xref: /netbsd-src/sys/kern/subr_autoconf.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /* $NetBSD: subr_autoconf.c,v 1.167 2008/12/29 13:40:11 ad Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.167 2008/12/29 13:40:11 ad Exp $");
81 
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84 
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/vnode.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/mutex.h>
108 #include <sys/condvar.h>
109 #include <sys/devmon.h>
110 #include <sys/cpu.h>
111 
112 #include <sys/disk.h>
113 
114 #include <machine/limits.h>
115 
116 #include "opt_userconf.h"
117 #ifdef USERCONF
118 #include <sys/userconf.h>
119 #endif
120 
121 #ifdef __i386__
122 #include "opt_splash.h"
123 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
124 #include <dev/splash/splash.h>
125 extern struct splash_progress *splash_progress_state;
126 #endif
127 #endif
128 
129 /*
130  * Autoconfiguration subroutines.
131  */
132 
133 typedef struct pmf_private {
134 	int		pp_nwait;
135 	int		pp_nlock;
136 	lwp_t		*pp_holder;
137 	kmutex_t	pp_mtx;
138 	kcondvar_t	pp_cv;
139 } pmf_private_t;
140 
141 /*
142  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
143  * devices and drivers are found via these tables.
144  */
145 extern struct cfdata cfdata[];
146 extern const short cfroots[];
147 
148 /*
149  * List of all cfdriver structures.  We use this to detect duplicates
150  * when other cfdrivers are loaded.
151  */
152 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
153 extern struct cfdriver * const cfdriver_list_initial[];
154 
155 /*
156  * Initial list of cfattach's.
157  */
158 extern const struct cfattachinit cfattachinit[];
159 
160 /*
161  * List of cfdata tables.  We always have one such list -- the one
162  * built statically when the kernel was configured.
163  */
164 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
165 static struct cftable initcftable;
166 
167 #define	ROOT ((device_t)NULL)
168 
169 struct matchinfo {
170 	cfsubmatch_t fn;
171 	struct	device *parent;
172 	const int *locs;
173 	void	*aux;
174 	struct	cfdata *match;
175 	int	pri;
176 };
177 
178 static char *number(char *, int);
179 static void mapply(struct matchinfo *, cfdata_t);
180 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
181 static void config_devdealloc(device_t);
182 static void config_makeroom(int, struct cfdriver *);
183 static void config_devlink(device_t);
184 static void config_devunlink(device_t);
185 
186 static void pmflock_debug(device_t, const char *, int);
187 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
188 
189 static device_t deviter_next1(deviter_t *);
190 static void deviter_reinit(deviter_t *);
191 
192 struct deferred_config {
193 	TAILQ_ENTRY(deferred_config) dc_queue;
194 	device_t dc_dev;
195 	void (*dc_func)(device_t);
196 };
197 
198 TAILQ_HEAD(deferred_config_head, deferred_config);
199 
200 struct deferred_config_head deferred_config_queue =
201 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
202 struct deferred_config_head interrupt_config_queue =
203 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
204 int interrupt_config_threads = 8;
205 
206 static void config_process_deferred(struct deferred_config_head *, device_t);
207 
208 /* Hooks to finalize configuration once all real devices have been found. */
209 struct finalize_hook {
210 	TAILQ_ENTRY(finalize_hook) f_list;
211 	int (*f_func)(device_t);
212 	device_t f_dev;
213 };
214 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
215 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
216 static int config_finalize_done;
217 
218 /* list of all devices */
219 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
220 kcondvar_t alldevs_cv;
221 kmutex_t alldevs_mtx;
222 static int alldevs_nread = 0;
223 static int alldevs_nwrite = 0;
224 static lwp_t *alldevs_writer = NULL;
225 
226 static int config_pending;		/* semaphore for mountroot */
227 static kmutex_t config_misc_lock;
228 static kcondvar_t config_misc_cv;
229 
230 #define	STREQ(s1, s2)			\
231 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
232 
233 static int config_initialized;		/* config_init() has been called. */
234 
235 static int config_do_twiddle;
236 
237 struct vnode *
238 opendisk(struct device *dv)
239 {
240 	int bmajor, bminor;
241 	struct vnode *tmpvn;
242 	int error;
243 	dev_t dev;
244 
245 	/*
246 	 * Lookup major number for disk block device.
247 	 */
248 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
249 	if (bmajor == -1)
250 		return NULL;
251 
252 	bminor = minor(device_unit(dv));
253 	/*
254 	 * Fake a temporary vnode for the disk, open it, and read
255 	 * and hash the sectors.
256 	 */
257 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
258 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
259 	if (bdevvp(dev, &tmpvn))
260 		panic("%s: can't alloc vnode for %s", __func__,
261 		    device_xname(dv));
262 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
263 	if (error) {
264 #ifndef DEBUG
265 		/*
266 		 * Ignore errors caused by missing device, partition,
267 		 * or medium.
268 		 */
269 		if (error != ENXIO && error != ENODEV)
270 #endif
271 			printf("%s: can't open dev %s (%d)\n",
272 			    __func__, device_xname(dv), error);
273 		vput(tmpvn);
274 		return NULL;
275 	}
276 
277 	return tmpvn;
278 }
279 
280 int
281 config_handle_wedges(struct device *dv, int par)
282 {
283 	struct dkwedge_list wl;
284 	struct dkwedge_info *wi;
285 	struct vnode *vn;
286 	char diskname[16];
287 	int i, error;
288 
289 	if ((vn = opendisk(dv)) == NULL)
290 		return -1;
291 
292 	wl.dkwl_bufsize = sizeof(*wi) * 16;
293 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
294 
295 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
296 	VOP_CLOSE(vn, FREAD, NOCRED);
297 	vput(vn);
298 	if (error) {
299 #ifdef DEBUG_WEDGE
300 		printf("%s: List wedges returned %d\n",
301 		    device_xname(dv), error);
302 #endif
303 		free(wi, M_TEMP);
304 		return -1;
305 	}
306 
307 #ifdef DEBUG_WEDGE
308 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
309 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
310 #endif
311 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
312 	    par + 'a');
313 
314 	for (i = 0; i < wl.dkwl_ncopied; i++) {
315 #ifdef DEBUG_WEDGE
316 		printf("%s: Looking for %s in %s\n",
317 		    device_xname(dv), diskname, wi[i].dkw_wname);
318 #endif
319 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
320 			break;
321 	}
322 
323 	if (i == wl.dkwl_ncopied) {
324 #ifdef DEBUG_WEDGE
325 		printf("%s: Cannot find wedge with parent %s\n",
326 		    device_xname(dv), diskname);
327 #endif
328 		free(wi, M_TEMP);
329 		return -1;
330 	}
331 
332 #ifdef DEBUG_WEDGE
333 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
334 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
335 		(unsigned long long)wi[i].dkw_offset,
336 		(unsigned long long)wi[i].dkw_size);
337 #endif
338 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
339 	free(wi, M_TEMP);
340 	return 0;
341 }
342 
343 /*
344  * Initialize the autoconfiguration data structures.  Normally this
345  * is done by configure(), but some platforms need to do this very
346  * early (to e.g. initialize the console).
347  */
348 void
349 config_init(void)
350 {
351 	const struct cfattachinit *cfai;
352 	int i, j;
353 
354 	if (config_initialized)
355 		return;
356 
357 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
358 	cv_init(&alldevs_cv, "alldevs");
359 
360 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
361 	cv_init(&config_misc_cv, "cfgmisc");
362 
363 	/* allcfdrivers is statically initialized. */
364 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
365 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
366 			panic("configure: duplicate `%s' drivers",
367 			    cfdriver_list_initial[i]->cd_name);
368 	}
369 
370 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
371 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
372 			if (config_cfattach_attach(cfai->cfai_name,
373 						   cfai->cfai_list[j]) != 0)
374 				panic("configure: duplicate `%s' attachment "
375 				    "of `%s' driver",
376 				    cfai->cfai_list[j]->ca_name,
377 				    cfai->cfai_name);
378 		}
379 	}
380 
381 	initcftable.ct_cfdata = cfdata;
382 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
383 
384 	config_initialized = 1;
385 }
386 
387 void
388 config_deferred(device_t dev)
389 {
390 	config_process_deferred(&deferred_config_queue, dev);
391 	config_process_deferred(&interrupt_config_queue, dev);
392 }
393 
394 static void
395 config_interrupts_thread(void *cookie)
396 {
397 	struct deferred_config *dc;
398 
399 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
400 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
401 		(*dc->dc_func)(dc->dc_dev);
402 		kmem_free(dc, sizeof(*dc));
403 		config_pending_decr();
404 	}
405 	kthread_exit(0);
406 }
407 
408 /*
409  * Configure the system's hardware.
410  */
411 void
412 configure(void)
413 {
414 	extern void ssp_init(void);
415 	CPU_INFO_ITERATOR cii;
416 	struct cpu_info *ci;
417 	int i, s;
418 
419 	/* Initialize data structures. */
420 	config_init();
421 	pmf_init();
422 #if NDRVCTL > 0
423 	drvctl_init();
424 #endif
425 
426 #ifdef USERCONF
427 	if (boothowto & RB_USERCONF)
428 		user_config();
429 #endif
430 
431 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
432 		config_do_twiddle = 1;
433 		printf_nolog("Detecting hardware...");
434 	}
435 
436 	/*
437 	 * Do the machine-dependent portion of autoconfiguration.  This
438 	 * sets the configuration machinery here in motion by "finding"
439 	 * the root bus.  When this function returns, we expect interrupts
440 	 * to be enabled.
441 	 */
442 	cpu_configure();
443 
444 	/* Initialize SSP. */
445 	ssp_init();
446 
447 	/*
448 	 * Now that we've found all the hardware, start the real time
449 	 * and statistics clocks.
450 	 */
451 	initclocks();
452 
453 	cold = 0;	/* clocks are running, we're warm now! */
454 	s = splsched();
455 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
456 	splx(s);
457 
458 	/* Boot the secondary processors. */
459 	for (CPU_INFO_FOREACH(cii, ci)) {
460 		uvm_cpu_attach(ci);
461 	}
462 	mp_online = true;
463 #if defined(MULTIPROCESSOR)
464 	cpu_boot_secondary_processors();
465 #endif
466 
467 	/* Setup the runqueues and scheduler. */
468 	runq_init();
469 	sched_init();
470 
471 	/*
472 	 * Create threads to call back and finish configuration for
473 	 * devices that want interrupts enabled.
474 	 */
475 	for (i = 0; i < interrupt_config_threads; i++) {
476 		(void)kthread_create(PRI_NONE, 0, NULL,
477 		    config_interrupts_thread, NULL, NULL, "config");
478 	}
479 
480 	/* Get the threads going and into any sleeps before continuing. */
481 	yield();
482 }
483 
484 /*
485  * Announce device attach/detach to userland listeners.
486  */
487 static void
488 devmon_report_device(device_t dev, bool isattach)
489 {
490 #if NDRVCTL > 0
491 	prop_dictionary_t ev;
492 	const char *parent;
493 	const char *what;
494 	device_t pdev = device_parent(dev);
495 
496 	ev = prop_dictionary_create();
497 	if (ev == NULL)
498 		return;
499 
500 	what = (isattach ? "device-attach" : "device-detach");
501 	parent = (pdev == NULL ? "root" : device_xname(pdev));
502 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
503 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
504 		prop_object_release(ev);
505 		return;
506 	}
507 
508 	devmon_insert(what, ev);
509 #endif
510 }
511 
512 /*
513  * Add a cfdriver to the system.
514  */
515 int
516 config_cfdriver_attach(struct cfdriver *cd)
517 {
518 	struct cfdriver *lcd;
519 
520 	/* Make sure this driver isn't already in the system. */
521 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
522 		if (STREQ(lcd->cd_name, cd->cd_name))
523 			return (EEXIST);
524 	}
525 
526 	LIST_INIT(&cd->cd_attach);
527 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
528 
529 	return (0);
530 }
531 
532 /*
533  * Remove a cfdriver from the system.
534  */
535 int
536 config_cfdriver_detach(struct cfdriver *cd)
537 {
538 	int i;
539 
540 	/* Make sure there are no active instances. */
541 	for (i = 0; i < cd->cd_ndevs; i++) {
542 		if (cd->cd_devs[i] != NULL)
543 			return (EBUSY);
544 	}
545 
546 	/* ...and no attachments loaded. */
547 	if (LIST_EMPTY(&cd->cd_attach) == 0)
548 		return (EBUSY);
549 
550 	LIST_REMOVE(cd, cd_list);
551 
552 	KASSERT(cd->cd_devs == NULL);
553 
554 	return (0);
555 }
556 
557 /*
558  * Look up a cfdriver by name.
559  */
560 struct cfdriver *
561 config_cfdriver_lookup(const char *name)
562 {
563 	struct cfdriver *cd;
564 
565 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
566 		if (STREQ(cd->cd_name, name))
567 			return (cd);
568 	}
569 
570 	return (NULL);
571 }
572 
573 /*
574  * Add a cfattach to the specified driver.
575  */
576 int
577 config_cfattach_attach(const char *driver, struct cfattach *ca)
578 {
579 	struct cfattach *lca;
580 	struct cfdriver *cd;
581 
582 	cd = config_cfdriver_lookup(driver);
583 	if (cd == NULL)
584 		return (ESRCH);
585 
586 	/* Make sure this attachment isn't already on this driver. */
587 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
588 		if (STREQ(lca->ca_name, ca->ca_name))
589 			return (EEXIST);
590 	}
591 
592 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
593 
594 	return (0);
595 }
596 
597 /*
598  * Remove a cfattach from the specified driver.
599  */
600 int
601 config_cfattach_detach(const char *driver, struct cfattach *ca)
602 {
603 	struct cfdriver *cd;
604 	device_t dev;
605 	int i;
606 
607 	cd = config_cfdriver_lookup(driver);
608 	if (cd == NULL)
609 		return (ESRCH);
610 
611 	/* Make sure there are no active instances. */
612 	for (i = 0; i < cd->cd_ndevs; i++) {
613 		if ((dev = cd->cd_devs[i]) == NULL)
614 			continue;
615 		if (dev->dv_cfattach == ca)
616 			return (EBUSY);
617 	}
618 
619 	LIST_REMOVE(ca, ca_list);
620 
621 	return (0);
622 }
623 
624 /*
625  * Look up a cfattach by name.
626  */
627 static struct cfattach *
628 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
629 {
630 	struct cfattach *ca;
631 
632 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
633 		if (STREQ(ca->ca_name, atname))
634 			return (ca);
635 	}
636 
637 	return (NULL);
638 }
639 
640 /*
641  * Look up a cfattach by driver/attachment name.
642  */
643 struct cfattach *
644 config_cfattach_lookup(const char *name, const char *atname)
645 {
646 	struct cfdriver *cd;
647 
648 	cd = config_cfdriver_lookup(name);
649 	if (cd == NULL)
650 		return (NULL);
651 
652 	return (config_cfattach_lookup_cd(cd, atname));
653 }
654 
655 /*
656  * Apply the matching function and choose the best.  This is used
657  * a few times and we want to keep the code small.
658  */
659 static void
660 mapply(struct matchinfo *m, cfdata_t cf)
661 {
662 	int pri;
663 
664 	if (m->fn != NULL) {
665 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
666 	} else {
667 		pri = config_match(m->parent, cf, m->aux);
668 	}
669 	if (pri > m->pri) {
670 		m->match = cf;
671 		m->pri = pri;
672 	}
673 }
674 
675 int
676 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
677 {
678 	const struct cfiattrdata *ci;
679 	const struct cflocdesc *cl;
680 	int nlocs, i;
681 
682 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
683 	KASSERT(ci);
684 	nlocs = ci->ci_loclen;
685 	KASSERT(!nlocs || locs);
686 	for (i = 0; i < nlocs; i++) {
687 		cl = &ci->ci_locdesc[i];
688 		/* !cld_defaultstr means no default value */
689 		if ((!(cl->cld_defaultstr)
690 		     || (cf->cf_loc[i] != cl->cld_default))
691 		    && cf->cf_loc[i] != locs[i])
692 			return (0);
693 	}
694 
695 	return (config_match(parent, cf, aux));
696 }
697 
698 /*
699  * Helper function: check whether the driver supports the interface attribute
700  * and return its descriptor structure.
701  */
702 static const struct cfiattrdata *
703 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
704 {
705 	const struct cfiattrdata * const *cpp;
706 
707 	if (cd->cd_attrs == NULL)
708 		return (0);
709 
710 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
711 		if (STREQ((*cpp)->ci_name, ia)) {
712 			/* Match. */
713 			return (*cpp);
714 		}
715 	}
716 	return (0);
717 }
718 
719 /*
720  * Lookup an interface attribute description by name.
721  * If the driver is given, consider only its supported attributes.
722  */
723 const struct cfiattrdata *
724 cfiattr_lookup(const char *name, const struct cfdriver *cd)
725 {
726 	const struct cfdriver *d;
727 	const struct cfiattrdata *ia;
728 
729 	if (cd)
730 		return (cfdriver_get_iattr(cd, name));
731 
732 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
733 		ia = cfdriver_get_iattr(d, name);
734 		if (ia)
735 			return (ia);
736 	}
737 	return (0);
738 }
739 
740 /*
741  * Determine if `parent' is a potential parent for a device spec based
742  * on `cfp'.
743  */
744 static int
745 cfparent_match(const device_t parent, const struct cfparent *cfp)
746 {
747 	struct cfdriver *pcd;
748 
749 	/* We don't match root nodes here. */
750 	if (cfp == NULL)
751 		return (0);
752 
753 	pcd = parent->dv_cfdriver;
754 	KASSERT(pcd != NULL);
755 
756 	/*
757 	 * First, ensure this parent has the correct interface
758 	 * attribute.
759 	 */
760 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
761 		return (0);
762 
763 	/*
764 	 * If no specific parent device instance was specified (i.e.
765 	 * we're attaching to the attribute only), we're done!
766 	 */
767 	if (cfp->cfp_parent == NULL)
768 		return (1);
769 
770 	/*
771 	 * Check the parent device's name.
772 	 */
773 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
774 		return (0);	/* not the same parent */
775 
776 	/*
777 	 * Make sure the unit number matches.
778 	 */
779 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
780 	    cfp->cfp_unit == parent->dv_unit)
781 		return (1);
782 
783 	/* Unit numbers don't match. */
784 	return (0);
785 }
786 
787 /*
788  * Helper for config_cfdata_attach(): check all devices whether it could be
789  * parent any attachment in the config data table passed, and rescan.
790  */
791 static void
792 rescan_with_cfdata(const struct cfdata *cf)
793 {
794 	device_t d;
795 	const struct cfdata *cf1;
796 	deviter_t di;
797 
798 
799 	/*
800 	 * "alldevs" is likely longer than a modules's cfdata, so make it
801 	 * the outer loop.
802 	 */
803 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
804 
805 		if (!(d->dv_cfattach->ca_rescan))
806 			continue;
807 
808 		for (cf1 = cf; cf1->cf_name; cf1++) {
809 
810 			if (!cfparent_match(d, cf1->cf_pspec))
811 				continue;
812 
813 			(*d->dv_cfattach->ca_rescan)(d,
814 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
815 		}
816 	}
817 	deviter_release(&di);
818 }
819 
820 /*
821  * Attach a supplemental config data table and rescan potential
822  * parent devices if required.
823  */
824 int
825 config_cfdata_attach(cfdata_t cf, int scannow)
826 {
827 	struct cftable *ct;
828 
829 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
830 	ct->ct_cfdata = cf;
831 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
832 
833 	if (scannow)
834 		rescan_with_cfdata(cf);
835 
836 	return (0);
837 }
838 
839 /*
840  * Helper for config_cfdata_detach: check whether a device is
841  * found through any attachment in the config data table.
842  */
843 static int
844 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
845 {
846 	const struct cfdata *cf1;
847 
848 	for (cf1 = cf; cf1->cf_name; cf1++)
849 		if (d->dv_cfdata == cf1)
850 			return (1);
851 
852 	return (0);
853 }
854 
855 /*
856  * Detach a supplemental config data table. Detach all devices found
857  * through that table (and thus keeping references to it) before.
858  */
859 int
860 config_cfdata_detach(cfdata_t cf)
861 {
862 	device_t d;
863 	int error = 0;
864 	struct cftable *ct;
865 	deviter_t di;
866 
867 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
868 	     d = deviter_next(&di)) {
869 		if (!dev_in_cfdata(d, cf))
870 			continue;
871 		if ((error = config_detach(d, 0)) != 0)
872 			break;
873 	}
874 	deviter_release(&di);
875 	if (error) {
876 		aprint_error_dev(d, "unable to detach instance\n");
877 		return error;
878 	}
879 
880 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
881 		if (ct->ct_cfdata == cf) {
882 			TAILQ_REMOVE(&allcftables, ct, ct_list);
883 			kmem_free(ct, sizeof(*ct));
884 			return (0);
885 		}
886 	}
887 
888 	/* not found -- shouldn't happen */
889 	return (EINVAL);
890 }
891 
892 /*
893  * Invoke the "match" routine for a cfdata entry on behalf of
894  * an external caller, usually a "submatch" routine.
895  */
896 int
897 config_match(device_t parent, cfdata_t cf, void *aux)
898 {
899 	struct cfattach *ca;
900 
901 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
902 	if (ca == NULL) {
903 		/* No attachment for this entry, oh well. */
904 		return (0);
905 	}
906 
907 	return ((*ca->ca_match)(parent, cf, aux));
908 }
909 
910 /*
911  * Iterate over all potential children of some device, calling the given
912  * function (default being the child's match function) for each one.
913  * Nonzero returns are matches; the highest value returned is considered
914  * the best match.  Return the `found child' if we got a match, or NULL
915  * otherwise.  The `aux' pointer is simply passed on through.
916  *
917  * Note that this function is designed so that it can be used to apply
918  * an arbitrary function to all potential children (its return value
919  * can be ignored).
920  */
921 cfdata_t
922 config_search_loc(cfsubmatch_t fn, device_t parent,
923 		  const char *ifattr, const int *locs, void *aux)
924 {
925 	struct cftable *ct;
926 	cfdata_t cf;
927 	struct matchinfo m;
928 
929 	KASSERT(config_initialized);
930 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
931 
932 	m.fn = fn;
933 	m.parent = parent;
934 	m.locs = locs;
935 	m.aux = aux;
936 	m.match = NULL;
937 	m.pri = 0;
938 
939 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
940 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
941 
942 			/* We don't match root nodes here. */
943 			if (!cf->cf_pspec)
944 				continue;
945 
946 			/*
947 			 * Skip cf if no longer eligible, otherwise scan
948 			 * through parents for one matching `parent', and
949 			 * try match function.
950 			 */
951 			if (cf->cf_fstate == FSTATE_FOUND)
952 				continue;
953 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
954 			    cf->cf_fstate == FSTATE_DSTAR)
955 				continue;
956 
957 			/*
958 			 * If an interface attribute was specified,
959 			 * consider only children which attach to
960 			 * that attribute.
961 			 */
962 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
963 				continue;
964 
965 			if (cfparent_match(parent, cf->cf_pspec))
966 				mapply(&m, cf);
967 		}
968 	}
969 	return (m.match);
970 }
971 
972 cfdata_t
973 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
974     void *aux)
975 {
976 
977 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
978 }
979 
980 /*
981  * Find the given root device.
982  * This is much like config_search, but there is no parent.
983  * Don't bother with multiple cfdata tables; the root node
984  * must always be in the initial table.
985  */
986 cfdata_t
987 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
988 {
989 	cfdata_t cf;
990 	const short *p;
991 	struct matchinfo m;
992 
993 	m.fn = fn;
994 	m.parent = ROOT;
995 	m.aux = aux;
996 	m.match = NULL;
997 	m.pri = 0;
998 	m.locs = 0;
999 	/*
1000 	 * Look at root entries for matching name.  We do not bother
1001 	 * with found-state here since only one root should ever be
1002 	 * searched (and it must be done first).
1003 	 */
1004 	for (p = cfroots; *p >= 0; p++) {
1005 		cf = &cfdata[*p];
1006 		if (strcmp(cf->cf_name, rootname) == 0)
1007 			mapply(&m, cf);
1008 	}
1009 	return (m.match);
1010 }
1011 
1012 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1013 
1014 /*
1015  * The given `aux' argument describes a device that has been found
1016  * on the given parent, but not necessarily configured.  Locate the
1017  * configuration data for that device (using the submatch function
1018  * provided, or using candidates' cd_match configuration driver
1019  * functions) and attach it, and return true.  If the device was
1020  * not configured, call the given `print' function and return 0.
1021  */
1022 device_t
1023 config_found_sm_loc(device_t parent,
1024 		const char *ifattr, const int *locs, void *aux,
1025 		cfprint_t print, cfsubmatch_t submatch)
1026 {
1027 	cfdata_t cf;
1028 
1029 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1030 	if (splash_progress_state)
1031 		splash_progress_update(splash_progress_state);
1032 #endif
1033 
1034 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1035 		return(config_attach_loc(parent, cf, locs, aux, print));
1036 	if (print) {
1037 		if (config_do_twiddle)
1038 			twiddle();
1039 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1040 	}
1041 
1042 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1043 	if (splash_progress_state)
1044 		splash_progress_update(splash_progress_state);
1045 #endif
1046 
1047 	return (NULL);
1048 }
1049 
1050 device_t
1051 config_found_ia(device_t parent, const char *ifattr, void *aux,
1052     cfprint_t print)
1053 {
1054 
1055 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1056 }
1057 
1058 device_t
1059 config_found(device_t parent, void *aux, cfprint_t print)
1060 {
1061 
1062 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1063 }
1064 
1065 /*
1066  * As above, but for root devices.
1067  */
1068 device_t
1069 config_rootfound(const char *rootname, void *aux)
1070 {
1071 	cfdata_t cf;
1072 
1073 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1074 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1075 	aprint_error("root device %s not configured\n", rootname);
1076 	return (NULL);
1077 }
1078 
1079 /* just like sprintf(buf, "%d") except that it works from the end */
1080 static char *
1081 number(char *ep, int n)
1082 {
1083 
1084 	*--ep = 0;
1085 	while (n >= 10) {
1086 		*--ep = (n % 10) + '0';
1087 		n /= 10;
1088 	}
1089 	*--ep = n + '0';
1090 	return (ep);
1091 }
1092 
1093 /*
1094  * Expand the size of the cd_devs array if necessary.
1095  */
1096 static void
1097 config_makeroom(int n, struct cfdriver *cd)
1098 {
1099 	int old, new;
1100 	device_t *nsp;
1101 
1102 	if (n < cd->cd_ndevs)
1103 		return;
1104 
1105 	/*
1106 	 * Need to expand the array.
1107 	 */
1108 	old = cd->cd_ndevs;
1109 	if (old == 0)
1110 		new = 4;
1111 	else
1112 		new = old * 2;
1113 	while (new <= n)
1114 		new *= 2;
1115 	cd->cd_ndevs = new;
1116 	nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
1117 	if (nsp == NULL)
1118 		panic("config_attach: %sing dev array",
1119 		    old != 0 ? "expand" : "creat");
1120 	memset(nsp + old, 0, sizeof(device_t [new - old]));
1121 	if (old != 0) {
1122 		memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1123 		kmem_free(cd->cd_devs, sizeof(device_t [old]));
1124 	}
1125 	cd->cd_devs = nsp;
1126 }
1127 
1128 static void
1129 config_devlink(device_t dev)
1130 {
1131 	struct cfdriver *cd = dev->dv_cfdriver;
1132 
1133 	/* put this device in the devices array */
1134 	config_makeroom(dev->dv_unit, cd);
1135 	if (cd->cd_devs[dev->dv_unit])
1136 		panic("config_attach: duplicate %s", device_xname(dev));
1137 	cd->cd_devs[dev->dv_unit] = dev;
1138 
1139 	/* It is safe to add a device to the tail of the list while
1140 	 * readers are in the list, but not while a writer is in
1141 	 * the list.  Wait for any writer to complete.
1142 	 */
1143 	mutex_enter(&alldevs_mtx);
1144 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1145 		cv_wait(&alldevs_cv, &alldevs_mtx);
1146 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
1147 	cv_signal(&alldevs_cv);
1148 	mutex_exit(&alldevs_mtx);
1149 }
1150 
1151 static void
1152 config_devunlink(device_t dev)
1153 {
1154 	struct cfdriver *cd = dev->dv_cfdriver;
1155 	int i;
1156 
1157 	/* Unlink from device list. */
1158 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1159 
1160 	/* Remove from cfdriver's array. */
1161 	cd->cd_devs[dev->dv_unit] = NULL;
1162 
1163 	/*
1164 	 * If the device now has no units in use, deallocate its softc array.
1165 	 */
1166 	for (i = 0; i < cd->cd_ndevs; i++) {
1167 		if (cd->cd_devs[i] != NULL)
1168 			return;
1169 	}
1170 	/* nothing found; deallocate */
1171 	kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1172 	cd->cd_devs = NULL;
1173 	cd->cd_ndevs = 0;
1174 }
1175 
1176 static device_t
1177 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1178 {
1179 	struct cfdriver *cd;
1180 	struct cfattach *ca;
1181 	size_t lname, lunit;
1182 	const char *xunit;
1183 	int myunit;
1184 	char num[10];
1185 	device_t dev;
1186 	void *dev_private;
1187 	const struct cfiattrdata *ia;
1188 
1189 	cd = config_cfdriver_lookup(cf->cf_name);
1190 	if (cd == NULL)
1191 		return (NULL);
1192 
1193 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1194 	if (ca == NULL)
1195 		return (NULL);
1196 
1197 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1198 	    ca->ca_devsize < sizeof(struct device))
1199 		panic("config_devalloc: %s", cf->cf_atname);
1200 
1201 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1202 	if (cf->cf_fstate == FSTATE_STAR) {
1203 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1204 			if (cd->cd_devs[myunit] == NULL)
1205 				break;
1206 		/*
1207 		 * myunit is now the unit of the first NULL device pointer,
1208 		 * or max(cd->cd_ndevs,cf->cf_unit).
1209 		 */
1210 	} else {
1211 		myunit = cf->cf_unit;
1212 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1213 			return (NULL);
1214 	}
1215 #else
1216 	myunit = cf->cf_unit;
1217 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1218 
1219 	/* compute length of name and decimal expansion of unit number */
1220 	lname = strlen(cd->cd_name);
1221 	xunit = number(&num[sizeof(num)], myunit);
1222 	lunit = &num[sizeof(num)] - xunit;
1223 	if (lname + lunit > sizeof(dev->dv_xname))
1224 		panic("config_devalloc: device name too long");
1225 
1226 	/* get memory for all device vars */
1227 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1228 	if (ca->ca_devsize > 0) {
1229 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1230 		if (dev_private == NULL)
1231 			panic("config_devalloc: memory allocation for device softc failed");
1232 	} else {
1233 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1234 		dev_private = NULL;
1235 	}
1236 
1237 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1238 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1239 	} else {
1240 		dev = dev_private;
1241 	}
1242 	if (dev == NULL)
1243 		panic("config_devalloc: memory allocation for device_t failed");
1244 
1245 	dev->dv_class = cd->cd_class;
1246 	dev->dv_cfdata = cf;
1247 	dev->dv_cfdriver = cd;
1248 	dev->dv_cfattach = ca;
1249 	dev->dv_unit = myunit;
1250 	dev->dv_activity_count = 0;
1251 	dev->dv_activity_handlers = NULL;
1252 	dev->dv_private = dev_private;
1253 	memcpy(dev->dv_xname, cd->cd_name, lname);
1254 	memcpy(dev->dv_xname + lname, xunit, lunit);
1255 	dev->dv_parent = parent;
1256 	if (parent != NULL)
1257 		dev->dv_depth = parent->dv_depth + 1;
1258 	else
1259 		dev->dv_depth = 0;
1260 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
1261 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
1262 	if (locs) {
1263 		KASSERT(parent); /* no locators at root */
1264 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1265 				    parent->dv_cfdriver);
1266 		dev->dv_locators =
1267 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1268 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1269 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1270 	}
1271 	dev->dv_properties = prop_dictionary_create();
1272 	KASSERT(dev->dv_properties != NULL);
1273 
1274 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1275 	    "device-driver", dev->dv_cfdriver->cd_name);
1276 	prop_dictionary_set_uint16(dev->dv_properties,
1277 	    "device-unit", dev->dv_unit);
1278 
1279 	return (dev);
1280 }
1281 
1282 static void
1283 config_devdealloc(device_t dev)
1284 {
1285 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1286 
1287 	KASSERT(dev->dv_properties != NULL);
1288 	prop_object_release(dev->dv_properties);
1289 
1290 	if (dev->dv_activity_handlers)
1291 		panic("config_devdealloc with registered handlers");
1292 
1293 	if (dev->dv_locators) {
1294 		size_t amount = *--dev->dv_locators;
1295 		kmem_free(dev->dv_locators, amount);
1296 	}
1297 
1298 	if (dev->dv_cfattach->ca_devsize > 0)
1299 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1300 	if (priv)
1301 		kmem_free(dev, sizeof(*dev));
1302 }
1303 
1304 /*
1305  * Attach a found device.
1306  */
1307 device_t
1308 config_attach_loc(device_t parent, cfdata_t cf,
1309 	const int *locs, void *aux, cfprint_t print)
1310 {
1311 	device_t dev;
1312 	struct cftable *ct;
1313 	const char *drvname;
1314 
1315 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1316 	if (splash_progress_state)
1317 		splash_progress_update(splash_progress_state);
1318 #endif
1319 
1320 	dev = config_devalloc(parent, cf, locs);
1321 	if (!dev)
1322 		panic("config_attach: allocation of device softc failed");
1323 
1324 	/* XXX redundant - see below? */
1325 	if (cf->cf_fstate != FSTATE_STAR) {
1326 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1327 		cf->cf_fstate = FSTATE_FOUND;
1328 	}
1329 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1330 	  else
1331 		cf->cf_unit++;
1332 #endif
1333 
1334 	config_devlink(dev);
1335 
1336 	if (config_do_twiddle)
1337 		twiddle();
1338 	else
1339 		aprint_naive("Found ");
1340 	/*
1341 	 * We want the next two printfs for normal, verbose, and quiet,
1342 	 * but not silent (in which case, we're twiddling, instead).
1343 	 */
1344 	if (parent == ROOT) {
1345 		aprint_naive("%s (root)", device_xname(dev));
1346 		aprint_normal("%s (root)", device_xname(dev));
1347 	} else {
1348 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1349 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1350 		if (print)
1351 			(void) (*print)(aux, NULL);
1352 	}
1353 
1354 	/*
1355 	 * Before attaching, clobber any unfound devices that are
1356 	 * otherwise identical.
1357 	 * XXX code above is redundant?
1358 	 */
1359 	drvname = dev->dv_cfdriver->cd_name;
1360 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1361 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1362 			if (STREQ(cf->cf_name, drvname) &&
1363 			    cf->cf_unit == dev->dv_unit) {
1364 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1365 					cf->cf_fstate = FSTATE_FOUND;
1366 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1367 				/*
1368 				 * Bump the unit number on all starred cfdata
1369 				 * entries for this device.
1370 				 */
1371 				if (cf->cf_fstate == FSTATE_STAR)
1372 					cf->cf_unit++;
1373 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1374 			}
1375 		}
1376 	}
1377 #ifdef __HAVE_DEVICE_REGISTER
1378 	device_register(dev, aux);
1379 #endif
1380 
1381 	/* Let userland know */
1382 	devmon_report_device(dev, true);
1383 
1384 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1385 	if (splash_progress_state)
1386 		splash_progress_update(splash_progress_state);
1387 #endif
1388 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1389 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1390 	if (splash_progress_state)
1391 		splash_progress_update(splash_progress_state);
1392 #endif
1393 
1394 	if (!device_pmf_is_registered(dev))
1395 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1396 
1397 	config_process_deferred(&deferred_config_queue, dev);
1398 	return (dev);
1399 }
1400 
1401 device_t
1402 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1403 {
1404 
1405 	return (config_attach_loc(parent, cf, NULL, aux, print));
1406 }
1407 
1408 /*
1409  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1410  * way are silently inserted into the device tree, and their children
1411  * attached.
1412  *
1413  * Note that because pseudo-devices are attached silently, any information
1414  * the attach routine wishes to print should be prefixed with the device
1415  * name by the attach routine.
1416  */
1417 device_t
1418 config_attach_pseudo(cfdata_t cf)
1419 {
1420 	device_t dev;
1421 
1422 	dev = config_devalloc(ROOT, cf, NULL);
1423 	if (!dev)
1424 		return (NULL);
1425 
1426 	/* XXX mark busy in cfdata */
1427 
1428 	config_devlink(dev);
1429 
1430 #if 0	/* XXXJRT not yet */
1431 #ifdef __HAVE_DEVICE_REGISTER
1432 	device_register(dev, NULL);	/* like a root node */
1433 #endif
1434 #endif
1435 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1436 	config_process_deferred(&deferred_config_queue, dev);
1437 	return (dev);
1438 }
1439 
1440 /*
1441  * Detach a device.  Optionally forced (e.g. because of hardware
1442  * removal) and quiet.  Returns zero if successful, non-zero
1443  * (an error code) otherwise.
1444  *
1445  * Note that this code wants to be run from a process context, so
1446  * that the detach can sleep to allow processes which have a device
1447  * open to run and unwind their stacks.
1448  */
1449 int
1450 config_detach(device_t dev, int flags)
1451 {
1452 	struct cftable *ct;
1453 	cfdata_t cf;
1454 	const struct cfattach *ca;
1455 	struct cfdriver *cd;
1456 #ifdef DIAGNOSTIC
1457 	device_t d;
1458 #endif
1459 	int rv = 0;
1460 
1461 #ifdef DIAGNOSTIC
1462 	cf = dev->dv_cfdata;
1463 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1464 	    cf->cf_fstate != FSTATE_STAR)
1465 		panic("config_detach: %s: bad device fstate %d",
1466 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1467 #endif
1468 	cd = dev->dv_cfdriver;
1469 	KASSERT(cd != NULL);
1470 
1471 	ca = dev->dv_cfattach;
1472 	KASSERT(ca != NULL);
1473 
1474 	KASSERT(curlwp != NULL);
1475 	mutex_enter(&alldevs_mtx);
1476 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1477 		;
1478 	else while (alldevs_nread != 0 ||
1479 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1480 		cv_wait(&alldevs_cv, &alldevs_mtx);
1481 	if (alldevs_nwrite++ == 0)
1482 		alldevs_writer = curlwp;
1483 	mutex_exit(&alldevs_mtx);
1484 
1485 	/*
1486 	 * Ensure the device is deactivated.  If the device doesn't
1487 	 * have an activation entry point, we allow DVF_ACTIVE to
1488 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
1489 	 * device is busy, and the detach fails.
1490 	 */
1491 	if (ca->ca_activate != NULL)
1492 		rv = config_deactivate(dev);
1493 
1494 	/*
1495 	 * Try to detach the device.  If that's not possible, then
1496 	 * we either panic() (for the forced but failed case), or
1497 	 * return an error.
1498 	 */
1499 	if (rv == 0) {
1500 		if (ca->ca_detach != NULL)
1501 			rv = (*ca->ca_detach)(dev, flags);
1502 		else
1503 			rv = EOPNOTSUPP;
1504 	}
1505 	if (rv != 0) {
1506 		if ((flags & DETACH_FORCE) == 0)
1507 			goto out;
1508 		else
1509 			panic("config_detach: forced detach of %s failed (%d)",
1510 			    device_xname(dev), rv);
1511 	}
1512 
1513 	/*
1514 	 * The device has now been successfully detached.
1515 	 */
1516 
1517 	/* Let userland know */
1518 	devmon_report_device(dev, false);
1519 
1520 #ifdef DIAGNOSTIC
1521 	/*
1522 	 * Sanity: If you're successfully detached, you should have no
1523 	 * children.  (Note that because children must be attached
1524 	 * after parents, we only need to search the latter part of
1525 	 * the list.)
1526 	 */
1527 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1528 	    d = TAILQ_NEXT(d, dv_list)) {
1529 		if (d->dv_parent == dev) {
1530 			printf("config_detach: detached device %s"
1531 			    " has children %s\n", device_xname(dev), device_xname(d));
1532 			panic("config_detach");
1533 		}
1534 	}
1535 #endif
1536 
1537 	/* notify the parent that the child is gone */
1538 	if (dev->dv_parent) {
1539 		device_t p = dev->dv_parent;
1540 		if (p->dv_cfattach->ca_childdetached)
1541 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1542 	}
1543 
1544 	/*
1545 	 * Mark cfdata to show that the unit can be reused, if possible.
1546 	 */
1547 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1548 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1549 			if (STREQ(cf->cf_name, cd->cd_name)) {
1550 				if (cf->cf_fstate == FSTATE_FOUND &&
1551 				    cf->cf_unit == dev->dv_unit)
1552 					cf->cf_fstate = FSTATE_NOTFOUND;
1553 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1554 				/*
1555 				 * Note that we can only re-use a starred
1556 				 * unit number if the unit being detached
1557 				 * had the last assigned unit number.
1558 				 */
1559 				if (cf->cf_fstate == FSTATE_STAR &&
1560 				    cf->cf_unit == dev->dv_unit + 1)
1561 					cf->cf_unit--;
1562 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1563 			}
1564 		}
1565 	}
1566 
1567 	config_devunlink(dev);
1568 
1569 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1570 		aprint_normal_dev(dev, "detached\n");
1571 
1572 	config_devdealloc(dev);
1573 
1574 out:
1575 	mutex_enter(&alldevs_mtx);
1576 	if (--alldevs_nwrite == 0)
1577 		alldevs_writer = NULL;
1578 	cv_signal(&alldevs_cv);
1579 	mutex_exit(&alldevs_mtx);
1580 	return rv;
1581 }
1582 
1583 int
1584 config_detach_children(device_t parent, int flags)
1585 {
1586 	device_t dv;
1587 	deviter_t di;
1588 	int error = 0;
1589 
1590 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1591 	     dv = deviter_next(&di)) {
1592 		if (device_parent(dv) != parent)
1593 			continue;
1594 		if ((error = config_detach(dv, flags)) != 0)
1595 			break;
1596 	}
1597 	deviter_release(&di);
1598 	return error;
1599 }
1600 
1601 int
1602 config_activate(device_t dev)
1603 {
1604 	const struct cfattach *ca = dev->dv_cfattach;
1605 	int rv = 0, oflags = dev->dv_flags;
1606 
1607 	if (ca->ca_activate == NULL)
1608 		return (EOPNOTSUPP);
1609 
1610 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1611 		dev->dv_flags |= DVF_ACTIVE;
1612 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1613 		if (rv)
1614 			dev->dv_flags = oflags;
1615 	}
1616 	return (rv);
1617 }
1618 
1619 int
1620 config_deactivate(device_t dev)
1621 {
1622 	const struct cfattach *ca = dev->dv_cfattach;
1623 	int rv = 0, oflags = dev->dv_flags;
1624 
1625 	if (ca->ca_activate == NULL)
1626 		return (EOPNOTSUPP);
1627 
1628 	if (dev->dv_flags & DVF_ACTIVE) {
1629 		dev->dv_flags &= ~DVF_ACTIVE;
1630 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1631 		if (rv)
1632 			dev->dv_flags = oflags;
1633 	}
1634 	return (rv);
1635 }
1636 
1637 /*
1638  * Defer the configuration of the specified device until all
1639  * of its parent's devices have been attached.
1640  */
1641 void
1642 config_defer(device_t dev, void (*func)(device_t))
1643 {
1644 	struct deferred_config *dc;
1645 
1646 	if (dev->dv_parent == NULL)
1647 		panic("config_defer: can't defer config of a root device");
1648 
1649 #ifdef DIAGNOSTIC
1650 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1651 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1652 		if (dc->dc_dev == dev)
1653 			panic("config_defer: deferred twice");
1654 	}
1655 #endif
1656 
1657 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1658 	if (dc == NULL)
1659 		panic("config_defer: unable to allocate callback");
1660 
1661 	dc->dc_dev = dev;
1662 	dc->dc_func = func;
1663 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1664 	config_pending_incr();
1665 }
1666 
1667 /*
1668  * Defer some autoconfiguration for a device until after interrupts
1669  * are enabled.
1670  */
1671 void
1672 config_interrupts(device_t dev, void (*func)(device_t))
1673 {
1674 	struct deferred_config *dc;
1675 
1676 	/*
1677 	 * If interrupts are enabled, callback now.
1678 	 */
1679 	if (cold == 0) {
1680 		(*func)(dev);
1681 		return;
1682 	}
1683 
1684 #ifdef DIAGNOSTIC
1685 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1686 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1687 		if (dc->dc_dev == dev)
1688 			panic("config_interrupts: deferred twice");
1689 	}
1690 #endif
1691 
1692 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1693 	if (dc == NULL)
1694 		panic("config_interrupts: unable to allocate callback");
1695 
1696 	dc->dc_dev = dev;
1697 	dc->dc_func = func;
1698 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1699 	config_pending_incr();
1700 }
1701 
1702 /*
1703  * Process a deferred configuration queue.
1704  */
1705 static void
1706 config_process_deferred(struct deferred_config_head *queue,
1707     device_t parent)
1708 {
1709 	struct deferred_config *dc, *ndc;
1710 
1711 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1712 		ndc = TAILQ_NEXT(dc, dc_queue);
1713 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1714 			TAILQ_REMOVE(queue, dc, dc_queue);
1715 			(*dc->dc_func)(dc->dc_dev);
1716 			kmem_free(dc, sizeof(*dc));
1717 			config_pending_decr();
1718 		}
1719 	}
1720 }
1721 
1722 /*
1723  * Manipulate the config_pending semaphore.
1724  */
1725 void
1726 config_pending_incr(void)
1727 {
1728 
1729 	mutex_enter(&config_misc_lock);
1730 	config_pending++;
1731 	mutex_exit(&config_misc_lock);
1732 }
1733 
1734 void
1735 config_pending_decr(void)
1736 {
1737 
1738 #ifdef DIAGNOSTIC
1739 	if (config_pending == 0)
1740 		panic("config_pending_decr: config_pending == 0");
1741 #endif
1742 	mutex_enter(&config_misc_lock);
1743 	config_pending--;
1744 	if (config_pending == 0)
1745 		cv_broadcast(&config_misc_cv);
1746 	mutex_exit(&config_misc_lock);
1747 }
1748 
1749 /*
1750  * Register a "finalization" routine.  Finalization routines are
1751  * called iteratively once all real devices have been found during
1752  * autoconfiguration, for as long as any one finalizer has done
1753  * any work.
1754  */
1755 int
1756 config_finalize_register(device_t dev, int (*fn)(device_t))
1757 {
1758 	struct finalize_hook *f;
1759 
1760 	/*
1761 	 * If finalization has already been done, invoke the
1762 	 * callback function now.
1763 	 */
1764 	if (config_finalize_done) {
1765 		while ((*fn)(dev) != 0)
1766 			/* loop */ ;
1767 	}
1768 
1769 	/* Ensure this isn't already on the list. */
1770 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1771 		if (f->f_func == fn && f->f_dev == dev)
1772 			return (EEXIST);
1773 	}
1774 
1775 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
1776 	f->f_func = fn;
1777 	f->f_dev = dev;
1778 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1779 
1780 	return (0);
1781 }
1782 
1783 void
1784 config_finalize(void)
1785 {
1786 	struct finalize_hook *f;
1787 	struct pdevinit *pdev;
1788 	extern struct pdevinit pdevinit[];
1789 	int errcnt, rv;
1790 
1791 	/*
1792 	 * Now that device driver threads have been created, wait for
1793 	 * them to finish any deferred autoconfiguration.
1794 	 */
1795 	mutex_enter(&config_misc_lock);
1796 	while (config_pending != 0)
1797 		cv_wait(&config_misc_cv, &config_misc_lock);
1798 	mutex_exit(&config_misc_lock);
1799 
1800 	KERNEL_LOCK(1, NULL);
1801 
1802 	/* Attach pseudo-devices. */
1803 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1804 		(*pdev->pdev_attach)(pdev->pdev_count);
1805 
1806 	/* Run the hooks until none of them does any work. */
1807 	do {
1808 		rv = 0;
1809 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1810 			rv |= (*f->f_func)(f->f_dev);
1811 	} while (rv != 0);
1812 
1813 	config_finalize_done = 1;
1814 
1815 	/* Now free all the hooks. */
1816 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1817 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1818 		kmem_free(f, sizeof(*f));
1819 	}
1820 
1821 	KERNEL_UNLOCK_ONE(NULL);
1822 
1823 	errcnt = aprint_get_error_count();
1824 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1825 	    (boothowto & AB_VERBOSE) == 0) {
1826 		if (config_do_twiddle) {
1827 			config_do_twiddle = 0;
1828 			printf_nolog("done.\n");
1829 		}
1830 		if (errcnt != 0) {
1831 			printf("WARNING: %d error%s while detecting hardware; "
1832 			    "check system log.\n", errcnt,
1833 			    errcnt == 1 ? "" : "s");
1834 		}
1835 	}
1836 }
1837 
1838 /*
1839  * device_lookup:
1840  *
1841  *	Look up a device instance for a given driver.
1842  */
1843 device_t
1844 device_lookup(cfdriver_t cd, int unit)
1845 {
1846 
1847 	if (unit < 0 || unit >= cd->cd_ndevs)
1848 		return (NULL);
1849 
1850 	return (cd->cd_devs[unit]);
1851 }
1852 
1853 /*
1854  * device_lookup:
1855  *
1856  *	Look up a device instance for a given driver.
1857  */
1858 void *
1859 device_lookup_private(cfdriver_t cd, int unit)
1860 {
1861 	device_t dv;
1862 
1863 	if (unit < 0 || unit >= cd->cd_ndevs)
1864 		return NULL;
1865 
1866 	if ((dv = cd->cd_devs[unit]) == NULL)
1867 		return NULL;
1868 
1869 	return dv->dv_private;
1870 }
1871 
1872 /*
1873  * Accessor functions for the device_t type.
1874  */
1875 devclass_t
1876 device_class(device_t dev)
1877 {
1878 
1879 	return (dev->dv_class);
1880 }
1881 
1882 cfdata_t
1883 device_cfdata(device_t dev)
1884 {
1885 
1886 	return (dev->dv_cfdata);
1887 }
1888 
1889 cfdriver_t
1890 device_cfdriver(device_t dev)
1891 {
1892 
1893 	return (dev->dv_cfdriver);
1894 }
1895 
1896 cfattach_t
1897 device_cfattach(device_t dev)
1898 {
1899 
1900 	return (dev->dv_cfattach);
1901 }
1902 
1903 int
1904 device_unit(device_t dev)
1905 {
1906 
1907 	return (dev->dv_unit);
1908 }
1909 
1910 const char *
1911 device_xname(device_t dev)
1912 {
1913 
1914 	return (dev->dv_xname);
1915 }
1916 
1917 device_t
1918 device_parent(device_t dev)
1919 {
1920 
1921 	return (dev->dv_parent);
1922 }
1923 
1924 bool
1925 device_is_active(device_t dev)
1926 {
1927 	int active_flags;
1928 
1929 	active_flags = DVF_ACTIVE;
1930 	active_flags |= DVF_CLASS_SUSPENDED;
1931 	active_flags |= DVF_DRIVER_SUSPENDED;
1932 	active_flags |= DVF_BUS_SUSPENDED;
1933 
1934 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1935 }
1936 
1937 bool
1938 device_is_enabled(device_t dev)
1939 {
1940 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1941 }
1942 
1943 bool
1944 device_has_power(device_t dev)
1945 {
1946 	int active_flags;
1947 
1948 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1949 
1950 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1951 }
1952 
1953 int
1954 device_locator(device_t dev, u_int locnum)
1955 {
1956 
1957 	KASSERT(dev->dv_locators != NULL);
1958 	return (dev->dv_locators[locnum]);
1959 }
1960 
1961 void *
1962 device_private(device_t dev)
1963 {
1964 
1965 	/*
1966 	 * The reason why device_private(NULL) is allowed is to simplify the
1967 	 * work of a lot of userspace request handlers (i.e., c/bdev
1968 	 * handlers) which grab cfdriver_t->cd_units[n].
1969 	 * It avoids having them test for it to be NULL and only then calling
1970 	 * device_private.
1971 	 */
1972 	return dev == NULL ? NULL : dev->dv_private;
1973 }
1974 
1975 prop_dictionary_t
1976 device_properties(device_t dev)
1977 {
1978 
1979 	return (dev->dv_properties);
1980 }
1981 
1982 /*
1983  * device_is_a:
1984  *
1985  *	Returns true if the device is an instance of the specified
1986  *	driver.
1987  */
1988 bool
1989 device_is_a(device_t dev, const char *dname)
1990 {
1991 
1992 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1993 }
1994 
1995 /*
1996  * device_find_by_xname:
1997  *
1998  *	Returns the device of the given name or NULL if it doesn't exist.
1999  */
2000 device_t
2001 device_find_by_xname(const char *name)
2002 {
2003 	device_t dv;
2004 	deviter_t di;
2005 
2006 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2007 		if (strcmp(device_xname(dv), name) == 0)
2008 			break;
2009 	}
2010 	deviter_release(&di);
2011 
2012 	return dv;
2013 }
2014 
2015 /*
2016  * device_find_by_driver_unit:
2017  *
2018  *	Returns the device of the given driver name and unit or
2019  *	NULL if it doesn't exist.
2020  */
2021 device_t
2022 device_find_by_driver_unit(const char *name, int unit)
2023 {
2024 	struct cfdriver *cd;
2025 
2026 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2027 		return NULL;
2028 	return device_lookup(cd, unit);
2029 }
2030 
2031 /*
2032  * Power management related functions.
2033  */
2034 
2035 bool
2036 device_pmf_is_registered(device_t dev)
2037 {
2038 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2039 }
2040 
2041 bool
2042 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2043 {
2044 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2045 		return true;
2046 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2047 		return false;
2048 	if (*dev->dv_driver_suspend != NULL &&
2049 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2050 		return false;
2051 
2052 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2053 	return true;
2054 }
2055 
2056 bool
2057 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2058 {
2059 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2060 		return true;
2061 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2062 		return false;
2063 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2064 		return false;
2065 	if (*dev->dv_driver_resume != NULL &&
2066 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2067 		return false;
2068 
2069 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2070 	return true;
2071 }
2072 
2073 bool
2074 device_pmf_driver_shutdown(device_t dev, int how)
2075 {
2076 
2077 	if (*dev->dv_driver_shutdown != NULL &&
2078 	    !(*dev->dv_driver_shutdown)(dev, how))
2079 		return false;
2080 	return true;
2081 }
2082 
2083 bool
2084 device_pmf_driver_register(device_t dev,
2085     bool (*suspend)(device_t PMF_FN_PROTO),
2086     bool (*resume)(device_t PMF_FN_PROTO),
2087     bool (*shutdown)(device_t, int))
2088 {
2089 	pmf_private_t *pp;
2090 
2091 	if ((pp = kmem_zalloc(sizeof(*pp), KM_SLEEP)) == NULL)
2092 		return false;
2093 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2094 	cv_init(&pp->pp_cv, "pmfsusp");
2095 	dev->dv_pmf_private = pp;
2096 
2097 	dev->dv_driver_suspend = suspend;
2098 	dev->dv_driver_resume = resume;
2099 	dev->dv_driver_shutdown = shutdown;
2100 	dev->dv_flags |= DVF_POWER_HANDLERS;
2101 	return true;
2102 }
2103 
2104 static const char *
2105 curlwp_name(void)
2106 {
2107 	if (curlwp->l_name != NULL)
2108 		return curlwp->l_name;
2109 	else
2110 		return curlwp->l_proc->p_comm;
2111 }
2112 
2113 void
2114 device_pmf_driver_deregister(device_t dev)
2115 {
2116 	pmf_private_t *pp = dev->dv_pmf_private;
2117 
2118 	/* XXX avoid crash in case we are not initialized */
2119 	if (!pp)
2120 		return;
2121 
2122 	dev->dv_driver_suspend = NULL;
2123 	dev->dv_driver_resume = NULL;
2124 
2125 	mutex_enter(&pp->pp_mtx);
2126 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2127 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2128 		/* Wake a thread that waits for the lock.  That
2129 		 * thread will fail to acquire the lock, and then
2130 		 * it will wake the next thread that waits for the
2131 		 * lock, or else it will wake us.
2132 		 */
2133 		cv_signal(&pp->pp_cv);
2134 		pmflock_debug(dev, __func__, __LINE__);
2135 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2136 		pmflock_debug(dev, __func__, __LINE__);
2137 	}
2138 	dev->dv_pmf_private = NULL;
2139 	mutex_exit(&pp->pp_mtx);
2140 
2141 	cv_destroy(&pp->pp_cv);
2142 	mutex_destroy(&pp->pp_mtx);
2143 	kmem_free(pp, sizeof(*pp));
2144 }
2145 
2146 bool
2147 device_pmf_driver_child_register(device_t dev)
2148 {
2149 	device_t parent = device_parent(dev);
2150 
2151 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2152 		return true;
2153 	return (*parent->dv_driver_child_register)(dev);
2154 }
2155 
2156 void
2157 device_pmf_driver_set_child_register(device_t dev,
2158     bool (*child_register)(device_t))
2159 {
2160 	dev->dv_driver_child_register = child_register;
2161 }
2162 
2163 void
2164 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2165 {
2166 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2167 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2168 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2169 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2170 }
2171 
2172 bool
2173 device_is_self_suspended(device_t dev)
2174 {
2175 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2176 }
2177 
2178 void
2179 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2180 {
2181 	bool self = (flags & PMF_F_SELF) != 0;
2182 
2183 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2184 
2185 	if (!self)
2186 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2187 	else if (device_is_active(dev))
2188 		dev->dv_flags |= DVF_SELF_SUSPENDED;
2189 
2190 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2191 }
2192 
2193 static void
2194 pmflock_debug(device_t dev, const char *func, int line)
2195 {
2196 	pmf_private_t *pp = device_pmf_private(dev);
2197 
2198 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2199 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2200 	    dev->dv_flags);
2201 }
2202 
2203 static void
2204 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2205 {
2206 	pmf_private_t *pp = device_pmf_private(dev);
2207 
2208 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2209 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2210 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2211 }
2212 
2213 static bool
2214 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2215 {
2216 	pmf_private_t *pp = device_pmf_private(dev);
2217 
2218 	while (device_pmf_is_registered(dev) &&
2219 	    pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
2220 		pp->pp_nwait++;
2221 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2222 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2223 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2224 		pp->pp_nwait--;
2225 	}
2226 	if (!device_pmf_is_registered(dev)) {
2227 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2228 		/* We could not acquire the lock, but some other thread may
2229 		 * wait for it, also.  Wake that thread.
2230 		 */
2231 		cv_signal(&pp->pp_cv);
2232 		return false;
2233 	}
2234 	pp->pp_nlock++;
2235 	pp->pp_holder = curlwp;
2236 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2237 	return true;
2238 }
2239 
2240 bool
2241 device_pmf_lock(device_t dev PMF_FN_ARGS)
2242 {
2243 	bool rc;
2244 	pmf_private_t *pp = device_pmf_private(dev);
2245 
2246 	mutex_enter(&pp->pp_mtx);
2247 	rc = device_pmf_lock1(dev PMF_FN_CALL);
2248 	mutex_exit(&pp->pp_mtx);
2249 
2250 	return rc;
2251 }
2252 
2253 void
2254 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2255 {
2256 	pmf_private_t *pp = device_pmf_private(dev);
2257 
2258 	KASSERT(pp->pp_nlock > 0);
2259 	mutex_enter(&pp->pp_mtx);
2260 	if (--pp->pp_nlock == 0)
2261 		pp->pp_holder = NULL;
2262 	cv_signal(&pp->pp_cv);
2263 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2264 	mutex_exit(&pp->pp_mtx);
2265 }
2266 
2267 void *
2268 device_pmf_private(device_t dev)
2269 {
2270 	return dev->dv_pmf_private;
2271 }
2272 
2273 void *
2274 device_pmf_bus_private(device_t dev)
2275 {
2276 	return dev->dv_bus_private;
2277 }
2278 
2279 bool
2280 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2281 {
2282 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2283 		return true;
2284 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2285 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2286 		return false;
2287 	if (*dev->dv_bus_suspend != NULL &&
2288 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2289 		return false;
2290 
2291 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2292 	return true;
2293 }
2294 
2295 bool
2296 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2297 {
2298 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2299 		return true;
2300 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2301 		return false;
2302 	if (*dev->dv_bus_resume != NULL &&
2303 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2304 		return false;
2305 
2306 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2307 	return true;
2308 }
2309 
2310 bool
2311 device_pmf_bus_shutdown(device_t dev, int how)
2312 {
2313 
2314 	if (*dev->dv_bus_shutdown != NULL &&
2315 	    !(*dev->dv_bus_shutdown)(dev, how))
2316 		return false;
2317 	return true;
2318 }
2319 
2320 void
2321 device_pmf_bus_register(device_t dev, void *priv,
2322     bool (*suspend)(device_t PMF_FN_PROTO),
2323     bool (*resume)(device_t PMF_FN_PROTO),
2324     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2325 {
2326 	dev->dv_bus_private = priv;
2327 	dev->dv_bus_resume = resume;
2328 	dev->dv_bus_suspend = suspend;
2329 	dev->dv_bus_shutdown = shutdown;
2330 	dev->dv_bus_deregister = deregister;
2331 }
2332 
2333 void
2334 device_pmf_bus_deregister(device_t dev)
2335 {
2336 	if (dev->dv_bus_deregister == NULL)
2337 		return;
2338 	(*dev->dv_bus_deregister)(dev);
2339 	dev->dv_bus_private = NULL;
2340 	dev->dv_bus_suspend = NULL;
2341 	dev->dv_bus_resume = NULL;
2342 	dev->dv_bus_deregister = NULL;
2343 }
2344 
2345 void *
2346 device_pmf_class_private(device_t dev)
2347 {
2348 	return dev->dv_class_private;
2349 }
2350 
2351 bool
2352 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2353 {
2354 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2355 		return true;
2356 	if (*dev->dv_class_suspend != NULL &&
2357 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2358 		return false;
2359 
2360 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2361 	return true;
2362 }
2363 
2364 bool
2365 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2366 {
2367 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2368 		return true;
2369 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2370 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2371 		return false;
2372 	if (*dev->dv_class_resume != NULL &&
2373 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2374 		return false;
2375 
2376 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2377 	return true;
2378 }
2379 
2380 void
2381 device_pmf_class_register(device_t dev, void *priv,
2382     bool (*suspend)(device_t PMF_FN_PROTO),
2383     bool (*resume)(device_t PMF_FN_PROTO),
2384     void (*deregister)(device_t))
2385 {
2386 	dev->dv_class_private = priv;
2387 	dev->dv_class_suspend = suspend;
2388 	dev->dv_class_resume = resume;
2389 	dev->dv_class_deregister = deregister;
2390 }
2391 
2392 void
2393 device_pmf_class_deregister(device_t dev)
2394 {
2395 	if (dev->dv_class_deregister == NULL)
2396 		return;
2397 	(*dev->dv_class_deregister)(dev);
2398 	dev->dv_class_private = NULL;
2399 	dev->dv_class_suspend = NULL;
2400 	dev->dv_class_resume = NULL;
2401 	dev->dv_class_deregister = NULL;
2402 }
2403 
2404 bool
2405 device_active(device_t dev, devactive_t type)
2406 {
2407 	size_t i;
2408 
2409 	if (dev->dv_activity_count == 0)
2410 		return false;
2411 
2412 	for (i = 0; i < dev->dv_activity_count; ++i) {
2413 		if (dev->dv_activity_handlers[i] == NULL)
2414 			break;
2415 		(*dev->dv_activity_handlers[i])(dev, type);
2416 	}
2417 
2418 	return true;
2419 }
2420 
2421 bool
2422 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2423 {
2424 	void (**new_handlers)(device_t, devactive_t);
2425 	void (**old_handlers)(device_t, devactive_t);
2426 	size_t i, old_size, new_size;
2427 	int s;
2428 
2429 	old_handlers = dev->dv_activity_handlers;
2430 	old_size = dev->dv_activity_count;
2431 
2432 	for (i = 0; i < old_size; ++i) {
2433 		KASSERT(old_handlers[i] != handler);
2434 		if (old_handlers[i] == NULL) {
2435 			old_handlers[i] = handler;
2436 			return true;
2437 		}
2438 	}
2439 
2440 	new_size = old_size + 4;
2441 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2442 
2443 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2444 	new_handlers[old_size] = handler;
2445 	memset(new_handlers + old_size + 1, 0,
2446 	    sizeof(int [new_size - (old_size+1)]));
2447 
2448 	s = splhigh();
2449 	dev->dv_activity_count = new_size;
2450 	dev->dv_activity_handlers = new_handlers;
2451 	splx(s);
2452 
2453 	if (old_handlers != NULL)
2454 		kmem_free(old_handlers, sizeof(void * [old_size]));
2455 
2456 	return true;
2457 }
2458 
2459 void
2460 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2461 {
2462 	void (**old_handlers)(device_t, devactive_t);
2463 	size_t i, old_size;
2464 	int s;
2465 
2466 	old_handlers = dev->dv_activity_handlers;
2467 	old_size = dev->dv_activity_count;
2468 
2469 	for (i = 0; i < old_size; ++i) {
2470 		if (old_handlers[i] == handler)
2471 			break;
2472 		if (old_handlers[i] == NULL)
2473 			return; /* XXX panic? */
2474 	}
2475 
2476 	if (i == old_size)
2477 		return; /* XXX panic? */
2478 
2479 	for (; i < old_size - 1; ++i) {
2480 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2481 			continue;
2482 
2483 		if (i == 0) {
2484 			s = splhigh();
2485 			dev->dv_activity_count = 0;
2486 			dev->dv_activity_handlers = NULL;
2487 			splx(s);
2488 			kmem_free(old_handlers, sizeof(void *[old_size]));
2489 		}
2490 		return;
2491 	}
2492 	old_handlers[i] = NULL;
2493 }
2494 
2495 /*
2496  * Device Iteration
2497  *
2498  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2499  *     each device_t's in the device tree.
2500  *
2501  * deviter_init(di, flags): initialize the device iterator `di'
2502  *     to "walk" the device tree.  deviter_next(di) will return
2503  *     the first device_t in the device tree, or NULL if there are
2504  *     no devices.
2505  *
2506  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2507  *     caller intends to modify the device tree by calling
2508  *     config_detach(9) on devices in the order that the iterator
2509  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2510  *     nearest the "root" of the device tree to be returned, first;
2511  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2512  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2513  *     indicating both that deviter_init() should not respect any
2514  *     locks on the device tree, and that deviter_next(di) may run
2515  *     in more than one LWP before the walk has finished.
2516  *
2517  *     Only one DEVITER_F_RW iterator may be in the device tree at
2518  *     once.
2519  *
2520  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2521  *
2522  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2523  *     DEVITER_F_LEAVES_FIRST are used in combination.
2524  *
2525  * deviter_first(di, flags): initialize the device iterator `di'
2526  *     and return the first device_t in the device tree, or NULL
2527  *     if there are no devices.  The statement
2528  *
2529  *         dv = deviter_first(di);
2530  *
2531  *     is shorthand for
2532  *
2533  *         deviter_init(di);
2534  *         dv = deviter_next(di);
2535  *
2536  * deviter_next(di): return the next device_t in the device tree,
2537  *     or NULL if there are no more devices.  deviter_next(di)
2538  *     is undefined if `di' was not initialized with deviter_init() or
2539  *     deviter_first().
2540  *
2541  * deviter_release(di): stops iteration (subsequent calls to
2542  *     deviter_next() will return NULL), releases any locks and
2543  *     resources held by the device iterator.
2544  *
2545  * Device iteration does not return device_t's in any particular
2546  * order.  An iterator will never return the same device_t twice.
2547  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2548  * is called repeatedly on the same `di', it will eventually return
2549  * NULL.  It is ok to attach/detach devices during device iteration.
2550  */
2551 void
2552 deviter_init(deviter_t *di, deviter_flags_t flags)
2553 {
2554 	device_t dv;
2555 	bool rw;
2556 
2557 	mutex_enter(&alldevs_mtx);
2558 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2559 		flags |= DEVITER_F_RW;
2560 		alldevs_nwrite++;
2561 		alldevs_writer = NULL;
2562 		alldevs_nread = 0;
2563 	} else {
2564 		rw = (flags & DEVITER_F_RW) != 0;
2565 
2566 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2567 			;
2568 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2569 		       (rw && alldevs_nread != 0))
2570 			cv_wait(&alldevs_cv, &alldevs_mtx);
2571 
2572 		if (rw) {
2573 			if (alldevs_nwrite++ == 0)
2574 				alldevs_writer = curlwp;
2575 		} else
2576 			alldevs_nread++;
2577 	}
2578 	mutex_exit(&alldevs_mtx);
2579 
2580 	memset(di, 0, sizeof(*di));
2581 
2582 	di->di_flags = flags;
2583 
2584 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2585 	case DEVITER_F_LEAVES_FIRST:
2586 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2587 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2588 		break;
2589 	case DEVITER_F_ROOT_FIRST:
2590 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2591 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2592 		break;
2593 	default:
2594 		break;
2595 	}
2596 
2597 	deviter_reinit(di);
2598 }
2599 
2600 static void
2601 deviter_reinit(deviter_t *di)
2602 {
2603 	if ((di->di_flags & DEVITER_F_RW) != 0)
2604 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2605 	else
2606 		di->di_prev = TAILQ_FIRST(&alldevs);
2607 }
2608 
2609 device_t
2610 deviter_first(deviter_t *di, deviter_flags_t flags)
2611 {
2612 	deviter_init(di, flags);
2613 	return deviter_next(di);
2614 }
2615 
2616 static device_t
2617 deviter_next1(deviter_t *di)
2618 {
2619 	device_t dv;
2620 
2621 	dv = di->di_prev;
2622 
2623 	if (dv == NULL)
2624 		;
2625 	else if ((di->di_flags & DEVITER_F_RW) != 0)
2626 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2627 	else
2628 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2629 
2630 	return dv;
2631 }
2632 
2633 device_t
2634 deviter_next(deviter_t *di)
2635 {
2636 	device_t dv = NULL;
2637 
2638 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2639 	case 0:
2640 		return deviter_next1(di);
2641 	case DEVITER_F_LEAVES_FIRST:
2642 		while (di->di_curdepth >= 0) {
2643 			if ((dv = deviter_next1(di)) == NULL) {
2644 				di->di_curdepth--;
2645 				deviter_reinit(di);
2646 			} else if (dv->dv_depth == di->di_curdepth)
2647 				break;
2648 		}
2649 		return dv;
2650 	case DEVITER_F_ROOT_FIRST:
2651 		while (di->di_curdepth <= di->di_maxdepth) {
2652 			if ((dv = deviter_next1(di)) == NULL) {
2653 				di->di_curdepth++;
2654 				deviter_reinit(di);
2655 			} else if (dv->dv_depth == di->di_curdepth)
2656 				break;
2657 		}
2658 		return dv;
2659 	default:
2660 		return NULL;
2661 	}
2662 }
2663 
2664 void
2665 deviter_release(deviter_t *di)
2666 {
2667 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2668 
2669 	mutex_enter(&alldevs_mtx);
2670 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2671 		--alldevs_nwrite;
2672 	else {
2673 
2674 		if (rw) {
2675 			if (--alldevs_nwrite == 0)
2676 				alldevs_writer = NULL;
2677 		} else
2678 			--alldevs_nread;
2679 
2680 		cv_signal(&alldevs_cv);
2681 	}
2682 	mutex_exit(&alldevs_mtx);
2683 }
2684