1 /* $NetBSD: subr_autoconf.c,v 1.165 2008/11/18 21:20:32 macallan Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.165 2008/11/18 21:20:32 macallan Exp $"); 81 82 #include "opt_ddb.h" 83 #include "drvctl.h" 84 85 #include <sys/param.h> 86 #include <sys/device.h> 87 #include <sys/disklabel.h> 88 #include <sys/conf.h> 89 #include <sys/kauth.h> 90 #include <sys/malloc.h> 91 #include <sys/kmem.h> 92 #include <sys/systm.h> 93 #include <sys/kernel.h> 94 #include <sys/errno.h> 95 #include <sys/proc.h> 96 #include <sys/reboot.h> 97 #include <sys/kthread.h> 98 #include <sys/buf.h> 99 #include <sys/dirent.h> 100 #include <sys/vnode.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/mutex.h> 108 #include <sys/condvar.h> 109 #include <sys/devmon.h> 110 #include <sys/cpu.h> 111 112 #include <sys/disk.h> 113 114 #include <machine/limits.h> 115 116 #include "opt_userconf.h" 117 #ifdef USERCONF 118 #include <sys/userconf.h> 119 #endif 120 121 #ifdef __i386__ 122 #include "opt_splash.h" 123 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 124 #include <dev/splash/splash.h> 125 extern struct splash_progress *splash_progress_state; 126 #endif 127 #endif 128 129 /* 130 * Autoconfiguration subroutines. 131 */ 132 133 typedef struct pmf_private { 134 int pp_nwait; 135 int pp_nlock; 136 lwp_t *pp_holder; 137 kmutex_t pp_mtx; 138 kcondvar_t pp_cv; 139 } pmf_private_t; 140 141 /* 142 * ioconf.c exports exactly two names: cfdata and cfroots. All system 143 * devices and drivers are found via these tables. 144 */ 145 extern struct cfdata cfdata[]; 146 extern const short cfroots[]; 147 148 /* 149 * List of all cfdriver structures. We use this to detect duplicates 150 * when other cfdrivers are loaded. 151 */ 152 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 153 extern struct cfdriver * const cfdriver_list_initial[]; 154 155 /* 156 * Initial list of cfattach's. 157 */ 158 extern const struct cfattachinit cfattachinit[]; 159 160 /* 161 * List of cfdata tables. We always have one such list -- the one 162 * built statically when the kernel was configured. 163 */ 164 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 165 static struct cftable initcftable; 166 167 #define ROOT ((device_t)NULL) 168 169 struct matchinfo { 170 cfsubmatch_t fn; 171 struct device *parent; 172 const int *locs; 173 void *aux; 174 struct cfdata *match; 175 int pri; 176 }; 177 178 static char *number(char *, int); 179 static void mapply(struct matchinfo *, cfdata_t); 180 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 181 static void config_devdealloc(device_t); 182 static void config_makeroom(int, struct cfdriver *); 183 static void config_devlink(device_t); 184 static void config_devunlink(device_t); 185 186 static void pmflock_debug(device_t, const char *, int); 187 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO); 188 189 static device_t deviter_next1(deviter_t *); 190 static void deviter_reinit(deviter_t *); 191 192 struct deferred_config { 193 TAILQ_ENTRY(deferred_config) dc_queue; 194 device_t dc_dev; 195 void (*dc_func)(device_t); 196 }; 197 198 TAILQ_HEAD(deferred_config_head, deferred_config); 199 200 struct deferred_config_head deferred_config_queue = 201 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 202 struct deferred_config_head interrupt_config_queue = 203 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 204 int interrupt_config_threads = 8; 205 206 static void config_process_deferred(struct deferred_config_head *, device_t); 207 208 /* Hooks to finalize configuration once all real devices have been found. */ 209 struct finalize_hook { 210 TAILQ_ENTRY(finalize_hook) f_list; 211 int (*f_func)(device_t); 212 device_t f_dev; 213 }; 214 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 215 TAILQ_HEAD_INITIALIZER(config_finalize_list); 216 static int config_finalize_done; 217 218 /* list of all devices */ 219 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 220 kcondvar_t alldevs_cv; 221 kmutex_t alldevs_mtx; 222 static int alldevs_nread = 0; 223 static int alldevs_nwrite = 0; 224 static lwp_t *alldevs_writer = NULL; 225 226 static int config_pending; /* semaphore for mountroot */ 227 static kmutex_t config_misc_lock; 228 static kcondvar_t config_misc_cv; 229 230 #define STREQ(s1, s2) \ 231 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 232 233 static int config_initialized; /* config_init() has been called. */ 234 235 static int config_do_twiddle; 236 237 struct vnode * 238 opendisk(struct device *dv) 239 { 240 int bmajor, bminor; 241 struct vnode *tmpvn; 242 int error; 243 dev_t dev; 244 245 /* 246 * Lookup major number for disk block device. 247 */ 248 bmajor = devsw_name2blk(device_xname(dv), NULL, 0); 249 if (bmajor == -1) 250 return NULL; 251 252 bminor = minor(device_unit(dv)); 253 /* 254 * Fake a temporary vnode for the disk, open it, and read 255 * and hash the sectors. 256 */ 257 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) : 258 MAKEDISKDEV(bmajor, bminor, RAW_PART); 259 if (bdevvp(dev, &tmpvn)) 260 panic("%s: can't alloc vnode for %s", __func__, 261 device_xname(dv)); 262 error = VOP_OPEN(tmpvn, FREAD, NOCRED); 263 if (error) { 264 #ifndef DEBUG 265 /* 266 * Ignore errors caused by missing device, partition, 267 * or medium. 268 */ 269 if (error != ENXIO && error != ENODEV) 270 #endif 271 printf("%s: can't open dev %s (%d)\n", 272 __func__, device_xname(dv), error); 273 vput(tmpvn); 274 return NULL; 275 } 276 277 return tmpvn; 278 } 279 280 int 281 config_handle_wedges(struct device *dv, int par) 282 { 283 struct dkwedge_list wl; 284 struct dkwedge_info *wi; 285 struct vnode *vn; 286 char diskname[16]; 287 int i, error; 288 289 if ((vn = opendisk(dv)) == NULL) 290 return -1; 291 292 wl.dkwl_bufsize = sizeof(*wi) * 16; 293 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK); 294 295 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED); 296 VOP_CLOSE(vn, FREAD, NOCRED); 297 vput(vn); 298 if (error) { 299 #ifdef DEBUG_WEDGE 300 printf("%s: List wedges returned %d\n", 301 device_xname(dv), error); 302 #endif 303 free(wi, M_TEMP); 304 return -1; 305 } 306 307 #ifdef DEBUG_WEDGE 308 printf("%s: Returned %u(%u) wedges\n", device_xname(dv), 309 wl.dkwl_nwedges, wl.dkwl_ncopied); 310 #endif 311 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv), 312 par + 'a'); 313 314 for (i = 0; i < wl.dkwl_ncopied; i++) { 315 #ifdef DEBUG_WEDGE 316 printf("%s: Looking for %s in %s\n", 317 device_xname(dv), diskname, wi[i].dkw_wname); 318 #endif 319 if (strcmp(wi[i].dkw_wname, diskname) == 0) 320 break; 321 } 322 323 if (i == wl.dkwl_ncopied) { 324 #ifdef DEBUG_WEDGE 325 printf("%s: Cannot find wedge with parent %s\n", 326 device_xname(dv), diskname); 327 #endif 328 free(wi, M_TEMP); 329 return -1; 330 } 331 332 #ifdef DEBUG_WEDGE 333 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n", 334 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname, 335 (unsigned long long)wi[i].dkw_offset, 336 (unsigned long long)wi[i].dkw_size); 337 #endif 338 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size); 339 free(wi, M_TEMP); 340 return 0; 341 } 342 343 /* 344 * Initialize the autoconfiguration data structures. Normally this 345 * is done by configure(), but some platforms need to do this very 346 * early (to e.g. initialize the console). 347 */ 348 void 349 config_init(void) 350 { 351 const struct cfattachinit *cfai; 352 int i, j; 353 354 if (config_initialized) 355 return; 356 357 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE); 358 cv_init(&alldevs_cv, "alldevs"); 359 360 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 361 cv_init(&config_misc_cv, "cfgmisc"); 362 363 /* allcfdrivers is statically initialized. */ 364 for (i = 0; cfdriver_list_initial[i] != NULL; i++) { 365 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) 366 panic("configure: duplicate `%s' drivers", 367 cfdriver_list_initial[i]->cd_name); 368 } 369 370 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { 371 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 372 if (config_cfattach_attach(cfai->cfai_name, 373 cfai->cfai_list[j]) != 0) 374 panic("configure: duplicate `%s' attachment " 375 "of `%s' driver", 376 cfai->cfai_list[j]->ca_name, 377 cfai->cfai_name); 378 } 379 } 380 381 initcftable.ct_cfdata = cfdata; 382 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 383 384 config_initialized = 1; 385 } 386 387 void 388 config_deferred(device_t dev) 389 { 390 config_process_deferred(&deferred_config_queue, dev); 391 config_process_deferred(&interrupt_config_queue, dev); 392 } 393 394 static void 395 config_interrupts_thread(void *cookie) 396 { 397 struct deferred_config *dc; 398 399 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 400 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 401 (*dc->dc_func)(dc->dc_dev); 402 kmem_free(dc, sizeof(*dc)); 403 config_pending_decr(); 404 } 405 kthread_exit(0); 406 } 407 408 /* 409 * Configure the system's hardware. 410 */ 411 void 412 configure(void) 413 { 414 extern void ssp_init(void); 415 CPU_INFO_ITERATOR cii; 416 struct cpu_info *ci; 417 int i, s; 418 419 /* Initialize data structures. */ 420 config_init(); 421 pmf_init(); 422 #if NDRVCTL > 0 423 drvctl_init(); 424 #endif 425 426 #ifdef USERCONF 427 if (boothowto & RB_USERCONF) 428 user_config(); 429 #endif 430 431 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 432 config_do_twiddle = 1; 433 printf_nolog("Detecting hardware..."); 434 } 435 436 /* 437 * Do the machine-dependent portion of autoconfiguration. This 438 * sets the configuration machinery here in motion by "finding" 439 * the root bus. When this function returns, we expect interrupts 440 * to be enabled. 441 */ 442 cpu_configure(); 443 444 /* Initialize SSP. */ 445 ssp_init(); 446 447 /* 448 * Now that we've found all the hardware, start the real time 449 * and statistics clocks. 450 */ 451 initclocks(); 452 453 cold = 0; /* clocks are running, we're warm now! */ 454 s = splsched(); 455 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING; 456 splx(s); 457 458 /* Boot the secondary processors. */ 459 for (CPU_INFO_FOREACH(cii, ci)) { 460 uvm_cpu_attach(ci); 461 } 462 mp_online = true; 463 #if defined(MULTIPROCESSOR) 464 cpu_boot_secondary_processors(); 465 #endif 466 467 /* Setup the runqueues and scheduler. */ 468 runq_init(); 469 sched_init(); 470 471 /* 472 * Create threads to call back and finish configuration for 473 * devices that want interrupts enabled. 474 */ 475 for (i = 0; i < interrupt_config_threads; i++) { 476 (void)kthread_create(PRI_NONE, 0, NULL, 477 config_interrupts_thread, NULL, NULL, "config"); 478 } 479 480 /* Get the threads going and into any sleeps before continuing. */ 481 yield(); 482 483 /* Lock the kernel on behalf of lwp0. */ 484 KERNEL_LOCK(1, NULL); 485 } 486 487 /* 488 * Announce device attach/detach to userland listeners. 489 */ 490 static void 491 devmon_report_device(device_t dev, bool isattach) 492 { 493 #if NDRVCTL > 0 494 prop_dictionary_t ev; 495 const char *parent; 496 const char *what; 497 device_t pdev = device_parent(dev); 498 499 ev = prop_dictionary_create(); 500 if (ev == NULL) 501 return; 502 503 what = (isattach ? "device-attach" : "device-detach"); 504 parent = (pdev == NULL ? "root" : device_xname(pdev)); 505 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 506 !prop_dictionary_set_cstring(ev, "parent", parent)) { 507 prop_object_release(ev); 508 return; 509 } 510 511 devmon_insert(what, ev); 512 #endif 513 } 514 515 /* 516 * Add a cfdriver to the system. 517 */ 518 int 519 config_cfdriver_attach(struct cfdriver *cd) 520 { 521 struct cfdriver *lcd; 522 523 /* Make sure this driver isn't already in the system. */ 524 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 525 if (STREQ(lcd->cd_name, cd->cd_name)) 526 return (EEXIST); 527 } 528 529 LIST_INIT(&cd->cd_attach); 530 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 531 532 return (0); 533 } 534 535 /* 536 * Remove a cfdriver from the system. 537 */ 538 int 539 config_cfdriver_detach(struct cfdriver *cd) 540 { 541 int i; 542 543 /* Make sure there are no active instances. */ 544 for (i = 0; i < cd->cd_ndevs; i++) { 545 if (cd->cd_devs[i] != NULL) 546 return (EBUSY); 547 } 548 549 /* ...and no attachments loaded. */ 550 if (LIST_EMPTY(&cd->cd_attach) == 0) 551 return (EBUSY); 552 553 LIST_REMOVE(cd, cd_list); 554 555 KASSERT(cd->cd_devs == NULL); 556 557 return (0); 558 } 559 560 /* 561 * Look up a cfdriver by name. 562 */ 563 struct cfdriver * 564 config_cfdriver_lookup(const char *name) 565 { 566 struct cfdriver *cd; 567 568 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 569 if (STREQ(cd->cd_name, name)) 570 return (cd); 571 } 572 573 return (NULL); 574 } 575 576 /* 577 * Add a cfattach to the specified driver. 578 */ 579 int 580 config_cfattach_attach(const char *driver, struct cfattach *ca) 581 { 582 struct cfattach *lca; 583 struct cfdriver *cd; 584 585 cd = config_cfdriver_lookup(driver); 586 if (cd == NULL) 587 return (ESRCH); 588 589 /* Make sure this attachment isn't already on this driver. */ 590 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 591 if (STREQ(lca->ca_name, ca->ca_name)) 592 return (EEXIST); 593 } 594 595 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 596 597 return (0); 598 } 599 600 /* 601 * Remove a cfattach from the specified driver. 602 */ 603 int 604 config_cfattach_detach(const char *driver, struct cfattach *ca) 605 { 606 struct cfdriver *cd; 607 device_t dev; 608 int i; 609 610 cd = config_cfdriver_lookup(driver); 611 if (cd == NULL) 612 return (ESRCH); 613 614 /* Make sure there are no active instances. */ 615 for (i = 0; i < cd->cd_ndevs; i++) { 616 if ((dev = cd->cd_devs[i]) == NULL) 617 continue; 618 if (dev->dv_cfattach == ca) 619 return (EBUSY); 620 } 621 622 LIST_REMOVE(ca, ca_list); 623 624 return (0); 625 } 626 627 /* 628 * Look up a cfattach by name. 629 */ 630 static struct cfattach * 631 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 632 { 633 struct cfattach *ca; 634 635 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 636 if (STREQ(ca->ca_name, atname)) 637 return (ca); 638 } 639 640 return (NULL); 641 } 642 643 /* 644 * Look up a cfattach by driver/attachment name. 645 */ 646 struct cfattach * 647 config_cfattach_lookup(const char *name, const char *atname) 648 { 649 struct cfdriver *cd; 650 651 cd = config_cfdriver_lookup(name); 652 if (cd == NULL) 653 return (NULL); 654 655 return (config_cfattach_lookup_cd(cd, atname)); 656 } 657 658 /* 659 * Apply the matching function and choose the best. This is used 660 * a few times and we want to keep the code small. 661 */ 662 static void 663 mapply(struct matchinfo *m, cfdata_t cf) 664 { 665 int pri; 666 667 if (m->fn != NULL) { 668 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 669 } else { 670 pri = config_match(m->parent, cf, m->aux); 671 } 672 if (pri > m->pri) { 673 m->match = cf; 674 m->pri = pri; 675 } 676 } 677 678 int 679 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 680 { 681 const struct cfiattrdata *ci; 682 const struct cflocdesc *cl; 683 int nlocs, i; 684 685 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver); 686 KASSERT(ci); 687 nlocs = ci->ci_loclen; 688 KASSERT(!nlocs || locs); 689 for (i = 0; i < nlocs; i++) { 690 cl = &ci->ci_locdesc[i]; 691 /* !cld_defaultstr means no default value */ 692 if ((!(cl->cld_defaultstr) 693 || (cf->cf_loc[i] != cl->cld_default)) 694 && cf->cf_loc[i] != locs[i]) 695 return (0); 696 } 697 698 return (config_match(parent, cf, aux)); 699 } 700 701 /* 702 * Helper function: check whether the driver supports the interface attribute 703 * and return its descriptor structure. 704 */ 705 static const struct cfiattrdata * 706 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 707 { 708 const struct cfiattrdata * const *cpp; 709 710 if (cd->cd_attrs == NULL) 711 return (0); 712 713 for (cpp = cd->cd_attrs; *cpp; cpp++) { 714 if (STREQ((*cpp)->ci_name, ia)) { 715 /* Match. */ 716 return (*cpp); 717 } 718 } 719 return (0); 720 } 721 722 /* 723 * Lookup an interface attribute description by name. 724 * If the driver is given, consider only its supported attributes. 725 */ 726 const struct cfiattrdata * 727 cfiattr_lookup(const char *name, const struct cfdriver *cd) 728 { 729 const struct cfdriver *d; 730 const struct cfiattrdata *ia; 731 732 if (cd) 733 return (cfdriver_get_iattr(cd, name)); 734 735 LIST_FOREACH(d, &allcfdrivers, cd_list) { 736 ia = cfdriver_get_iattr(d, name); 737 if (ia) 738 return (ia); 739 } 740 return (0); 741 } 742 743 /* 744 * Determine if `parent' is a potential parent for a device spec based 745 * on `cfp'. 746 */ 747 static int 748 cfparent_match(const device_t parent, const struct cfparent *cfp) 749 { 750 struct cfdriver *pcd; 751 752 /* We don't match root nodes here. */ 753 if (cfp == NULL) 754 return (0); 755 756 pcd = parent->dv_cfdriver; 757 KASSERT(pcd != NULL); 758 759 /* 760 * First, ensure this parent has the correct interface 761 * attribute. 762 */ 763 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 764 return (0); 765 766 /* 767 * If no specific parent device instance was specified (i.e. 768 * we're attaching to the attribute only), we're done! 769 */ 770 if (cfp->cfp_parent == NULL) 771 return (1); 772 773 /* 774 * Check the parent device's name. 775 */ 776 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 777 return (0); /* not the same parent */ 778 779 /* 780 * Make sure the unit number matches. 781 */ 782 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 783 cfp->cfp_unit == parent->dv_unit) 784 return (1); 785 786 /* Unit numbers don't match. */ 787 return (0); 788 } 789 790 /* 791 * Helper for config_cfdata_attach(): check all devices whether it could be 792 * parent any attachment in the config data table passed, and rescan. 793 */ 794 static void 795 rescan_with_cfdata(const struct cfdata *cf) 796 { 797 device_t d; 798 const struct cfdata *cf1; 799 deviter_t di; 800 801 802 /* 803 * "alldevs" is likely longer than a modules's cfdata, so make it 804 * the outer loop. 805 */ 806 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 807 808 if (!(d->dv_cfattach->ca_rescan)) 809 continue; 810 811 for (cf1 = cf; cf1->cf_name; cf1++) { 812 813 if (!cfparent_match(d, cf1->cf_pspec)) 814 continue; 815 816 (*d->dv_cfattach->ca_rescan)(d, 817 cf1->cf_pspec->cfp_iattr, cf1->cf_loc); 818 } 819 } 820 deviter_release(&di); 821 } 822 823 /* 824 * Attach a supplemental config data table and rescan potential 825 * parent devices if required. 826 */ 827 int 828 config_cfdata_attach(cfdata_t cf, int scannow) 829 { 830 struct cftable *ct; 831 832 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 833 ct->ct_cfdata = cf; 834 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 835 836 if (scannow) 837 rescan_with_cfdata(cf); 838 839 return (0); 840 } 841 842 /* 843 * Helper for config_cfdata_detach: check whether a device is 844 * found through any attachment in the config data table. 845 */ 846 static int 847 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 848 { 849 const struct cfdata *cf1; 850 851 for (cf1 = cf; cf1->cf_name; cf1++) 852 if (d->dv_cfdata == cf1) 853 return (1); 854 855 return (0); 856 } 857 858 /* 859 * Detach a supplemental config data table. Detach all devices found 860 * through that table (and thus keeping references to it) before. 861 */ 862 int 863 config_cfdata_detach(cfdata_t cf) 864 { 865 device_t d; 866 int error = 0; 867 struct cftable *ct; 868 deviter_t di; 869 870 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 871 d = deviter_next(&di)) { 872 if (!dev_in_cfdata(d, cf)) 873 continue; 874 if ((error = config_detach(d, 0)) != 0) 875 break; 876 } 877 deviter_release(&di); 878 if (error) { 879 aprint_error_dev(d, "unable to detach instance\n"); 880 return error; 881 } 882 883 TAILQ_FOREACH(ct, &allcftables, ct_list) { 884 if (ct->ct_cfdata == cf) { 885 TAILQ_REMOVE(&allcftables, ct, ct_list); 886 kmem_free(ct, sizeof(*ct)); 887 return (0); 888 } 889 } 890 891 /* not found -- shouldn't happen */ 892 return (EINVAL); 893 } 894 895 /* 896 * Invoke the "match" routine for a cfdata entry on behalf of 897 * an external caller, usually a "submatch" routine. 898 */ 899 int 900 config_match(device_t parent, cfdata_t cf, void *aux) 901 { 902 struct cfattach *ca; 903 904 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 905 if (ca == NULL) { 906 /* No attachment for this entry, oh well. */ 907 return (0); 908 } 909 910 return ((*ca->ca_match)(parent, cf, aux)); 911 } 912 913 /* 914 * Iterate over all potential children of some device, calling the given 915 * function (default being the child's match function) for each one. 916 * Nonzero returns are matches; the highest value returned is considered 917 * the best match. Return the `found child' if we got a match, or NULL 918 * otherwise. The `aux' pointer is simply passed on through. 919 * 920 * Note that this function is designed so that it can be used to apply 921 * an arbitrary function to all potential children (its return value 922 * can be ignored). 923 */ 924 cfdata_t 925 config_search_loc(cfsubmatch_t fn, device_t parent, 926 const char *ifattr, const int *locs, void *aux) 927 { 928 struct cftable *ct; 929 cfdata_t cf; 930 struct matchinfo m; 931 932 KASSERT(config_initialized); 933 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 934 935 m.fn = fn; 936 m.parent = parent; 937 m.locs = locs; 938 m.aux = aux; 939 m.match = NULL; 940 m.pri = 0; 941 942 TAILQ_FOREACH(ct, &allcftables, ct_list) { 943 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 944 945 /* We don't match root nodes here. */ 946 if (!cf->cf_pspec) 947 continue; 948 949 /* 950 * Skip cf if no longer eligible, otherwise scan 951 * through parents for one matching `parent', and 952 * try match function. 953 */ 954 if (cf->cf_fstate == FSTATE_FOUND) 955 continue; 956 if (cf->cf_fstate == FSTATE_DNOTFOUND || 957 cf->cf_fstate == FSTATE_DSTAR) 958 continue; 959 960 /* 961 * If an interface attribute was specified, 962 * consider only children which attach to 963 * that attribute. 964 */ 965 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr)) 966 continue; 967 968 if (cfparent_match(parent, cf->cf_pspec)) 969 mapply(&m, cf); 970 } 971 } 972 return (m.match); 973 } 974 975 cfdata_t 976 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 977 void *aux) 978 { 979 980 return (config_search_loc(fn, parent, ifattr, NULL, aux)); 981 } 982 983 /* 984 * Find the given root device. 985 * This is much like config_search, but there is no parent. 986 * Don't bother with multiple cfdata tables; the root node 987 * must always be in the initial table. 988 */ 989 cfdata_t 990 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 991 { 992 cfdata_t cf; 993 const short *p; 994 struct matchinfo m; 995 996 m.fn = fn; 997 m.parent = ROOT; 998 m.aux = aux; 999 m.match = NULL; 1000 m.pri = 0; 1001 m.locs = 0; 1002 /* 1003 * Look at root entries for matching name. We do not bother 1004 * with found-state here since only one root should ever be 1005 * searched (and it must be done first). 1006 */ 1007 for (p = cfroots; *p >= 0; p++) { 1008 cf = &cfdata[*p]; 1009 if (strcmp(cf->cf_name, rootname) == 0) 1010 mapply(&m, cf); 1011 } 1012 return (m.match); 1013 } 1014 1015 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1016 1017 /* 1018 * The given `aux' argument describes a device that has been found 1019 * on the given parent, but not necessarily configured. Locate the 1020 * configuration data for that device (using the submatch function 1021 * provided, or using candidates' cd_match configuration driver 1022 * functions) and attach it, and return true. If the device was 1023 * not configured, call the given `print' function and return 0. 1024 */ 1025 device_t 1026 config_found_sm_loc(device_t parent, 1027 const char *ifattr, const int *locs, void *aux, 1028 cfprint_t print, cfsubmatch_t submatch) 1029 { 1030 cfdata_t cf; 1031 1032 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1033 if (splash_progress_state) 1034 splash_progress_update(splash_progress_state); 1035 #endif 1036 1037 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1038 return(config_attach_loc(parent, cf, locs, aux, print)); 1039 if (print) { 1040 if (config_do_twiddle) 1041 twiddle(); 1042 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1043 } 1044 1045 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1046 if (splash_progress_state) 1047 splash_progress_update(splash_progress_state); 1048 #endif 1049 1050 return (NULL); 1051 } 1052 1053 device_t 1054 config_found_ia(device_t parent, const char *ifattr, void *aux, 1055 cfprint_t print) 1056 { 1057 1058 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL)); 1059 } 1060 1061 device_t 1062 config_found(device_t parent, void *aux, cfprint_t print) 1063 { 1064 1065 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL)); 1066 } 1067 1068 /* 1069 * As above, but for root devices. 1070 */ 1071 device_t 1072 config_rootfound(const char *rootname, void *aux) 1073 { 1074 cfdata_t cf; 1075 1076 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 1077 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL)); 1078 aprint_error("root device %s not configured\n", rootname); 1079 return (NULL); 1080 } 1081 1082 /* just like sprintf(buf, "%d") except that it works from the end */ 1083 static char * 1084 number(char *ep, int n) 1085 { 1086 1087 *--ep = 0; 1088 while (n >= 10) { 1089 *--ep = (n % 10) + '0'; 1090 n /= 10; 1091 } 1092 *--ep = n + '0'; 1093 return (ep); 1094 } 1095 1096 /* 1097 * Expand the size of the cd_devs array if necessary. 1098 */ 1099 static void 1100 config_makeroom(int n, struct cfdriver *cd) 1101 { 1102 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP); 1103 int old, new; 1104 device_t *nsp; 1105 1106 if (n < cd->cd_ndevs) 1107 return; 1108 1109 /* 1110 * Need to expand the array. 1111 */ 1112 old = cd->cd_ndevs; 1113 if (old == 0) 1114 new = 4; 1115 else 1116 new = old * 2; 1117 while (new <= n) 1118 new *= 2; 1119 cd->cd_ndevs = new; 1120 nsp = kmem_alloc(sizeof(device_t [new]), kmflags); 1121 if (nsp == NULL) 1122 panic("config_attach: %sing dev array", 1123 old != 0 ? "expand" : "creat"); 1124 memset(nsp + old, 0, sizeof(device_t [new - old])); 1125 if (old != 0) { 1126 memcpy(nsp, cd->cd_devs, sizeof(device_t [old])); 1127 kmem_free(cd->cd_devs, sizeof(device_t [old])); 1128 } 1129 cd->cd_devs = nsp; 1130 } 1131 1132 static void 1133 config_devlink(device_t dev) 1134 { 1135 struct cfdriver *cd = dev->dv_cfdriver; 1136 1137 /* put this device in the devices array */ 1138 config_makeroom(dev->dv_unit, cd); 1139 if (cd->cd_devs[dev->dv_unit]) 1140 panic("config_attach: duplicate %s", device_xname(dev)); 1141 cd->cd_devs[dev->dv_unit] = dev; 1142 1143 /* It is safe to add a device to the tail of the list while 1144 * readers are in the list, but not while a writer is in 1145 * the list. Wait for any writer to complete. 1146 */ 1147 mutex_enter(&alldevs_mtx); 1148 while (alldevs_nwrite != 0 && alldevs_writer != curlwp) 1149 cv_wait(&alldevs_cv, &alldevs_mtx); 1150 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */ 1151 cv_signal(&alldevs_cv); 1152 mutex_exit(&alldevs_mtx); 1153 } 1154 1155 static void 1156 config_devunlink(device_t dev) 1157 { 1158 struct cfdriver *cd = dev->dv_cfdriver; 1159 int i; 1160 1161 /* Unlink from device list. */ 1162 TAILQ_REMOVE(&alldevs, dev, dv_list); 1163 1164 /* Remove from cfdriver's array. */ 1165 cd->cd_devs[dev->dv_unit] = NULL; 1166 1167 /* 1168 * If the device now has no units in use, deallocate its softc array. 1169 */ 1170 for (i = 0; i < cd->cd_ndevs; i++) { 1171 if (cd->cd_devs[i] != NULL) 1172 return; 1173 } 1174 /* nothing found; deallocate */ 1175 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs])); 1176 cd->cd_devs = NULL; 1177 cd->cd_ndevs = 0; 1178 } 1179 1180 static device_t 1181 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1182 { 1183 struct cfdriver *cd; 1184 struct cfattach *ca; 1185 size_t lname, lunit; 1186 const char *xunit; 1187 int myunit; 1188 char num[10]; 1189 device_t dev; 1190 void *dev_private; 1191 const struct cfiattrdata *ia; 1192 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP); 1193 1194 cd = config_cfdriver_lookup(cf->cf_name); 1195 if (cd == NULL) 1196 return (NULL); 1197 1198 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1199 if (ca == NULL) 1200 return (NULL); 1201 1202 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1203 ca->ca_devsize < sizeof(struct device)) 1204 panic("config_devalloc: %s", cf->cf_atname); 1205 1206 #ifndef __BROKEN_CONFIG_UNIT_USAGE 1207 if (cf->cf_fstate == FSTATE_STAR) { 1208 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++) 1209 if (cd->cd_devs[myunit] == NULL) 1210 break; 1211 /* 1212 * myunit is now the unit of the first NULL device pointer, 1213 * or max(cd->cd_ndevs,cf->cf_unit). 1214 */ 1215 } else { 1216 myunit = cf->cf_unit; 1217 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL) 1218 return (NULL); 1219 } 1220 #else 1221 myunit = cf->cf_unit; 1222 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */ 1223 1224 /* compute length of name and decimal expansion of unit number */ 1225 lname = strlen(cd->cd_name); 1226 xunit = number(&num[sizeof(num)], myunit); 1227 lunit = &num[sizeof(num)] - xunit; 1228 if (lname + lunit > sizeof(dev->dv_xname)) 1229 panic("config_devalloc: device name too long"); 1230 1231 /* get memory for all device vars */ 1232 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1233 if (ca->ca_devsize > 0) { 1234 dev_private = kmem_zalloc(ca->ca_devsize, kmflags); 1235 if (dev_private == NULL) 1236 panic("config_devalloc: memory allocation for device softc failed"); 1237 } else { 1238 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1239 dev_private = NULL; 1240 } 1241 1242 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1243 dev = kmem_zalloc(sizeof(*dev), kmflags); 1244 } else { 1245 dev = dev_private; 1246 } 1247 if (dev == NULL) 1248 panic("config_devalloc: memory allocation for device_t failed"); 1249 1250 dev->dv_class = cd->cd_class; 1251 dev->dv_cfdata = cf; 1252 dev->dv_cfdriver = cd; 1253 dev->dv_cfattach = ca; 1254 dev->dv_unit = myunit; 1255 dev->dv_activity_count = 0; 1256 dev->dv_activity_handlers = NULL; 1257 dev->dv_private = dev_private; 1258 memcpy(dev->dv_xname, cd->cd_name, lname); 1259 memcpy(dev->dv_xname + lname, xunit, lunit); 1260 dev->dv_parent = parent; 1261 if (parent != NULL) 1262 dev->dv_depth = parent->dv_depth + 1; 1263 else 1264 dev->dv_depth = 0; 1265 dev->dv_flags = DVF_ACTIVE; /* always initially active */ 1266 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */ 1267 if (locs) { 1268 KASSERT(parent); /* no locators at root */ 1269 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr, 1270 parent->dv_cfdriver); 1271 dev->dv_locators = 1272 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), kmflags); 1273 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1274 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1275 } 1276 dev->dv_properties = prop_dictionary_create(); 1277 KASSERT(dev->dv_properties != NULL); 1278 1279 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1280 "device-driver", dev->dv_cfdriver->cd_name); 1281 prop_dictionary_set_uint16(dev->dv_properties, 1282 "device-unit", dev->dv_unit); 1283 1284 return (dev); 1285 } 1286 1287 static void 1288 config_devdealloc(device_t dev) 1289 { 1290 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1291 1292 KASSERT(dev->dv_properties != NULL); 1293 prop_object_release(dev->dv_properties); 1294 1295 if (dev->dv_activity_handlers) 1296 panic("config_devdealloc with registered handlers"); 1297 1298 if (dev->dv_locators) { 1299 size_t amount = *--dev->dv_locators; 1300 kmem_free(dev->dv_locators, amount); 1301 } 1302 1303 if (dev->dv_cfattach->ca_devsize > 0) 1304 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1305 if (priv) 1306 kmem_free(dev, sizeof(*dev)); 1307 } 1308 1309 /* 1310 * Attach a found device. 1311 */ 1312 device_t 1313 config_attach_loc(device_t parent, cfdata_t cf, 1314 const int *locs, void *aux, cfprint_t print) 1315 { 1316 device_t dev; 1317 struct cftable *ct; 1318 const char *drvname; 1319 1320 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1321 if (splash_progress_state) 1322 splash_progress_update(splash_progress_state); 1323 #endif 1324 1325 dev = config_devalloc(parent, cf, locs); 1326 if (!dev) 1327 panic("config_attach: allocation of device softc failed"); 1328 1329 /* XXX redundant - see below? */ 1330 if (cf->cf_fstate != FSTATE_STAR) { 1331 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1332 cf->cf_fstate = FSTATE_FOUND; 1333 } 1334 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1335 else 1336 cf->cf_unit++; 1337 #endif 1338 1339 config_devlink(dev); 1340 1341 if (config_do_twiddle) 1342 twiddle(); 1343 else 1344 aprint_naive("Found "); 1345 /* 1346 * We want the next two printfs for normal, verbose, and quiet, 1347 * but not silent (in which case, we're twiddling, instead). 1348 */ 1349 if (parent == ROOT) { 1350 aprint_naive("%s (root)", device_xname(dev)); 1351 aprint_normal("%s (root)", device_xname(dev)); 1352 } else { 1353 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1354 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1355 if (print) 1356 (void) (*print)(aux, NULL); 1357 } 1358 1359 /* 1360 * Before attaching, clobber any unfound devices that are 1361 * otherwise identical. 1362 * XXX code above is redundant? 1363 */ 1364 drvname = dev->dv_cfdriver->cd_name; 1365 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1366 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1367 if (STREQ(cf->cf_name, drvname) && 1368 cf->cf_unit == dev->dv_unit) { 1369 if (cf->cf_fstate == FSTATE_NOTFOUND) 1370 cf->cf_fstate = FSTATE_FOUND; 1371 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1372 /* 1373 * Bump the unit number on all starred cfdata 1374 * entries for this device. 1375 */ 1376 if (cf->cf_fstate == FSTATE_STAR) 1377 cf->cf_unit++; 1378 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1379 } 1380 } 1381 } 1382 #ifdef __HAVE_DEVICE_REGISTER 1383 device_register(dev, aux); 1384 #endif 1385 1386 /* Let userland know */ 1387 devmon_report_device(dev, true); 1388 1389 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1390 if (splash_progress_state) 1391 splash_progress_update(splash_progress_state); 1392 #endif 1393 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1394 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1395 if (splash_progress_state) 1396 splash_progress_update(splash_progress_state); 1397 #endif 1398 1399 if (!device_pmf_is_registered(dev)) 1400 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1401 1402 config_process_deferred(&deferred_config_queue, dev); 1403 return (dev); 1404 } 1405 1406 device_t 1407 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1408 { 1409 1410 return (config_attach_loc(parent, cf, NULL, aux, print)); 1411 } 1412 1413 /* 1414 * As above, but for pseudo-devices. Pseudo-devices attached in this 1415 * way are silently inserted into the device tree, and their children 1416 * attached. 1417 * 1418 * Note that because pseudo-devices are attached silently, any information 1419 * the attach routine wishes to print should be prefixed with the device 1420 * name by the attach routine. 1421 */ 1422 device_t 1423 config_attach_pseudo(cfdata_t cf) 1424 { 1425 device_t dev; 1426 1427 dev = config_devalloc(ROOT, cf, NULL); 1428 if (!dev) 1429 return (NULL); 1430 1431 /* XXX mark busy in cfdata */ 1432 1433 config_devlink(dev); 1434 1435 #if 0 /* XXXJRT not yet */ 1436 #ifdef __HAVE_DEVICE_REGISTER 1437 device_register(dev, NULL); /* like a root node */ 1438 #endif 1439 #endif 1440 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1441 config_process_deferred(&deferred_config_queue, dev); 1442 return (dev); 1443 } 1444 1445 /* 1446 * Detach a device. Optionally forced (e.g. because of hardware 1447 * removal) and quiet. Returns zero if successful, non-zero 1448 * (an error code) otherwise. 1449 * 1450 * Note that this code wants to be run from a process context, so 1451 * that the detach can sleep to allow processes which have a device 1452 * open to run and unwind their stacks. 1453 */ 1454 int 1455 config_detach(device_t dev, int flags) 1456 { 1457 struct cftable *ct; 1458 cfdata_t cf; 1459 const struct cfattach *ca; 1460 struct cfdriver *cd; 1461 #ifdef DIAGNOSTIC 1462 device_t d; 1463 #endif 1464 int rv = 0; 1465 1466 #ifdef DIAGNOSTIC 1467 cf = dev->dv_cfdata; 1468 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1469 cf->cf_fstate != FSTATE_STAR) 1470 panic("config_detach: %s: bad device fstate %d", 1471 device_xname(dev), cf ? cf->cf_fstate : -1); 1472 #endif 1473 cd = dev->dv_cfdriver; 1474 KASSERT(cd != NULL); 1475 1476 ca = dev->dv_cfattach; 1477 KASSERT(ca != NULL); 1478 1479 KASSERT(curlwp != NULL); 1480 mutex_enter(&alldevs_mtx); 1481 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 1482 ; 1483 else while (alldevs_nread != 0 || 1484 (alldevs_nwrite != 0 && alldevs_writer != curlwp)) 1485 cv_wait(&alldevs_cv, &alldevs_mtx); 1486 if (alldevs_nwrite++ == 0) 1487 alldevs_writer = curlwp; 1488 mutex_exit(&alldevs_mtx); 1489 1490 /* 1491 * Ensure the device is deactivated. If the device doesn't 1492 * have an activation entry point, we allow DVF_ACTIVE to 1493 * remain set. Otherwise, if DVF_ACTIVE is still set, the 1494 * device is busy, and the detach fails. 1495 */ 1496 if (ca->ca_activate != NULL) 1497 rv = config_deactivate(dev); 1498 1499 /* 1500 * Try to detach the device. If that's not possible, then 1501 * we either panic() (for the forced but failed case), or 1502 * return an error. 1503 */ 1504 if (rv == 0) { 1505 if (ca->ca_detach != NULL) 1506 rv = (*ca->ca_detach)(dev, flags); 1507 else 1508 rv = EOPNOTSUPP; 1509 } 1510 if (rv != 0) { 1511 if ((flags & DETACH_FORCE) == 0) 1512 goto out; 1513 else 1514 panic("config_detach: forced detach of %s failed (%d)", 1515 device_xname(dev), rv); 1516 } 1517 1518 /* 1519 * The device has now been successfully detached. 1520 */ 1521 1522 /* Let userland know */ 1523 devmon_report_device(dev, false); 1524 1525 #ifdef DIAGNOSTIC 1526 /* 1527 * Sanity: If you're successfully detached, you should have no 1528 * children. (Note that because children must be attached 1529 * after parents, we only need to search the latter part of 1530 * the list.) 1531 */ 1532 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1533 d = TAILQ_NEXT(d, dv_list)) { 1534 if (d->dv_parent == dev) { 1535 printf("config_detach: detached device %s" 1536 " has children %s\n", device_xname(dev), device_xname(d)); 1537 panic("config_detach"); 1538 } 1539 } 1540 #endif 1541 1542 /* notify the parent that the child is gone */ 1543 if (dev->dv_parent) { 1544 device_t p = dev->dv_parent; 1545 if (p->dv_cfattach->ca_childdetached) 1546 (*p->dv_cfattach->ca_childdetached)(p, dev); 1547 } 1548 1549 /* 1550 * Mark cfdata to show that the unit can be reused, if possible. 1551 */ 1552 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1553 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1554 if (STREQ(cf->cf_name, cd->cd_name)) { 1555 if (cf->cf_fstate == FSTATE_FOUND && 1556 cf->cf_unit == dev->dv_unit) 1557 cf->cf_fstate = FSTATE_NOTFOUND; 1558 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1559 /* 1560 * Note that we can only re-use a starred 1561 * unit number if the unit being detached 1562 * had the last assigned unit number. 1563 */ 1564 if (cf->cf_fstate == FSTATE_STAR && 1565 cf->cf_unit == dev->dv_unit + 1) 1566 cf->cf_unit--; 1567 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1568 } 1569 } 1570 } 1571 1572 config_devunlink(dev); 1573 1574 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1575 aprint_normal_dev(dev, "detached\n"); 1576 1577 config_devdealloc(dev); 1578 1579 out: 1580 mutex_enter(&alldevs_mtx); 1581 if (--alldevs_nwrite == 0) 1582 alldevs_writer = NULL; 1583 cv_signal(&alldevs_cv); 1584 mutex_exit(&alldevs_mtx); 1585 return rv; 1586 } 1587 1588 int 1589 config_detach_children(device_t parent, int flags) 1590 { 1591 device_t dv; 1592 deviter_t di; 1593 int error = 0; 1594 1595 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1596 dv = deviter_next(&di)) { 1597 if (device_parent(dv) != parent) 1598 continue; 1599 if ((error = config_detach(dv, flags)) != 0) 1600 break; 1601 } 1602 deviter_release(&di); 1603 return error; 1604 } 1605 1606 int 1607 config_activate(device_t dev) 1608 { 1609 const struct cfattach *ca = dev->dv_cfattach; 1610 int rv = 0, oflags = dev->dv_flags; 1611 1612 if (ca->ca_activate == NULL) 1613 return (EOPNOTSUPP); 1614 1615 if ((dev->dv_flags & DVF_ACTIVE) == 0) { 1616 dev->dv_flags |= DVF_ACTIVE; 1617 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE); 1618 if (rv) 1619 dev->dv_flags = oflags; 1620 } 1621 return (rv); 1622 } 1623 1624 int 1625 config_deactivate(device_t dev) 1626 { 1627 const struct cfattach *ca = dev->dv_cfattach; 1628 int rv = 0, oflags = dev->dv_flags; 1629 1630 if (ca->ca_activate == NULL) 1631 return (EOPNOTSUPP); 1632 1633 if (dev->dv_flags & DVF_ACTIVE) { 1634 dev->dv_flags &= ~DVF_ACTIVE; 1635 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE); 1636 if (rv) 1637 dev->dv_flags = oflags; 1638 } 1639 return (rv); 1640 } 1641 1642 /* 1643 * Defer the configuration of the specified device until all 1644 * of its parent's devices have been attached. 1645 */ 1646 void 1647 config_defer(device_t dev, void (*func)(device_t)) 1648 { 1649 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP); 1650 struct deferred_config *dc; 1651 1652 if (dev->dv_parent == NULL) 1653 panic("config_defer: can't defer config of a root device"); 1654 1655 #ifdef DIAGNOSTIC 1656 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL; 1657 dc = TAILQ_NEXT(dc, dc_queue)) { 1658 if (dc->dc_dev == dev) 1659 panic("config_defer: deferred twice"); 1660 } 1661 #endif 1662 1663 dc = kmem_alloc(sizeof(*dc), kmflags); 1664 if (dc == NULL) 1665 panic("config_defer: unable to allocate callback"); 1666 1667 dc->dc_dev = dev; 1668 dc->dc_func = func; 1669 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1670 config_pending_incr(); 1671 } 1672 1673 /* 1674 * Defer some autoconfiguration for a device until after interrupts 1675 * are enabled. 1676 */ 1677 void 1678 config_interrupts(device_t dev, void (*func)(device_t)) 1679 { 1680 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP); 1681 struct deferred_config *dc; 1682 1683 /* 1684 * If interrupts are enabled, callback now. 1685 */ 1686 if (cold == 0) { 1687 (*func)(dev); 1688 return; 1689 } 1690 1691 #ifdef DIAGNOSTIC 1692 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL; 1693 dc = TAILQ_NEXT(dc, dc_queue)) { 1694 if (dc->dc_dev == dev) 1695 panic("config_interrupts: deferred twice"); 1696 } 1697 #endif 1698 1699 dc = kmem_alloc(sizeof(*dc), kmflags); 1700 if (dc == NULL) 1701 panic("config_interrupts: unable to allocate callback"); 1702 1703 dc->dc_dev = dev; 1704 dc->dc_func = func; 1705 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1706 config_pending_incr(); 1707 } 1708 1709 /* 1710 * Process a deferred configuration queue. 1711 */ 1712 static void 1713 config_process_deferred(struct deferred_config_head *queue, 1714 device_t parent) 1715 { 1716 struct deferred_config *dc, *ndc; 1717 1718 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1719 ndc = TAILQ_NEXT(dc, dc_queue); 1720 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1721 TAILQ_REMOVE(queue, dc, dc_queue); 1722 (*dc->dc_func)(dc->dc_dev); 1723 kmem_free(dc, sizeof(*dc)); 1724 config_pending_decr(); 1725 } 1726 } 1727 } 1728 1729 /* 1730 * Manipulate the config_pending semaphore. 1731 */ 1732 void 1733 config_pending_incr(void) 1734 { 1735 1736 mutex_enter(&config_misc_lock); 1737 config_pending++; 1738 mutex_exit(&config_misc_lock); 1739 } 1740 1741 void 1742 config_pending_decr(void) 1743 { 1744 1745 #ifdef DIAGNOSTIC 1746 if (config_pending == 0) 1747 panic("config_pending_decr: config_pending == 0"); 1748 #endif 1749 mutex_enter(&config_misc_lock); 1750 config_pending--; 1751 if (config_pending == 0) 1752 cv_broadcast(&config_misc_cv); 1753 mutex_exit(&config_misc_lock); 1754 } 1755 1756 /* 1757 * Register a "finalization" routine. Finalization routines are 1758 * called iteratively once all real devices have been found during 1759 * autoconfiguration, for as long as any one finalizer has done 1760 * any work. 1761 */ 1762 int 1763 config_finalize_register(device_t dev, int (*fn)(device_t)) 1764 { 1765 struct finalize_hook *f; 1766 1767 /* 1768 * If finalization has already been done, invoke the 1769 * callback function now. 1770 */ 1771 if (config_finalize_done) { 1772 while ((*fn)(dev) != 0) 1773 /* loop */ ; 1774 } 1775 1776 /* Ensure this isn't already on the list. */ 1777 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1778 if (f->f_func == fn && f->f_dev == dev) 1779 return (EEXIST); 1780 } 1781 1782 f = kmem_alloc(sizeof(*f), KM_SLEEP); 1783 f->f_func = fn; 1784 f->f_dev = dev; 1785 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1786 1787 return (0); 1788 } 1789 1790 void 1791 config_finalize(void) 1792 { 1793 struct finalize_hook *f; 1794 struct pdevinit *pdev; 1795 extern struct pdevinit pdevinit[]; 1796 int errcnt, rv; 1797 1798 /* 1799 * Now that device driver threads have been created, wait for 1800 * them to finish any deferred autoconfiguration. 1801 */ 1802 mutex_enter(&config_misc_lock); 1803 while (config_pending != 0) 1804 cv_wait(&config_misc_cv, &config_misc_lock); 1805 mutex_exit(&config_misc_lock); 1806 1807 /* Attach pseudo-devices. */ 1808 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 1809 (*pdev->pdev_attach)(pdev->pdev_count); 1810 1811 /* Run the hooks until none of them does any work. */ 1812 do { 1813 rv = 0; 1814 TAILQ_FOREACH(f, &config_finalize_list, f_list) 1815 rv |= (*f->f_func)(f->f_dev); 1816 } while (rv != 0); 1817 1818 config_finalize_done = 1; 1819 1820 /* Now free all the hooks. */ 1821 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 1822 TAILQ_REMOVE(&config_finalize_list, f, f_list); 1823 kmem_free(f, sizeof(*f)); 1824 } 1825 1826 errcnt = aprint_get_error_count(); 1827 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 1828 (boothowto & AB_VERBOSE) == 0) { 1829 if (config_do_twiddle) { 1830 config_do_twiddle = 0; 1831 printf_nolog("done.\n"); 1832 } 1833 if (errcnt != 0) { 1834 printf("WARNING: %d error%s while detecting hardware; " 1835 "check system log.\n", errcnt, 1836 errcnt == 1 ? "" : "s"); 1837 } 1838 } 1839 } 1840 1841 /* 1842 * device_lookup: 1843 * 1844 * Look up a device instance for a given driver. 1845 */ 1846 device_t 1847 device_lookup(cfdriver_t cd, int unit) 1848 { 1849 1850 if (unit < 0 || unit >= cd->cd_ndevs) 1851 return (NULL); 1852 1853 return (cd->cd_devs[unit]); 1854 } 1855 1856 /* 1857 * device_lookup: 1858 * 1859 * Look up a device instance for a given driver. 1860 */ 1861 void * 1862 device_lookup_private(cfdriver_t cd, int unit) 1863 { 1864 device_t dv; 1865 1866 if (unit < 0 || unit >= cd->cd_ndevs) 1867 return NULL; 1868 1869 if ((dv = cd->cd_devs[unit]) == NULL) 1870 return NULL; 1871 1872 return dv->dv_private; 1873 } 1874 1875 /* 1876 * Accessor functions for the device_t type. 1877 */ 1878 devclass_t 1879 device_class(device_t dev) 1880 { 1881 1882 return (dev->dv_class); 1883 } 1884 1885 cfdata_t 1886 device_cfdata(device_t dev) 1887 { 1888 1889 return (dev->dv_cfdata); 1890 } 1891 1892 cfdriver_t 1893 device_cfdriver(device_t dev) 1894 { 1895 1896 return (dev->dv_cfdriver); 1897 } 1898 1899 cfattach_t 1900 device_cfattach(device_t dev) 1901 { 1902 1903 return (dev->dv_cfattach); 1904 } 1905 1906 int 1907 device_unit(device_t dev) 1908 { 1909 1910 return (dev->dv_unit); 1911 } 1912 1913 const char * 1914 device_xname(device_t dev) 1915 { 1916 1917 return (dev->dv_xname); 1918 } 1919 1920 device_t 1921 device_parent(device_t dev) 1922 { 1923 1924 return (dev->dv_parent); 1925 } 1926 1927 bool 1928 device_is_active(device_t dev) 1929 { 1930 int active_flags; 1931 1932 active_flags = DVF_ACTIVE; 1933 active_flags |= DVF_CLASS_SUSPENDED; 1934 active_flags |= DVF_DRIVER_SUSPENDED; 1935 active_flags |= DVF_BUS_SUSPENDED; 1936 1937 return ((dev->dv_flags & active_flags) == DVF_ACTIVE); 1938 } 1939 1940 bool 1941 device_is_enabled(device_t dev) 1942 { 1943 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE; 1944 } 1945 1946 bool 1947 device_has_power(device_t dev) 1948 { 1949 int active_flags; 1950 1951 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED; 1952 1953 return ((dev->dv_flags & active_flags) == DVF_ACTIVE); 1954 } 1955 1956 int 1957 device_locator(device_t dev, u_int locnum) 1958 { 1959 1960 KASSERT(dev->dv_locators != NULL); 1961 return (dev->dv_locators[locnum]); 1962 } 1963 1964 void * 1965 device_private(device_t dev) 1966 { 1967 1968 /* 1969 * The reason why device_private(NULL) is allowed is to simplify the 1970 * work of a lot of userspace request handlers (i.e., c/bdev 1971 * handlers) which grab cfdriver_t->cd_units[n]. 1972 * It avoids having them test for it to be NULL and only then calling 1973 * device_private. 1974 */ 1975 return dev == NULL ? NULL : dev->dv_private; 1976 } 1977 1978 prop_dictionary_t 1979 device_properties(device_t dev) 1980 { 1981 1982 return (dev->dv_properties); 1983 } 1984 1985 /* 1986 * device_is_a: 1987 * 1988 * Returns true if the device is an instance of the specified 1989 * driver. 1990 */ 1991 bool 1992 device_is_a(device_t dev, const char *dname) 1993 { 1994 1995 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0); 1996 } 1997 1998 /* 1999 * device_find_by_xname: 2000 * 2001 * Returns the device of the given name or NULL if it doesn't exist. 2002 */ 2003 device_t 2004 device_find_by_xname(const char *name) 2005 { 2006 device_t dv; 2007 deviter_t di; 2008 2009 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2010 if (strcmp(device_xname(dv), name) == 0) 2011 break; 2012 } 2013 deviter_release(&di); 2014 2015 return dv; 2016 } 2017 2018 /* 2019 * device_find_by_driver_unit: 2020 * 2021 * Returns the device of the given driver name and unit or 2022 * NULL if it doesn't exist. 2023 */ 2024 device_t 2025 device_find_by_driver_unit(const char *name, int unit) 2026 { 2027 struct cfdriver *cd; 2028 2029 if ((cd = config_cfdriver_lookup(name)) == NULL) 2030 return NULL; 2031 return device_lookup(cd, unit); 2032 } 2033 2034 /* 2035 * Power management related functions. 2036 */ 2037 2038 bool 2039 device_pmf_is_registered(device_t dev) 2040 { 2041 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2042 } 2043 2044 bool 2045 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS) 2046 { 2047 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2048 return true; 2049 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2050 return false; 2051 if (*dev->dv_driver_suspend != NULL && 2052 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL)) 2053 return false; 2054 2055 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2056 return true; 2057 } 2058 2059 bool 2060 device_pmf_driver_resume(device_t dev PMF_FN_ARGS) 2061 { 2062 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2063 return true; 2064 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2065 return false; 2066 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) 2067 return false; 2068 if (*dev->dv_driver_resume != NULL && 2069 !(*dev->dv_driver_resume)(dev PMF_FN_CALL)) 2070 return false; 2071 2072 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2073 return true; 2074 } 2075 2076 bool 2077 device_pmf_driver_shutdown(device_t dev, int how) 2078 { 2079 2080 if (*dev->dv_driver_shutdown != NULL && 2081 !(*dev->dv_driver_shutdown)(dev, how)) 2082 return false; 2083 return true; 2084 } 2085 2086 bool 2087 device_pmf_driver_register(device_t dev, 2088 bool (*suspend)(device_t PMF_FN_PROTO), 2089 bool (*resume)(device_t PMF_FN_PROTO), 2090 bool (*shutdown)(device_t, int)) 2091 { 2092 pmf_private_t *pp; 2093 2094 if ((pp = kmem_zalloc(sizeof(*pp), KM_NOSLEEP)) == NULL) 2095 return false; 2096 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE); 2097 cv_init(&pp->pp_cv, "pmfsusp"); 2098 dev->dv_pmf_private = pp; 2099 2100 dev->dv_driver_suspend = suspend; 2101 dev->dv_driver_resume = resume; 2102 dev->dv_driver_shutdown = shutdown; 2103 dev->dv_flags |= DVF_POWER_HANDLERS; 2104 return true; 2105 } 2106 2107 static const char * 2108 curlwp_name(void) 2109 { 2110 if (curlwp->l_name != NULL) 2111 return curlwp->l_name; 2112 else 2113 return curlwp->l_proc->p_comm; 2114 } 2115 2116 void 2117 device_pmf_driver_deregister(device_t dev) 2118 { 2119 pmf_private_t *pp = dev->dv_pmf_private; 2120 2121 /* XXX avoid crash in case we are not initialized */ 2122 if (!pp) 2123 return; 2124 2125 dev->dv_driver_suspend = NULL; 2126 dev->dv_driver_resume = NULL; 2127 2128 mutex_enter(&pp->pp_mtx); 2129 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2130 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) { 2131 /* Wake a thread that waits for the lock. That 2132 * thread will fail to acquire the lock, and then 2133 * it will wake the next thread that waits for the 2134 * lock, or else it will wake us. 2135 */ 2136 cv_signal(&pp->pp_cv); 2137 pmflock_debug(dev, __func__, __LINE__); 2138 cv_wait(&pp->pp_cv, &pp->pp_mtx); 2139 pmflock_debug(dev, __func__, __LINE__); 2140 } 2141 dev->dv_pmf_private = NULL; 2142 mutex_exit(&pp->pp_mtx); 2143 2144 cv_destroy(&pp->pp_cv); 2145 mutex_destroy(&pp->pp_mtx); 2146 kmem_free(pp, sizeof(*pp)); 2147 } 2148 2149 bool 2150 device_pmf_driver_child_register(device_t dev) 2151 { 2152 device_t parent = device_parent(dev); 2153 2154 if (parent == NULL || parent->dv_driver_child_register == NULL) 2155 return true; 2156 return (*parent->dv_driver_child_register)(dev); 2157 } 2158 2159 void 2160 device_pmf_driver_set_child_register(device_t dev, 2161 bool (*child_register)(device_t)) 2162 { 2163 dev->dv_driver_child_register = child_register; 2164 } 2165 2166 void 2167 device_pmf_self_resume(device_t dev PMF_FN_ARGS) 2168 { 2169 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2170 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0) 2171 dev->dv_flags &= ~DVF_SELF_SUSPENDED; 2172 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2173 } 2174 2175 bool 2176 device_is_self_suspended(device_t dev) 2177 { 2178 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0; 2179 } 2180 2181 void 2182 device_pmf_self_suspend(device_t dev PMF_FN_ARGS) 2183 { 2184 bool self = (flags & PMF_F_SELF) != 0; 2185 2186 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2187 2188 if (!self) 2189 dev->dv_flags &= ~DVF_SELF_SUSPENDED; 2190 else if (device_is_active(dev)) 2191 dev->dv_flags |= DVF_SELF_SUSPENDED; 2192 2193 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2194 } 2195 2196 static void 2197 pmflock_debug(device_t dev, const char *func, int line) 2198 { 2199 pmf_private_t *pp = device_pmf_private(dev); 2200 2201 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n", 2202 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait, 2203 dev->dv_flags); 2204 } 2205 2206 static void 2207 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS) 2208 { 2209 pmf_private_t *pp = device_pmf_private(dev); 2210 2211 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x " 2212 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(), 2213 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL); 2214 } 2215 2216 static bool 2217 device_pmf_lock1(device_t dev PMF_FN_ARGS) 2218 { 2219 pmf_private_t *pp = device_pmf_private(dev); 2220 2221 while (device_pmf_is_registered(dev) && 2222 pp->pp_nlock > 0 && pp->pp_holder != curlwp) { 2223 pp->pp_nwait++; 2224 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2225 cv_wait(&pp->pp_cv, &pp->pp_mtx); 2226 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2227 pp->pp_nwait--; 2228 } 2229 if (!device_pmf_is_registered(dev)) { 2230 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2231 /* We could not acquire the lock, but some other thread may 2232 * wait for it, also. Wake that thread. 2233 */ 2234 cv_signal(&pp->pp_cv); 2235 return false; 2236 } 2237 pp->pp_nlock++; 2238 pp->pp_holder = curlwp; 2239 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2240 return true; 2241 } 2242 2243 bool 2244 device_pmf_lock(device_t dev PMF_FN_ARGS) 2245 { 2246 bool rc; 2247 pmf_private_t *pp = device_pmf_private(dev); 2248 2249 mutex_enter(&pp->pp_mtx); 2250 rc = device_pmf_lock1(dev PMF_FN_CALL); 2251 mutex_exit(&pp->pp_mtx); 2252 2253 return rc; 2254 } 2255 2256 void 2257 device_pmf_unlock(device_t dev PMF_FN_ARGS) 2258 { 2259 pmf_private_t *pp = device_pmf_private(dev); 2260 2261 KASSERT(pp->pp_nlock > 0); 2262 mutex_enter(&pp->pp_mtx); 2263 if (--pp->pp_nlock == 0) 2264 pp->pp_holder = NULL; 2265 cv_signal(&pp->pp_cv); 2266 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2267 mutex_exit(&pp->pp_mtx); 2268 } 2269 2270 void * 2271 device_pmf_private(device_t dev) 2272 { 2273 return dev->dv_pmf_private; 2274 } 2275 2276 void * 2277 device_pmf_bus_private(device_t dev) 2278 { 2279 return dev->dv_bus_private; 2280 } 2281 2282 bool 2283 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS) 2284 { 2285 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2286 return true; 2287 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2288 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2289 return false; 2290 if (*dev->dv_bus_suspend != NULL && 2291 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL)) 2292 return false; 2293 2294 dev->dv_flags |= DVF_BUS_SUSPENDED; 2295 return true; 2296 } 2297 2298 bool 2299 device_pmf_bus_resume(device_t dev PMF_FN_ARGS) 2300 { 2301 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2302 return true; 2303 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) 2304 return false; 2305 if (*dev->dv_bus_resume != NULL && 2306 !(*dev->dv_bus_resume)(dev PMF_FN_CALL)) 2307 return false; 2308 2309 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2310 return true; 2311 } 2312 2313 bool 2314 device_pmf_bus_shutdown(device_t dev, int how) 2315 { 2316 2317 if (*dev->dv_bus_shutdown != NULL && 2318 !(*dev->dv_bus_shutdown)(dev, how)) 2319 return false; 2320 return true; 2321 } 2322 2323 void 2324 device_pmf_bus_register(device_t dev, void *priv, 2325 bool (*suspend)(device_t PMF_FN_PROTO), 2326 bool (*resume)(device_t PMF_FN_PROTO), 2327 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2328 { 2329 dev->dv_bus_private = priv; 2330 dev->dv_bus_resume = resume; 2331 dev->dv_bus_suspend = suspend; 2332 dev->dv_bus_shutdown = shutdown; 2333 dev->dv_bus_deregister = deregister; 2334 } 2335 2336 void 2337 device_pmf_bus_deregister(device_t dev) 2338 { 2339 if (dev->dv_bus_deregister == NULL) 2340 return; 2341 (*dev->dv_bus_deregister)(dev); 2342 dev->dv_bus_private = NULL; 2343 dev->dv_bus_suspend = NULL; 2344 dev->dv_bus_resume = NULL; 2345 dev->dv_bus_deregister = NULL; 2346 } 2347 2348 void * 2349 device_pmf_class_private(device_t dev) 2350 { 2351 return dev->dv_class_private; 2352 } 2353 2354 bool 2355 device_pmf_class_suspend(device_t dev PMF_FN_ARGS) 2356 { 2357 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2358 return true; 2359 if (*dev->dv_class_suspend != NULL && 2360 !(*dev->dv_class_suspend)(dev PMF_FN_CALL)) 2361 return false; 2362 2363 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2364 return true; 2365 } 2366 2367 bool 2368 device_pmf_class_resume(device_t dev PMF_FN_ARGS) 2369 { 2370 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2371 return true; 2372 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2373 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2374 return false; 2375 if (*dev->dv_class_resume != NULL && 2376 !(*dev->dv_class_resume)(dev PMF_FN_CALL)) 2377 return false; 2378 2379 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2380 return true; 2381 } 2382 2383 void 2384 device_pmf_class_register(device_t dev, void *priv, 2385 bool (*suspend)(device_t PMF_FN_PROTO), 2386 bool (*resume)(device_t PMF_FN_PROTO), 2387 void (*deregister)(device_t)) 2388 { 2389 dev->dv_class_private = priv; 2390 dev->dv_class_suspend = suspend; 2391 dev->dv_class_resume = resume; 2392 dev->dv_class_deregister = deregister; 2393 } 2394 2395 void 2396 device_pmf_class_deregister(device_t dev) 2397 { 2398 if (dev->dv_class_deregister == NULL) 2399 return; 2400 (*dev->dv_class_deregister)(dev); 2401 dev->dv_class_private = NULL; 2402 dev->dv_class_suspend = NULL; 2403 dev->dv_class_resume = NULL; 2404 dev->dv_class_deregister = NULL; 2405 } 2406 2407 bool 2408 device_active(device_t dev, devactive_t type) 2409 { 2410 size_t i; 2411 2412 if (dev->dv_activity_count == 0) 2413 return false; 2414 2415 for (i = 0; i < dev->dv_activity_count; ++i) { 2416 if (dev->dv_activity_handlers[i] == NULL) 2417 break; 2418 (*dev->dv_activity_handlers[i])(dev, type); 2419 } 2420 2421 return true; 2422 } 2423 2424 bool 2425 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2426 { 2427 void (**new_handlers)(device_t, devactive_t); 2428 void (**old_handlers)(device_t, devactive_t); 2429 size_t i, old_size, new_size; 2430 int s; 2431 2432 old_handlers = dev->dv_activity_handlers; 2433 old_size = dev->dv_activity_count; 2434 2435 for (i = 0; i < old_size; ++i) { 2436 KASSERT(old_handlers[i] != handler); 2437 if (old_handlers[i] == NULL) { 2438 old_handlers[i] = handler; 2439 return true; 2440 } 2441 } 2442 2443 new_size = old_size + 4; 2444 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2445 2446 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2447 new_handlers[old_size] = handler; 2448 memset(new_handlers + old_size + 1, 0, 2449 sizeof(int [new_size - (old_size+1)])); 2450 2451 s = splhigh(); 2452 dev->dv_activity_count = new_size; 2453 dev->dv_activity_handlers = new_handlers; 2454 splx(s); 2455 2456 if (old_handlers != NULL) 2457 kmem_free(old_handlers, sizeof(void * [old_size])); 2458 2459 return true; 2460 } 2461 2462 void 2463 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2464 { 2465 void (**old_handlers)(device_t, devactive_t); 2466 size_t i, old_size; 2467 int s; 2468 2469 old_handlers = dev->dv_activity_handlers; 2470 old_size = dev->dv_activity_count; 2471 2472 for (i = 0; i < old_size; ++i) { 2473 if (old_handlers[i] == handler) 2474 break; 2475 if (old_handlers[i] == NULL) 2476 return; /* XXX panic? */ 2477 } 2478 2479 if (i == old_size) 2480 return; /* XXX panic? */ 2481 2482 for (; i < old_size - 1; ++i) { 2483 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2484 continue; 2485 2486 if (i == 0) { 2487 s = splhigh(); 2488 dev->dv_activity_count = 0; 2489 dev->dv_activity_handlers = NULL; 2490 splx(s); 2491 kmem_free(old_handlers, sizeof(void *[old_size])); 2492 } 2493 return; 2494 } 2495 old_handlers[i] = NULL; 2496 } 2497 2498 /* 2499 * Device Iteration 2500 * 2501 * deviter_t: a device iterator. Holds state for a "walk" visiting 2502 * each device_t's in the device tree. 2503 * 2504 * deviter_init(di, flags): initialize the device iterator `di' 2505 * to "walk" the device tree. deviter_next(di) will return 2506 * the first device_t in the device tree, or NULL if there are 2507 * no devices. 2508 * 2509 * `flags' is one or more of DEVITER_F_RW, indicating that the 2510 * caller intends to modify the device tree by calling 2511 * config_detach(9) on devices in the order that the iterator 2512 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2513 * nearest the "root" of the device tree to be returned, first; 2514 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2515 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2516 * indicating both that deviter_init() should not respect any 2517 * locks on the device tree, and that deviter_next(di) may run 2518 * in more than one LWP before the walk has finished. 2519 * 2520 * Only one DEVITER_F_RW iterator may be in the device tree at 2521 * once. 2522 * 2523 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2524 * 2525 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2526 * DEVITER_F_LEAVES_FIRST are used in combination. 2527 * 2528 * deviter_first(di, flags): initialize the device iterator `di' 2529 * and return the first device_t in the device tree, or NULL 2530 * if there are no devices. The statement 2531 * 2532 * dv = deviter_first(di); 2533 * 2534 * is shorthand for 2535 * 2536 * deviter_init(di); 2537 * dv = deviter_next(di); 2538 * 2539 * deviter_next(di): return the next device_t in the device tree, 2540 * or NULL if there are no more devices. deviter_next(di) 2541 * is undefined if `di' was not initialized with deviter_init() or 2542 * deviter_first(). 2543 * 2544 * deviter_release(di): stops iteration (subsequent calls to 2545 * deviter_next() will return NULL), releases any locks and 2546 * resources held by the device iterator. 2547 * 2548 * Device iteration does not return device_t's in any particular 2549 * order. An iterator will never return the same device_t twice. 2550 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2551 * is called repeatedly on the same `di', it will eventually return 2552 * NULL. It is ok to attach/detach devices during device iteration. 2553 */ 2554 void 2555 deviter_init(deviter_t *di, deviter_flags_t flags) 2556 { 2557 device_t dv; 2558 bool rw; 2559 2560 mutex_enter(&alldevs_mtx); 2561 if ((flags & DEVITER_F_SHUTDOWN) != 0) { 2562 flags |= DEVITER_F_RW; 2563 alldevs_nwrite++; 2564 alldevs_writer = NULL; 2565 alldevs_nread = 0; 2566 } else { 2567 rw = (flags & DEVITER_F_RW) != 0; 2568 2569 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 2570 ; 2571 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) || 2572 (rw && alldevs_nread != 0)) 2573 cv_wait(&alldevs_cv, &alldevs_mtx); 2574 2575 if (rw) { 2576 if (alldevs_nwrite++ == 0) 2577 alldevs_writer = curlwp; 2578 } else 2579 alldevs_nread++; 2580 } 2581 mutex_exit(&alldevs_mtx); 2582 2583 memset(di, 0, sizeof(*di)); 2584 2585 di->di_flags = flags; 2586 2587 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2588 case DEVITER_F_LEAVES_FIRST: 2589 TAILQ_FOREACH(dv, &alldevs, dv_list) 2590 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2591 break; 2592 case DEVITER_F_ROOT_FIRST: 2593 TAILQ_FOREACH(dv, &alldevs, dv_list) 2594 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2595 break; 2596 default: 2597 break; 2598 } 2599 2600 deviter_reinit(di); 2601 } 2602 2603 static void 2604 deviter_reinit(deviter_t *di) 2605 { 2606 if ((di->di_flags & DEVITER_F_RW) != 0) 2607 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2608 else 2609 di->di_prev = TAILQ_FIRST(&alldevs); 2610 } 2611 2612 device_t 2613 deviter_first(deviter_t *di, deviter_flags_t flags) 2614 { 2615 deviter_init(di, flags); 2616 return deviter_next(di); 2617 } 2618 2619 static device_t 2620 deviter_next1(deviter_t *di) 2621 { 2622 device_t dv; 2623 2624 dv = di->di_prev; 2625 2626 if (dv == NULL) 2627 ; 2628 else if ((di->di_flags & DEVITER_F_RW) != 0) 2629 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2630 else 2631 di->di_prev = TAILQ_NEXT(dv, dv_list); 2632 2633 return dv; 2634 } 2635 2636 device_t 2637 deviter_next(deviter_t *di) 2638 { 2639 device_t dv = NULL; 2640 2641 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2642 case 0: 2643 return deviter_next1(di); 2644 case DEVITER_F_LEAVES_FIRST: 2645 while (di->di_curdepth >= 0) { 2646 if ((dv = deviter_next1(di)) == NULL) { 2647 di->di_curdepth--; 2648 deviter_reinit(di); 2649 } else if (dv->dv_depth == di->di_curdepth) 2650 break; 2651 } 2652 return dv; 2653 case DEVITER_F_ROOT_FIRST: 2654 while (di->di_curdepth <= di->di_maxdepth) { 2655 if ((dv = deviter_next1(di)) == NULL) { 2656 di->di_curdepth++; 2657 deviter_reinit(di); 2658 } else if (dv->dv_depth == di->di_curdepth) 2659 break; 2660 } 2661 return dv; 2662 default: 2663 return NULL; 2664 } 2665 } 2666 2667 void 2668 deviter_release(deviter_t *di) 2669 { 2670 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2671 2672 mutex_enter(&alldevs_mtx); 2673 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 2674 --alldevs_nwrite; 2675 else { 2676 2677 if (rw) { 2678 if (--alldevs_nwrite == 0) 2679 alldevs_writer = NULL; 2680 } else 2681 --alldevs_nread; 2682 2683 cv_signal(&alldevs_cv); 2684 } 2685 mutex_exit(&alldevs_mtx); 2686 } 2687