct deferred_config *dc; 2445 2446 KASSERT(KERNEL_LOCKED_P()); 2447 2448 mutex_enter(&config_misc_lock); 2449 dc = TAILQ_FIRST(queue); 2450 while (dc) { 2451 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2452 TAILQ_REMOVE(queue, dc, dc_queue); 2453 mutex_exit(&config_misc_lock); 2454 2455 (*dc->dc_func)(dc->dc_dev); 2456 config_pending_decr(dc->dc_dev); 2457 kmem_free(dc, sizeof(*dc)); 2458 2459 mutex_enter(&config_misc_lock); 2460 /* Restart, queue might have changed */ 2461 dc = TAILQ_FIRST(queue); 2462 } else { 2463 dc = TAILQ_NEXT(dc, dc_queue); 2464 } 2465 } 2466 mutex_exit(&config_misc_lock); 2467 } 2468 2469 /* 2470 * Manipulate the config_pending semaphore. 2471 */ 2472 void 2473 config_pending_incr(device_t dev) 2474 { 2475 2476 mutex_enter(&config_misc_lock); 2477 KASSERTMSG(dev->dv_pending < INT_MAX, 2478 "%s: excess config_pending_incr", device_xname(dev)); 2479 if (dev->dv_pending++ == 0) 2480 TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list); 2481 #ifdef DEBUG_AUTOCONF 2482 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending); 2483 #endif 2484 mutex_exit(&config_misc_lock); 2485 } 2486 2487 void 2488 config_pending_decr(device_t dev) 2489 { 2490 2491 mutex_enter(&config_misc_lock); 2492 KASSERTMSG(dev->dv_pending > 0, 2493 "%s: excess config_pending_decr", device_xname(dev)); 2494 if (--dev->dv_pending == 0) { 2495 TAILQ_REMOVE(&config_pending, dev, dv_pending_list); 2496 cv_broadcast(&config_misc_cv); 2497 } 2498 #ifdef DEBUG_AUTOCONF 2499 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending); 2500 #endif 2501 mutex_exit(&config_misc_lock); 2502 } 2503 2504 /* 2505 * Register a "finalization" routine. Finalization routines are 2506 * called iteratively once all real devices have been found during 2507 * autoconfiguration, for as long as any one finalizer has done 2508 * any work. 2509 */ 2510 int 2511 config_finalize_register(device_t dev, int (*fn)(device_t)) 2512 { 2513 struct finalize_hook *f; 2514 int error = 0; 2515 2516 KERNEL_LOCK(1, NULL); 2517 2518 /* 2519 * If finalization has already been done, invoke the 2520 * callback function now. 2521 */ 2522 if (config_finalize_done) { 2523 while ((*fn)(dev) != 0) 2524 /* loop */ ; 2525 goto out; 2526 } 2527 2528 /* Ensure this isn't already on the list. */ 2529 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2530 if (f->f_func == fn && f->f_dev == dev) { 2531 error = EEXIST; 2532 goto out; 2533 } 2534 } 2535 2536 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2537 f->f_func = fn; 2538 f->f_dev = dev; 2539 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2540 2541 /* Success! */ 2542 error = 0; 2543 2544 out: KERNEL_UNLOCK_ONE(NULL); 2545 return error; 2546 } 2547 2548 void 2549 config_finalize(void) 2550 { 2551 struct finalize_hook *f; 2552 struct pdevinit *pdev; 2553 extern struct pdevinit pdevinit[]; 2554 int errcnt, rv; 2555 2556 /* 2557 * Now that device driver threads have been created, wait for 2558 * them to finish any deferred autoconfiguration. 2559 */ 2560 mutex_enter(&config_misc_lock); 2561 while (!TAILQ_EMPTY(&config_pending)) { 2562 device_t dev; 2563 int error; 2564 2565 error = cv_timedwait(&config_misc_cv, &config_misc_lock, 2566 mstohz(1000)); 2567 if (error == EWOULDBLOCK) { 2568 aprint_debug("waiting for devices:"); 2569 TAILQ_FOREACH(dev, &config_pending, dv_pending_list) 2570 aprint_debug(" %s", device_xname(dev)); 2571 aprint_debug("\n"); 2572 } 2573 } 2574 mutex_exit(&config_misc_lock); 2575 2576 KERNEL_LOCK(1, NULL); 2577 2578 /* Attach pseudo-devices. */ 2579 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2580 (*pdev->pdev_attach)(pdev->pdev_count); 2581 2582 /* Run the hooks until none of them does any work. */ 2583 do { 2584 rv = 0; 2585 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2586 rv |= (*f->f_func)(f->f_dev); 2587 } while (rv != 0); 2588 2589 config_finalize_done = 1; 2590 2591 /* Now free all the hooks. */ 2592 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2593 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2594 kmem_free(f, sizeof(*f)); 2595 } 2596 2597 KERNEL_UNLOCK_ONE(NULL); 2598 2599 errcnt = aprint_get_error_count(); 2600 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2601 (boothowto & AB_VERBOSE) == 0) { 2602 mutex_enter(&config_misc_lock); 2603 if (config_do_twiddle) { 2604 config_do_twiddle = 0; 2605 printf_nolog(" done.\n"); 2606 } 2607 mutex_exit(&config_misc_lock); 2608 } 2609 if (errcnt != 0) { 2610 printf("WARNING: %d error%s while detecting hardware; " 2611 "check system log.\n", errcnt, 2612 errcnt == 1 ? "" : "s"); 2613 } 2614 } 2615 2616 void 2617 config_twiddle_init(void) 2618 { 2619 2620 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2621 config_do_twiddle = 1; 2622 } 2623 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2624 } 2625 2626 void 2627 config_twiddle_fn(void *cookie) 2628 { 2629 2630 mutex_enter(&config_misc_lock); 2631 if (config_do_twiddle) { 2632 twiddle(); 2633 callout_schedule(&config_twiddle_ch, mstohz(100)); 2634 } 2635 mutex_exit(&config_misc_lock); 2636 } 2637 2638 static void 2639 config_alldevs_enter(struct alldevs_foray *af) 2640 { 2641 TAILQ_INIT(&af->af_garbage); 2642 mutex_enter(&alldevs_lock); 2643 config_collect_garbage(&af->af_garbage); 2644 } 2645 2646 static void 2647 config_alldevs_exit(struct alldevs_foray *af) 2648 { 2649 mutex_exit(&alldevs_lock); 2650 config_dump_garbage(&af->af_garbage); 2651 } 2652 2653 /* 2654 * device_lookup: 2655 * 2656 * Look up a device instance for a given driver. 2657 * 2658 * Caller is responsible for ensuring the device's state is 2659 * stable, either by holding a reference already obtained with 2660 * device_lookup_acquire or by otherwise ensuring the device is 2661 * attached and can't be detached (e.g., holding an open device 2662 * node and ensuring *_detach calls vdevgone). 2663 * 2664 * XXX Find a way to assert this. 2665 * 2666 * Safe for use up to and including interrupt context at IPL_VM. 2667 * Never sleeps. 2668 */ 2669 device_t 2670 device_lookup(cfdriver_t cd, int unit) 2671 { 2672 device_t dv; 2673 2674 mutex_enter(&alldevs_lock); 2675 if (unit < 0 || unit >= cd->cd_ndevs) 2676 dv = NULL; 2677 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2678 dv = NULL; 2679 mutex_exit(&alldevs_lock); 2680 2681 return dv; 2682 } 2683 2684 /* 2685 * device_lookup_private: 2686 * 2687 * Look up a softc instance for a given driver. 2688 */ 2689 void * 2690 device_lookup_private(cfdriver_t cd, int unit) 2691 { 2692 2693 return device_private(device_lookup(cd, unit)); 2694 } 2695 2696 /* 2697 * device_lookup_acquire: 2698 * 2699 * Look up a device instance for a given driver, and return a 2700 * reference to it that must be released by device_release. 2701 * 2702 * => If the device is still attaching, blocks until *_attach has 2703 * returned. 2704 * 2705 * => If the device is detaching, blocks until *_detach has 2706 * returned. May succeed or fail in that case, depending on 2707 * whether *_detach has backed out (EBUSY) or committed to 2708 * detaching. 2709 * 2710 * May sleep. 2711 */ 2712 device_t 2713 device_lookup_acquire(cfdriver_t cd, int unit) 2714 { 2715 device_t dv; 2716 2717 ASSERT_SLEEPABLE(); 2718 2719 /* XXX This should have a pserialized fast path -- TBD. */ 2720 mutex_enter(&config_misc_lock); 2721 mutex_enter(&alldevs_lock); 2722 retry: if (unit < 0 || unit >= cd->cd_ndevs || 2723 (dv = cd->cd_devs[unit]) == NULL || 2724 dv->dv_del_gen != 0 || 2725 dv->dv_detach_committed) { 2726 dv = NULL; 2727 } else { 2728 /* 2729 * Wait for the device to stabilize, if attaching or 2730 * detaching. Either way we must wait for *_attach or 2731 * *_detach to complete, and either way we must retry: 2732 * even if detaching, *_detach might fail (EBUSY) so 2733 * the device may still be there. 2734 */ 2735 if ((dv->dv_attaching != NULL && dv->dv_attaching != curlwp) || 2736 dv->dv_detaching != NULL) { 2737 mutex_exit(&alldevs_lock); 2738 cv_wait(&config_misc_cv, &config_misc_lock); 2739 mutex_enter(&alldevs_lock); 2740 goto retry; 2741 } 2742 localcount_acquire(dv->dv_localcount); 2743 } 2744 mutex_exit(&alldevs_lock); 2745 mutex_exit(&config_misc_lock); 2746 2747 return dv; 2748 } 2749 2750 /* 2751 * device_release: 2752 * 2753 * Release a reference to a device acquired with 2754 * device_lookup_acquire. 2755 */ 2756 void 2757 device_release(device_t dv) 2758 { 2759 2760 localcount_release(dv->dv_localcount, 2761 &config_misc_cv, &config_misc_lock); 2762 } 2763 2764 /* 2765 * device_find_by_xname: 2766 * 2767 * Returns the device of the given name or NULL if it doesn't exist. 2768 */ 2769 device_t 2770 device_find_by_xname(const char *name) 2771 { 2772 device_t dv; 2773 deviter_t di; 2774 2775 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2776 if (strcmp(device_xname(dv), name) == 0) 2777 break; 2778 } 2779 deviter_release(&di); 2780 2781 return dv; 2782 } 2783 2784 /* 2785 * device_find_by_driver_unit: 2786 * 2787 * Returns the device of the given driver name and unit or 2788 * NULL if it doesn't exist. 2789 */ 2790 device_t 2791 device_find_by_driver_unit(const char *name, int unit) 2792 { 2793 struct cfdriver *cd; 2794 2795 if ((cd = config_cfdriver_lookup(name)) == NULL) 2796 return NULL; 2797 return device_lookup(cd, unit); 2798 } 2799 2800 static bool 2801 match_strcmp(const char * const s1, const char * const s2) 2802 { 2803 return strcmp(s1, s2) == 0; 2804 } 2805 2806 static bool 2807 match_pmatch(const char * const s1, const char * const s2) 2808 { 2809 return pmatch(s1, s2, NULL) == 2; 2810 } 2811 2812 static bool 2813 strarray_match_internal(const char ** const strings, 2814 unsigned int const nstrings, const char * const str, 2815 unsigned int * const indexp, 2816 bool (*match_fn)(const char *, const char *)) 2817 { 2818 unsigned int i; 2819 2820 if (strings == NULL || nstrings == 0) { 2821 return false; 2822 } 2823 2824 for (i = 0; i < nstrings; i++) { 2825 if ((*match_fn)(strings[i], str)) { 2826 *indexp = i; 2827 return true; 2828 } 2829 } 2830 2831 return false; 2832 } 2833 2834 static int 2835 strarray_match(const char ** const strings, unsigned int const nstrings, 2836 const char * const str) 2837 { 2838 unsigned int idx; 2839 2840 if (strarray_match_internal(strings, nstrings, str, &idx, 2841 match_strcmp)) { 2842 return (int)(nstrings - idx); 2843 } 2844 return 0; 2845 } 2846 2847 static int 2848 strarray_pmatch(const char ** const strings, unsigned int const nstrings, 2849 const char * const pattern) 2850 { 2851 unsigned int idx; 2852 2853 if (strarray_match_internal(strings, nstrings, pattern, &idx, 2854 match_pmatch)) { 2855 return (int)(nstrings - idx); 2856 } 2857 return 0; 2858 } 2859 2860 static int 2861 device_compatible_match_strarray_internal( 2862 const char **device_compats, int ndevice_compats, 2863 const struct device_compatible_entry *driver_compats, 2864 const struct device_compatible_entry **matching_entryp, 2865 int (*match_fn)(const char **, unsigned int, const char *)) 2866 { 2867 const struct device_compatible_entry *dce = NULL; 2868 int rv; 2869 2870 if (ndevice_compats == 0 || device_compats == NULL || 2871 driver_compats == NULL) 2872 return 0; 2873 2874 for (dce = driver_compats; dce->compat != NULL; dce++) { 2875 rv = (*match_fn)(device_compats, ndevice_compats, dce->compat); 2876 if (rv != 0) { 2877 if (matching_entryp != NULL) { 2878 *matching_entryp = dce; 2879 } 2880 return rv; 2881 } 2882 } 2883 return 0; 2884 } 2885 2886 /* 2887 * device_compatible_match: 2888 * 2889 * Match a driver's "compatible" data against a device's 2890 * "compatible" strings. Returns resulted weighted by 2891 * which device "compatible" string was matched. 2892 */ 2893 int 2894 device_compatible_match(const char **device_compats, int ndevice_compats, 2895 const struct device_compatible_entry *driver_compats) 2896 { 2897 return device_compatible_match_strarray_internal(device_compats, 2898 ndevice_compats, driver_compats, NULL, strarray_match); 2899 } 2900 2901 /* 2902 * device_compatible_pmatch: 2903 * 2904 * Like device_compatible_match(), but uses pmatch(9) to compare 2905 * the device "compatible" strings against patterns in the 2906 * driver's "compatible" data. 2907 */ 2908 int 2909 device_compatible_pmatch(const char **device_compats, int ndevice_compats, 2910 const struct device_compatible_entry *driver_compats) 2911 { 2912 return device_compatible_match_strarray_internal(device_compats, 2913 ndevice_compats, driver_compats, NULL, strarray_pmatch); 2914 } 2915 2916 static int 2917 device_compatible_match_strlist_internal( 2918 const char * const device_compats, size_t const device_compatsize, 2919 const struct device_compatible_entry *driver_compats, 2920 const struct device_compatible_entry **matching_entryp, 2921 int (*match_fn)(const char *, size_t, const char *)) 2922 { 2923 const struct device_compatible_entry *dce = NULL; 2924 int rv; 2925 2926 if (device_compats == NULL || device_compatsize == 0 || 2927 driver_compats == NULL) 2928 return 0; 2929 2930 for (dce = driver_compats; dce->compat != NULL; dce++) { 2931 rv = (*match_fn)(device_compats, device_compatsize, 2932 dce->compat); 2933 if (rv != 0) { 2934 if (matching_entryp != NULL) { 2935 *matching_entryp = dce; 2936 } 2937 return rv; 2938 } 2939 } 2940 return 0; 2941 } 2942 2943 /* 2944 * device_compatible_match_strlist: 2945 * 2946 * Like device_compatible_match(), but take the device 2947 * "compatible" strings as an OpenFirmware-style string 2948 * list. 2949 */ 2950 int 2951 device_compatible_match_strlist( 2952 const char * const device_compats, size_t const device_compatsize, 2953 const struct device_compatible_entry *driver_compats) 2954 { 2955 return device_compatible_match_strlist_internal(device_compats, 2956 device_compatsize, driver_compats, NULL, strlist_match); 2957 } 2958 2959 /* 2960 * device_compatible_pmatch_strlist: 2961 * 2962 * Like device_compatible_pmatch(), but take the device 2963 * "compatible" strings as an OpenFirmware-style string 2964 * list. 2965 */ 2966 int 2967 device_compatible_pmatch_strlist( 2968 const char * const device_compats, size_t const device_compatsize, 2969 const struct device_compatible_entry *driver_compats) 2970 { 2971 return device_compatible_match_strlist_internal(device_compats, 2972 device_compatsize, driver_compats, NULL, strlist_pmatch); 2973 } 2974 2975 static int 2976 device_compatible_match_id_internal( 2977 uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id, 2978 const struct device_compatible_entry *driver_compats, 2979 const struct device_compatible_entry **matching_entryp) 2980 { 2981 const struct device_compatible_entry *dce = NULL; 2982 2983 if (mask == 0) 2984 return 0; 2985 2986 for (dce = driver_compats; dce->id != sentinel_id; dce++) { 2987 if ((id & mask) == dce->id) { 2988 if (matching_entryp != NULL) { 2989 *matching_entryp = dce; 2990 } 2991 return 1; 2992 } 2993 } 2994 return 0; 2995 } 2996 2997 /* 2998 * device_compatible_match_id: 2999 * 3000 * Like device_compatible_match(), but takes a single 3001 * unsigned integer device ID. 3002 */ 3003 int 3004 device_compatible_match_id( 3005 uintptr_t const id, uintptr_t const sentinel_id, 3006 const struct device_compatible_entry *driver_compats) 3007 { 3008 return device_compatible_match_id_internal(id, (uintptr_t)-1, 3009 sentinel_id, driver_compats, NULL); 3010 } 3011 3012 /* 3013 * device_compatible_lookup: 3014 * 3015 * Look up and return the device_compatible_entry, using the 3016 * same matching criteria used by device_compatible_match(). 3017 */ 3018 const struct device_compatible_entry * 3019 device_compatible_lookup(const char **device_compats, int ndevice_compats, 3020 const struct device_compatible_entry *driver_compats) 3021 { 3022 const struct device_compatible_entry *dce; 3023 3024 if (device_compatible_match_strarray_internal(device_compats, 3025 ndevice_compats, driver_compats, &dce, strarray_match)) { 3026 return dce; 3027 } 3028 return NULL; 3029 } 3030 3031 /* 3032 * device_compatible_plookup: 3033 * 3034 * Look up and return the device_compatible_entry, using the 3035 * same matching criteria used by device_compatible_pmatch(). 3036 */ 3037 const struct device_compatible_entry * 3038 device_compatible_plookup(const char **device_compats, int ndevice_compats, 3039 const struct device_compatible_entry *driver_compats) 3040 { 3041 const struct device_compatible_entry *dce; 3042 3043 if (device_compatible_match_strarray_internal(device_compats, 3044 ndevice_compats, driver_compats, &dce, strarray_pmatch)) { 3045 return dce; 3046 } 3047 return NULL; 3048 } 3049 3050 /* 3051 * device_compatible_lookup_strlist: 3052 * 3053 * Like device_compatible_lookup(), but take the device 3054 * "compatible" strings as an OpenFirmware-style string 3055 * list. 3056 */ 3057 const struct device_compatible_entry * 3058 device_compatible_lookup_strlist( 3059 const char * const device_compats, size_t const device_compatsize, 3060 const struct device_compatible_entry *driver_compats) 3061 { 3062 const struct device_compatible_entry *dce; 3063 3064 if (device_compatible_match_strlist_internal(device_compats, 3065 device_compatsize, driver_compats, &dce, strlist_match)) { 3066 return dce; 3067 } 3068 return NULL; 3069 } 3070 3071 /* 3072 * device_compatible_plookup_strlist: 3073 * 3074 * Like device_compatible_plookup(), but take the device 3075 * "compatible" strings as an OpenFirmware-style string 3076 * list. 3077 */ 3078 const struct device_compatible_entry * 3079 device_compatible_plookup_strlist( 3080 const char * const device_compats, size_t const device_compatsize, 3081 const struct device_compatible_entry *driver_compats) 3082 { 3083 const struct device_compatible_entry *dce; 3084 3085 if (device_compatible_match_strlist_internal(device_compats, 3086 device_compatsize, driver_compats, &dce, strlist_pmatch)) { 3087 return dce; 3088 } 3089 return NULL; 3090 } 3091 3092 /* 3093 * device_compatible_lookup_id: 3094 * 3095 * Like device_compatible_lookup(), but takes a single 3096 * unsigned integer device ID. 3097 */ 3098 const struct device_compatible_entry * 3099 device_compatible_lookup_id( 3100 uintptr_t const id, uintptr_t const sentinel_id, 3101 const struct device_compatible_entry *driver_compats) 3102 { 3103 const struct device_compatible_entry *dce; 3104 3105 if (device_compatible_match_id_internal(id, (uintptr_t)-1, 3106 sentinel_id, driver_compats, &dce)) { 3107 return dce; 3108 } 3109 return NULL; 3110 } 3111 3112 /* 3113 * Power management related functions. 3114 */ 3115 3116 bool 3117 device_pmf_is_registered(device_t dev) 3118 { 3119 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 3120 } 3121 3122 bool 3123 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 3124 { 3125 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 3126 return true; 3127 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 3128 return false; 3129 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 3130 dev->dv_driver_suspend != NULL && 3131 !(*dev->dv_driver_suspend)(dev, qual)) 3132 return false; 3133 3134 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 3135 return true; 3136 } 3137 3138 bool 3139 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 3140 { 3141 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 3142 return true; 3143 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 3144 return false; 3145 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 3146 dev->dv_driver_resume != NULL && 3147 !(*dev->dv_driver_resume)(dev, qual)) 3148 return false; 3149 3150 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 3151 return true; 3152 } 3153 3154 bool 3155 device_pmf_driver_shutdown(device_t dev, int how) 3156 { 3157 3158 if (*dev->dv_driver_shutdown != NULL && 3159 !(*dev->dv_driver_shutdown)(dev, how)) 3160 return false; 3161 return true; 3162 } 3163 3164 void 3165 device_pmf_driver_register(device_t dev, 3166 bool (*suspend)(device_t, const pmf_qual_t *), 3167 bool (*resume)(device_t, const pmf_qual_t *), 3168 bool (*shutdown)(device_t, int)) 3169 { 3170 3171 dev->dv_driver_suspend = suspend; 3172 dev->dv_driver_resume = resume; 3173 dev->dv_driver_shutdown = shutdown; 3174 dev->dv_flags |= DVF_POWER_HANDLERS; 3175 } 3176 3177 void 3178 device_pmf_driver_deregister(device_t dev) 3179 { 3180 device_lock_t dvl = device_getlock(dev); 3181 3182 dev->dv_driver_suspend = NULL; 3183 dev->dv_driver_resume = NULL; 3184 3185 mutex_enter(&dvl->dvl_mtx); 3186 dev->dv_flags &= ~DVF_POWER_HANDLERS; 3187 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 3188 /* Wake a thread that waits for the lock. That 3189 * thread will fail to acquire the lock, and then 3190 * it will wake the next thread that waits for the 3191 * lock, or else it will wake us. 3192 */ 3193 cv_signal(&dvl->dvl_cv); 3194 pmflock_debug(dev, __func__, __LINE__); 3195 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 3196 pmflock_debug(dev, __func__, __LINE__); 3197 } 3198 mutex_exit(&dvl->dvl_mtx); 3199 } 3200 3201 void 3202 device_pmf_driver_child_register(device_t dev) 3203 { 3204 device_t parent = device_parent(dev); 3205 3206 if (parent == NULL || parent->dv_driver_child_register == NULL) 3207 return; 3208 (*parent->dv_driver_child_register)(dev); 3209 } 3210 3211 void 3212 device_pmf_driver_set_child_register(device_t dev, 3213 void (*child_register)(device_t)) 3214 { 3215 dev->dv_driver_child_register = child_register; 3216 } 3217 3218 static void 3219 pmflock_debug(device_t dev, const char *func, int line) 3220 { 3221 #ifdef PMFLOCK_DEBUG 3222 device_lock_t dvl = device_getlock(dev); 3223 const char *curlwp_name; 3224 3225 if (curlwp->l_name != NULL) 3226 curlwp_name = curlwp->l_name; 3227 else 3228 curlwp_name = curlwp->l_proc->p_comm; 3229 3230 aprint_debug_dev(dev, 3231 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line, 3232 curlwp_name, dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags); 3233 #endif /* PMFLOCK_DEBUG */ 3234 } 3235 3236 static bool 3237 device_pmf_lock1(device_t dev) 3238 { 3239 device_lock_t dvl = device_getlock(dev); 3240 3241 while (device_pmf_is_registered(dev) && 3242 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 3243 dvl->dvl_nwait++; 3244 pmflock_debug(dev, __func__, __LINE__); 3245 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 3246 pmflock_debug(dev, __func__, __LINE__); 3247 dvl->dvl_nwait--; 3248 } 3249 if (!device_pmf_is_registered(dev)) { 3250 pmflock_debug(dev, __func__, __LINE__); 3251 /* We could not acquire the lock, but some other thread may 3252 * wait for it, also. Wake that thread. 3253 */ 3254 cv_signal(&dvl->dvl_cv); 3255 return false; 3256 } 3257 dvl->dvl_nlock++; 3258 dvl->dvl_holder = curlwp; 3259 pmflock_debug(dev, __func__, __LINE__); 3260 return true; 3261 } 3262 3263 bool 3264 device_pmf_lock(device_t dev) 3265 { 3266 bool rc; 3267 device_lock_t dvl = device_getlock(dev); 3268 3269 mutex_enter(&dvl->dvl_mtx); 3270 rc = device_pmf_lock1(dev); 3271 mutex_exit(&dvl->dvl_mtx); 3272 3273 return rc; 3274 } 3275 3276 void 3277 device_pmf_unlock(device_t dev) 3278 { 3279 device_lock_t dvl = device_getlock(dev); 3280 3281 KASSERT(dvl->dvl_nlock > 0); 3282 mutex_enter(&dvl->dvl_mtx); 3283 if (--dvl->dvl_nlock == 0) 3284 dvl->dvl_holder = NULL; 3285 cv_signal(&dvl->dvl_cv); 3286 pmflock_debug(dev, __func__, __LINE__); 3287 mutex_exit(&dvl->dvl_mtx); 3288 } 3289 3290 device_lock_t 3291 device_getlock(device_t dev) 3292 { 3293 return &dev->dv_lock; 3294 } 3295 3296 void * 3297 device_pmf_bus_private(device_t dev) 3298 { 3299 return dev->dv_bus_private; 3300 } 3301 3302 bool 3303 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 3304 { 3305 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 3306 return true; 3307 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 3308 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 3309 return false; 3310 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 3311 dev->dv_bus_suspend != NULL && 3312 !(*dev->dv_bus_suspend)(dev, qual)) 3313 return false; 3314 3315 dev->dv_flags |= DVF_BUS_SUSPENDED; 3316 return true; 3317 } 3318 3319 bool 3320 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 3321 { 3322 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 3323 return true; 3324 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 3325 dev->dv_bus_resume != NULL && 3326 !(*dev->dv_bus_resume)(dev, qual)) 3327 return false; 3328 3329 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 3330 return true; 3331 } 3332 3333 bool 3334 device_pmf_bus_shutdown(device_t dev, int how) 3335 { 3336 3337 if (*dev->dv_bus_shutdown != NULL && 3338 !(*dev->dv_bus_shutdown)(dev, how)) 3339 return false; 3340 return true; 3341 } 3342 3343 void 3344 device_pmf_bus_register(device_t dev, void *priv, 3345 bool (*suspend)(device_t, const pmf_qual_t *), 3346 bool (*resume)(device_t, const pmf_qual_t *), 3347 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 3348 { 3349 dev->dv_bus_private = priv; 3350 dev->dv_bus_resume = resume; 3351 dev->dv_bus_suspend = suspend; 3352 dev->dv_bus_shutdown = shutdown; 3353 dev->dv_bus_deregister = deregister; 3354 } 3355 3356 void 3357 device_pmf_bus_deregister(device_t dev) 3358 { 3359 if (dev->dv_bus_deregister == NULL) 3360 return; 3361 (*dev->dv_bus_deregister)(dev); 3362 dev->dv_bus_private = NULL; 3363 dev->dv_bus_suspend = NULL; 3364 dev->dv_bus_resume = NULL; 3365 dev->dv_bus_deregister = NULL; 3366 } 3367 3368 void * 3369 device_pmf_class_private(device_t dev) 3370 { 3371 return dev->dv_class_private; 3372 } 3373 3374 bool 3375 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 3376 { 3377 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 3378 return true; 3379 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 3380 dev->dv_class_suspend != NULL && 3381 !(*dev->dv_class_suspend)(dev, qual)) 3382 return false; 3383 3384 dev->dv_flags |= DVF_CLASS_SUSPENDED; 3385 return true; 3386 } 3387 3388 bool 3389 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 3390 { 3391 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 3392 return true; 3393 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 3394 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 3395 return false; 3396 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 3397 dev->dv_class_resume != NULL && 3398 !(*dev->dv_class_resume)(dev, qual)) 3399 return false; 3400 3401 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 3402 return true; 3403 } 3404 3405 void 3406 device_pmf_class_register(device_t dev, void *priv, 3407 bool (*suspend)(device_t, const pmf_qual_t *), 3408 bool (*resume)(device_t, const pmf_qual_t *), 3409 void (*deregister)(device_t)) 3410 { 3411 dev->dv_class_private = priv; 3412 dev->dv_class_suspend = suspend; 3413 dev->dv_class_resume = resume; 3414 dev->dv_class_deregister = deregister; 3415 } 3416 3417 void 3418 device_pmf_class_deregister(device_t dev) 3419 { 3420 if (dev->dv_class_deregister == NULL) 3421 return; 3422 (*dev->dv_class_deregister)(dev); 3423 dev->dv_class_private = NULL; 3424 dev->dv_class_suspend = NULL; 3425 dev->dv_class_resume = NULL; 3426 dev->dv_class_deregister = NULL; 3427 } 3428 3429 bool 3430 device_active(device_t dev, devactive_t type) 3431 { 3432 size_t i; 3433 3434 if (dev->dv_activity_count == 0) 3435 return false; 3436 3437 for (i = 0; i < dev->dv_activity_count; ++i) { 3438 if (dev->dv_activity_handlers[i] == NULL) 3439 break; 3440 (*dev->dv_activity_handlers[i])(dev, type); 3441 } 3442 3443 return true; 3444 } 3445 3446 bool 3447 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 3448 { 3449 void (**new_handlers)(device_t, devactive_t); 3450 void (**old_handlers)(device_t, devactive_t); 3451 size_t i, old_size, new_size; 3452 int s; 3453 3454 old_handlers = dev->dv_activity_handlers; 3455 old_size = dev->dv_activity_count; 3456 3457 KASSERT(old_size == 0 || old_handlers != NULL); 3458 3459 for (i = 0; i < old_size; ++i) { 3460 KASSERT(old_handlers[i] != handler); 3461 if (old_handlers[i] == NULL) { 3462 old_handlers[i] = handler; 3463 return true; 3464 } 3465 } 3466 3467 new_size = old_size + 4; 3468 new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP); 3469 3470 for (i = 0; i < old_size; ++i) 3471 new_handlers[i] = old_handlers[i]; 3472 new_handlers[old_size] = handler; 3473 for (i = old_size+1; i < new_size; ++i) 3474 new_handlers[i] = NULL; 3475 3476 s = splhigh(); 3477 dev->dv_activity_count = new_size; 3478 dev->dv_activity_handlers = new_handlers; 3479 splx(s); 3480 3481 if (old_size > 0) 3482 kmem_free(old_handlers, sizeof(void *) * old_size); 3483 3484 return true; 3485 } 3486 3487 void 3488 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 3489 { 3490 void (**old_handlers)(device_t, devactive_t); 3491 size_t i, old_size; 3492 int s; 3493 3494 old_handlers = dev->dv_activity_handlers; 3495 old_size = dev->dv_activity_count; 3496 3497 for (i = 0; i < old_size; ++i) { 3498 if (old_handlers[i] == handler) 3499 break; 3500 if (old_handlers[i] == NULL) 3501 return; /* XXX panic? */ 3502 } 3503 3504 if (i == old_size) 3505 return; /* XXX panic? */ 3506 3507 for (; i < old_size - 1; ++i) { 3508 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 3509 continue; 3510 3511 if (i == 0) { 3512 s = splhigh(); 3513 dev->dv_activity_count = 0; 3514 dev->dv_activity_handlers = NULL; 3515 splx(s); 3516 kmem_free(old_handlers, sizeof(void *) * old_size); 3517 } 3518 return; 3519 } 3520 old_handlers[i] = NULL; 3521 } 3522 3523 /* Return true iff the device_t `dev' exists at generation `gen'. */ 3524 static bool 3525 device_exists_at(device_t dv, devgen_t gen) 3526 { 3527 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 3528 dv->dv_add_gen <= gen; 3529 } 3530 3531 static bool 3532 deviter_visits(const deviter_t *di, device_t dv) 3533 { 3534 return device_exists_at(dv, di->di_gen); 3535 } 3536 3537 /* 3538 * Device Iteration 3539 * 3540 * deviter_t: a device iterator. Holds state for a "walk" visiting 3541 * each device_t's in the device tree. 3542 * 3543 * deviter_init(di, flags): initialize the device iterator `di' 3544 * to "walk" the device tree. deviter_next(di) will return 3545 * the first device_t in the device tree, or NULL if there are 3546 * no devices. 3547 * 3548 * `flags' is one or more of DEVITER_F_RW, indicating that the 3549 * caller intends to modify the device tree by calling 3550 * config_detach(9) on devices in the order that the iterator 3551 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 3552 * nearest the "root" of the device tree to be returned, first; 3553 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 3554 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 3555 * indicating both that deviter_init() should not respect any 3556 * locks on the device tree, and that deviter_next(di) may run 3557 * in more than one LWP before the walk has finished. 3558 * 3559 * Only one DEVITER_F_RW iterator may be in the device tree at 3560 * once. 3561 * 3562 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 3563 * 3564 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 3565 * DEVITER_F_LEAVES_FIRST are used in combination. 3566 * 3567 * deviter_first(di, flags): initialize the device iterator `di' 3568 * and return the first device_t in the device tree, or NULL 3569 * if there are no devices. The statement 3570 * 3571 * dv = deviter_first(di); 3572 * 3573 * is shorthand for 3574 * 3575 * deviter_init(di); 3576 * dv = deviter_next(di); 3577 * 3578 * deviter_next(di): return the next device_t in the device tree, 3579 * or NULL if there are no more devices. deviter_next(di) 3580 * is undefined if `di' was not initialized with deviter_init() or 3581 * deviter_first(). 3582 * 3583 * deviter_release(di): stops iteration (subsequent calls to 3584 * deviter_next() will return NULL), releases any locks and 3585 * resources held by the device iterator. 3586 * 3587 * Device iteration does not return device_t's in any particular 3588 * order. An iterator will never return the same device_t twice. 3589 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 3590 * is called repeatedly on the same `di', it will eventually return 3591 * NULL. It is ok to attach/detach devices during device iteration. 3592 */ 3593 void 3594 deviter_init(deviter_t *di, deviter_flags_t flags) 3595 { 3596 device_t dv; 3597 3598 memset(di, 0, sizeof(*di)); 3599 3600 if ((flags & DEVITER_F_SHUTDOWN) != 0) 3601 flags |= DEVITER_F_RW; 3602 3603 mutex_enter(&alldevs_lock); 3604 if ((flags & DEVITER_F_RW) != 0) 3605 alldevs_nwrite++; 3606 else 3607 alldevs_nread++; 3608 di->di_gen = alldevs_gen++; 3609 di->di_flags = flags; 3610 3611 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 3612 case DEVITER_F_LEAVES_FIRST: 3613 TAILQ_FOREACH(dv, &alldevs, dv_list) { 3614 if (!deviter_visits(di, dv)) 3615 continue; 3616 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 3617 } 3618 break; 3619 case DEVITER_F_ROOT_FIRST: 3620 TAILQ_FOREACH(dv, &alldevs, dv_list) { 3621 if (!deviter_visits(di, dv)) 3622 continue; 3623 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 3624 } 3625 break; 3626 default: 3627 break; 3628 } 3629 3630 deviter_reinit(di); 3631 mutex_exit(&alldevs_lock); 3632 } 3633 3634 static void 3635 deviter_reinit(deviter_t *di) 3636 { 3637 3638 KASSERT(mutex_owned(&alldevs_lock)); 3639 if ((di->di_flags & DEVITER_F_RW) != 0) 3640 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 3641 else 3642 di->di_prev = TAILQ_FIRST(&alldevs); 3643 } 3644 3645 device_t 3646 deviter_first(deviter_t *di, deviter_flags_t flags) 3647 { 3648 3649 deviter_init(di, flags); 3650 return deviter_next(di); 3651 } 3652 3653 static device_t 3654 deviter_next2(deviter_t *di) 3655 { 3656 device_t dv; 3657 3658 KASSERT(mutex_owned(&alldevs_lock)); 3659 3660 dv = di->di_prev; 3661 3662 if (dv == NULL) 3663 return NULL; 3664 3665 if ((di->di_flags & DEVITER_F_RW) != 0) 3666 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 3667 else 3668 di->di_prev = TAILQ_NEXT(dv, dv_list); 3669 3670 return dv; 3671 } 3672 3673 static device_t 3674 deviter_next1(deviter_t *di) 3675 { 3676 device_t dv; 3677 3678 KASSERT(mutex_owned(&alldevs_lock)); 3679 3680 do { 3681 dv = deviter_next2(di); 3682 } while (dv != NULL && !deviter_visits(di, dv)); 3683 3684 return dv; 3685 } 3686 3687 device_t 3688 deviter_next(deviter_t *di) 3689 { 3690 device_t dv = NULL; 3691 3692 mutex_enter(&alldevs_lock); 3693 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 3694 case 0: 3695 dv = deviter_next1(di); 3696 break; 3697 case DEVITER_F_LEAVES_FIRST: 3698 while (di->di_curdepth >= 0) { 3699 if ((dv = deviter_next1(di)) == NULL) { 3700 di->di_curdepth--; 3701 deviter_reinit(di); 3702 } else if (dv->dv_depth == di->di_curdepth) 3703 break; 3704 } 3705 break; 3706 case DEVITER_F_ROOT_FIRST: 3707 while (di->di_curdepth <= di->di_maxdepth) { 3708 if ((dv = deviter_next1(di)) == NULL) { 3709 di->di_curdepth++; 3710 deviter_reinit(di); 3711 } else if (dv->dv_depth == di->di_curdepth) 3712 break; 3713 } 3714 break; 3715 default: 3716 break; 3717 } 3718 mutex_exit(&alldevs_lock); 3719 3720 return dv; 3721 } 3722 3723 void 3724 deviter_release(deviter_t *di) 3725 { 3726 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 3727 3728 mutex_enter(&alldevs_lock); 3729 if (rw) 3730 --alldevs_nwrite; 3731 else 3732 --alldevs_nread; 3733 /* XXX wake a garbage-collection thread */ 3734 mutex_exit(&alldevs_lock); 3735 } 3736 3737 const char * 3738 cfdata_ifattr(const struct cfdata *cf) 3739 { 3740 return cf->cf_pspec->cfp_iattr; 3741 } 3742 3743 bool 3744 ifattr_match(const char *snull, const char *t) 3745 { 3746 return (snull == NULL) || strcmp(snull, t) == 0; 3747 } 3748 3749 void 3750 null_childdetached(device_t self, device_t child) 3751 { 3752 /* do nothing */ 3753 } 3754 3755 static void 3756 sysctl_detach_setup(struct sysctllog **clog) 3757 { 3758 3759 sysctl_createv(clog, 0, NULL, NULL, 3760 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3761 CTLTYPE_BOOL, "detachall", 3762 SYSCTL_DESCR("Detach all devices at shutdown"), 3763 NULL, 0, &detachall, 0, 3764 CTL_KERN, CTL_CREATE, CTL_EOL); 3765 } 3766