1 /* $NetBSD: subr_autoconf.c,v 1.196 2010/01/10 13:42:34 martin Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.196 2010/01/10 13:42:34 martin Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/device.h> 88 #include <sys/disklabel.h> 89 #include <sys/conf.h> 90 #include <sys/kauth.h> 91 #include <sys/malloc.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/vnode.h> 102 #include <sys/mount.h> 103 #include <sys/namei.h> 104 #include <sys/unistd.h> 105 #include <sys/fcntl.h> 106 #include <sys/lockf.h> 107 #include <sys/callout.h> 108 #include <sys/devmon.h> 109 #include <sys/cpu.h> 110 #include <sys/sysctl.h> 111 112 #include <sys/disk.h> 113 114 #include <machine/limits.h> 115 116 #if defined(__i386__) && defined(_KERNEL_OPT) 117 #include "opt_splash.h" 118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 119 #include <dev/splash/splash.h> 120 extern struct splash_progress *splash_progress_state; 121 #endif 122 #endif 123 124 /* 125 * Autoconfiguration subroutines. 126 */ 127 128 /* 129 * ioconf.c exports exactly two names: cfdata and cfroots. All system 130 * devices and drivers are found via these tables. 131 */ 132 extern struct cfdata cfdata[]; 133 extern const short cfroots[]; 134 135 /* 136 * List of all cfdriver structures. We use this to detect duplicates 137 * when other cfdrivers are loaded. 138 */ 139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 140 extern struct cfdriver * const cfdriver_list_initial[]; 141 142 /* 143 * Initial list of cfattach's. 144 */ 145 extern const struct cfattachinit cfattachinit[]; 146 147 /* 148 * List of cfdata tables. We always have one such list -- the one 149 * built statically when the kernel was configured. 150 */ 151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 152 static struct cftable initcftable; 153 154 #define ROOT ((device_t)NULL) 155 156 struct matchinfo { 157 cfsubmatch_t fn; 158 struct device *parent; 159 const int *locs; 160 void *aux; 161 struct cfdata *match; 162 int pri; 163 }; 164 165 static char *number(char *, int); 166 static void mapply(struct matchinfo *, cfdata_t); 167 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 168 static void config_devdelete(device_t); 169 static void config_devunlink(device_t, struct devicelist *); 170 static void config_makeroom(int, struct cfdriver *); 171 static void config_devlink(device_t); 172 static void config_alldevs_unlock(int); 173 static int config_alldevs_lock(void); 174 static void config_alldevs_unlock_gc(int); 175 static void pmflock_debug(device_t, const char *, int); 176 177 static device_t deviter_next1(deviter_t *); 178 static void deviter_reinit(deviter_t *); 179 180 struct deferred_config { 181 TAILQ_ENTRY(deferred_config) dc_queue; 182 device_t dc_dev; 183 void (*dc_func)(device_t); 184 }; 185 186 TAILQ_HEAD(deferred_config_head, deferred_config); 187 188 struct deferred_config_head deferred_config_queue = 189 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 190 struct deferred_config_head interrupt_config_queue = 191 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 192 int interrupt_config_threads = 8; 193 194 static void config_process_deferred(struct deferred_config_head *, device_t); 195 196 /* Hooks to finalize configuration once all real devices have been found. */ 197 struct finalize_hook { 198 TAILQ_ENTRY(finalize_hook) f_list; 199 int (*f_func)(device_t); 200 device_t f_dev; 201 }; 202 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 203 TAILQ_HEAD_INITIALIZER(config_finalize_list); 204 static int config_finalize_done; 205 206 /* list of all devices */ 207 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 208 static struct devicelist devs_gclist = TAILQ_HEAD_INITIALIZER(devs_gclist); 209 static kmutex_t alldevs_mtx; 210 static volatile bool alldevs_garbage = false; 211 static volatile devgen_t alldevs_gen = 1; 212 static volatile int alldevs_nread = 0; 213 static volatile int alldevs_nwrite = 0; 214 215 static int config_pending; /* semaphore for mountroot */ 216 static kmutex_t config_misc_lock; 217 static kcondvar_t config_misc_cv; 218 219 static int detachall = 0; 220 221 #define STREQ(s1, s2) \ 222 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 223 224 static bool config_initialized = false; /* config_init() has been called. */ 225 226 static int config_do_twiddle; 227 static callout_t config_twiddle_ch; 228 229 static void sysctl_detach_setup(struct sysctllog **); 230 231 /* 232 * Initialize the autoconfiguration data structures. Normally this 233 * is done by configure(), but some platforms need to do this very 234 * early (to e.g. initialize the console). 235 */ 236 void 237 config_init(void) 238 { 239 const struct cfattachinit *cfai; 240 int i, j; 241 242 KASSERT(config_initialized == false); 243 244 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_HIGH); 245 246 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 247 cv_init(&config_misc_cv, "cfgmisc"); 248 249 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 250 251 /* allcfdrivers is statically initialized. */ 252 for (i = 0; cfdriver_list_initial[i] != NULL; i++) { 253 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) 254 panic("configure: duplicate `%s' drivers", 255 cfdriver_list_initial[i]->cd_name); 256 } 257 258 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { 259 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 260 if (config_cfattach_attach(cfai->cfai_name, 261 cfai->cfai_list[j]) != 0) 262 panic("configure: duplicate `%s' attachment " 263 "of `%s' driver", 264 cfai->cfai_list[j]->ca_name, 265 cfai->cfai_name); 266 } 267 } 268 269 initcftable.ct_cfdata = cfdata; 270 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 271 272 config_initialized = true; 273 } 274 275 void 276 config_init_mi(void) 277 { 278 279 if (!config_initialized) 280 config_init(); 281 282 sysctl_detach_setup(NULL); 283 } 284 285 void 286 config_deferred(device_t dev) 287 { 288 config_process_deferred(&deferred_config_queue, dev); 289 config_process_deferred(&interrupt_config_queue, dev); 290 } 291 292 static void 293 config_interrupts_thread(void *cookie) 294 { 295 struct deferred_config *dc; 296 297 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 298 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 299 (*dc->dc_func)(dc->dc_dev); 300 kmem_free(dc, sizeof(*dc)); 301 config_pending_decr(); 302 } 303 kthread_exit(0); 304 } 305 306 void 307 config_create_interruptthreads() 308 { 309 int i; 310 311 for (i = 0; i < interrupt_config_threads; i++) { 312 (void)kthread_create(PRI_NONE, 0, NULL, 313 config_interrupts_thread, NULL, NULL, "config"); 314 } 315 } 316 317 /* 318 * Announce device attach/detach to userland listeners. 319 */ 320 static void 321 devmon_report_device(device_t dev, bool isattach) 322 { 323 #if NDRVCTL > 0 324 prop_dictionary_t ev; 325 const char *parent; 326 const char *what; 327 device_t pdev = device_parent(dev); 328 329 ev = prop_dictionary_create(); 330 if (ev == NULL) 331 return; 332 333 what = (isattach ? "device-attach" : "device-detach"); 334 parent = (pdev == NULL ? "root" : device_xname(pdev)); 335 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 336 !prop_dictionary_set_cstring(ev, "parent", parent)) { 337 prop_object_release(ev); 338 return; 339 } 340 341 devmon_insert(what, ev); 342 #endif 343 } 344 345 /* 346 * Add a cfdriver to the system. 347 */ 348 int 349 config_cfdriver_attach(struct cfdriver *cd) 350 { 351 struct cfdriver *lcd; 352 353 /* Make sure this driver isn't already in the system. */ 354 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 355 if (STREQ(lcd->cd_name, cd->cd_name)) 356 return EEXIST; 357 } 358 359 LIST_INIT(&cd->cd_attach); 360 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 361 362 return 0; 363 } 364 365 /* 366 * Remove a cfdriver from the system. 367 */ 368 int 369 config_cfdriver_detach(struct cfdriver *cd) 370 { 371 int i, rc = 0, s; 372 373 s = config_alldevs_lock(); 374 /* Make sure there are no active instances. */ 375 for (i = 0; i < cd->cd_ndevs; i++) { 376 if (cd->cd_devs[i] != NULL) { 377 rc = EBUSY; 378 break; 379 } 380 } 381 config_alldevs_unlock_gc(s); 382 383 if (rc != 0) 384 return rc; 385 386 /* ...and no attachments loaded. */ 387 if (LIST_EMPTY(&cd->cd_attach) == 0) 388 return EBUSY; 389 390 LIST_REMOVE(cd, cd_list); 391 392 KASSERT(cd->cd_devs == NULL); 393 394 return 0; 395 } 396 397 /* 398 * Look up a cfdriver by name. 399 */ 400 struct cfdriver * 401 config_cfdriver_lookup(const char *name) 402 { 403 struct cfdriver *cd; 404 405 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 406 if (STREQ(cd->cd_name, name)) 407 return cd; 408 } 409 410 return NULL; 411 } 412 413 /* 414 * Add a cfattach to the specified driver. 415 */ 416 int 417 config_cfattach_attach(const char *driver, struct cfattach *ca) 418 { 419 struct cfattach *lca; 420 struct cfdriver *cd; 421 422 cd = config_cfdriver_lookup(driver); 423 if (cd == NULL) 424 return ESRCH; 425 426 /* Make sure this attachment isn't already on this driver. */ 427 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 428 if (STREQ(lca->ca_name, ca->ca_name)) 429 return EEXIST; 430 } 431 432 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 433 434 return 0; 435 } 436 437 /* 438 * Remove a cfattach from the specified driver. 439 */ 440 int 441 config_cfattach_detach(const char *driver, struct cfattach *ca) 442 { 443 struct cfdriver *cd; 444 device_t dev; 445 int i, rc = 0, s; 446 447 cd = config_cfdriver_lookup(driver); 448 if (cd == NULL) 449 return ESRCH; 450 451 s = config_alldevs_lock(); 452 /* Make sure there are no active instances. */ 453 for (i = 0; i < cd->cd_ndevs; i++) { 454 if ((dev = cd->cd_devs[i]) == NULL) 455 continue; 456 if (dev->dv_cfattach == ca) { 457 rc = EBUSY; 458 break; 459 } 460 } 461 config_alldevs_unlock_gc(s); 462 463 if (rc != 0) 464 return rc; 465 466 LIST_REMOVE(ca, ca_list); 467 468 return 0; 469 } 470 471 /* 472 * Look up a cfattach by name. 473 */ 474 static struct cfattach * 475 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 476 { 477 struct cfattach *ca; 478 479 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 480 if (STREQ(ca->ca_name, atname)) 481 return ca; 482 } 483 484 return NULL; 485 } 486 487 /* 488 * Look up a cfattach by driver/attachment name. 489 */ 490 struct cfattach * 491 config_cfattach_lookup(const char *name, const char *atname) 492 { 493 struct cfdriver *cd; 494 495 cd = config_cfdriver_lookup(name); 496 if (cd == NULL) 497 return NULL; 498 499 return config_cfattach_lookup_cd(cd, atname); 500 } 501 502 /* 503 * Apply the matching function and choose the best. This is used 504 * a few times and we want to keep the code small. 505 */ 506 static void 507 mapply(struct matchinfo *m, cfdata_t cf) 508 { 509 int pri; 510 511 if (m->fn != NULL) { 512 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 513 } else { 514 pri = config_match(m->parent, cf, m->aux); 515 } 516 if (pri > m->pri) { 517 m->match = cf; 518 m->pri = pri; 519 } 520 } 521 522 int 523 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 524 { 525 const struct cfiattrdata *ci; 526 const struct cflocdesc *cl; 527 int nlocs, i; 528 529 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver); 530 KASSERT(ci); 531 nlocs = ci->ci_loclen; 532 KASSERT(!nlocs || locs); 533 for (i = 0; i < nlocs; i++) { 534 cl = &ci->ci_locdesc[i]; 535 /* !cld_defaultstr means no default value */ 536 if ((!(cl->cld_defaultstr) 537 || (cf->cf_loc[i] != cl->cld_default)) 538 && cf->cf_loc[i] != locs[i]) 539 return 0; 540 } 541 542 return config_match(parent, cf, aux); 543 } 544 545 /* 546 * Helper function: check whether the driver supports the interface attribute 547 * and return its descriptor structure. 548 */ 549 static const struct cfiattrdata * 550 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 551 { 552 const struct cfiattrdata * const *cpp; 553 554 if (cd->cd_attrs == NULL) 555 return 0; 556 557 for (cpp = cd->cd_attrs; *cpp; cpp++) { 558 if (STREQ((*cpp)->ci_name, ia)) { 559 /* Match. */ 560 return *cpp; 561 } 562 } 563 return 0; 564 } 565 566 /* 567 * Lookup an interface attribute description by name. 568 * If the driver is given, consider only its supported attributes. 569 */ 570 const struct cfiattrdata * 571 cfiattr_lookup(const char *name, const struct cfdriver *cd) 572 { 573 const struct cfdriver *d; 574 const struct cfiattrdata *ia; 575 576 if (cd) 577 return cfdriver_get_iattr(cd, name); 578 579 LIST_FOREACH(d, &allcfdrivers, cd_list) { 580 ia = cfdriver_get_iattr(d, name); 581 if (ia) 582 return ia; 583 } 584 return 0; 585 } 586 587 /* 588 * Determine if `parent' is a potential parent for a device spec based 589 * on `cfp'. 590 */ 591 static int 592 cfparent_match(const device_t parent, const struct cfparent *cfp) 593 { 594 struct cfdriver *pcd; 595 596 /* We don't match root nodes here. */ 597 if (cfp == NULL) 598 return 0; 599 600 pcd = parent->dv_cfdriver; 601 KASSERT(pcd != NULL); 602 603 /* 604 * First, ensure this parent has the correct interface 605 * attribute. 606 */ 607 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 608 return 0; 609 610 /* 611 * If no specific parent device instance was specified (i.e. 612 * we're attaching to the attribute only), we're done! 613 */ 614 if (cfp->cfp_parent == NULL) 615 return 1; 616 617 /* 618 * Check the parent device's name. 619 */ 620 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 621 return 0; /* not the same parent */ 622 623 /* 624 * Make sure the unit number matches. 625 */ 626 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 627 cfp->cfp_unit == parent->dv_unit) 628 return 1; 629 630 /* Unit numbers don't match. */ 631 return 0; 632 } 633 634 /* 635 * Helper for config_cfdata_attach(): check all devices whether it could be 636 * parent any attachment in the config data table passed, and rescan. 637 */ 638 static void 639 rescan_with_cfdata(const struct cfdata *cf) 640 { 641 device_t d; 642 const struct cfdata *cf1; 643 deviter_t di; 644 645 646 /* 647 * "alldevs" is likely longer than a modules's cfdata, so make it 648 * the outer loop. 649 */ 650 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 651 652 if (!(d->dv_cfattach->ca_rescan)) 653 continue; 654 655 for (cf1 = cf; cf1->cf_name; cf1++) { 656 657 if (!cfparent_match(d, cf1->cf_pspec)) 658 continue; 659 660 (*d->dv_cfattach->ca_rescan)(d, 661 cf1->cf_pspec->cfp_iattr, cf1->cf_loc); 662 } 663 } 664 deviter_release(&di); 665 } 666 667 /* 668 * Attach a supplemental config data table and rescan potential 669 * parent devices if required. 670 */ 671 int 672 config_cfdata_attach(cfdata_t cf, int scannow) 673 { 674 struct cftable *ct; 675 676 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 677 ct->ct_cfdata = cf; 678 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 679 680 if (scannow) 681 rescan_with_cfdata(cf); 682 683 return 0; 684 } 685 686 /* 687 * Helper for config_cfdata_detach: check whether a device is 688 * found through any attachment in the config data table. 689 */ 690 static int 691 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 692 { 693 const struct cfdata *cf1; 694 695 for (cf1 = cf; cf1->cf_name; cf1++) 696 if (d->dv_cfdata == cf1) 697 return 1; 698 699 return 0; 700 } 701 702 /* 703 * Detach a supplemental config data table. Detach all devices found 704 * through that table (and thus keeping references to it) before. 705 */ 706 int 707 config_cfdata_detach(cfdata_t cf) 708 { 709 device_t d; 710 int error = 0; 711 struct cftable *ct; 712 deviter_t di; 713 714 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 715 d = deviter_next(&di)) { 716 if (!dev_in_cfdata(d, cf)) 717 continue; 718 if ((error = config_detach(d, 0)) != 0) 719 break; 720 } 721 deviter_release(&di); 722 if (error) { 723 aprint_error_dev(d, "unable to detach instance\n"); 724 return error; 725 } 726 727 TAILQ_FOREACH(ct, &allcftables, ct_list) { 728 if (ct->ct_cfdata == cf) { 729 TAILQ_REMOVE(&allcftables, ct, ct_list); 730 kmem_free(ct, sizeof(*ct)); 731 return 0; 732 } 733 } 734 735 /* not found -- shouldn't happen */ 736 return EINVAL; 737 } 738 739 /* 740 * Invoke the "match" routine for a cfdata entry on behalf of 741 * an external caller, usually a "submatch" routine. 742 */ 743 int 744 config_match(device_t parent, cfdata_t cf, void *aux) 745 { 746 struct cfattach *ca; 747 748 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 749 if (ca == NULL) { 750 /* No attachment for this entry, oh well. */ 751 return 0; 752 } 753 754 return (*ca->ca_match)(parent, cf, aux); 755 } 756 757 /* 758 * Iterate over all potential children of some device, calling the given 759 * function (default being the child's match function) for each one. 760 * Nonzero returns are matches; the highest value returned is considered 761 * the best match. Return the `found child' if we got a match, or NULL 762 * otherwise. The `aux' pointer is simply passed on through. 763 * 764 * Note that this function is designed so that it can be used to apply 765 * an arbitrary function to all potential children (its return value 766 * can be ignored). 767 */ 768 cfdata_t 769 config_search_loc(cfsubmatch_t fn, device_t parent, 770 const char *ifattr, const int *locs, void *aux) 771 { 772 struct cftable *ct; 773 cfdata_t cf; 774 struct matchinfo m; 775 776 KASSERT(config_initialized); 777 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 778 779 m.fn = fn; 780 m.parent = parent; 781 m.locs = locs; 782 m.aux = aux; 783 m.match = NULL; 784 m.pri = 0; 785 786 TAILQ_FOREACH(ct, &allcftables, ct_list) { 787 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 788 789 /* We don't match root nodes here. */ 790 if (!cf->cf_pspec) 791 continue; 792 793 /* 794 * Skip cf if no longer eligible, otherwise scan 795 * through parents for one matching `parent', and 796 * try match function. 797 */ 798 if (cf->cf_fstate == FSTATE_FOUND) 799 continue; 800 if (cf->cf_fstate == FSTATE_DNOTFOUND || 801 cf->cf_fstate == FSTATE_DSTAR) 802 continue; 803 804 /* 805 * If an interface attribute was specified, 806 * consider only children which attach to 807 * that attribute. 808 */ 809 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr)) 810 continue; 811 812 if (cfparent_match(parent, cf->cf_pspec)) 813 mapply(&m, cf); 814 } 815 } 816 return m.match; 817 } 818 819 cfdata_t 820 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 821 void *aux) 822 { 823 824 return config_search_loc(fn, parent, ifattr, NULL, aux); 825 } 826 827 /* 828 * Find the given root device. 829 * This is much like config_search, but there is no parent. 830 * Don't bother with multiple cfdata tables; the root node 831 * must always be in the initial table. 832 */ 833 cfdata_t 834 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 835 { 836 cfdata_t cf; 837 const short *p; 838 struct matchinfo m; 839 840 m.fn = fn; 841 m.parent = ROOT; 842 m.aux = aux; 843 m.match = NULL; 844 m.pri = 0; 845 m.locs = 0; 846 /* 847 * Look at root entries for matching name. We do not bother 848 * with found-state here since only one root should ever be 849 * searched (and it must be done first). 850 */ 851 for (p = cfroots; *p >= 0; p++) { 852 cf = &cfdata[*p]; 853 if (strcmp(cf->cf_name, rootname) == 0) 854 mapply(&m, cf); 855 } 856 return m.match; 857 } 858 859 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 860 861 /* 862 * The given `aux' argument describes a device that has been found 863 * on the given parent, but not necessarily configured. Locate the 864 * configuration data for that device (using the submatch function 865 * provided, or using candidates' cd_match configuration driver 866 * functions) and attach it, and return true. If the device was 867 * not configured, call the given `print' function and return 0. 868 */ 869 device_t 870 config_found_sm_loc(device_t parent, 871 const char *ifattr, const int *locs, void *aux, 872 cfprint_t print, cfsubmatch_t submatch) 873 { 874 cfdata_t cf; 875 876 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 877 if (splash_progress_state) 878 splash_progress_update(splash_progress_state); 879 #endif 880 881 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 882 return(config_attach_loc(parent, cf, locs, aux, print)); 883 if (print) { 884 if (config_do_twiddle && cold) 885 twiddle(); 886 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 887 } 888 889 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 890 if (splash_progress_state) 891 splash_progress_update(splash_progress_state); 892 #endif 893 894 return NULL; 895 } 896 897 device_t 898 config_found_ia(device_t parent, const char *ifattr, void *aux, 899 cfprint_t print) 900 { 901 902 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 903 } 904 905 device_t 906 config_found(device_t parent, void *aux, cfprint_t print) 907 { 908 909 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 910 } 911 912 /* 913 * As above, but for root devices. 914 */ 915 device_t 916 config_rootfound(const char *rootname, void *aux) 917 { 918 cfdata_t cf; 919 920 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 921 return config_attach(ROOT, cf, aux, (cfprint_t)NULL); 922 aprint_error("root device %s not configured\n", rootname); 923 return NULL; 924 } 925 926 /* just like sprintf(buf, "%d") except that it works from the end */ 927 static char * 928 number(char *ep, int n) 929 { 930 931 *--ep = 0; 932 while (n >= 10) { 933 *--ep = (n % 10) + '0'; 934 n /= 10; 935 } 936 *--ep = n + '0'; 937 return ep; 938 } 939 940 /* 941 * Expand the size of the cd_devs array if necessary. 942 * 943 * The caller must hold alldevs_mtx. config_makeroom() may release and 944 * re-acquire alldevs_mtx, so callers should re-check conditions such 945 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 946 * returns. 947 */ 948 static void 949 config_makeroom(int n, struct cfdriver *cd) 950 { 951 int old, new; 952 device_t *osp, *nsp; 953 954 alldevs_nwrite++; 955 956 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new) 957 ; 958 959 while (n >= cd->cd_ndevs) { 960 /* 961 * Need to expand the array. 962 */ 963 old = cd->cd_ndevs; 964 osp = cd->cd_devs; 965 966 /* Release alldevs_mtx around allocation, which may 967 * sleep. 968 */ 969 mutex_exit(&alldevs_mtx); 970 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP); 971 if (nsp == NULL) 972 panic("%s: could not expand cd_devs", __func__); 973 mutex_enter(&alldevs_mtx); 974 975 /* If another thread moved the array while we did 976 * not hold alldevs_mtx, try again. 977 */ 978 if (cd->cd_devs != osp) { 979 kmem_free(nsp, sizeof(device_t[new])); 980 continue; 981 } 982 983 memset(nsp + old, 0, sizeof(device_t[new - old])); 984 if (old != 0) 985 memcpy(nsp, cd->cd_devs, sizeof(device_t[old])); 986 987 cd->cd_ndevs = new; 988 cd->cd_devs = nsp; 989 if (old != 0) 990 kmem_free(osp, sizeof(device_t[old])); 991 } 992 alldevs_nwrite--; 993 } 994 995 /* 996 * Put dev into the devices list. 997 */ 998 static void 999 config_devlink(device_t dev) 1000 { 1001 int s; 1002 1003 s = config_alldevs_lock(); 1004 1005 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1006 1007 dev->dv_add_gen = alldevs_gen; 1008 /* It is safe to add a device to the tail of the list while 1009 * readers and writers are in the list. 1010 */ 1011 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1012 config_alldevs_unlock(s); 1013 } 1014 1015 static void 1016 config_devfree(device_t dev) 1017 { 1018 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1019 1020 if (dev->dv_cfattach->ca_devsize > 0) 1021 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1022 if (priv) 1023 kmem_free(dev, sizeof(*dev)); 1024 } 1025 1026 /* 1027 * config_devunlink: unlink the device and put into the garbage list. 1028 * 1029 * => caller must hold alldevs_mtx. 1030 */ 1031 static void 1032 config_devunlink(device_t dev, struct devicelist *garbage) 1033 { 1034 struct device_garbage *dg = &dev->dv_garbage; 1035 cfdriver_t cd = device_cfdriver(dev); 1036 int i; 1037 1038 KASSERT(mutex_owned(&alldevs_mtx)); 1039 1040 /* Unlink from device list. Link to garbage list. */ 1041 TAILQ_REMOVE(&alldevs, dev, dv_list); 1042 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1043 1044 /* Remove from cfdriver's array. */ 1045 cd->cd_devs[dev->dv_unit] = NULL; 1046 1047 /* 1048 * If the device now has no units in use, unlink its softc array. 1049 */ 1050 for (i = 0; i < cd->cd_ndevs; i++) { 1051 if (cd->cd_devs[i] != NULL) 1052 break; 1053 } 1054 /* Nothing found. Unlink, now. Deallocate, later. */ 1055 if (i == cd->cd_ndevs) { 1056 dg->dg_ndevs = cd->cd_ndevs; 1057 dg->dg_devs = cd->cd_devs; 1058 cd->cd_devs = NULL; 1059 cd->cd_ndevs = 0; 1060 } 1061 } 1062 1063 static void 1064 config_devdelete(device_t dev) 1065 { 1066 struct device_garbage *dg = &dev->dv_garbage; 1067 device_lock_t dvl = device_getlock(dev); 1068 1069 if (dg->dg_devs != NULL) 1070 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1071 1072 cv_destroy(&dvl->dvl_cv); 1073 mutex_destroy(&dvl->dvl_mtx); 1074 1075 KASSERT(dev->dv_properties != NULL); 1076 prop_object_release(dev->dv_properties); 1077 1078 KASSERT(dev->dv_activity_handlers == NULL); 1079 1080 if (dev->dv_locators) { 1081 size_t amount = *--dev->dv_locators; 1082 kmem_free(dev->dv_locators, amount); 1083 } 1084 config_devfree(dev); 1085 } 1086 1087 static int 1088 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1089 { 1090 int unit; 1091 1092 if (cf->cf_fstate == FSTATE_STAR) { 1093 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1094 if (cd->cd_devs[unit] == NULL) 1095 break; 1096 /* 1097 * unit is now the unit of the first NULL device pointer, 1098 * or max(cd->cd_ndevs,cf->cf_unit). 1099 */ 1100 } else { 1101 unit = cf->cf_unit; 1102 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1103 unit = -1; 1104 } 1105 return unit; 1106 } 1107 1108 static int 1109 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1110 { 1111 int s, unit; 1112 1113 s = config_alldevs_lock(); 1114 for (;;) { 1115 unit = config_unit_nextfree(cd, cf); 1116 if (unit == -1) 1117 break; 1118 if (unit < cd->cd_ndevs) { 1119 cd->cd_devs[unit] = dev; 1120 dev->dv_unit = unit; 1121 break; 1122 } 1123 config_makeroom(unit, cd); 1124 } 1125 config_alldevs_unlock_gc(s); 1126 1127 return unit; 1128 } 1129 1130 static device_t 1131 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1132 { 1133 cfdriver_t cd; 1134 cfattach_t ca; 1135 size_t lname, lunit; 1136 const char *xunit; 1137 int myunit; 1138 char num[10]; 1139 device_t dev; 1140 void *dev_private; 1141 const struct cfiattrdata *ia; 1142 device_lock_t dvl; 1143 1144 cd = config_cfdriver_lookup(cf->cf_name); 1145 if (cd == NULL) 1146 return NULL; 1147 1148 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1149 if (ca == NULL) 1150 return NULL; 1151 1152 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1153 ca->ca_devsize < sizeof(struct device)) 1154 panic("config_devalloc: %s", cf->cf_atname); 1155 1156 /* get memory for all device vars */ 1157 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1158 if (ca->ca_devsize > 0) { 1159 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1160 if (dev_private == NULL) 1161 panic("config_devalloc: memory allocation for device softc failed"); 1162 } else { 1163 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1164 dev_private = NULL; 1165 } 1166 1167 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1168 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1169 } else { 1170 dev = dev_private; 1171 } 1172 if (dev == NULL) 1173 panic("config_devalloc: memory allocation for device_t failed"); 1174 1175 myunit = config_unit_alloc(dev, cd, cf); 1176 if (myunit == -1) { 1177 config_devfree(dev); 1178 return NULL; 1179 } 1180 1181 /* compute length of name and decimal expansion of unit number */ 1182 lname = strlen(cd->cd_name); 1183 xunit = number(&num[sizeof(num)], myunit); 1184 lunit = &num[sizeof(num)] - xunit; 1185 if (lname + lunit > sizeof(dev->dv_xname)) 1186 panic("config_devalloc: device name too long"); 1187 1188 dvl = device_getlock(dev); 1189 1190 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1191 cv_init(&dvl->dvl_cv, "pmfsusp"); 1192 1193 dev->dv_class = cd->cd_class; 1194 dev->dv_cfdata = cf; 1195 dev->dv_cfdriver = cd; 1196 dev->dv_cfattach = ca; 1197 dev->dv_activity_count = 0; 1198 dev->dv_activity_handlers = NULL; 1199 dev->dv_private = dev_private; 1200 memcpy(dev->dv_xname, cd->cd_name, lname); 1201 memcpy(dev->dv_xname + lname, xunit, lunit); 1202 dev->dv_parent = parent; 1203 if (parent != NULL) 1204 dev->dv_depth = parent->dv_depth + 1; 1205 else 1206 dev->dv_depth = 0; 1207 dev->dv_flags = DVF_ACTIVE; /* always initially active */ 1208 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */ 1209 if (locs) { 1210 KASSERT(parent); /* no locators at root */ 1211 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr, 1212 parent->dv_cfdriver); 1213 dev->dv_locators = 1214 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1215 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1216 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1217 } 1218 dev->dv_properties = prop_dictionary_create(); 1219 KASSERT(dev->dv_properties != NULL); 1220 1221 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1222 "device-driver", dev->dv_cfdriver->cd_name); 1223 prop_dictionary_set_uint16(dev->dv_properties, 1224 "device-unit", dev->dv_unit); 1225 1226 return dev; 1227 } 1228 1229 /* 1230 * Attach a found device. 1231 */ 1232 device_t 1233 config_attach_loc(device_t parent, cfdata_t cf, 1234 const int *locs, void *aux, cfprint_t print) 1235 { 1236 device_t dev; 1237 struct cftable *ct; 1238 const char *drvname; 1239 1240 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1241 if (splash_progress_state) 1242 splash_progress_update(splash_progress_state); 1243 #endif 1244 1245 dev = config_devalloc(parent, cf, locs); 1246 if (!dev) 1247 panic("config_attach: allocation of device softc failed"); 1248 1249 /* XXX redundant - see below? */ 1250 if (cf->cf_fstate != FSTATE_STAR) { 1251 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1252 cf->cf_fstate = FSTATE_FOUND; 1253 } 1254 1255 config_devlink(dev); 1256 1257 if (config_do_twiddle && cold) 1258 twiddle(); 1259 else 1260 aprint_naive("Found "); 1261 /* 1262 * We want the next two printfs for normal, verbose, and quiet, 1263 * but not silent (in which case, we're twiddling, instead). 1264 */ 1265 if (parent == ROOT) { 1266 aprint_naive("%s (root)", device_xname(dev)); 1267 aprint_normal("%s (root)", device_xname(dev)); 1268 } else { 1269 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1270 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1271 if (print) 1272 (void) (*print)(aux, NULL); 1273 } 1274 1275 /* 1276 * Before attaching, clobber any unfound devices that are 1277 * otherwise identical. 1278 * XXX code above is redundant? 1279 */ 1280 drvname = dev->dv_cfdriver->cd_name; 1281 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1282 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1283 if (STREQ(cf->cf_name, drvname) && 1284 cf->cf_unit == dev->dv_unit) { 1285 if (cf->cf_fstate == FSTATE_NOTFOUND) 1286 cf->cf_fstate = FSTATE_FOUND; 1287 } 1288 } 1289 } 1290 #ifdef __HAVE_DEVICE_REGISTER 1291 device_register(dev, aux); 1292 #endif 1293 1294 /* Let userland know */ 1295 devmon_report_device(dev, true); 1296 1297 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1298 if (splash_progress_state) 1299 splash_progress_update(splash_progress_state); 1300 #endif 1301 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1302 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1303 if (splash_progress_state) 1304 splash_progress_update(splash_progress_state); 1305 #endif 1306 1307 if (!device_pmf_is_registered(dev)) 1308 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1309 1310 config_process_deferred(&deferred_config_queue, dev); 1311 1312 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG 1313 device_register_post_config(dev, aux); 1314 #endif 1315 return dev; 1316 } 1317 1318 device_t 1319 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1320 { 1321 1322 return config_attach_loc(parent, cf, NULL, aux, print); 1323 } 1324 1325 /* 1326 * As above, but for pseudo-devices. Pseudo-devices attached in this 1327 * way are silently inserted into the device tree, and their children 1328 * attached. 1329 * 1330 * Note that because pseudo-devices are attached silently, any information 1331 * the attach routine wishes to print should be prefixed with the device 1332 * name by the attach routine. 1333 */ 1334 device_t 1335 config_attach_pseudo(cfdata_t cf) 1336 { 1337 device_t dev; 1338 1339 dev = config_devalloc(ROOT, cf, NULL); 1340 if (!dev) 1341 return NULL; 1342 1343 /* XXX mark busy in cfdata */ 1344 1345 if (cf->cf_fstate != FSTATE_STAR) { 1346 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1347 cf->cf_fstate = FSTATE_FOUND; 1348 } 1349 1350 config_devlink(dev); 1351 1352 #if 0 /* XXXJRT not yet */ 1353 #ifdef __HAVE_DEVICE_REGISTER 1354 device_register(dev, NULL); /* like a root node */ 1355 #endif 1356 #endif 1357 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1358 config_process_deferred(&deferred_config_queue, dev); 1359 return dev; 1360 } 1361 1362 /* 1363 * Detach a device. Optionally forced (e.g. because of hardware 1364 * removal) and quiet. Returns zero if successful, non-zero 1365 * (an error code) otherwise. 1366 * 1367 * Note that this code wants to be run from a process context, so 1368 * that the detach can sleep to allow processes which have a device 1369 * open to run and unwind their stacks. 1370 */ 1371 int 1372 config_detach(device_t dev, int flags) 1373 { 1374 struct cftable *ct; 1375 cfdata_t cf; 1376 const struct cfattach *ca; 1377 struct cfdriver *cd; 1378 #ifdef DIAGNOSTIC 1379 device_t d; 1380 #endif 1381 int rv = 0, s; 1382 1383 #ifdef DIAGNOSTIC 1384 cf = dev->dv_cfdata; 1385 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1386 cf->cf_fstate != FSTATE_STAR) 1387 panic("config_detach: %s: bad device fstate %d", 1388 device_xname(dev), cf ? cf->cf_fstate : -1); 1389 #endif 1390 cd = dev->dv_cfdriver; 1391 KASSERT(cd != NULL); 1392 1393 ca = dev->dv_cfattach; 1394 KASSERT(ca != NULL); 1395 1396 s = config_alldevs_lock(); 1397 if (dev->dv_del_gen != 0) { 1398 config_alldevs_unlock(s); 1399 #ifdef DIAGNOSTIC 1400 printf("%s: %s is already detached\n", __func__, 1401 device_xname(dev)); 1402 #endif /* DIAGNOSTIC */ 1403 return ENOENT; 1404 } 1405 alldevs_nwrite++; 1406 config_alldevs_unlock(s); 1407 1408 if (!detachall && 1409 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1410 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1411 rv = EOPNOTSUPP; 1412 } else if (ca->ca_detach != NULL) { 1413 rv = (*ca->ca_detach)(dev, flags); 1414 } else 1415 rv = EOPNOTSUPP; 1416 1417 /* 1418 * If it was not possible to detach the device, then we either 1419 * panic() (for the forced but failed case), or return an error. 1420 * 1421 * If it was possible to detach the device, ensure that the 1422 * device is deactivated. 1423 */ 1424 if (rv == 0) 1425 dev->dv_flags &= ~DVF_ACTIVE; 1426 else if ((flags & DETACH_FORCE) == 0) 1427 goto out; 1428 else { 1429 panic("config_detach: forced detach of %s failed (%d)", 1430 device_xname(dev), rv); 1431 } 1432 1433 /* 1434 * The device has now been successfully detached. 1435 */ 1436 1437 /* Let userland know */ 1438 devmon_report_device(dev, false); 1439 1440 #ifdef DIAGNOSTIC 1441 /* 1442 * Sanity: If you're successfully detached, you should have no 1443 * children. (Note that because children must be attached 1444 * after parents, we only need to search the latter part of 1445 * the list.) 1446 */ 1447 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1448 d = TAILQ_NEXT(d, dv_list)) { 1449 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1450 printf("config_detach: detached device %s" 1451 " has children %s\n", device_xname(dev), device_xname(d)); 1452 panic("config_detach"); 1453 } 1454 } 1455 #endif 1456 1457 /* notify the parent that the child is gone */ 1458 if (dev->dv_parent) { 1459 device_t p = dev->dv_parent; 1460 if (p->dv_cfattach->ca_childdetached) 1461 (*p->dv_cfattach->ca_childdetached)(p, dev); 1462 } 1463 1464 /* 1465 * Mark cfdata to show that the unit can be reused, if possible. 1466 */ 1467 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1468 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1469 if (STREQ(cf->cf_name, cd->cd_name)) { 1470 if (cf->cf_fstate == FSTATE_FOUND && 1471 cf->cf_unit == dev->dv_unit) 1472 cf->cf_fstate = FSTATE_NOTFOUND; 1473 } 1474 } 1475 } 1476 1477 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1478 aprint_normal_dev(dev, "detached\n"); 1479 1480 out: 1481 s = config_alldevs_lock(); 1482 KASSERT(alldevs_nwrite != 0); 1483 --alldevs_nwrite; 1484 if (rv == 0 && dev->dv_del_gen == 0) { 1485 dev->dv_del_gen = alldevs_gen; 1486 alldevs_garbage = true; 1487 } 1488 config_alldevs_unlock_gc(s); 1489 1490 return rv; 1491 } 1492 1493 int 1494 config_detach_children(device_t parent, int flags) 1495 { 1496 device_t dv; 1497 deviter_t di; 1498 int error = 0; 1499 1500 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1501 dv = deviter_next(&di)) { 1502 if (device_parent(dv) != parent) 1503 continue; 1504 if ((error = config_detach(dv, flags)) != 0) 1505 break; 1506 } 1507 deviter_release(&di); 1508 return error; 1509 } 1510 1511 device_t 1512 shutdown_first(struct shutdown_state *s) 1513 { 1514 if (!s->initialized) { 1515 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1516 s->initialized = true; 1517 } 1518 return shutdown_next(s); 1519 } 1520 1521 device_t 1522 shutdown_next(struct shutdown_state *s) 1523 { 1524 device_t dv; 1525 1526 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1527 ; 1528 1529 if (dv == NULL) 1530 s->initialized = false; 1531 1532 return dv; 1533 } 1534 1535 bool 1536 config_detach_all(int how) 1537 { 1538 static struct shutdown_state s; 1539 device_t curdev; 1540 bool progress = false; 1541 1542 if ((how & RB_NOSYNC) != 0) 1543 return false; 1544 1545 for (curdev = shutdown_first(&s); curdev != NULL; 1546 curdev = shutdown_next(&s)) { 1547 aprint_debug(" detaching %s, ", device_xname(curdev)); 1548 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1549 progress = true; 1550 aprint_debug("success."); 1551 } else 1552 aprint_debug("failed."); 1553 } 1554 return progress; 1555 } 1556 1557 static bool 1558 device_is_ancestor_of(device_t ancestor, device_t descendant) 1559 { 1560 device_t dv; 1561 1562 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1563 if (device_parent(dv) == ancestor) 1564 return true; 1565 } 1566 return false; 1567 } 1568 1569 int 1570 config_deactivate(device_t dev) 1571 { 1572 deviter_t di; 1573 const struct cfattach *ca; 1574 device_t descendant; 1575 int s, rv = 0, oflags; 1576 1577 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1578 descendant != NULL; 1579 descendant = deviter_next(&di)) { 1580 if (dev != descendant && 1581 !device_is_ancestor_of(dev, descendant)) 1582 continue; 1583 1584 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1585 continue; 1586 1587 ca = descendant->dv_cfattach; 1588 oflags = descendant->dv_flags; 1589 1590 descendant->dv_flags &= ~DVF_ACTIVE; 1591 if (ca->ca_activate == NULL) 1592 continue; 1593 s = splhigh(); 1594 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1595 splx(s); 1596 if (rv != 0) 1597 descendant->dv_flags = oflags; 1598 } 1599 deviter_release(&di); 1600 return rv; 1601 } 1602 1603 /* 1604 * Defer the configuration of the specified device until all 1605 * of its parent's devices have been attached. 1606 */ 1607 void 1608 config_defer(device_t dev, void (*func)(device_t)) 1609 { 1610 struct deferred_config *dc; 1611 1612 if (dev->dv_parent == NULL) 1613 panic("config_defer: can't defer config of a root device"); 1614 1615 #ifdef DIAGNOSTIC 1616 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1617 if (dc->dc_dev == dev) 1618 panic("config_defer: deferred twice"); 1619 } 1620 #endif 1621 1622 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1623 if (dc == NULL) 1624 panic("config_defer: unable to allocate callback"); 1625 1626 dc->dc_dev = dev; 1627 dc->dc_func = func; 1628 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1629 config_pending_incr(); 1630 } 1631 1632 /* 1633 * Defer some autoconfiguration for a device until after interrupts 1634 * are enabled. 1635 */ 1636 void 1637 config_interrupts(device_t dev, void (*func)(device_t)) 1638 { 1639 struct deferred_config *dc; 1640 1641 /* 1642 * If interrupts are enabled, callback now. 1643 */ 1644 if (cold == 0) { 1645 (*func)(dev); 1646 return; 1647 } 1648 1649 #ifdef DIAGNOSTIC 1650 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1651 if (dc->dc_dev == dev) 1652 panic("config_interrupts: deferred twice"); 1653 } 1654 #endif 1655 1656 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1657 if (dc == NULL) 1658 panic("config_interrupts: unable to allocate callback"); 1659 1660 dc->dc_dev = dev; 1661 dc->dc_func = func; 1662 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1663 config_pending_incr(); 1664 } 1665 1666 /* 1667 * Process a deferred configuration queue. 1668 */ 1669 static void 1670 config_process_deferred(struct deferred_config_head *queue, 1671 device_t parent) 1672 { 1673 struct deferred_config *dc, *ndc; 1674 1675 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1676 ndc = TAILQ_NEXT(dc, dc_queue); 1677 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1678 TAILQ_REMOVE(queue, dc, dc_queue); 1679 (*dc->dc_func)(dc->dc_dev); 1680 kmem_free(dc, sizeof(*dc)); 1681 config_pending_decr(); 1682 } 1683 } 1684 } 1685 1686 /* 1687 * Manipulate the config_pending semaphore. 1688 */ 1689 void 1690 config_pending_incr(void) 1691 { 1692 1693 mutex_enter(&config_misc_lock); 1694 config_pending++; 1695 mutex_exit(&config_misc_lock); 1696 } 1697 1698 void 1699 config_pending_decr(void) 1700 { 1701 1702 #ifdef DIAGNOSTIC 1703 if (config_pending == 0) 1704 panic("config_pending_decr: config_pending == 0"); 1705 #endif 1706 mutex_enter(&config_misc_lock); 1707 config_pending--; 1708 if (config_pending == 0) 1709 cv_broadcast(&config_misc_cv); 1710 mutex_exit(&config_misc_lock); 1711 } 1712 1713 /* 1714 * Register a "finalization" routine. Finalization routines are 1715 * called iteratively once all real devices have been found during 1716 * autoconfiguration, for as long as any one finalizer has done 1717 * any work. 1718 */ 1719 int 1720 config_finalize_register(device_t dev, int (*fn)(device_t)) 1721 { 1722 struct finalize_hook *f; 1723 1724 /* 1725 * If finalization has already been done, invoke the 1726 * callback function now. 1727 */ 1728 if (config_finalize_done) { 1729 while ((*fn)(dev) != 0) 1730 /* loop */ ; 1731 } 1732 1733 /* Ensure this isn't already on the list. */ 1734 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1735 if (f->f_func == fn && f->f_dev == dev) 1736 return EEXIST; 1737 } 1738 1739 f = kmem_alloc(sizeof(*f), KM_SLEEP); 1740 f->f_func = fn; 1741 f->f_dev = dev; 1742 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1743 1744 return 0; 1745 } 1746 1747 void 1748 config_finalize(void) 1749 { 1750 struct finalize_hook *f; 1751 struct pdevinit *pdev; 1752 extern struct pdevinit pdevinit[]; 1753 int errcnt, rv; 1754 1755 /* 1756 * Now that device driver threads have been created, wait for 1757 * them to finish any deferred autoconfiguration. 1758 */ 1759 mutex_enter(&config_misc_lock); 1760 while (config_pending != 0) 1761 cv_wait(&config_misc_cv, &config_misc_lock); 1762 mutex_exit(&config_misc_lock); 1763 1764 KERNEL_LOCK(1, NULL); 1765 1766 /* Attach pseudo-devices. */ 1767 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 1768 (*pdev->pdev_attach)(pdev->pdev_count); 1769 1770 /* Run the hooks until none of them does any work. */ 1771 do { 1772 rv = 0; 1773 TAILQ_FOREACH(f, &config_finalize_list, f_list) 1774 rv |= (*f->f_func)(f->f_dev); 1775 } while (rv != 0); 1776 1777 config_finalize_done = 1; 1778 1779 /* Now free all the hooks. */ 1780 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 1781 TAILQ_REMOVE(&config_finalize_list, f, f_list); 1782 kmem_free(f, sizeof(*f)); 1783 } 1784 1785 KERNEL_UNLOCK_ONE(NULL); 1786 1787 errcnt = aprint_get_error_count(); 1788 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 1789 (boothowto & AB_VERBOSE) == 0) { 1790 mutex_enter(&config_misc_lock); 1791 if (config_do_twiddle) { 1792 config_do_twiddle = 0; 1793 printf_nolog(" done.\n"); 1794 } 1795 mutex_exit(&config_misc_lock); 1796 if (errcnt != 0) { 1797 printf("WARNING: %d error%s while detecting hardware; " 1798 "check system log.\n", errcnt, 1799 errcnt == 1 ? "" : "s"); 1800 } 1801 } 1802 } 1803 1804 void 1805 config_twiddle_init() 1806 { 1807 1808 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 1809 config_do_twiddle = 1; 1810 } 1811 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 1812 } 1813 1814 void 1815 config_twiddle_fn(void *cookie) 1816 { 1817 1818 mutex_enter(&config_misc_lock); 1819 if (config_do_twiddle) { 1820 twiddle(); 1821 callout_schedule(&config_twiddle_ch, mstohz(100)); 1822 } 1823 mutex_exit(&config_misc_lock); 1824 } 1825 1826 static int 1827 config_alldevs_lock(void) 1828 { 1829 device_t dv; 1830 int s; 1831 1832 s = splhigh(); 1833 mutex_enter(&alldevs_mtx); 1834 1835 KASSERT(TAILQ_EMPTY(&devs_gclist)); 1836 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1837 TAILQ_FOREACH(dv, &alldevs, dv_list) 1838 if (dv->dv_del_gen != 0) 1839 break; 1840 if (dv == NULL) { 1841 alldevs_garbage = false; 1842 break; 1843 } 1844 config_devunlink(dv, &devs_gclist); 1845 } 1846 return s; 1847 } 1848 1849 static void 1850 config_alldevs_unlock(int s) 1851 { 1852 1853 mutex_exit(&alldevs_mtx); 1854 splx(s); 1855 } 1856 1857 /* 1858 * config_alldevs_unlock_gc: unlock and free garbage collected entries. 1859 */ 1860 static void 1861 config_alldevs_unlock_gc(int s) 1862 { 1863 struct devicelist gclist = TAILQ_HEAD_INITIALIZER(gclist); 1864 device_t dv; 1865 1866 KASSERT(mutex_owned(&alldevs_mtx)); 1867 TAILQ_CONCAT(&gclist, &devs_gclist, dv_list); 1868 KASSERT(TAILQ_EMPTY(&devs_gclist)); 1869 config_alldevs_unlock(s); 1870 1871 while ((dv = TAILQ_FIRST(&gclist)) != NULL) { 1872 TAILQ_REMOVE(&gclist, dv, dv_list); 1873 config_devdelete(dv); 1874 } 1875 } 1876 1877 /* 1878 * device_lookup: 1879 * 1880 * Look up a device instance for a given driver. 1881 */ 1882 device_t 1883 device_lookup(cfdriver_t cd, int unit) 1884 { 1885 device_t dv; 1886 int s; 1887 1888 s = config_alldevs_lock(); 1889 KASSERT(mutex_owned(&alldevs_mtx)); 1890 if (unit < 0 || unit >= cd->cd_ndevs) 1891 dv = NULL; 1892 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 1893 dv = NULL; 1894 config_alldevs_unlock(s); 1895 1896 return dv; 1897 } 1898 1899 /* 1900 * device_lookup_private: 1901 * 1902 * Look up a softc instance for a given driver. 1903 */ 1904 void * 1905 device_lookup_private(cfdriver_t cd, int unit) 1906 { 1907 device_t dv; 1908 1909 if ((dv = device_lookup(cd, unit)) == NULL) 1910 return NULL; 1911 1912 return dv->dv_private; 1913 } 1914 1915 /* 1916 * Accessor functions for the device_t type. 1917 */ 1918 devclass_t 1919 device_class(device_t dev) 1920 { 1921 1922 return dev->dv_class; 1923 } 1924 1925 cfdata_t 1926 device_cfdata(device_t dev) 1927 { 1928 1929 return dev->dv_cfdata; 1930 } 1931 1932 cfdriver_t 1933 device_cfdriver(device_t dev) 1934 { 1935 1936 return dev->dv_cfdriver; 1937 } 1938 1939 cfattach_t 1940 device_cfattach(device_t dev) 1941 { 1942 1943 return dev->dv_cfattach; 1944 } 1945 1946 int 1947 device_unit(device_t dev) 1948 { 1949 1950 return dev->dv_unit; 1951 } 1952 1953 const char * 1954 device_xname(device_t dev) 1955 { 1956 1957 return dev->dv_xname; 1958 } 1959 1960 device_t 1961 device_parent(device_t dev) 1962 { 1963 1964 return dev->dv_parent; 1965 } 1966 1967 bool 1968 device_activation(device_t dev, devact_level_t level) 1969 { 1970 int active_flags; 1971 1972 active_flags = DVF_ACTIVE; 1973 switch (level) { 1974 case DEVACT_LEVEL_FULL: 1975 active_flags |= DVF_CLASS_SUSPENDED; 1976 /*FALLTHROUGH*/ 1977 case DEVACT_LEVEL_DRIVER: 1978 active_flags |= DVF_DRIVER_SUSPENDED; 1979 /*FALLTHROUGH*/ 1980 case DEVACT_LEVEL_BUS: 1981 active_flags |= DVF_BUS_SUSPENDED; 1982 break; 1983 } 1984 1985 return (dev->dv_flags & active_flags) == DVF_ACTIVE; 1986 } 1987 1988 bool 1989 device_is_active(device_t dev) 1990 { 1991 int active_flags; 1992 1993 active_flags = DVF_ACTIVE; 1994 active_flags |= DVF_CLASS_SUSPENDED; 1995 active_flags |= DVF_DRIVER_SUSPENDED; 1996 active_flags |= DVF_BUS_SUSPENDED; 1997 1998 return (dev->dv_flags & active_flags) == DVF_ACTIVE; 1999 } 2000 2001 bool 2002 device_is_enabled(device_t dev) 2003 { 2004 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE; 2005 } 2006 2007 bool 2008 device_has_power(device_t dev) 2009 { 2010 int active_flags; 2011 2012 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED; 2013 2014 return (dev->dv_flags & active_flags) == DVF_ACTIVE; 2015 } 2016 2017 int 2018 device_locator(device_t dev, u_int locnum) 2019 { 2020 2021 KASSERT(dev->dv_locators != NULL); 2022 return dev->dv_locators[locnum]; 2023 } 2024 2025 void * 2026 device_private(device_t dev) 2027 { 2028 2029 /* 2030 * The reason why device_private(NULL) is allowed is to simplify the 2031 * work of a lot of userspace request handlers (i.e., c/bdev 2032 * handlers) which grab cfdriver_t->cd_units[n]. 2033 * It avoids having them test for it to be NULL and only then calling 2034 * device_private. 2035 */ 2036 return dev == NULL ? NULL : dev->dv_private; 2037 } 2038 2039 prop_dictionary_t 2040 device_properties(device_t dev) 2041 { 2042 2043 return dev->dv_properties; 2044 } 2045 2046 /* 2047 * device_is_a: 2048 * 2049 * Returns true if the device is an instance of the specified 2050 * driver. 2051 */ 2052 bool 2053 device_is_a(device_t dev, const char *dname) 2054 { 2055 2056 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0; 2057 } 2058 2059 /* 2060 * device_find_by_xname: 2061 * 2062 * Returns the device of the given name or NULL if it doesn't exist. 2063 */ 2064 device_t 2065 device_find_by_xname(const char *name) 2066 { 2067 device_t dv; 2068 deviter_t di; 2069 2070 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2071 if (strcmp(device_xname(dv), name) == 0) 2072 break; 2073 } 2074 deviter_release(&di); 2075 2076 return dv; 2077 } 2078 2079 /* 2080 * device_find_by_driver_unit: 2081 * 2082 * Returns the device of the given driver name and unit or 2083 * NULL if it doesn't exist. 2084 */ 2085 device_t 2086 device_find_by_driver_unit(const char *name, int unit) 2087 { 2088 struct cfdriver *cd; 2089 2090 if ((cd = config_cfdriver_lookup(name)) == NULL) 2091 return NULL; 2092 return device_lookup(cd, unit); 2093 } 2094 2095 /* 2096 * Power management related functions. 2097 */ 2098 2099 bool 2100 device_pmf_is_registered(device_t dev) 2101 { 2102 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2103 } 2104 2105 bool 2106 device_pmf_driver_suspend(device_t dev, pmf_qual_t qual) 2107 { 2108 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2109 return true; 2110 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2111 return false; 2112 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2113 dev->dv_driver_suspend != NULL && 2114 !(*dev->dv_driver_suspend)(dev, qual)) 2115 return false; 2116 2117 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2118 return true; 2119 } 2120 2121 bool 2122 device_pmf_driver_resume(device_t dev, pmf_qual_t qual) 2123 { 2124 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2125 return true; 2126 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2127 return false; 2128 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2129 dev->dv_driver_resume != NULL && 2130 !(*dev->dv_driver_resume)(dev, qual)) 2131 return false; 2132 2133 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2134 return true; 2135 } 2136 2137 bool 2138 device_pmf_driver_shutdown(device_t dev, int how) 2139 { 2140 2141 if (*dev->dv_driver_shutdown != NULL && 2142 !(*dev->dv_driver_shutdown)(dev, how)) 2143 return false; 2144 return true; 2145 } 2146 2147 bool 2148 device_pmf_driver_register(device_t dev, 2149 bool (*suspend)(device_t, pmf_qual_t), 2150 bool (*resume)(device_t, pmf_qual_t), 2151 bool (*shutdown)(device_t, int)) 2152 { 2153 dev->dv_driver_suspend = suspend; 2154 dev->dv_driver_resume = resume; 2155 dev->dv_driver_shutdown = shutdown; 2156 dev->dv_flags |= DVF_POWER_HANDLERS; 2157 return true; 2158 } 2159 2160 static const char * 2161 curlwp_name(void) 2162 { 2163 if (curlwp->l_name != NULL) 2164 return curlwp->l_name; 2165 else 2166 return curlwp->l_proc->p_comm; 2167 } 2168 2169 void 2170 device_pmf_driver_deregister(device_t dev) 2171 { 2172 device_lock_t dvl = device_getlock(dev); 2173 2174 dev->dv_driver_suspend = NULL; 2175 dev->dv_driver_resume = NULL; 2176 2177 mutex_enter(&dvl->dvl_mtx); 2178 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2179 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2180 /* Wake a thread that waits for the lock. That 2181 * thread will fail to acquire the lock, and then 2182 * it will wake the next thread that waits for the 2183 * lock, or else it will wake us. 2184 */ 2185 cv_signal(&dvl->dvl_cv); 2186 pmflock_debug(dev, __func__, __LINE__); 2187 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2188 pmflock_debug(dev, __func__, __LINE__); 2189 } 2190 mutex_exit(&dvl->dvl_mtx); 2191 } 2192 2193 bool 2194 device_pmf_driver_child_register(device_t dev) 2195 { 2196 device_t parent = device_parent(dev); 2197 2198 if (parent == NULL || parent->dv_driver_child_register == NULL) 2199 return true; 2200 return (*parent->dv_driver_child_register)(dev); 2201 } 2202 2203 void 2204 device_pmf_driver_set_child_register(device_t dev, 2205 bool (*child_register)(device_t)) 2206 { 2207 dev->dv_driver_child_register = child_register; 2208 } 2209 2210 static void 2211 pmflock_debug(device_t dev, const char *func, int line) 2212 { 2213 device_lock_t dvl = device_getlock(dev); 2214 2215 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2216 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2217 dev->dv_flags); 2218 } 2219 2220 static bool 2221 device_pmf_lock1(device_t dev) 2222 { 2223 device_lock_t dvl = device_getlock(dev); 2224 2225 while (device_pmf_is_registered(dev) && 2226 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2227 dvl->dvl_nwait++; 2228 pmflock_debug(dev, __func__, __LINE__); 2229 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2230 pmflock_debug(dev, __func__, __LINE__); 2231 dvl->dvl_nwait--; 2232 } 2233 if (!device_pmf_is_registered(dev)) { 2234 pmflock_debug(dev, __func__, __LINE__); 2235 /* We could not acquire the lock, but some other thread may 2236 * wait for it, also. Wake that thread. 2237 */ 2238 cv_signal(&dvl->dvl_cv); 2239 return false; 2240 } 2241 dvl->dvl_nlock++; 2242 dvl->dvl_holder = curlwp; 2243 pmflock_debug(dev, __func__, __LINE__); 2244 return true; 2245 } 2246 2247 bool 2248 device_pmf_lock(device_t dev) 2249 { 2250 bool rc; 2251 device_lock_t dvl = device_getlock(dev); 2252 2253 mutex_enter(&dvl->dvl_mtx); 2254 rc = device_pmf_lock1(dev); 2255 mutex_exit(&dvl->dvl_mtx); 2256 2257 return rc; 2258 } 2259 2260 void 2261 device_pmf_unlock(device_t dev) 2262 { 2263 device_lock_t dvl = device_getlock(dev); 2264 2265 KASSERT(dvl->dvl_nlock > 0); 2266 mutex_enter(&dvl->dvl_mtx); 2267 if (--dvl->dvl_nlock == 0) 2268 dvl->dvl_holder = NULL; 2269 cv_signal(&dvl->dvl_cv); 2270 pmflock_debug(dev, __func__, __LINE__); 2271 mutex_exit(&dvl->dvl_mtx); 2272 } 2273 2274 device_lock_t 2275 device_getlock(device_t dev) 2276 { 2277 return &dev->dv_lock; 2278 } 2279 2280 void * 2281 device_pmf_bus_private(device_t dev) 2282 { 2283 return dev->dv_bus_private; 2284 } 2285 2286 bool 2287 device_pmf_bus_suspend(device_t dev, pmf_qual_t qual) 2288 { 2289 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2290 return true; 2291 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2292 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2293 return false; 2294 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2295 dev->dv_bus_suspend != NULL && 2296 !(*dev->dv_bus_suspend)(dev, qual)) 2297 return false; 2298 2299 dev->dv_flags |= DVF_BUS_SUSPENDED; 2300 return true; 2301 } 2302 2303 bool 2304 device_pmf_bus_resume(device_t dev, pmf_qual_t qual) 2305 { 2306 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2307 return true; 2308 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2309 dev->dv_bus_resume != NULL && 2310 !(*dev->dv_bus_resume)(dev, qual)) 2311 return false; 2312 2313 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2314 return true; 2315 } 2316 2317 bool 2318 device_pmf_bus_shutdown(device_t dev, int how) 2319 { 2320 2321 if (*dev->dv_bus_shutdown != NULL && 2322 !(*dev->dv_bus_shutdown)(dev, how)) 2323 return false; 2324 return true; 2325 } 2326 2327 void 2328 device_pmf_bus_register(device_t dev, void *priv, 2329 bool (*suspend)(device_t, pmf_qual_t), 2330 bool (*resume)(device_t, pmf_qual_t), 2331 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2332 { 2333 dev->dv_bus_private = priv; 2334 dev->dv_bus_resume = resume; 2335 dev->dv_bus_suspend = suspend; 2336 dev->dv_bus_shutdown = shutdown; 2337 dev->dv_bus_deregister = deregister; 2338 } 2339 2340 void 2341 device_pmf_bus_deregister(device_t dev) 2342 { 2343 if (dev->dv_bus_deregister == NULL) 2344 return; 2345 (*dev->dv_bus_deregister)(dev); 2346 dev->dv_bus_private = NULL; 2347 dev->dv_bus_suspend = NULL; 2348 dev->dv_bus_resume = NULL; 2349 dev->dv_bus_deregister = NULL; 2350 } 2351 2352 void * 2353 device_pmf_class_private(device_t dev) 2354 { 2355 return dev->dv_class_private; 2356 } 2357 2358 bool 2359 device_pmf_class_suspend(device_t dev, pmf_qual_t qual) 2360 { 2361 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2362 return true; 2363 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2364 dev->dv_class_suspend != NULL && 2365 !(*dev->dv_class_suspend)(dev, qual)) 2366 return false; 2367 2368 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2369 return true; 2370 } 2371 2372 bool 2373 device_pmf_class_resume(device_t dev, pmf_qual_t qual) 2374 { 2375 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2376 return true; 2377 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2378 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2379 return false; 2380 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2381 dev->dv_class_resume != NULL && 2382 !(*dev->dv_class_resume)(dev, qual)) 2383 return false; 2384 2385 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2386 return true; 2387 } 2388 2389 void 2390 device_pmf_class_register(device_t dev, void *priv, 2391 bool (*suspend)(device_t, pmf_qual_t), 2392 bool (*resume)(device_t, pmf_qual_t), 2393 void (*deregister)(device_t)) 2394 { 2395 dev->dv_class_private = priv; 2396 dev->dv_class_suspend = suspend; 2397 dev->dv_class_resume = resume; 2398 dev->dv_class_deregister = deregister; 2399 } 2400 2401 void 2402 device_pmf_class_deregister(device_t dev) 2403 { 2404 if (dev->dv_class_deregister == NULL) 2405 return; 2406 (*dev->dv_class_deregister)(dev); 2407 dev->dv_class_private = NULL; 2408 dev->dv_class_suspend = NULL; 2409 dev->dv_class_resume = NULL; 2410 dev->dv_class_deregister = NULL; 2411 } 2412 2413 bool 2414 device_active(device_t dev, devactive_t type) 2415 { 2416 size_t i; 2417 2418 if (dev->dv_activity_count == 0) 2419 return false; 2420 2421 for (i = 0; i < dev->dv_activity_count; ++i) { 2422 if (dev->dv_activity_handlers[i] == NULL) 2423 break; 2424 (*dev->dv_activity_handlers[i])(dev, type); 2425 } 2426 2427 return true; 2428 } 2429 2430 bool 2431 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2432 { 2433 void (**new_handlers)(device_t, devactive_t); 2434 void (**old_handlers)(device_t, devactive_t); 2435 size_t i, old_size, new_size; 2436 int s; 2437 2438 old_handlers = dev->dv_activity_handlers; 2439 old_size = dev->dv_activity_count; 2440 2441 for (i = 0; i < old_size; ++i) { 2442 KASSERT(old_handlers[i] != handler); 2443 if (old_handlers[i] == NULL) { 2444 old_handlers[i] = handler; 2445 return true; 2446 } 2447 } 2448 2449 new_size = old_size + 4; 2450 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2451 2452 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2453 new_handlers[old_size] = handler; 2454 memset(new_handlers + old_size + 1, 0, 2455 sizeof(int [new_size - (old_size+1)])); 2456 2457 s = splhigh(); 2458 dev->dv_activity_count = new_size; 2459 dev->dv_activity_handlers = new_handlers; 2460 splx(s); 2461 2462 if (old_handlers != NULL) 2463 kmem_free(old_handlers, sizeof(void * [old_size])); 2464 2465 return true; 2466 } 2467 2468 void 2469 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2470 { 2471 void (**old_handlers)(device_t, devactive_t); 2472 size_t i, old_size; 2473 int s; 2474 2475 old_handlers = dev->dv_activity_handlers; 2476 old_size = dev->dv_activity_count; 2477 2478 for (i = 0; i < old_size; ++i) { 2479 if (old_handlers[i] == handler) 2480 break; 2481 if (old_handlers[i] == NULL) 2482 return; /* XXX panic? */ 2483 } 2484 2485 if (i == old_size) 2486 return; /* XXX panic? */ 2487 2488 for (; i < old_size - 1; ++i) { 2489 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2490 continue; 2491 2492 if (i == 0) { 2493 s = splhigh(); 2494 dev->dv_activity_count = 0; 2495 dev->dv_activity_handlers = NULL; 2496 splx(s); 2497 kmem_free(old_handlers, sizeof(void *[old_size])); 2498 } 2499 return; 2500 } 2501 old_handlers[i] = NULL; 2502 } 2503 2504 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2505 static bool 2506 device_exists_at(device_t dv, devgen_t gen) 2507 { 2508 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2509 dv->dv_add_gen <= gen; 2510 } 2511 2512 static bool 2513 deviter_visits(const deviter_t *di, device_t dv) 2514 { 2515 return device_exists_at(dv, di->di_gen); 2516 } 2517 2518 /* 2519 * Device Iteration 2520 * 2521 * deviter_t: a device iterator. Holds state for a "walk" visiting 2522 * each device_t's in the device tree. 2523 * 2524 * deviter_init(di, flags): initialize the device iterator `di' 2525 * to "walk" the device tree. deviter_next(di) will return 2526 * the first device_t in the device tree, or NULL if there are 2527 * no devices. 2528 * 2529 * `flags' is one or more of DEVITER_F_RW, indicating that the 2530 * caller intends to modify the device tree by calling 2531 * config_detach(9) on devices in the order that the iterator 2532 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2533 * nearest the "root" of the device tree to be returned, first; 2534 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2535 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2536 * indicating both that deviter_init() should not respect any 2537 * locks on the device tree, and that deviter_next(di) may run 2538 * in more than one LWP before the walk has finished. 2539 * 2540 * Only one DEVITER_F_RW iterator may be in the device tree at 2541 * once. 2542 * 2543 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2544 * 2545 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2546 * DEVITER_F_LEAVES_FIRST are used in combination. 2547 * 2548 * deviter_first(di, flags): initialize the device iterator `di' 2549 * and return the first device_t in the device tree, or NULL 2550 * if there are no devices. The statement 2551 * 2552 * dv = deviter_first(di); 2553 * 2554 * is shorthand for 2555 * 2556 * deviter_init(di); 2557 * dv = deviter_next(di); 2558 * 2559 * deviter_next(di): return the next device_t in the device tree, 2560 * or NULL if there are no more devices. deviter_next(di) 2561 * is undefined if `di' was not initialized with deviter_init() or 2562 * deviter_first(). 2563 * 2564 * deviter_release(di): stops iteration (subsequent calls to 2565 * deviter_next() will return NULL), releases any locks and 2566 * resources held by the device iterator. 2567 * 2568 * Device iteration does not return device_t's in any particular 2569 * order. An iterator will never return the same device_t twice. 2570 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2571 * is called repeatedly on the same `di', it will eventually return 2572 * NULL. It is ok to attach/detach devices during device iteration. 2573 */ 2574 void 2575 deviter_init(deviter_t *di, deviter_flags_t flags) 2576 { 2577 device_t dv; 2578 int s; 2579 2580 memset(di, 0, sizeof(*di)); 2581 2582 s = config_alldevs_lock(); 2583 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2584 flags |= DEVITER_F_RW; 2585 2586 if ((flags & DEVITER_F_RW) != 0) 2587 alldevs_nwrite++; 2588 else 2589 alldevs_nread++; 2590 di->di_gen = alldevs_gen++; 2591 config_alldevs_unlock(s); 2592 2593 di->di_flags = flags; 2594 2595 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2596 case DEVITER_F_LEAVES_FIRST: 2597 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2598 if (!deviter_visits(di, dv)) 2599 continue; 2600 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2601 } 2602 break; 2603 case DEVITER_F_ROOT_FIRST: 2604 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2605 if (!deviter_visits(di, dv)) 2606 continue; 2607 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2608 } 2609 break; 2610 default: 2611 break; 2612 } 2613 2614 deviter_reinit(di); 2615 } 2616 2617 static void 2618 deviter_reinit(deviter_t *di) 2619 { 2620 if ((di->di_flags & DEVITER_F_RW) != 0) 2621 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2622 else 2623 di->di_prev = TAILQ_FIRST(&alldevs); 2624 } 2625 2626 device_t 2627 deviter_first(deviter_t *di, deviter_flags_t flags) 2628 { 2629 deviter_init(di, flags); 2630 return deviter_next(di); 2631 } 2632 2633 static device_t 2634 deviter_next2(deviter_t *di) 2635 { 2636 device_t dv; 2637 2638 dv = di->di_prev; 2639 2640 if (dv == NULL) 2641 return NULL; 2642 2643 if ((di->di_flags & DEVITER_F_RW) != 0) 2644 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2645 else 2646 di->di_prev = TAILQ_NEXT(dv, dv_list); 2647 2648 return dv; 2649 } 2650 2651 static device_t 2652 deviter_next1(deviter_t *di) 2653 { 2654 device_t dv; 2655 2656 do { 2657 dv = deviter_next2(di); 2658 } while (dv != NULL && !deviter_visits(di, dv)); 2659 2660 return dv; 2661 } 2662 2663 device_t 2664 deviter_next(deviter_t *di) 2665 { 2666 device_t dv = NULL; 2667 2668 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2669 case 0: 2670 return deviter_next1(di); 2671 case DEVITER_F_LEAVES_FIRST: 2672 while (di->di_curdepth >= 0) { 2673 if ((dv = deviter_next1(di)) == NULL) { 2674 di->di_curdepth--; 2675 deviter_reinit(di); 2676 } else if (dv->dv_depth == di->di_curdepth) 2677 break; 2678 } 2679 return dv; 2680 case DEVITER_F_ROOT_FIRST: 2681 while (di->di_curdepth <= di->di_maxdepth) { 2682 if ((dv = deviter_next1(di)) == NULL) { 2683 di->di_curdepth++; 2684 deviter_reinit(di); 2685 } else if (dv->dv_depth == di->di_curdepth) 2686 break; 2687 } 2688 return dv; 2689 default: 2690 return NULL; 2691 } 2692 } 2693 2694 void 2695 deviter_release(deviter_t *di) 2696 { 2697 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2698 int s; 2699 2700 s = config_alldevs_lock(); 2701 if (rw) 2702 --alldevs_nwrite; 2703 else 2704 --alldevs_nread; 2705 /* XXX wake a garbage-collection thread */ 2706 config_alldevs_unlock(s); 2707 } 2708 2709 bool 2710 ifattr_match(const char *snull, const char *t) 2711 { 2712 return (snull == NULL) || strcmp(snull, t) == 0; 2713 } 2714 2715 void 2716 null_childdetached(device_t self, device_t child) 2717 { 2718 /* do nothing */ 2719 } 2720 2721 static void 2722 sysctl_detach_setup(struct sysctllog **clog) 2723 { 2724 const struct sysctlnode *node = NULL; 2725 2726 sysctl_createv(clog, 0, NULL, &node, 2727 CTLFLAG_PERMANENT, 2728 CTLTYPE_NODE, "kern", NULL, 2729 NULL, 0, NULL, 0, 2730 CTL_KERN, CTL_EOL); 2731 2732 if (node == NULL) 2733 return; 2734 2735 sysctl_createv(clog, 0, &node, NULL, 2736 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2737 CTLTYPE_INT, "detachall", 2738 SYSCTL_DESCR("Detach all devices at shutdown"), 2739 NULL, 0, &detachall, 0, 2740 CTL_CREATE, CTL_EOL); 2741 } 2742