xref: /netbsd-src/sys/kern/subr_autoconf.c (revision 466a16a118933bd295a8a104f095714fadf9cf68)
1 /* $NetBSD: subr_autoconf.c,v 1.165 2008/11/18 21:20:32 macallan Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.165 2008/11/18 21:20:32 macallan Exp $");
81 
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84 
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/vnode.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/mutex.h>
108 #include <sys/condvar.h>
109 #include <sys/devmon.h>
110 #include <sys/cpu.h>
111 
112 #include <sys/disk.h>
113 
114 #include <machine/limits.h>
115 
116 #include "opt_userconf.h"
117 #ifdef USERCONF
118 #include <sys/userconf.h>
119 #endif
120 
121 #ifdef __i386__
122 #include "opt_splash.h"
123 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
124 #include <dev/splash/splash.h>
125 extern struct splash_progress *splash_progress_state;
126 #endif
127 #endif
128 
129 /*
130  * Autoconfiguration subroutines.
131  */
132 
133 typedef struct pmf_private {
134 	int		pp_nwait;
135 	int		pp_nlock;
136 	lwp_t		*pp_holder;
137 	kmutex_t	pp_mtx;
138 	kcondvar_t	pp_cv;
139 } pmf_private_t;
140 
141 /*
142  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
143  * devices and drivers are found via these tables.
144  */
145 extern struct cfdata cfdata[];
146 extern const short cfroots[];
147 
148 /*
149  * List of all cfdriver structures.  We use this to detect duplicates
150  * when other cfdrivers are loaded.
151  */
152 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
153 extern struct cfdriver * const cfdriver_list_initial[];
154 
155 /*
156  * Initial list of cfattach's.
157  */
158 extern const struct cfattachinit cfattachinit[];
159 
160 /*
161  * List of cfdata tables.  We always have one such list -- the one
162  * built statically when the kernel was configured.
163  */
164 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
165 static struct cftable initcftable;
166 
167 #define	ROOT ((device_t)NULL)
168 
169 struct matchinfo {
170 	cfsubmatch_t fn;
171 	struct	device *parent;
172 	const int *locs;
173 	void	*aux;
174 	struct	cfdata *match;
175 	int	pri;
176 };
177 
178 static char *number(char *, int);
179 static void mapply(struct matchinfo *, cfdata_t);
180 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
181 static void config_devdealloc(device_t);
182 static void config_makeroom(int, struct cfdriver *);
183 static void config_devlink(device_t);
184 static void config_devunlink(device_t);
185 
186 static void pmflock_debug(device_t, const char *, int);
187 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
188 
189 static device_t deviter_next1(deviter_t *);
190 static void deviter_reinit(deviter_t *);
191 
192 struct deferred_config {
193 	TAILQ_ENTRY(deferred_config) dc_queue;
194 	device_t dc_dev;
195 	void (*dc_func)(device_t);
196 };
197 
198 TAILQ_HEAD(deferred_config_head, deferred_config);
199 
200 struct deferred_config_head deferred_config_queue =
201 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
202 struct deferred_config_head interrupt_config_queue =
203 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
204 int interrupt_config_threads = 8;
205 
206 static void config_process_deferred(struct deferred_config_head *, device_t);
207 
208 /* Hooks to finalize configuration once all real devices have been found. */
209 struct finalize_hook {
210 	TAILQ_ENTRY(finalize_hook) f_list;
211 	int (*f_func)(device_t);
212 	device_t f_dev;
213 };
214 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
215 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
216 static int config_finalize_done;
217 
218 /* list of all devices */
219 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
220 kcondvar_t alldevs_cv;
221 kmutex_t alldevs_mtx;
222 static int alldevs_nread = 0;
223 static int alldevs_nwrite = 0;
224 static lwp_t *alldevs_writer = NULL;
225 
226 static int config_pending;		/* semaphore for mountroot */
227 static kmutex_t config_misc_lock;
228 static kcondvar_t config_misc_cv;
229 
230 #define	STREQ(s1, s2)			\
231 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
232 
233 static int config_initialized;		/* config_init() has been called. */
234 
235 static int config_do_twiddle;
236 
237 struct vnode *
238 opendisk(struct device *dv)
239 {
240 	int bmajor, bminor;
241 	struct vnode *tmpvn;
242 	int error;
243 	dev_t dev;
244 
245 	/*
246 	 * Lookup major number for disk block device.
247 	 */
248 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
249 	if (bmajor == -1)
250 		return NULL;
251 
252 	bminor = minor(device_unit(dv));
253 	/*
254 	 * Fake a temporary vnode for the disk, open it, and read
255 	 * and hash the sectors.
256 	 */
257 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
258 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
259 	if (bdevvp(dev, &tmpvn))
260 		panic("%s: can't alloc vnode for %s", __func__,
261 		    device_xname(dv));
262 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
263 	if (error) {
264 #ifndef DEBUG
265 		/*
266 		 * Ignore errors caused by missing device, partition,
267 		 * or medium.
268 		 */
269 		if (error != ENXIO && error != ENODEV)
270 #endif
271 			printf("%s: can't open dev %s (%d)\n",
272 			    __func__, device_xname(dv), error);
273 		vput(tmpvn);
274 		return NULL;
275 	}
276 
277 	return tmpvn;
278 }
279 
280 int
281 config_handle_wedges(struct device *dv, int par)
282 {
283 	struct dkwedge_list wl;
284 	struct dkwedge_info *wi;
285 	struct vnode *vn;
286 	char diskname[16];
287 	int i, error;
288 
289 	if ((vn = opendisk(dv)) == NULL)
290 		return -1;
291 
292 	wl.dkwl_bufsize = sizeof(*wi) * 16;
293 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
294 
295 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
296 	VOP_CLOSE(vn, FREAD, NOCRED);
297 	vput(vn);
298 	if (error) {
299 #ifdef DEBUG_WEDGE
300 		printf("%s: List wedges returned %d\n",
301 		    device_xname(dv), error);
302 #endif
303 		free(wi, M_TEMP);
304 		return -1;
305 	}
306 
307 #ifdef DEBUG_WEDGE
308 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
309 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
310 #endif
311 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
312 	    par + 'a');
313 
314 	for (i = 0; i < wl.dkwl_ncopied; i++) {
315 #ifdef DEBUG_WEDGE
316 		printf("%s: Looking for %s in %s\n",
317 		    device_xname(dv), diskname, wi[i].dkw_wname);
318 #endif
319 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
320 			break;
321 	}
322 
323 	if (i == wl.dkwl_ncopied) {
324 #ifdef DEBUG_WEDGE
325 		printf("%s: Cannot find wedge with parent %s\n",
326 		    device_xname(dv), diskname);
327 #endif
328 		free(wi, M_TEMP);
329 		return -1;
330 	}
331 
332 #ifdef DEBUG_WEDGE
333 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
334 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
335 		(unsigned long long)wi[i].dkw_offset,
336 		(unsigned long long)wi[i].dkw_size);
337 #endif
338 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
339 	free(wi, M_TEMP);
340 	return 0;
341 }
342 
343 /*
344  * Initialize the autoconfiguration data structures.  Normally this
345  * is done by configure(), but some platforms need to do this very
346  * early (to e.g. initialize the console).
347  */
348 void
349 config_init(void)
350 {
351 	const struct cfattachinit *cfai;
352 	int i, j;
353 
354 	if (config_initialized)
355 		return;
356 
357 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
358 	cv_init(&alldevs_cv, "alldevs");
359 
360 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
361 	cv_init(&config_misc_cv, "cfgmisc");
362 
363 	/* allcfdrivers is statically initialized. */
364 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
365 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
366 			panic("configure: duplicate `%s' drivers",
367 			    cfdriver_list_initial[i]->cd_name);
368 	}
369 
370 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
371 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
372 			if (config_cfattach_attach(cfai->cfai_name,
373 						   cfai->cfai_list[j]) != 0)
374 				panic("configure: duplicate `%s' attachment "
375 				    "of `%s' driver",
376 				    cfai->cfai_list[j]->ca_name,
377 				    cfai->cfai_name);
378 		}
379 	}
380 
381 	initcftable.ct_cfdata = cfdata;
382 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
383 
384 	config_initialized = 1;
385 }
386 
387 void
388 config_deferred(device_t dev)
389 {
390 	config_process_deferred(&deferred_config_queue, dev);
391 	config_process_deferred(&interrupt_config_queue, dev);
392 }
393 
394 static void
395 config_interrupts_thread(void *cookie)
396 {
397 	struct deferred_config *dc;
398 
399 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
400 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
401 		(*dc->dc_func)(dc->dc_dev);
402 		kmem_free(dc, sizeof(*dc));
403 		config_pending_decr();
404 	}
405 	kthread_exit(0);
406 }
407 
408 /*
409  * Configure the system's hardware.
410  */
411 void
412 configure(void)
413 {
414 	extern void ssp_init(void);
415 	CPU_INFO_ITERATOR cii;
416 	struct cpu_info *ci;
417 	int i, s;
418 
419 	/* Initialize data structures. */
420 	config_init();
421 	pmf_init();
422 #if NDRVCTL > 0
423 	drvctl_init();
424 #endif
425 
426 #ifdef USERCONF
427 	if (boothowto & RB_USERCONF)
428 		user_config();
429 #endif
430 
431 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
432 		config_do_twiddle = 1;
433 		printf_nolog("Detecting hardware...");
434 	}
435 
436 	/*
437 	 * Do the machine-dependent portion of autoconfiguration.  This
438 	 * sets the configuration machinery here in motion by "finding"
439 	 * the root bus.  When this function returns, we expect interrupts
440 	 * to be enabled.
441 	 */
442 	cpu_configure();
443 
444 	/* Initialize SSP. */
445 	ssp_init();
446 
447 	/*
448 	 * Now that we've found all the hardware, start the real time
449 	 * and statistics clocks.
450 	 */
451 	initclocks();
452 
453 	cold = 0;	/* clocks are running, we're warm now! */
454 	s = splsched();
455 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
456 	splx(s);
457 
458 	/* Boot the secondary processors. */
459 	for (CPU_INFO_FOREACH(cii, ci)) {
460 		uvm_cpu_attach(ci);
461 	}
462 	mp_online = true;
463 #if defined(MULTIPROCESSOR)
464 	cpu_boot_secondary_processors();
465 #endif
466 
467 	/* Setup the runqueues and scheduler. */
468 	runq_init();
469 	sched_init();
470 
471 	/*
472 	 * Create threads to call back and finish configuration for
473 	 * devices that want interrupts enabled.
474 	 */
475 	for (i = 0; i < interrupt_config_threads; i++) {
476 		(void)kthread_create(PRI_NONE, 0, NULL,
477 		    config_interrupts_thread, NULL, NULL, "config");
478 	}
479 
480 	/* Get the threads going and into any sleeps before continuing. */
481 	yield();
482 
483 	/* Lock the kernel on behalf of lwp0. */
484 	KERNEL_LOCK(1, NULL);
485 }
486 
487 /*
488  * Announce device attach/detach to userland listeners.
489  */
490 static void
491 devmon_report_device(device_t dev, bool isattach)
492 {
493 #if NDRVCTL > 0
494 	prop_dictionary_t ev;
495 	const char *parent;
496 	const char *what;
497 	device_t pdev = device_parent(dev);
498 
499 	ev = prop_dictionary_create();
500 	if (ev == NULL)
501 		return;
502 
503 	what = (isattach ? "device-attach" : "device-detach");
504 	parent = (pdev == NULL ? "root" : device_xname(pdev));
505 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
506 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
507 		prop_object_release(ev);
508 		return;
509 	}
510 
511 	devmon_insert(what, ev);
512 #endif
513 }
514 
515 /*
516  * Add a cfdriver to the system.
517  */
518 int
519 config_cfdriver_attach(struct cfdriver *cd)
520 {
521 	struct cfdriver *lcd;
522 
523 	/* Make sure this driver isn't already in the system. */
524 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
525 		if (STREQ(lcd->cd_name, cd->cd_name))
526 			return (EEXIST);
527 	}
528 
529 	LIST_INIT(&cd->cd_attach);
530 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
531 
532 	return (0);
533 }
534 
535 /*
536  * Remove a cfdriver from the system.
537  */
538 int
539 config_cfdriver_detach(struct cfdriver *cd)
540 {
541 	int i;
542 
543 	/* Make sure there are no active instances. */
544 	for (i = 0; i < cd->cd_ndevs; i++) {
545 		if (cd->cd_devs[i] != NULL)
546 			return (EBUSY);
547 	}
548 
549 	/* ...and no attachments loaded. */
550 	if (LIST_EMPTY(&cd->cd_attach) == 0)
551 		return (EBUSY);
552 
553 	LIST_REMOVE(cd, cd_list);
554 
555 	KASSERT(cd->cd_devs == NULL);
556 
557 	return (0);
558 }
559 
560 /*
561  * Look up a cfdriver by name.
562  */
563 struct cfdriver *
564 config_cfdriver_lookup(const char *name)
565 {
566 	struct cfdriver *cd;
567 
568 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
569 		if (STREQ(cd->cd_name, name))
570 			return (cd);
571 	}
572 
573 	return (NULL);
574 }
575 
576 /*
577  * Add a cfattach to the specified driver.
578  */
579 int
580 config_cfattach_attach(const char *driver, struct cfattach *ca)
581 {
582 	struct cfattach *lca;
583 	struct cfdriver *cd;
584 
585 	cd = config_cfdriver_lookup(driver);
586 	if (cd == NULL)
587 		return (ESRCH);
588 
589 	/* Make sure this attachment isn't already on this driver. */
590 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
591 		if (STREQ(lca->ca_name, ca->ca_name))
592 			return (EEXIST);
593 	}
594 
595 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
596 
597 	return (0);
598 }
599 
600 /*
601  * Remove a cfattach from the specified driver.
602  */
603 int
604 config_cfattach_detach(const char *driver, struct cfattach *ca)
605 {
606 	struct cfdriver *cd;
607 	device_t dev;
608 	int i;
609 
610 	cd = config_cfdriver_lookup(driver);
611 	if (cd == NULL)
612 		return (ESRCH);
613 
614 	/* Make sure there are no active instances. */
615 	for (i = 0; i < cd->cd_ndevs; i++) {
616 		if ((dev = cd->cd_devs[i]) == NULL)
617 			continue;
618 		if (dev->dv_cfattach == ca)
619 			return (EBUSY);
620 	}
621 
622 	LIST_REMOVE(ca, ca_list);
623 
624 	return (0);
625 }
626 
627 /*
628  * Look up a cfattach by name.
629  */
630 static struct cfattach *
631 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
632 {
633 	struct cfattach *ca;
634 
635 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
636 		if (STREQ(ca->ca_name, atname))
637 			return (ca);
638 	}
639 
640 	return (NULL);
641 }
642 
643 /*
644  * Look up a cfattach by driver/attachment name.
645  */
646 struct cfattach *
647 config_cfattach_lookup(const char *name, const char *atname)
648 {
649 	struct cfdriver *cd;
650 
651 	cd = config_cfdriver_lookup(name);
652 	if (cd == NULL)
653 		return (NULL);
654 
655 	return (config_cfattach_lookup_cd(cd, atname));
656 }
657 
658 /*
659  * Apply the matching function and choose the best.  This is used
660  * a few times and we want to keep the code small.
661  */
662 static void
663 mapply(struct matchinfo *m, cfdata_t cf)
664 {
665 	int pri;
666 
667 	if (m->fn != NULL) {
668 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
669 	} else {
670 		pri = config_match(m->parent, cf, m->aux);
671 	}
672 	if (pri > m->pri) {
673 		m->match = cf;
674 		m->pri = pri;
675 	}
676 }
677 
678 int
679 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
680 {
681 	const struct cfiattrdata *ci;
682 	const struct cflocdesc *cl;
683 	int nlocs, i;
684 
685 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
686 	KASSERT(ci);
687 	nlocs = ci->ci_loclen;
688 	KASSERT(!nlocs || locs);
689 	for (i = 0; i < nlocs; i++) {
690 		cl = &ci->ci_locdesc[i];
691 		/* !cld_defaultstr means no default value */
692 		if ((!(cl->cld_defaultstr)
693 		     || (cf->cf_loc[i] != cl->cld_default))
694 		    && cf->cf_loc[i] != locs[i])
695 			return (0);
696 	}
697 
698 	return (config_match(parent, cf, aux));
699 }
700 
701 /*
702  * Helper function: check whether the driver supports the interface attribute
703  * and return its descriptor structure.
704  */
705 static const struct cfiattrdata *
706 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
707 {
708 	const struct cfiattrdata * const *cpp;
709 
710 	if (cd->cd_attrs == NULL)
711 		return (0);
712 
713 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
714 		if (STREQ((*cpp)->ci_name, ia)) {
715 			/* Match. */
716 			return (*cpp);
717 		}
718 	}
719 	return (0);
720 }
721 
722 /*
723  * Lookup an interface attribute description by name.
724  * If the driver is given, consider only its supported attributes.
725  */
726 const struct cfiattrdata *
727 cfiattr_lookup(const char *name, const struct cfdriver *cd)
728 {
729 	const struct cfdriver *d;
730 	const struct cfiattrdata *ia;
731 
732 	if (cd)
733 		return (cfdriver_get_iattr(cd, name));
734 
735 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
736 		ia = cfdriver_get_iattr(d, name);
737 		if (ia)
738 			return (ia);
739 	}
740 	return (0);
741 }
742 
743 /*
744  * Determine if `parent' is a potential parent for a device spec based
745  * on `cfp'.
746  */
747 static int
748 cfparent_match(const device_t parent, const struct cfparent *cfp)
749 {
750 	struct cfdriver *pcd;
751 
752 	/* We don't match root nodes here. */
753 	if (cfp == NULL)
754 		return (0);
755 
756 	pcd = parent->dv_cfdriver;
757 	KASSERT(pcd != NULL);
758 
759 	/*
760 	 * First, ensure this parent has the correct interface
761 	 * attribute.
762 	 */
763 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
764 		return (0);
765 
766 	/*
767 	 * If no specific parent device instance was specified (i.e.
768 	 * we're attaching to the attribute only), we're done!
769 	 */
770 	if (cfp->cfp_parent == NULL)
771 		return (1);
772 
773 	/*
774 	 * Check the parent device's name.
775 	 */
776 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
777 		return (0);	/* not the same parent */
778 
779 	/*
780 	 * Make sure the unit number matches.
781 	 */
782 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
783 	    cfp->cfp_unit == parent->dv_unit)
784 		return (1);
785 
786 	/* Unit numbers don't match. */
787 	return (0);
788 }
789 
790 /*
791  * Helper for config_cfdata_attach(): check all devices whether it could be
792  * parent any attachment in the config data table passed, and rescan.
793  */
794 static void
795 rescan_with_cfdata(const struct cfdata *cf)
796 {
797 	device_t d;
798 	const struct cfdata *cf1;
799 	deviter_t di;
800 
801 
802 	/*
803 	 * "alldevs" is likely longer than a modules's cfdata, so make it
804 	 * the outer loop.
805 	 */
806 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
807 
808 		if (!(d->dv_cfattach->ca_rescan))
809 			continue;
810 
811 		for (cf1 = cf; cf1->cf_name; cf1++) {
812 
813 			if (!cfparent_match(d, cf1->cf_pspec))
814 				continue;
815 
816 			(*d->dv_cfattach->ca_rescan)(d,
817 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
818 		}
819 	}
820 	deviter_release(&di);
821 }
822 
823 /*
824  * Attach a supplemental config data table and rescan potential
825  * parent devices if required.
826  */
827 int
828 config_cfdata_attach(cfdata_t cf, int scannow)
829 {
830 	struct cftable *ct;
831 
832 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
833 	ct->ct_cfdata = cf;
834 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
835 
836 	if (scannow)
837 		rescan_with_cfdata(cf);
838 
839 	return (0);
840 }
841 
842 /*
843  * Helper for config_cfdata_detach: check whether a device is
844  * found through any attachment in the config data table.
845  */
846 static int
847 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
848 {
849 	const struct cfdata *cf1;
850 
851 	for (cf1 = cf; cf1->cf_name; cf1++)
852 		if (d->dv_cfdata == cf1)
853 			return (1);
854 
855 	return (0);
856 }
857 
858 /*
859  * Detach a supplemental config data table. Detach all devices found
860  * through that table (and thus keeping references to it) before.
861  */
862 int
863 config_cfdata_detach(cfdata_t cf)
864 {
865 	device_t d;
866 	int error = 0;
867 	struct cftable *ct;
868 	deviter_t di;
869 
870 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
871 	     d = deviter_next(&di)) {
872 		if (!dev_in_cfdata(d, cf))
873 			continue;
874 		if ((error = config_detach(d, 0)) != 0)
875 			break;
876 	}
877 	deviter_release(&di);
878 	if (error) {
879 		aprint_error_dev(d, "unable to detach instance\n");
880 		return error;
881 	}
882 
883 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
884 		if (ct->ct_cfdata == cf) {
885 			TAILQ_REMOVE(&allcftables, ct, ct_list);
886 			kmem_free(ct, sizeof(*ct));
887 			return (0);
888 		}
889 	}
890 
891 	/* not found -- shouldn't happen */
892 	return (EINVAL);
893 }
894 
895 /*
896  * Invoke the "match" routine for a cfdata entry on behalf of
897  * an external caller, usually a "submatch" routine.
898  */
899 int
900 config_match(device_t parent, cfdata_t cf, void *aux)
901 {
902 	struct cfattach *ca;
903 
904 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
905 	if (ca == NULL) {
906 		/* No attachment for this entry, oh well. */
907 		return (0);
908 	}
909 
910 	return ((*ca->ca_match)(parent, cf, aux));
911 }
912 
913 /*
914  * Iterate over all potential children of some device, calling the given
915  * function (default being the child's match function) for each one.
916  * Nonzero returns are matches; the highest value returned is considered
917  * the best match.  Return the `found child' if we got a match, or NULL
918  * otherwise.  The `aux' pointer is simply passed on through.
919  *
920  * Note that this function is designed so that it can be used to apply
921  * an arbitrary function to all potential children (its return value
922  * can be ignored).
923  */
924 cfdata_t
925 config_search_loc(cfsubmatch_t fn, device_t parent,
926 		  const char *ifattr, const int *locs, void *aux)
927 {
928 	struct cftable *ct;
929 	cfdata_t cf;
930 	struct matchinfo m;
931 
932 	KASSERT(config_initialized);
933 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
934 
935 	m.fn = fn;
936 	m.parent = parent;
937 	m.locs = locs;
938 	m.aux = aux;
939 	m.match = NULL;
940 	m.pri = 0;
941 
942 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
943 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
944 
945 			/* We don't match root nodes here. */
946 			if (!cf->cf_pspec)
947 				continue;
948 
949 			/*
950 			 * Skip cf if no longer eligible, otherwise scan
951 			 * through parents for one matching `parent', and
952 			 * try match function.
953 			 */
954 			if (cf->cf_fstate == FSTATE_FOUND)
955 				continue;
956 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
957 			    cf->cf_fstate == FSTATE_DSTAR)
958 				continue;
959 
960 			/*
961 			 * If an interface attribute was specified,
962 			 * consider only children which attach to
963 			 * that attribute.
964 			 */
965 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
966 				continue;
967 
968 			if (cfparent_match(parent, cf->cf_pspec))
969 				mapply(&m, cf);
970 		}
971 	}
972 	return (m.match);
973 }
974 
975 cfdata_t
976 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
977     void *aux)
978 {
979 
980 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
981 }
982 
983 /*
984  * Find the given root device.
985  * This is much like config_search, but there is no parent.
986  * Don't bother with multiple cfdata tables; the root node
987  * must always be in the initial table.
988  */
989 cfdata_t
990 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
991 {
992 	cfdata_t cf;
993 	const short *p;
994 	struct matchinfo m;
995 
996 	m.fn = fn;
997 	m.parent = ROOT;
998 	m.aux = aux;
999 	m.match = NULL;
1000 	m.pri = 0;
1001 	m.locs = 0;
1002 	/*
1003 	 * Look at root entries for matching name.  We do not bother
1004 	 * with found-state here since only one root should ever be
1005 	 * searched (and it must be done first).
1006 	 */
1007 	for (p = cfroots; *p >= 0; p++) {
1008 		cf = &cfdata[*p];
1009 		if (strcmp(cf->cf_name, rootname) == 0)
1010 			mapply(&m, cf);
1011 	}
1012 	return (m.match);
1013 }
1014 
1015 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1016 
1017 /*
1018  * The given `aux' argument describes a device that has been found
1019  * on the given parent, but not necessarily configured.  Locate the
1020  * configuration data for that device (using the submatch function
1021  * provided, or using candidates' cd_match configuration driver
1022  * functions) and attach it, and return true.  If the device was
1023  * not configured, call the given `print' function and return 0.
1024  */
1025 device_t
1026 config_found_sm_loc(device_t parent,
1027 		const char *ifattr, const int *locs, void *aux,
1028 		cfprint_t print, cfsubmatch_t submatch)
1029 {
1030 	cfdata_t cf;
1031 
1032 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1033 	if (splash_progress_state)
1034 		splash_progress_update(splash_progress_state);
1035 #endif
1036 
1037 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1038 		return(config_attach_loc(parent, cf, locs, aux, print));
1039 	if (print) {
1040 		if (config_do_twiddle)
1041 			twiddle();
1042 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1043 	}
1044 
1045 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1046 	if (splash_progress_state)
1047 		splash_progress_update(splash_progress_state);
1048 #endif
1049 
1050 	return (NULL);
1051 }
1052 
1053 device_t
1054 config_found_ia(device_t parent, const char *ifattr, void *aux,
1055     cfprint_t print)
1056 {
1057 
1058 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1059 }
1060 
1061 device_t
1062 config_found(device_t parent, void *aux, cfprint_t print)
1063 {
1064 
1065 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1066 }
1067 
1068 /*
1069  * As above, but for root devices.
1070  */
1071 device_t
1072 config_rootfound(const char *rootname, void *aux)
1073 {
1074 	cfdata_t cf;
1075 
1076 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1077 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1078 	aprint_error("root device %s not configured\n", rootname);
1079 	return (NULL);
1080 }
1081 
1082 /* just like sprintf(buf, "%d") except that it works from the end */
1083 static char *
1084 number(char *ep, int n)
1085 {
1086 
1087 	*--ep = 0;
1088 	while (n >= 10) {
1089 		*--ep = (n % 10) + '0';
1090 		n /= 10;
1091 	}
1092 	*--ep = n + '0';
1093 	return (ep);
1094 }
1095 
1096 /*
1097  * Expand the size of the cd_devs array if necessary.
1098  */
1099 static void
1100 config_makeroom(int n, struct cfdriver *cd)
1101 {
1102 	const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1103 	int old, new;
1104 	device_t *nsp;
1105 
1106 	if (n < cd->cd_ndevs)
1107 		return;
1108 
1109 	/*
1110 	 * Need to expand the array.
1111 	 */
1112 	old = cd->cd_ndevs;
1113 	if (old == 0)
1114 		new = 4;
1115 	else
1116 		new = old * 2;
1117 	while (new <= n)
1118 		new *= 2;
1119 	cd->cd_ndevs = new;
1120 	nsp = kmem_alloc(sizeof(device_t [new]), kmflags);
1121 	if (nsp == NULL)
1122 		panic("config_attach: %sing dev array",
1123 		    old != 0 ? "expand" : "creat");
1124 	memset(nsp + old, 0, sizeof(device_t [new - old]));
1125 	if (old != 0) {
1126 		memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1127 		kmem_free(cd->cd_devs, sizeof(device_t [old]));
1128 	}
1129 	cd->cd_devs = nsp;
1130 }
1131 
1132 static void
1133 config_devlink(device_t dev)
1134 {
1135 	struct cfdriver *cd = dev->dv_cfdriver;
1136 
1137 	/* put this device in the devices array */
1138 	config_makeroom(dev->dv_unit, cd);
1139 	if (cd->cd_devs[dev->dv_unit])
1140 		panic("config_attach: duplicate %s", device_xname(dev));
1141 	cd->cd_devs[dev->dv_unit] = dev;
1142 
1143 	/* It is safe to add a device to the tail of the list while
1144 	 * readers are in the list, but not while a writer is in
1145 	 * the list.  Wait for any writer to complete.
1146 	 */
1147 	mutex_enter(&alldevs_mtx);
1148 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1149 		cv_wait(&alldevs_cv, &alldevs_mtx);
1150 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
1151 	cv_signal(&alldevs_cv);
1152 	mutex_exit(&alldevs_mtx);
1153 }
1154 
1155 static void
1156 config_devunlink(device_t dev)
1157 {
1158 	struct cfdriver *cd = dev->dv_cfdriver;
1159 	int i;
1160 
1161 	/* Unlink from device list. */
1162 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1163 
1164 	/* Remove from cfdriver's array. */
1165 	cd->cd_devs[dev->dv_unit] = NULL;
1166 
1167 	/*
1168 	 * If the device now has no units in use, deallocate its softc array.
1169 	 */
1170 	for (i = 0; i < cd->cd_ndevs; i++) {
1171 		if (cd->cd_devs[i] != NULL)
1172 			return;
1173 	}
1174 	/* nothing found; deallocate */
1175 	kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1176 	cd->cd_devs = NULL;
1177 	cd->cd_ndevs = 0;
1178 }
1179 
1180 static device_t
1181 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1182 {
1183 	struct cfdriver *cd;
1184 	struct cfattach *ca;
1185 	size_t lname, lunit;
1186 	const char *xunit;
1187 	int myunit;
1188 	char num[10];
1189 	device_t dev;
1190 	void *dev_private;
1191 	const struct cfiattrdata *ia;
1192 	const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1193 
1194 	cd = config_cfdriver_lookup(cf->cf_name);
1195 	if (cd == NULL)
1196 		return (NULL);
1197 
1198 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1199 	if (ca == NULL)
1200 		return (NULL);
1201 
1202 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1203 	    ca->ca_devsize < sizeof(struct device))
1204 		panic("config_devalloc: %s", cf->cf_atname);
1205 
1206 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1207 	if (cf->cf_fstate == FSTATE_STAR) {
1208 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1209 			if (cd->cd_devs[myunit] == NULL)
1210 				break;
1211 		/*
1212 		 * myunit is now the unit of the first NULL device pointer,
1213 		 * or max(cd->cd_ndevs,cf->cf_unit).
1214 		 */
1215 	} else {
1216 		myunit = cf->cf_unit;
1217 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1218 			return (NULL);
1219 	}
1220 #else
1221 	myunit = cf->cf_unit;
1222 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1223 
1224 	/* compute length of name and decimal expansion of unit number */
1225 	lname = strlen(cd->cd_name);
1226 	xunit = number(&num[sizeof(num)], myunit);
1227 	lunit = &num[sizeof(num)] - xunit;
1228 	if (lname + lunit > sizeof(dev->dv_xname))
1229 		panic("config_devalloc: device name too long");
1230 
1231 	/* get memory for all device vars */
1232 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1233 	if (ca->ca_devsize > 0) {
1234 		dev_private = kmem_zalloc(ca->ca_devsize, kmflags);
1235 		if (dev_private == NULL)
1236 			panic("config_devalloc: memory allocation for device softc failed");
1237 	} else {
1238 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1239 		dev_private = NULL;
1240 	}
1241 
1242 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1243 		dev = kmem_zalloc(sizeof(*dev), kmflags);
1244 	} else {
1245 		dev = dev_private;
1246 	}
1247 	if (dev == NULL)
1248 		panic("config_devalloc: memory allocation for device_t failed");
1249 
1250 	dev->dv_class = cd->cd_class;
1251 	dev->dv_cfdata = cf;
1252 	dev->dv_cfdriver = cd;
1253 	dev->dv_cfattach = ca;
1254 	dev->dv_unit = myunit;
1255 	dev->dv_activity_count = 0;
1256 	dev->dv_activity_handlers = NULL;
1257 	dev->dv_private = dev_private;
1258 	memcpy(dev->dv_xname, cd->cd_name, lname);
1259 	memcpy(dev->dv_xname + lname, xunit, lunit);
1260 	dev->dv_parent = parent;
1261 	if (parent != NULL)
1262 		dev->dv_depth = parent->dv_depth + 1;
1263 	else
1264 		dev->dv_depth = 0;
1265 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
1266 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
1267 	if (locs) {
1268 		KASSERT(parent); /* no locators at root */
1269 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1270 				    parent->dv_cfdriver);
1271 		dev->dv_locators =
1272 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), kmflags);
1273 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1274 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1275 	}
1276 	dev->dv_properties = prop_dictionary_create();
1277 	KASSERT(dev->dv_properties != NULL);
1278 
1279 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1280 	    "device-driver", dev->dv_cfdriver->cd_name);
1281 	prop_dictionary_set_uint16(dev->dv_properties,
1282 	    "device-unit", dev->dv_unit);
1283 
1284 	return (dev);
1285 }
1286 
1287 static void
1288 config_devdealloc(device_t dev)
1289 {
1290 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1291 
1292 	KASSERT(dev->dv_properties != NULL);
1293 	prop_object_release(dev->dv_properties);
1294 
1295 	if (dev->dv_activity_handlers)
1296 		panic("config_devdealloc with registered handlers");
1297 
1298 	if (dev->dv_locators) {
1299 		size_t amount = *--dev->dv_locators;
1300 		kmem_free(dev->dv_locators, amount);
1301 	}
1302 
1303 	if (dev->dv_cfattach->ca_devsize > 0)
1304 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1305 	if (priv)
1306 		kmem_free(dev, sizeof(*dev));
1307 }
1308 
1309 /*
1310  * Attach a found device.
1311  */
1312 device_t
1313 config_attach_loc(device_t parent, cfdata_t cf,
1314 	const int *locs, void *aux, cfprint_t print)
1315 {
1316 	device_t dev;
1317 	struct cftable *ct;
1318 	const char *drvname;
1319 
1320 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1321 	if (splash_progress_state)
1322 		splash_progress_update(splash_progress_state);
1323 #endif
1324 
1325 	dev = config_devalloc(parent, cf, locs);
1326 	if (!dev)
1327 		panic("config_attach: allocation of device softc failed");
1328 
1329 	/* XXX redundant - see below? */
1330 	if (cf->cf_fstate != FSTATE_STAR) {
1331 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1332 		cf->cf_fstate = FSTATE_FOUND;
1333 	}
1334 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1335 	  else
1336 		cf->cf_unit++;
1337 #endif
1338 
1339 	config_devlink(dev);
1340 
1341 	if (config_do_twiddle)
1342 		twiddle();
1343 	else
1344 		aprint_naive("Found ");
1345 	/*
1346 	 * We want the next two printfs for normal, verbose, and quiet,
1347 	 * but not silent (in which case, we're twiddling, instead).
1348 	 */
1349 	if (parent == ROOT) {
1350 		aprint_naive("%s (root)", device_xname(dev));
1351 		aprint_normal("%s (root)", device_xname(dev));
1352 	} else {
1353 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1354 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1355 		if (print)
1356 			(void) (*print)(aux, NULL);
1357 	}
1358 
1359 	/*
1360 	 * Before attaching, clobber any unfound devices that are
1361 	 * otherwise identical.
1362 	 * XXX code above is redundant?
1363 	 */
1364 	drvname = dev->dv_cfdriver->cd_name;
1365 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1366 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1367 			if (STREQ(cf->cf_name, drvname) &&
1368 			    cf->cf_unit == dev->dv_unit) {
1369 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1370 					cf->cf_fstate = FSTATE_FOUND;
1371 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1372 				/*
1373 				 * Bump the unit number on all starred cfdata
1374 				 * entries for this device.
1375 				 */
1376 				if (cf->cf_fstate == FSTATE_STAR)
1377 					cf->cf_unit++;
1378 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1379 			}
1380 		}
1381 	}
1382 #ifdef __HAVE_DEVICE_REGISTER
1383 	device_register(dev, aux);
1384 #endif
1385 
1386 	/* Let userland know */
1387 	devmon_report_device(dev, true);
1388 
1389 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1390 	if (splash_progress_state)
1391 		splash_progress_update(splash_progress_state);
1392 #endif
1393 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1394 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1395 	if (splash_progress_state)
1396 		splash_progress_update(splash_progress_state);
1397 #endif
1398 
1399 	if (!device_pmf_is_registered(dev))
1400 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1401 
1402 	config_process_deferred(&deferred_config_queue, dev);
1403 	return (dev);
1404 }
1405 
1406 device_t
1407 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1408 {
1409 
1410 	return (config_attach_loc(parent, cf, NULL, aux, print));
1411 }
1412 
1413 /*
1414  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1415  * way are silently inserted into the device tree, and their children
1416  * attached.
1417  *
1418  * Note that because pseudo-devices are attached silently, any information
1419  * the attach routine wishes to print should be prefixed with the device
1420  * name by the attach routine.
1421  */
1422 device_t
1423 config_attach_pseudo(cfdata_t cf)
1424 {
1425 	device_t dev;
1426 
1427 	dev = config_devalloc(ROOT, cf, NULL);
1428 	if (!dev)
1429 		return (NULL);
1430 
1431 	/* XXX mark busy in cfdata */
1432 
1433 	config_devlink(dev);
1434 
1435 #if 0	/* XXXJRT not yet */
1436 #ifdef __HAVE_DEVICE_REGISTER
1437 	device_register(dev, NULL);	/* like a root node */
1438 #endif
1439 #endif
1440 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1441 	config_process_deferred(&deferred_config_queue, dev);
1442 	return (dev);
1443 }
1444 
1445 /*
1446  * Detach a device.  Optionally forced (e.g. because of hardware
1447  * removal) and quiet.  Returns zero if successful, non-zero
1448  * (an error code) otherwise.
1449  *
1450  * Note that this code wants to be run from a process context, so
1451  * that the detach can sleep to allow processes which have a device
1452  * open to run and unwind their stacks.
1453  */
1454 int
1455 config_detach(device_t dev, int flags)
1456 {
1457 	struct cftable *ct;
1458 	cfdata_t cf;
1459 	const struct cfattach *ca;
1460 	struct cfdriver *cd;
1461 #ifdef DIAGNOSTIC
1462 	device_t d;
1463 #endif
1464 	int rv = 0;
1465 
1466 #ifdef DIAGNOSTIC
1467 	cf = dev->dv_cfdata;
1468 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1469 	    cf->cf_fstate != FSTATE_STAR)
1470 		panic("config_detach: %s: bad device fstate %d",
1471 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1472 #endif
1473 	cd = dev->dv_cfdriver;
1474 	KASSERT(cd != NULL);
1475 
1476 	ca = dev->dv_cfattach;
1477 	KASSERT(ca != NULL);
1478 
1479 	KASSERT(curlwp != NULL);
1480 	mutex_enter(&alldevs_mtx);
1481 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1482 		;
1483 	else while (alldevs_nread != 0 ||
1484 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1485 		cv_wait(&alldevs_cv, &alldevs_mtx);
1486 	if (alldevs_nwrite++ == 0)
1487 		alldevs_writer = curlwp;
1488 	mutex_exit(&alldevs_mtx);
1489 
1490 	/*
1491 	 * Ensure the device is deactivated.  If the device doesn't
1492 	 * have an activation entry point, we allow DVF_ACTIVE to
1493 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
1494 	 * device is busy, and the detach fails.
1495 	 */
1496 	if (ca->ca_activate != NULL)
1497 		rv = config_deactivate(dev);
1498 
1499 	/*
1500 	 * Try to detach the device.  If that's not possible, then
1501 	 * we either panic() (for the forced but failed case), or
1502 	 * return an error.
1503 	 */
1504 	if (rv == 0) {
1505 		if (ca->ca_detach != NULL)
1506 			rv = (*ca->ca_detach)(dev, flags);
1507 		else
1508 			rv = EOPNOTSUPP;
1509 	}
1510 	if (rv != 0) {
1511 		if ((flags & DETACH_FORCE) == 0)
1512 			goto out;
1513 		else
1514 			panic("config_detach: forced detach of %s failed (%d)",
1515 			    device_xname(dev), rv);
1516 	}
1517 
1518 	/*
1519 	 * The device has now been successfully detached.
1520 	 */
1521 
1522 	/* Let userland know */
1523 	devmon_report_device(dev, false);
1524 
1525 #ifdef DIAGNOSTIC
1526 	/*
1527 	 * Sanity: If you're successfully detached, you should have no
1528 	 * children.  (Note that because children must be attached
1529 	 * after parents, we only need to search the latter part of
1530 	 * the list.)
1531 	 */
1532 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1533 	    d = TAILQ_NEXT(d, dv_list)) {
1534 		if (d->dv_parent == dev) {
1535 			printf("config_detach: detached device %s"
1536 			    " has children %s\n", device_xname(dev), device_xname(d));
1537 			panic("config_detach");
1538 		}
1539 	}
1540 #endif
1541 
1542 	/* notify the parent that the child is gone */
1543 	if (dev->dv_parent) {
1544 		device_t p = dev->dv_parent;
1545 		if (p->dv_cfattach->ca_childdetached)
1546 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1547 	}
1548 
1549 	/*
1550 	 * Mark cfdata to show that the unit can be reused, if possible.
1551 	 */
1552 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1553 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1554 			if (STREQ(cf->cf_name, cd->cd_name)) {
1555 				if (cf->cf_fstate == FSTATE_FOUND &&
1556 				    cf->cf_unit == dev->dv_unit)
1557 					cf->cf_fstate = FSTATE_NOTFOUND;
1558 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1559 				/*
1560 				 * Note that we can only re-use a starred
1561 				 * unit number if the unit being detached
1562 				 * had the last assigned unit number.
1563 				 */
1564 				if (cf->cf_fstate == FSTATE_STAR &&
1565 				    cf->cf_unit == dev->dv_unit + 1)
1566 					cf->cf_unit--;
1567 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1568 			}
1569 		}
1570 	}
1571 
1572 	config_devunlink(dev);
1573 
1574 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1575 		aprint_normal_dev(dev, "detached\n");
1576 
1577 	config_devdealloc(dev);
1578 
1579 out:
1580 	mutex_enter(&alldevs_mtx);
1581 	if (--alldevs_nwrite == 0)
1582 		alldevs_writer = NULL;
1583 	cv_signal(&alldevs_cv);
1584 	mutex_exit(&alldevs_mtx);
1585 	return rv;
1586 }
1587 
1588 int
1589 config_detach_children(device_t parent, int flags)
1590 {
1591 	device_t dv;
1592 	deviter_t di;
1593 	int error = 0;
1594 
1595 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1596 	     dv = deviter_next(&di)) {
1597 		if (device_parent(dv) != parent)
1598 			continue;
1599 		if ((error = config_detach(dv, flags)) != 0)
1600 			break;
1601 	}
1602 	deviter_release(&di);
1603 	return error;
1604 }
1605 
1606 int
1607 config_activate(device_t dev)
1608 {
1609 	const struct cfattach *ca = dev->dv_cfattach;
1610 	int rv = 0, oflags = dev->dv_flags;
1611 
1612 	if (ca->ca_activate == NULL)
1613 		return (EOPNOTSUPP);
1614 
1615 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1616 		dev->dv_flags |= DVF_ACTIVE;
1617 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1618 		if (rv)
1619 			dev->dv_flags = oflags;
1620 	}
1621 	return (rv);
1622 }
1623 
1624 int
1625 config_deactivate(device_t dev)
1626 {
1627 	const struct cfattach *ca = dev->dv_cfattach;
1628 	int rv = 0, oflags = dev->dv_flags;
1629 
1630 	if (ca->ca_activate == NULL)
1631 		return (EOPNOTSUPP);
1632 
1633 	if (dev->dv_flags & DVF_ACTIVE) {
1634 		dev->dv_flags &= ~DVF_ACTIVE;
1635 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1636 		if (rv)
1637 			dev->dv_flags = oflags;
1638 	}
1639 	return (rv);
1640 }
1641 
1642 /*
1643  * Defer the configuration of the specified device until all
1644  * of its parent's devices have been attached.
1645  */
1646 void
1647 config_defer(device_t dev, void (*func)(device_t))
1648 {
1649 	const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1650 	struct deferred_config *dc;
1651 
1652 	if (dev->dv_parent == NULL)
1653 		panic("config_defer: can't defer config of a root device");
1654 
1655 #ifdef DIAGNOSTIC
1656 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1657 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1658 		if (dc->dc_dev == dev)
1659 			panic("config_defer: deferred twice");
1660 	}
1661 #endif
1662 
1663 	dc = kmem_alloc(sizeof(*dc), kmflags);
1664 	if (dc == NULL)
1665 		panic("config_defer: unable to allocate callback");
1666 
1667 	dc->dc_dev = dev;
1668 	dc->dc_func = func;
1669 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1670 	config_pending_incr();
1671 }
1672 
1673 /*
1674  * Defer some autoconfiguration for a device until after interrupts
1675  * are enabled.
1676  */
1677 void
1678 config_interrupts(device_t dev, void (*func)(device_t))
1679 {
1680 	const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1681 	struct deferred_config *dc;
1682 
1683 	/*
1684 	 * If interrupts are enabled, callback now.
1685 	 */
1686 	if (cold == 0) {
1687 		(*func)(dev);
1688 		return;
1689 	}
1690 
1691 #ifdef DIAGNOSTIC
1692 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1693 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1694 		if (dc->dc_dev == dev)
1695 			panic("config_interrupts: deferred twice");
1696 	}
1697 #endif
1698 
1699 	dc = kmem_alloc(sizeof(*dc), kmflags);
1700 	if (dc == NULL)
1701 		panic("config_interrupts: unable to allocate callback");
1702 
1703 	dc->dc_dev = dev;
1704 	dc->dc_func = func;
1705 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1706 	config_pending_incr();
1707 }
1708 
1709 /*
1710  * Process a deferred configuration queue.
1711  */
1712 static void
1713 config_process_deferred(struct deferred_config_head *queue,
1714     device_t parent)
1715 {
1716 	struct deferred_config *dc, *ndc;
1717 
1718 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1719 		ndc = TAILQ_NEXT(dc, dc_queue);
1720 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1721 			TAILQ_REMOVE(queue, dc, dc_queue);
1722 			(*dc->dc_func)(dc->dc_dev);
1723 			kmem_free(dc, sizeof(*dc));
1724 			config_pending_decr();
1725 		}
1726 	}
1727 }
1728 
1729 /*
1730  * Manipulate the config_pending semaphore.
1731  */
1732 void
1733 config_pending_incr(void)
1734 {
1735 
1736 	mutex_enter(&config_misc_lock);
1737 	config_pending++;
1738 	mutex_exit(&config_misc_lock);
1739 }
1740 
1741 void
1742 config_pending_decr(void)
1743 {
1744 
1745 #ifdef DIAGNOSTIC
1746 	if (config_pending == 0)
1747 		panic("config_pending_decr: config_pending == 0");
1748 #endif
1749 	mutex_enter(&config_misc_lock);
1750 	config_pending--;
1751 	if (config_pending == 0)
1752 		cv_broadcast(&config_misc_cv);
1753 	mutex_exit(&config_misc_lock);
1754 }
1755 
1756 /*
1757  * Register a "finalization" routine.  Finalization routines are
1758  * called iteratively once all real devices have been found during
1759  * autoconfiguration, for as long as any one finalizer has done
1760  * any work.
1761  */
1762 int
1763 config_finalize_register(device_t dev, int (*fn)(device_t))
1764 {
1765 	struct finalize_hook *f;
1766 
1767 	/*
1768 	 * If finalization has already been done, invoke the
1769 	 * callback function now.
1770 	 */
1771 	if (config_finalize_done) {
1772 		while ((*fn)(dev) != 0)
1773 			/* loop */ ;
1774 	}
1775 
1776 	/* Ensure this isn't already on the list. */
1777 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1778 		if (f->f_func == fn && f->f_dev == dev)
1779 			return (EEXIST);
1780 	}
1781 
1782 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
1783 	f->f_func = fn;
1784 	f->f_dev = dev;
1785 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1786 
1787 	return (0);
1788 }
1789 
1790 void
1791 config_finalize(void)
1792 {
1793 	struct finalize_hook *f;
1794 	struct pdevinit *pdev;
1795 	extern struct pdevinit pdevinit[];
1796 	int errcnt, rv;
1797 
1798 	/*
1799 	 * Now that device driver threads have been created, wait for
1800 	 * them to finish any deferred autoconfiguration.
1801 	 */
1802 	mutex_enter(&config_misc_lock);
1803 	while (config_pending != 0)
1804 		cv_wait(&config_misc_cv, &config_misc_lock);
1805 	mutex_exit(&config_misc_lock);
1806 
1807 	/* Attach pseudo-devices. */
1808 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1809 		(*pdev->pdev_attach)(pdev->pdev_count);
1810 
1811 	/* Run the hooks until none of them does any work. */
1812 	do {
1813 		rv = 0;
1814 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1815 			rv |= (*f->f_func)(f->f_dev);
1816 	} while (rv != 0);
1817 
1818 	config_finalize_done = 1;
1819 
1820 	/* Now free all the hooks. */
1821 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1822 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1823 		kmem_free(f, sizeof(*f));
1824 	}
1825 
1826 	errcnt = aprint_get_error_count();
1827 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1828 	    (boothowto & AB_VERBOSE) == 0) {
1829 		if (config_do_twiddle) {
1830 			config_do_twiddle = 0;
1831 			printf_nolog("done.\n");
1832 		}
1833 		if (errcnt != 0) {
1834 			printf("WARNING: %d error%s while detecting hardware; "
1835 			    "check system log.\n", errcnt,
1836 			    errcnt == 1 ? "" : "s");
1837 		}
1838 	}
1839 }
1840 
1841 /*
1842  * device_lookup:
1843  *
1844  *	Look up a device instance for a given driver.
1845  */
1846 device_t
1847 device_lookup(cfdriver_t cd, int unit)
1848 {
1849 
1850 	if (unit < 0 || unit >= cd->cd_ndevs)
1851 		return (NULL);
1852 
1853 	return (cd->cd_devs[unit]);
1854 }
1855 
1856 /*
1857  * device_lookup:
1858  *
1859  *	Look up a device instance for a given driver.
1860  */
1861 void *
1862 device_lookup_private(cfdriver_t cd, int unit)
1863 {
1864 	device_t dv;
1865 
1866 	if (unit < 0 || unit >= cd->cd_ndevs)
1867 		return NULL;
1868 
1869 	if ((dv = cd->cd_devs[unit]) == NULL)
1870 		return NULL;
1871 
1872 	return dv->dv_private;
1873 }
1874 
1875 /*
1876  * Accessor functions for the device_t type.
1877  */
1878 devclass_t
1879 device_class(device_t dev)
1880 {
1881 
1882 	return (dev->dv_class);
1883 }
1884 
1885 cfdata_t
1886 device_cfdata(device_t dev)
1887 {
1888 
1889 	return (dev->dv_cfdata);
1890 }
1891 
1892 cfdriver_t
1893 device_cfdriver(device_t dev)
1894 {
1895 
1896 	return (dev->dv_cfdriver);
1897 }
1898 
1899 cfattach_t
1900 device_cfattach(device_t dev)
1901 {
1902 
1903 	return (dev->dv_cfattach);
1904 }
1905 
1906 int
1907 device_unit(device_t dev)
1908 {
1909 
1910 	return (dev->dv_unit);
1911 }
1912 
1913 const char *
1914 device_xname(device_t dev)
1915 {
1916 
1917 	return (dev->dv_xname);
1918 }
1919 
1920 device_t
1921 device_parent(device_t dev)
1922 {
1923 
1924 	return (dev->dv_parent);
1925 }
1926 
1927 bool
1928 device_is_active(device_t dev)
1929 {
1930 	int active_flags;
1931 
1932 	active_flags = DVF_ACTIVE;
1933 	active_flags |= DVF_CLASS_SUSPENDED;
1934 	active_flags |= DVF_DRIVER_SUSPENDED;
1935 	active_flags |= DVF_BUS_SUSPENDED;
1936 
1937 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1938 }
1939 
1940 bool
1941 device_is_enabled(device_t dev)
1942 {
1943 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1944 }
1945 
1946 bool
1947 device_has_power(device_t dev)
1948 {
1949 	int active_flags;
1950 
1951 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1952 
1953 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1954 }
1955 
1956 int
1957 device_locator(device_t dev, u_int locnum)
1958 {
1959 
1960 	KASSERT(dev->dv_locators != NULL);
1961 	return (dev->dv_locators[locnum]);
1962 }
1963 
1964 void *
1965 device_private(device_t dev)
1966 {
1967 
1968 	/*
1969 	 * The reason why device_private(NULL) is allowed is to simplify the
1970 	 * work of a lot of userspace request handlers (i.e., c/bdev
1971 	 * handlers) which grab cfdriver_t->cd_units[n].
1972 	 * It avoids having them test for it to be NULL and only then calling
1973 	 * device_private.
1974 	 */
1975 	return dev == NULL ? NULL : dev->dv_private;
1976 }
1977 
1978 prop_dictionary_t
1979 device_properties(device_t dev)
1980 {
1981 
1982 	return (dev->dv_properties);
1983 }
1984 
1985 /*
1986  * device_is_a:
1987  *
1988  *	Returns true if the device is an instance of the specified
1989  *	driver.
1990  */
1991 bool
1992 device_is_a(device_t dev, const char *dname)
1993 {
1994 
1995 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1996 }
1997 
1998 /*
1999  * device_find_by_xname:
2000  *
2001  *	Returns the device of the given name or NULL if it doesn't exist.
2002  */
2003 device_t
2004 device_find_by_xname(const char *name)
2005 {
2006 	device_t dv;
2007 	deviter_t di;
2008 
2009 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2010 		if (strcmp(device_xname(dv), name) == 0)
2011 			break;
2012 	}
2013 	deviter_release(&di);
2014 
2015 	return dv;
2016 }
2017 
2018 /*
2019  * device_find_by_driver_unit:
2020  *
2021  *	Returns the device of the given driver name and unit or
2022  *	NULL if it doesn't exist.
2023  */
2024 device_t
2025 device_find_by_driver_unit(const char *name, int unit)
2026 {
2027 	struct cfdriver *cd;
2028 
2029 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2030 		return NULL;
2031 	return device_lookup(cd, unit);
2032 }
2033 
2034 /*
2035  * Power management related functions.
2036  */
2037 
2038 bool
2039 device_pmf_is_registered(device_t dev)
2040 {
2041 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2042 }
2043 
2044 bool
2045 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2046 {
2047 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2048 		return true;
2049 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2050 		return false;
2051 	if (*dev->dv_driver_suspend != NULL &&
2052 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2053 		return false;
2054 
2055 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2056 	return true;
2057 }
2058 
2059 bool
2060 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2061 {
2062 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2063 		return true;
2064 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2065 		return false;
2066 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2067 		return false;
2068 	if (*dev->dv_driver_resume != NULL &&
2069 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2070 		return false;
2071 
2072 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2073 	return true;
2074 }
2075 
2076 bool
2077 device_pmf_driver_shutdown(device_t dev, int how)
2078 {
2079 
2080 	if (*dev->dv_driver_shutdown != NULL &&
2081 	    !(*dev->dv_driver_shutdown)(dev, how))
2082 		return false;
2083 	return true;
2084 }
2085 
2086 bool
2087 device_pmf_driver_register(device_t dev,
2088     bool (*suspend)(device_t PMF_FN_PROTO),
2089     bool (*resume)(device_t PMF_FN_PROTO),
2090     bool (*shutdown)(device_t, int))
2091 {
2092 	pmf_private_t *pp;
2093 
2094 	if ((pp = kmem_zalloc(sizeof(*pp), KM_NOSLEEP)) == NULL)
2095 		return false;
2096 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2097 	cv_init(&pp->pp_cv, "pmfsusp");
2098 	dev->dv_pmf_private = pp;
2099 
2100 	dev->dv_driver_suspend = suspend;
2101 	dev->dv_driver_resume = resume;
2102 	dev->dv_driver_shutdown = shutdown;
2103 	dev->dv_flags |= DVF_POWER_HANDLERS;
2104 	return true;
2105 }
2106 
2107 static const char *
2108 curlwp_name(void)
2109 {
2110 	if (curlwp->l_name != NULL)
2111 		return curlwp->l_name;
2112 	else
2113 		return curlwp->l_proc->p_comm;
2114 }
2115 
2116 void
2117 device_pmf_driver_deregister(device_t dev)
2118 {
2119 	pmf_private_t *pp = dev->dv_pmf_private;
2120 
2121 	/* XXX avoid crash in case we are not initialized */
2122 	if (!pp)
2123 		return;
2124 
2125 	dev->dv_driver_suspend = NULL;
2126 	dev->dv_driver_resume = NULL;
2127 
2128 	mutex_enter(&pp->pp_mtx);
2129 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2130 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2131 		/* Wake a thread that waits for the lock.  That
2132 		 * thread will fail to acquire the lock, and then
2133 		 * it will wake the next thread that waits for the
2134 		 * lock, or else it will wake us.
2135 		 */
2136 		cv_signal(&pp->pp_cv);
2137 		pmflock_debug(dev, __func__, __LINE__);
2138 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2139 		pmflock_debug(dev, __func__, __LINE__);
2140 	}
2141 	dev->dv_pmf_private = NULL;
2142 	mutex_exit(&pp->pp_mtx);
2143 
2144 	cv_destroy(&pp->pp_cv);
2145 	mutex_destroy(&pp->pp_mtx);
2146 	kmem_free(pp, sizeof(*pp));
2147 }
2148 
2149 bool
2150 device_pmf_driver_child_register(device_t dev)
2151 {
2152 	device_t parent = device_parent(dev);
2153 
2154 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2155 		return true;
2156 	return (*parent->dv_driver_child_register)(dev);
2157 }
2158 
2159 void
2160 device_pmf_driver_set_child_register(device_t dev,
2161     bool (*child_register)(device_t))
2162 {
2163 	dev->dv_driver_child_register = child_register;
2164 }
2165 
2166 void
2167 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2168 {
2169 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2170 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2171 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2172 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2173 }
2174 
2175 bool
2176 device_is_self_suspended(device_t dev)
2177 {
2178 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2179 }
2180 
2181 void
2182 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2183 {
2184 	bool self = (flags & PMF_F_SELF) != 0;
2185 
2186 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2187 
2188 	if (!self)
2189 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2190 	else if (device_is_active(dev))
2191 		dev->dv_flags |= DVF_SELF_SUSPENDED;
2192 
2193 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2194 }
2195 
2196 static void
2197 pmflock_debug(device_t dev, const char *func, int line)
2198 {
2199 	pmf_private_t *pp = device_pmf_private(dev);
2200 
2201 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2202 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2203 	    dev->dv_flags);
2204 }
2205 
2206 static void
2207 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2208 {
2209 	pmf_private_t *pp = device_pmf_private(dev);
2210 
2211 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2212 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2213 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2214 }
2215 
2216 static bool
2217 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2218 {
2219 	pmf_private_t *pp = device_pmf_private(dev);
2220 
2221 	while (device_pmf_is_registered(dev) &&
2222 	    pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
2223 		pp->pp_nwait++;
2224 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2225 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2226 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2227 		pp->pp_nwait--;
2228 	}
2229 	if (!device_pmf_is_registered(dev)) {
2230 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2231 		/* We could not acquire the lock, but some other thread may
2232 		 * wait for it, also.  Wake that thread.
2233 		 */
2234 		cv_signal(&pp->pp_cv);
2235 		return false;
2236 	}
2237 	pp->pp_nlock++;
2238 	pp->pp_holder = curlwp;
2239 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2240 	return true;
2241 }
2242 
2243 bool
2244 device_pmf_lock(device_t dev PMF_FN_ARGS)
2245 {
2246 	bool rc;
2247 	pmf_private_t *pp = device_pmf_private(dev);
2248 
2249 	mutex_enter(&pp->pp_mtx);
2250 	rc = device_pmf_lock1(dev PMF_FN_CALL);
2251 	mutex_exit(&pp->pp_mtx);
2252 
2253 	return rc;
2254 }
2255 
2256 void
2257 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2258 {
2259 	pmf_private_t *pp = device_pmf_private(dev);
2260 
2261 	KASSERT(pp->pp_nlock > 0);
2262 	mutex_enter(&pp->pp_mtx);
2263 	if (--pp->pp_nlock == 0)
2264 		pp->pp_holder = NULL;
2265 	cv_signal(&pp->pp_cv);
2266 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2267 	mutex_exit(&pp->pp_mtx);
2268 }
2269 
2270 void *
2271 device_pmf_private(device_t dev)
2272 {
2273 	return dev->dv_pmf_private;
2274 }
2275 
2276 void *
2277 device_pmf_bus_private(device_t dev)
2278 {
2279 	return dev->dv_bus_private;
2280 }
2281 
2282 bool
2283 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2284 {
2285 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2286 		return true;
2287 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2288 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2289 		return false;
2290 	if (*dev->dv_bus_suspend != NULL &&
2291 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2292 		return false;
2293 
2294 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2295 	return true;
2296 }
2297 
2298 bool
2299 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2300 {
2301 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2302 		return true;
2303 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2304 		return false;
2305 	if (*dev->dv_bus_resume != NULL &&
2306 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2307 		return false;
2308 
2309 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2310 	return true;
2311 }
2312 
2313 bool
2314 device_pmf_bus_shutdown(device_t dev, int how)
2315 {
2316 
2317 	if (*dev->dv_bus_shutdown != NULL &&
2318 	    !(*dev->dv_bus_shutdown)(dev, how))
2319 		return false;
2320 	return true;
2321 }
2322 
2323 void
2324 device_pmf_bus_register(device_t dev, void *priv,
2325     bool (*suspend)(device_t PMF_FN_PROTO),
2326     bool (*resume)(device_t PMF_FN_PROTO),
2327     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2328 {
2329 	dev->dv_bus_private = priv;
2330 	dev->dv_bus_resume = resume;
2331 	dev->dv_bus_suspend = suspend;
2332 	dev->dv_bus_shutdown = shutdown;
2333 	dev->dv_bus_deregister = deregister;
2334 }
2335 
2336 void
2337 device_pmf_bus_deregister(device_t dev)
2338 {
2339 	if (dev->dv_bus_deregister == NULL)
2340 		return;
2341 	(*dev->dv_bus_deregister)(dev);
2342 	dev->dv_bus_private = NULL;
2343 	dev->dv_bus_suspend = NULL;
2344 	dev->dv_bus_resume = NULL;
2345 	dev->dv_bus_deregister = NULL;
2346 }
2347 
2348 void *
2349 device_pmf_class_private(device_t dev)
2350 {
2351 	return dev->dv_class_private;
2352 }
2353 
2354 bool
2355 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2356 {
2357 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2358 		return true;
2359 	if (*dev->dv_class_suspend != NULL &&
2360 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2361 		return false;
2362 
2363 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2364 	return true;
2365 }
2366 
2367 bool
2368 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2369 {
2370 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2371 		return true;
2372 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2373 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2374 		return false;
2375 	if (*dev->dv_class_resume != NULL &&
2376 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2377 		return false;
2378 
2379 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2380 	return true;
2381 }
2382 
2383 void
2384 device_pmf_class_register(device_t dev, void *priv,
2385     bool (*suspend)(device_t PMF_FN_PROTO),
2386     bool (*resume)(device_t PMF_FN_PROTO),
2387     void (*deregister)(device_t))
2388 {
2389 	dev->dv_class_private = priv;
2390 	dev->dv_class_suspend = suspend;
2391 	dev->dv_class_resume = resume;
2392 	dev->dv_class_deregister = deregister;
2393 }
2394 
2395 void
2396 device_pmf_class_deregister(device_t dev)
2397 {
2398 	if (dev->dv_class_deregister == NULL)
2399 		return;
2400 	(*dev->dv_class_deregister)(dev);
2401 	dev->dv_class_private = NULL;
2402 	dev->dv_class_suspend = NULL;
2403 	dev->dv_class_resume = NULL;
2404 	dev->dv_class_deregister = NULL;
2405 }
2406 
2407 bool
2408 device_active(device_t dev, devactive_t type)
2409 {
2410 	size_t i;
2411 
2412 	if (dev->dv_activity_count == 0)
2413 		return false;
2414 
2415 	for (i = 0; i < dev->dv_activity_count; ++i) {
2416 		if (dev->dv_activity_handlers[i] == NULL)
2417 			break;
2418 		(*dev->dv_activity_handlers[i])(dev, type);
2419 	}
2420 
2421 	return true;
2422 }
2423 
2424 bool
2425 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2426 {
2427 	void (**new_handlers)(device_t, devactive_t);
2428 	void (**old_handlers)(device_t, devactive_t);
2429 	size_t i, old_size, new_size;
2430 	int s;
2431 
2432 	old_handlers = dev->dv_activity_handlers;
2433 	old_size = dev->dv_activity_count;
2434 
2435 	for (i = 0; i < old_size; ++i) {
2436 		KASSERT(old_handlers[i] != handler);
2437 		if (old_handlers[i] == NULL) {
2438 			old_handlers[i] = handler;
2439 			return true;
2440 		}
2441 	}
2442 
2443 	new_size = old_size + 4;
2444 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2445 
2446 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2447 	new_handlers[old_size] = handler;
2448 	memset(new_handlers + old_size + 1, 0,
2449 	    sizeof(int [new_size - (old_size+1)]));
2450 
2451 	s = splhigh();
2452 	dev->dv_activity_count = new_size;
2453 	dev->dv_activity_handlers = new_handlers;
2454 	splx(s);
2455 
2456 	if (old_handlers != NULL)
2457 		kmem_free(old_handlers, sizeof(void * [old_size]));
2458 
2459 	return true;
2460 }
2461 
2462 void
2463 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2464 {
2465 	void (**old_handlers)(device_t, devactive_t);
2466 	size_t i, old_size;
2467 	int s;
2468 
2469 	old_handlers = dev->dv_activity_handlers;
2470 	old_size = dev->dv_activity_count;
2471 
2472 	for (i = 0; i < old_size; ++i) {
2473 		if (old_handlers[i] == handler)
2474 			break;
2475 		if (old_handlers[i] == NULL)
2476 			return; /* XXX panic? */
2477 	}
2478 
2479 	if (i == old_size)
2480 		return; /* XXX panic? */
2481 
2482 	for (; i < old_size - 1; ++i) {
2483 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2484 			continue;
2485 
2486 		if (i == 0) {
2487 			s = splhigh();
2488 			dev->dv_activity_count = 0;
2489 			dev->dv_activity_handlers = NULL;
2490 			splx(s);
2491 			kmem_free(old_handlers, sizeof(void *[old_size]));
2492 		}
2493 		return;
2494 	}
2495 	old_handlers[i] = NULL;
2496 }
2497 
2498 /*
2499  * Device Iteration
2500  *
2501  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2502  *     each device_t's in the device tree.
2503  *
2504  * deviter_init(di, flags): initialize the device iterator `di'
2505  *     to "walk" the device tree.  deviter_next(di) will return
2506  *     the first device_t in the device tree, or NULL if there are
2507  *     no devices.
2508  *
2509  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2510  *     caller intends to modify the device tree by calling
2511  *     config_detach(9) on devices in the order that the iterator
2512  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2513  *     nearest the "root" of the device tree to be returned, first;
2514  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2515  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2516  *     indicating both that deviter_init() should not respect any
2517  *     locks on the device tree, and that deviter_next(di) may run
2518  *     in more than one LWP before the walk has finished.
2519  *
2520  *     Only one DEVITER_F_RW iterator may be in the device tree at
2521  *     once.
2522  *
2523  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2524  *
2525  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2526  *     DEVITER_F_LEAVES_FIRST are used in combination.
2527  *
2528  * deviter_first(di, flags): initialize the device iterator `di'
2529  *     and return the first device_t in the device tree, or NULL
2530  *     if there are no devices.  The statement
2531  *
2532  *         dv = deviter_first(di);
2533  *
2534  *     is shorthand for
2535  *
2536  *         deviter_init(di);
2537  *         dv = deviter_next(di);
2538  *
2539  * deviter_next(di): return the next device_t in the device tree,
2540  *     or NULL if there are no more devices.  deviter_next(di)
2541  *     is undefined if `di' was not initialized with deviter_init() or
2542  *     deviter_first().
2543  *
2544  * deviter_release(di): stops iteration (subsequent calls to
2545  *     deviter_next() will return NULL), releases any locks and
2546  *     resources held by the device iterator.
2547  *
2548  * Device iteration does not return device_t's in any particular
2549  * order.  An iterator will never return the same device_t twice.
2550  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2551  * is called repeatedly on the same `di', it will eventually return
2552  * NULL.  It is ok to attach/detach devices during device iteration.
2553  */
2554 void
2555 deviter_init(deviter_t *di, deviter_flags_t flags)
2556 {
2557 	device_t dv;
2558 	bool rw;
2559 
2560 	mutex_enter(&alldevs_mtx);
2561 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2562 		flags |= DEVITER_F_RW;
2563 		alldevs_nwrite++;
2564 		alldevs_writer = NULL;
2565 		alldevs_nread = 0;
2566 	} else {
2567 		rw = (flags & DEVITER_F_RW) != 0;
2568 
2569 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2570 			;
2571 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2572 		       (rw && alldevs_nread != 0))
2573 			cv_wait(&alldevs_cv, &alldevs_mtx);
2574 
2575 		if (rw) {
2576 			if (alldevs_nwrite++ == 0)
2577 				alldevs_writer = curlwp;
2578 		} else
2579 			alldevs_nread++;
2580 	}
2581 	mutex_exit(&alldevs_mtx);
2582 
2583 	memset(di, 0, sizeof(*di));
2584 
2585 	di->di_flags = flags;
2586 
2587 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2588 	case DEVITER_F_LEAVES_FIRST:
2589 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2590 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2591 		break;
2592 	case DEVITER_F_ROOT_FIRST:
2593 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2594 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2595 		break;
2596 	default:
2597 		break;
2598 	}
2599 
2600 	deviter_reinit(di);
2601 }
2602 
2603 static void
2604 deviter_reinit(deviter_t *di)
2605 {
2606 	if ((di->di_flags & DEVITER_F_RW) != 0)
2607 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2608 	else
2609 		di->di_prev = TAILQ_FIRST(&alldevs);
2610 }
2611 
2612 device_t
2613 deviter_first(deviter_t *di, deviter_flags_t flags)
2614 {
2615 	deviter_init(di, flags);
2616 	return deviter_next(di);
2617 }
2618 
2619 static device_t
2620 deviter_next1(deviter_t *di)
2621 {
2622 	device_t dv;
2623 
2624 	dv = di->di_prev;
2625 
2626 	if (dv == NULL)
2627 		;
2628 	else if ((di->di_flags & DEVITER_F_RW) != 0)
2629 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2630 	else
2631 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2632 
2633 	return dv;
2634 }
2635 
2636 device_t
2637 deviter_next(deviter_t *di)
2638 {
2639 	device_t dv = NULL;
2640 
2641 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2642 	case 0:
2643 		return deviter_next1(di);
2644 	case DEVITER_F_LEAVES_FIRST:
2645 		while (di->di_curdepth >= 0) {
2646 			if ((dv = deviter_next1(di)) == NULL) {
2647 				di->di_curdepth--;
2648 				deviter_reinit(di);
2649 			} else if (dv->dv_depth == di->di_curdepth)
2650 				break;
2651 		}
2652 		return dv;
2653 	case DEVITER_F_ROOT_FIRST:
2654 		while (di->di_curdepth <= di->di_maxdepth) {
2655 			if ((dv = deviter_next1(di)) == NULL) {
2656 				di->di_curdepth++;
2657 				deviter_reinit(di);
2658 			} else if (dv->dv_depth == di->di_curdepth)
2659 				break;
2660 		}
2661 		return dv;
2662 	default:
2663 		return NULL;
2664 	}
2665 }
2666 
2667 void
2668 deviter_release(deviter_t *di)
2669 {
2670 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2671 
2672 	mutex_enter(&alldevs_mtx);
2673 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2674 		--alldevs_nwrite;
2675 	else {
2676 
2677 		if (rw) {
2678 			if (--alldevs_nwrite == 0)
2679 				alldevs_writer = NULL;
2680 		} else
2681 			--alldevs_nread;
2682 
2683 		cv_signal(&alldevs_cv);
2684 	}
2685 	mutex_exit(&alldevs_mtx);
2686 }
2687