xref: /netbsd-src/sys/kern/subr_autoconf.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /* $NetBSD: subr_autoconf.c,v 1.196 2010/01/10 13:42:34 martin Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.196 2010/01/10 13:42:34 martin Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85 
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/devmon.h>
109 #include <sys/cpu.h>
110 #include <sys/sysctl.h>
111 
112 #include <sys/disk.h>
113 
114 #include <machine/limits.h>
115 
116 #if defined(__i386__) && defined(_KERNEL_OPT)
117 #include "opt_splash.h"
118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
119 #include <dev/splash/splash.h>
120 extern struct splash_progress *splash_progress_state;
121 #endif
122 #endif
123 
124 /*
125  * Autoconfiguration subroutines.
126  */
127 
128 /*
129  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
130  * devices and drivers are found via these tables.
131  */
132 extern struct cfdata cfdata[];
133 extern const short cfroots[];
134 
135 /*
136  * List of all cfdriver structures.  We use this to detect duplicates
137  * when other cfdrivers are loaded.
138  */
139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
140 extern struct cfdriver * const cfdriver_list_initial[];
141 
142 /*
143  * Initial list of cfattach's.
144  */
145 extern const struct cfattachinit cfattachinit[];
146 
147 /*
148  * List of cfdata tables.  We always have one such list -- the one
149  * built statically when the kernel was configured.
150  */
151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
152 static struct cftable initcftable;
153 
154 #define	ROOT ((device_t)NULL)
155 
156 struct matchinfo {
157 	cfsubmatch_t fn;
158 	struct	device *parent;
159 	const int *locs;
160 	void	*aux;
161 	struct	cfdata *match;
162 	int	pri;
163 };
164 
165 static char *number(char *, int);
166 static void mapply(struct matchinfo *, cfdata_t);
167 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
168 static void config_devdelete(device_t);
169 static void config_devunlink(device_t, struct devicelist *);
170 static void config_makeroom(int, struct cfdriver *);
171 static void config_devlink(device_t);
172 static void config_alldevs_unlock(int);
173 static int config_alldevs_lock(void);
174 static void config_alldevs_unlock_gc(int);
175 static void pmflock_debug(device_t, const char *, int);
176 
177 static device_t deviter_next1(deviter_t *);
178 static void deviter_reinit(deviter_t *);
179 
180 struct deferred_config {
181 	TAILQ_ENTRY(deferred_config) dc_queue;
182 	device_t dc_dev;
183 	void (*dc_func)(device_t);
184 };
185 
186 TAILQ_HEAD(deferred_config_head, deferred_config);
187 
188 struct deferred_config_head deferred_config_queue =
189 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
190 struct deferred_config_head interrupt_config_queue =
191 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
192 int interrupt_config_threads = 8;
193 
194 static void config_process_deferred(struct deferred_config_head *, device_t);
195 
196 /* Hooks to finalize configuration once all real devices have been found. */
197 struct finalize_hook {
198 	TAILQ_ENTRY(finalize_hook) f_list;
199 	int (*f_func)(device_t);
200 	device_t f_dev;
201 };
202 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
203 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
204 static int config_finalize_done;
205 
206 /* list of all devices */
207 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
208 static struct devicelist devs_gclist = TAILQ_HEAD_INITIALIZER(devs_gclist);
209 static kmutex_t alldevs_mtx;
210 static volatile bool alldevs_garbage = false;
211 static volatile devgen_t alldevs_gen = 1;
212 static volatile int alldevs_nread = 0;
213 static volatile int alldevs_nwrite = 0;
214 
215 static int config_pending;		/* semaphore for mountroot */
216 static kmutex_t config_misc_lock;
217 static kcondvar_t config_misc_cv;
218 
219 static int detachall = 0;
220 
221 #define	STREQ(s1, s2)			\
222 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
223 
224 static bool config_initialized = false;	/* config_init() has been called. */
225 
226 static int config_do_twiddle;
227 static callout_t config_twiddle_ch;
228 
229 static void sysctl_detach_setup(struct sysctllog **);
230 
231 /*
232  * Initialize the autoconfiguration data structures.  Normally this
233  * is done by configure(), but some platforms need to do this very
234  * early (to e.g. initialize the console).
235  */
236 void
237 config_init(void)
238 {
239 	const struct cfattachinit *cfai;
240 	int i, j;
241 
242 	KASSERT(config_initialized == false);
243 
244 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_HIGH);
245 
246 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
247 	cv_init(&config_misc_cv, "cfgmisc");
248 
249 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
250 
251 	/* allcfdrivers is statically initialized. */
252 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
253 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
254 			panic("configure: duplicate `%s' drivers",
255 			    cfdriver_list_initial[i]->cd_name);
256 	}
257 
258 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
259 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
260 			if (config_cfattach_attach(cfai->cfai_name,
261 						   cfai->cfai_list[j]) != 0)
262 				panic("configure: duplicate `%s' attachment "
263 				    "of `%s' driver",
264 				    cfai->cfai_list[j]->ca_name,
265 				    cfai->cfai_name);
266 		}
267 	}
268 
269 	initcftable.ct_cfdata = cfdata;
270 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
271 
272 	config_initialized = true;
273 }
274 
275 void
276 config_init_mi(void)
277 {
278 
279 	if (!config_initialized)
280 		config_init();
281 
282 	sysctl_detach_setup(NULL);
283 }
284 
285 void
286 config_deferred(device_t dev)
287 {
288 	config_process_deferred(&deferred_config_queue, dev);
289 	config_process_deferred(&interrupt_config_queue, dev);
290 }
291 
292 static void
293 config_interrupts_thread(void *cookie)
294 {
295 	struct deferred_config *dc;
296 
297 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
298 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
299 		(*dc->dc_func)(dc->dc_dev);
300 		kmem_free(dc, sizeof(*dc));
301 		config_pending_decr();
302 	}
303 	kthread_exit(0);
304 }
305 
306 void
307 config_create_interruptthreads()
308 {
309 	int i;
310 
311 	for (i = 0; i < interrupt_config_threads; i++) {
312 		(void)kthread_create(PRI_NONE, 0, NULL,
313 		    config_interrupts_thread, NULL, NULL, "config");
314 	}
315 }
316 
317 /*
318  * Announce device attach/detach to userland listeners.
319  */
320 static void
321 devmon_report_device(device_t dev, bool isattach)
322 {
323 #if NDRVCTL > 0
324 	prop_dictionary_t ev;
325 	const char *parent;
326 	const char *what;
327 	device_t pdev = device_parent(dev);
328 
329 	ev = prop_dictionary_create();
330 	if (ev == NULL)
331 		return;
332 
333 	what = (isattach ? "device-attach" : "device-detach");
334 	parent = (pdev == NULL ? "root" : device_xname(pdev));
335 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
336 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
337 		prop_object_release(ev);
338 		return;
339 	}
340 
341 	devmon_insert(what, ev);
342 #endif
343 }
344 
345 /*
346  * Add a cfdriver to the system.
347  */
348 int
349 config_cfdriver_attach(struct cfdriver *cd)
350 {
351 	struct cfdriver *lcd;
352 
353 	/* Make sure this driver isn't already in the system. */
354 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
355 		if (STREQ(lcd->cd_name, cd->cd_name))
356 			return EEXIST;
357 	}
358 
359 	LIST_INIT(&cd->cd_attach);
360 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
361 
362 	return 0;
363 }
364 
365 /*
366  * Remove a cfdriver from the system.
367  */
368 int
369 config_cfdriver_detach(struct cfdriver *cd)
370 {
371 	int i, rc = 0, s;
372 
373 	s = config_alldevs_lock();
374 	/* Make sure there are no active instances. */
375 	for (i = 0; i < cd->cd_ndevs; i++) {
376 		if (cd->cd_devs[i] != NULL) {
377 			rc = EBUSY;
378 			break;
379 		}
380 	}
381 	config_alldevs_unlock_gc(s);
382 
383 	if (rc != 0)
384 		return rc;
385 
386 	/* ...and no attachments loaded. */
387 	if (LIST_EMPTY(&cd->cd_attach) == 0)
388 		return EBUSY;
389 
390 	LIST_REMOVE(cd, cd_list);
391 
392 	KASSERT(cd->cd_devs == NULL);
393 
394 	return 0;
395 }
396 
397 /*
398  * Look up a cfdriver by name.
399  */
400 struct cfdriver *
401 config_cfdriver_lookup(const char *name)
402 {
403 	struct cfdriver *cd;
404 
405 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
406 		if (STREQ(cd->cd_name, name))
407 			return cd;
408 	}
409 
410 	return NULL;
411 }
412 
413 /*
414  * Add a cfattach to the specified driver.
415  */
416 int
417 config_cfattach_attach(const char *driver, struct cfattach *ca)
418 {
419 	struct cfattach *lca;
420 	struct cfdriver *cd;
421 
422 	cd = config_cfdriver_lookup(driver);
423 	if (cd == NULL)
424 		return ESRCH;
425 
426 	/* Make sure this attachment isn't already on this driver. */
427 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
428 		if (STREQ(lca->ca_name, ca->ca_name))
429 			return EEXIST;
430 	}
431 
432 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
433 
434 	return 0;
435 }
436 
437 /*
438  * Remove a cfattach from the specified driver.
439  */
440 int
441 config_cfattach_detach(const char *driver, struct cfattach *ca)
442 {
443 	struct cfdriver *cd;
444 	device_t dev;
445 	int i, rc = 0, s;
446 
447 	cd = config_cfdriver_lookup(driver);
448 	if (cd == NULL)
449 		return ESRCH;
450 
451 	s = config_alldevs_lock();
452 	/* Make sure there are no active instances. */
453 	for (i = 0; i < cd->cd_ndevs; i++) {
454 		if ((dev = cd->cd_devs[i]) == NULL)
455 			continue;
456 		if (dev->dv_cfattach == ca) {
457 			rc = EBUSY;
458 			break;
459 		}
460 	}
461 	config_alldevs_unlock_gc(s);
462 
463 	if (rc != 0)
464 		return rc;
465 
466 	LIST_REMOVE(ca, ca_list);
467 
468 	return 0;
469 }
470 
471 /*
472  * Look up a cfattach by name.
473  */
474 static struct cfattach *
475 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
476 {
477 	struct cfattach *ca;
478 
479 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
480 		if (STREQ(ca->ca_name, atname))
481 			return ca;
482 	}
483 
484 	return NULL;
485 }
486 
487 /*
488  * Look up a cfattach by driver/attachment name.
489  */
490 struct cfattach *
491 config_cfattach_lookup(const char *name, const char *atname)
492 {
493 	struct cfdriver *cd;
494 
495 	cd = config_cfdriver_lookup(name);
496 	if (cd == NULL)
497 		return NULL;
498 
499 	return config_cfattach_lookup_cd(cd, atname);
500 }
501 
502 /*
503  * Apply the matching function and choose the best.  This is used
504  * a few times and we want to keep the code small.
505  */
506 static void
507 mapply(struct matchinfo *m, cfdata_t cf)
508 {
509 	int pri;
510 
511 	if (m->fn != NULL) {
512 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
513 	} else {
514 		pri = config_match(m->parent, cf, m->aux);
515 	}
516 	if (pri > m->pri) {
517 		m->match = cf;
518 		m->pri = pri;
519 	}
520 }
521 
522 int
523 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
524 {
525 	const struct cfiattrdata *ci;
526 	const struct cflocdesc *cl;
527 	int nlocs, i;
528 
529 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
530 	KASSERT(ci);
531 	nlocs = ci->ci_loclen;
532 	KASSERT(!nlocs || locs);
533 	for (i = 0; i < nlocs; i++) {
534 		cl = &ci->ci_locdesc[i];
535 		/* !cld_defaultstr means no default value */
536 		if ((!(cl->cld_defaultstr)
537 		     || (cf->cf_loc[i] != cl->cld_default))
538 		    && cf->cf_loc[i] != locs[i])
539 			return 0;
540 	}
541 
542 	return config_match(parent, cf, aux);
543 }
544 
545 /*
546  * Helper function: check whether the driver supports the interface attribute
547  * and return its descriptor structure.
548  */
549 static const struct cfiattrdata *
550 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
551 {
552 	const struct cfiattrdata * const *cpp;
553 
554 	if (cd->cd_attrs == NULL)
555 		return 0;
556 
557 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
558 		if (STREQ((*cpp)->ci_name, ia)) {
559 			/* Match. */
560 			return *cpp;
561 		}
562 	}
563 	return 0;
564 }
565 
566 /*
567  * Lookup an interface attribute description by name.
568  * If the driver is given, consider only its supported attributes.
569  */
570 const struct cfiattrdata *
571 cfiattr_lookup(const char *name, const struct cfdriver *cd)
572 {
573 	const struct cfdriver *d;
574 	const struct cfiattrdata *ia;
575 
576 	if (cd)
577 		return cfdriver_get_iattr(cd, name);
578 
579 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
580 		ia = cfdriver_get_iattr(d, name);
581 		if (ia)
582 			return ia;
583 	}
584 	return 0;
585 }
586 
587 /*
588  * Determine if `parent' is a potential parent for a device spec based
589  * on `cfp'.
590  */
591 static int
592 cfparent_match(const device_t parent, const struct cfparent *cfp)
593 {
594 	struct cfdriver *pcd;
595 
596 	/* We don't match root nodes here. */
597 	if (cfp == NULL)
598 		return 0;
599 
600 	pcd = parent->dv_cfdriver;
601 	KASSERT(pcd != NULL);
602 
603 	/*
604 	 * First, ensure this parent has the correct interface
605 	 * attribute.
606 	 */
607 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
608 		return 0;
609 
610 	/*
611 	 * If no specific parent device instance was specified (i.e.
612 	 * we're attaching to the attribute only), we're done!
613 	 */
614 	if (cfp->cfp_parent == NULL)
615 		return 1;
616 
617 	/*
618 	 * Check the parent device's name.
619 	 */
620 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
621 		return 0;	/* not the same parent */
622 
623 	/*
624 	 * Make sure the unit number matches.
625 	 */
626 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
627 	    cfp->cfp_unit == parent->dv_unit)
628 		return 1;
629 
630 	/* Unit numbers don't match. */
631 	return 0;
632 }
633 
634 /*
635  * Helper for config_cfdata_attach(): check all devices whether it could be
636  * parent any attachment in the config data table passed, and rescan.
637  */
638 static void
639 rescan_with_cfdata(const struct cfdata *cf)
640 {
641 	device_t d;
642 	const struct cfdata *cf1;
643 	deviter_t di;
644 
645 
646 	/*
647 	 * "alldevs" is likely longer than a modules's cfdata, so make it
648 	 * the outer loop.
649 	 */
650 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
651 
652 		if (!(d->dv_cfattach->ca_rescan))
653 			continue;
654 
655 		for (cf1 = cf; cf1->cf_name; cf1++) {
656 
657 			if (!cfparent_match(d, cf1->cf_pspec))
658 				continue;
659 
660 			(*d->dv_cfattach->ca_rescan)(d,
661 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
662 		}
663 	}
664 	deviter_release(&di);
665 }
666 
667 /*
668  * Attach a supplemental config data table and rescan potential
669  * parent devices if required.
670  */
671 int
672 config_cfdata_attach(cfdata_t cf, int scannow)
673 {
674 	struct cftable *ct;
675 
676 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
677 	ct->ct_cfdata = cf;
678 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
679 
680 	if (scannow)
681 		rescan_with_cfdata(cf);
682 
683 	return 0;
684 }
685 
686 /*
687  * Helper for config_cfdata_detach: check whether a device is
688  * found through any attachment in the config data table.
689  */
690 static int
691 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
692 {
693 	const struct cfdata *cf1;
694 
695 	for (cf1 = cf; cf1->cf_name; cf1++)
696 		if (d->dv_cfdata == cf1)
697 			return 1;
698 
699 	return 0;
700 }
701 
702 /*
703  * Detach a supplemental config data table. Detach all devices found
704  * through that table (and thus keeping references to it) before.
705  */
706 int
707 config_cfdata_detach(cfdata_t cf)
708 {
709 	device_t d;
710 	int error = 0;
711 	struct cftable *ct;
712 	deviter_t di;
713 
714 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
715 	     d = deviter_next(&di)) {
716 		if (!dev_in_cfdata(d, cf))
717 			continue;
718 		if ((error = config_detach(d, 0)) != 0)
719 			break;
720 	}
721 	deviter_release(&di);
722 	if (error) {
723 		aprint_error_dev(d, "unable to detach instance\n");
724 		return error;
725 	}
726 
727 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
728 		if (ct->ct_cfdata == cf) {
729 			TAILQ_REMOVE(&allcftables, ct, ct_list);
730 			kmem_free(ct, sizeof(*ct));
731 			return 0;
732 		}
733 	}
734 
735 	/* not found -- shouldn't happen */
736 	return EINVAL;
737 }
738 
739 /*
740  * Invoke the "match" routine for a cfdata entry on behalf of
741  * an external caller, usually a "submatch" routine.
742  */
743 int
744 config_match(device_t parent, cfdata_t cf, void *aux)
745 {
746 	struct cfattach *ca;
747 
748 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
749 	if (ca == NULL) {
750 		/* No attachment for this entry, oh well. */
751 		return 0;
752 	}
753 
754 	return (*ca->ca_match)(parent, cf, aux);
755 }
756 
757 /*
758  * Iterate over all potential children of some device, calling the given
759  * function (default being the child's match function) for each one.
760  * Nonzero returns are matches; the highest value returned is considered
761  * the best match.  Return the `found child' if we got a match, or NULL
762  * otherwise.  The `aux' pointer is simply passed on through.
763  *
764  * Note that this function is designed so that it can be used to apply
765  * an arbitrary function to all potential children (its return value
766  * can be ignored).
767  */
768 cfdata_t
769 config_search_loc(cfsubmatch_t fn, device_t parent,
770 		  const char *ifattr, const int *locs, void *aux)
771 {
772 	struct cftable *ct;
773 	cfdata_t cf;
774 	struct matchinfo m;
775 
776 	KASSERT(config_initialized);
777 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
778 
779 	m.fn = fn;
780 	m.parent = parent;
781 	m.locs = locs;
782 	m.aux = aux;
783 	m.match = NULL;
784 	m.pri = 0;
785 
786 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
787 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
788 
789 			/* We don't match root nodes here. */
790 			if (!cf->cf_pspec)
791 				continue;
792 
793 			/*
794 			 * Skip cf if no longer eligible, otherwise scan
795 			 * through parents for one matching `parent', and
796 			 * try match function.
797 			 */
798 			if (cf->cf_fstate == FSTATE_FOUND)
799 				continue;
800 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
801 			    cf->cf_fstate == FSTATE_DSTAR)
802 				continue;
803 
804 			/*
805 			 * If an interface attribute was specified,
806 			 * consider only children which attach to
807 			 * that attribute.
808 			 */
809 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
810 				continue;
811 
812 			if (cfparent_match(parent, cf->cf_pspec))
813 				mapply(&m, cf);
814 		}
815 	}
816 	return m.match;
817 }
818 
819 cfdata_t
820 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
821     void *aux)
822 {
823 
824 	return config_search_loc(fn, parent, ifattr, NULL, aux);
825 }
826 
827 /*
828  * Find the given root device.
829  * This is much like config_search, but there is no parent.
830  * Don't bother with multiple cfdata tables; the root node
831  * must always be in the initial table.
832  */
833 cfdata_t
834 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
835 {
836 	cfdata_t cf;
837 	const short *p;
838 	struct matchinfo m;
839 
840 	m.fn = fn;
841 	m.parent = ROOT;
842 	m.aux = aux;
843 	m.match = NULL;
844 	m.pri = 0;
845 	m.locs = 0;
846 	/*
847 	 * Look at root entries for matching name.  We do not bother
848 	 * with found-state here since only one root should ever be
849 	 * searched (and it must be done first).
850 	 */
851 	for (p = cfroots; *p >= 0; p++) {
852 		cf = &cfdata[*p];
853 		if (strcmp(cf->cf_name, rootname) == 0)
854 			mapply(&m, cf);
855 	}
856 	return m.match;
857 }
858 
859 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
860 
861 /*
862  * The given `aux' argument describes a device that has been found
863  * on the given parent, but not necessarily configured.  Locate the
864  * configuration data for that device (using the submatch function
865  * provided, or using candidates' cd_match configuration driver
866  * functions) and attach it, and return true.  If the device was
867  * not configured, call the given `print' function and return 0.
868  */
869 device_t
870 config_found_sm_loc(device_t parent,
871 		const char *ifattr, const int *locs, void *aux,
872 		cfprint_t print, cfsubmatch_t submatch)
873 {
874 	cfdata_t cf;
875 
876 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
877 	if (splash_progress_state)
878 		splash_progress_update(splash_progress_state);
879 #endif
880 
881 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
882 		return(config_attach_loc(parent, cf, locs, aux, print));
883 	if (print) {
884 		if (config_do_twiddle && cold)
885 			twiddle();
886 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
887 	}
888 
889 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
890 	if (splash_progress_state)
891 		splash_progress_update(splash_progress_state);
892 #endif
893 
894 	return NULL;
895 }
896 
897 device_t
898 config_found_ia(device_t parent, const char *ifattr, void *aux,
899     cfprint_t print)
900 {
901 
902 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
903 }
904 
905 device_t
906 config_found(device_t parent, void *aux, cfprint_t print)
907 {
908 
909 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
910 }
911 
912 /*
913  * As above, but for root devices.
914  */
915 device_t
916 config_rootfound(const char *rootname, void *aux)
917 {
918 	cfdata_t cf;
919 
920 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
921 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
922 	aprint_error("root device %s not configured\n", rootname);
923 	return NULL;
924 }
925 
926 /* just like sprintf(buf, "%d") except that it works from the end */
927 static char *
928 number(char *ep, int n)
929 {
930 
931 	*--ep = 0;
932 	while (n >= 10) {
933 		*--ep = (n % 10) + '0';
934 		n /= 10;
935 	}
936 	*--ep = n + '0';
937 	return ep;
938 }
939 
940 /*
941  * Expand the size of the cd_devs array if necessary.
942  *
943  * The caller must hold alldevs_mtx. config_makeroom() may release and
944  * re-acquire alldevs_mtx, so callers should re-check conditions such
945  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
946  * returns.
947  */
948 static void
949 config_makeroom(int n, struct cfdriver *cd)
950 {
951 	int old, new;
952 	device_t *osp, *nsp;
953 
954 	alldevs_nwrite++;
955 
956 	for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
957 		;
958 
959 	while (n >= cd->cd_ndevs) {
960 		/*
961 		 * Need to expand the array.
962 		 */
963 		old = cd->cd_ndevs;
964 		osp = cd->cd_devs;
965 
966 		/* Release alldevs_mtx around allocation, which may
967 		 * sleep.
968 		 */
969 		mutex_exit(&alldevs_mtx);
970 		nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
971 		if (nsp == NULL)
972 			panic("%s: could not expand cd_devs", __func__);
973 		mutex_enter(&alldevs_mtx);
974 
975 		/* If another thread moved the array while we did
976 		 * not hold alldevs_mtx, try again.
977 		 */
978 		if (cd->cd_devs != osp) {
979 			kmem_free(nsp, sizeof(device_t[new]));
980 			continue;
981 		}
982 
983 		memset(nsp + old, 0, sizeof(device_t[new - old]));
984 		if (old != 0)
985 			memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
986 
987 		cd->cd_ndevs = new;
988 		cd->cd_devs = nsp;
989 		if (old != 0)
990 			kmem_free(osp, sizeof(device_t[old]));
991 	}
992 	alldevs_nwrite--;
993 }
994 
995 /*
996  * Put dev into the devices list.
997  */
998 static void
999 config_devlink(device_t dev)
1000 {
1001 	int s;
1002 
1003 	s = config_alldevs_lock();
1004 
1005 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1006 
1007 	dev->dv_add_gen = alldevs_gen;
1008 	/* It is safe to add a device to the tail of the list while
1009 	 * readers and writers are in the list.
1010 	 */
1011 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1012 	config_alldevs_unlock(s);
1013 }
1014 
1015 static void
1016 config_devfree(device_t dev)
1017 {
1018 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1019 
1020 	if (dev->dv_cfattach->ca_devsize > 0)
1021 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1022 	if (priv)
1023 		kmem_free(dev, sizeof(*dev));
1024 }
1025 
1026 /*
1027  * config_devunlink: unlink the device and put into the garbage list.
1028  *
1029  * => caller must hold alldevs_mtx.
1030  */
1031 static void
1032 config_devunlink(device_t dev, struct devicelist *garbage)
1033 {
1034 	struct device_garbage *dg = &dev->dv_garbage;
1035 	cfdriver_t cd = device_cfdriver(dev);
1036 	int i;
1037 
1038 	KASSERT(mutex_owned(&alldevs_mtx));
1039 
1040  	/* Unlink from device list.  Link to garbage list. */
1041 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1042 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1043 
1044 	/* Remove from cfdriver's array. */
1045 	cd->cd_devs[dev->dv_unit] = NULL;
1046 
1047 	/*
1048 	 * If the device now has no units in use, unlink its softc array.
1049 	 */
1050 	for (i = 0; i < cd->cd_ndevs; i++) {
1051 		if (cd->cd_devs[i] != NULL)
1052 			break;
1053 	}
1054 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1055 	if (i == cd->cd_ndevs) {
1056 		dg->dg_ndevs = cd->cd_ndevs;
1057 		dg->dg_devs = cd->cd_devs;
1058 		cd->cd_devs = NULL;
1059 		cd->cd_ndevs = 0;
1060 	}
1061 }
1062 
1063 static void
1064 config_devdelete(device_t dev)
1065 {
1066 	struct device_garbage *dg = &dev->dv_garbage;
1067 	device_lock_t dvl = device_getlock(dev);
1068 
1069 	if (dg->dg_devs != NULL)
1070 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1071 
1072 	cv_destroy(&dvl->dvl_cv);
1073 	mutex_destroy(&dvl->dvl_mtx);
1074 
1075 	KASSERT(dev->dv_properties != NULL);
1076 	prop_object_release(dev->dv_properties);
1077 
1078 	KASSERT(dev->dv_activity_handlers == NULL);
1079 
1080 	if (dev->dv_locators) {
1081 		size_t amount = *--dev->dv_locators;
1082 		kmem_free(dev->dv_locators, amount);
1083 	}
1084 	config_devfree(dev);
1085 }
1086 
1087 static int
1088 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1089 {
1090 	int unit;
1091 
1092 	if (cf->cf_fstate == FSTATE_STAR) {
1093 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1094 			if (cd->cd_devs[unit] == NULL)
1095 				break;
1096 		/*
1097 		 * unit is now the unit of the first NULL device pointer,
1098 		 * or max(cd->cd_ndevs,cf->cf_unit).
1099 		 */
1100 	} else {
1101 		unit = cf->cf_unit;
1102 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1103 			unit = -1;
1104 	}
1105 	return unit;
1106 }
1107 
1108 static int
1109 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1110 {
1111 	int s, unit;
1112 
1113 	s = config_alldevs_lock();
1114 	for (;;) {
1115 		unit = config_unit_nextfree(cd, cf);
1116 		if (unit == -1)
1117 			break;
1118 		if (unit < cd->cd_ndevs) {
1119 			cd->cd_devs[unit] = dev;
1120 			dev->dv_unit = unit;
1121 			break;
1122 		}
1123 		config_makeroom(unit, cd);
1124 	}
1125 	config_alldevs_unlock_gc(s);
1126 
1127 	return unit;
1128 }
1129 
1130 static device_t
1131 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1132 {
1133 	cfdriver_t cd;
1134 	cfattach_t ca;
1135 	size_t lname, lunit;
1136 	const char *xunit;
1137 	int myunit;
1138 	char num[10];
1139 	device_t dev;
1140 	void *dev_private;
1141 	const struct cfiattrdata *ia;
1142 	device_lock_t dvl;
1143 
1144 	cd = config_cfdriver_lookup(cf->cf_name);
1145 	if (cd == NULL)
1146 		return NULL;
1147 
1148 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1149 	if (ca == NULL)
1150 		return NULL;
1151 
1152 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1153 	    ca->ca_devsize < sizeof(struct device))
1154 		panic("config_devalloc: %s", cf->cf_atname);
1155 
1156 	/* get memory for all device vars */
1157 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1158 	if (ca->ca_devsize > 0) {
1159 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1160 		if (dev_private == NULL)
1161 			panic("config_devalloc: memory allocation for device softc failed");
1162 	} else {
1163 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1164 		dev_private = NULL;
1165 	}
1166 
1167 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1168 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1169 	} else {
1170 		dev = dev_private;
1171 	}
1172 	if (dev == NULL)
1173 		panic("config_devalloc: memory allocation for device_t failed");
1174 
1175 	myunit = config_unit_alloc(dev, cd, cf);
1176 	if (myunit == -1) {
1177 		config_devfree(dev);
1178 		return NULL;
1179 	}
1180 
1181 	/* compute length of name and decimal expansion of unit number */
1182 	lname = strlen(cd->cd_name);
1183 	xunit = number(&num[sizeof(num)], myunit);
1184 	lunit = &num[sizeof(num)] - xunit;
1185 	if (lname + lunit > sizeof(dev->dv_xname))
1186 		panic("config_devalloc: device name too long");
1187 
1188 	dvl = device_getlock(dev);
1189 
1190 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1191 	cv_init(&dvl->dvl_cv, "pmfsusp");
1192 
1193 	dev->dv_class = cd->cd_class;
1194 	dev->dv_cfdata = cf;
1195 	dev->dv_cfdriver = cd;
1196 	dev->dv_cfattach = ca;
1197 	dev->dv_activity_count = 0;
1198 	dev->dv_activity_handlers = NULL;
1199 	dev->dv_private = dev_private;
1200 	memcpy(dev->dv_xname, cd->cd_name, lname);
1201 	memcpy(dev->dv_xname + lname, xunit, lunit);
1202 	dev->dv_parent = parent;
1203 	if (parent != NULL)
1204 		dev->dv_depth = parent->dv_depth + 1;
1205 	else
1206 		dev->dv_depth = 0;
1207 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
1208 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
1209 	if (locs) {
1210 		KASSERT(parent); /* no locators at root */
1211 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1212 				    parent->dv_cfdriver);
1213 		dev->dv_locators =
1214 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1215 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1216 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1217 	}
1218 	dev->dv_properties = prop_dictionary_create();
1219 	KASSERT(dev->dv_properties != NULL);
1220 
1221 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1222 	    "device-driver", dev->dv_cfdriver->cd_name);
1223 	prop_dictionary_set_uint16(dev->dv_properties,
1224 	    "device-unit", dev->dv_unit);
1225 
1226 	return dev;
1227 }
1228 
1229 /*
1230  * Attach a found device.
1231  */
1232 device_t
1233 config_attach_loc(device_t parent, cfdata_t cf,
1234 	const int *locs, void *aux, cfprint_t print)
1235 {
1236 	device_t dev;
1237 	struct cftable *ct;
1238 	const char *drvname;
1239 
1240 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1241 	if (splash_progress_state)
1242 		splash_progress_update(splash_progress_state);
1243 #endif
1244 
1245 	dev = config_devalloc(parent, cf, locs);
1246 	if (!dev)
1247 		panic("config_attach: allocation of device softc failed");
1248 
1249 	/* XXX redundant - see below? */
1250 	if (cf->cf_fstate != FSTATE_STAR) {
1251 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1252 		cf->cf_fstate = FSTATE_FOUND;
1253 	}
1254 
1255 	config_devlink(dev);
1256 
1257 	if (config_do_twiddle && cold)
1258 		twiddle();
1259 	else
1260 		aprint_naive("Found ");
1261 	/*
1262 	 * We want the next two printfs for normal, verbose, and quiet,
1263 	 * but not silent (in which case, we're twiddling, instead).
1264 	 */
1265 	if (parent == ROOT) {
1266 		aprint_naive("%s (root)", device_xname(dev));
1267 		aprint_normal("%s (root)", device_xname(dev));
1268 	} else {
1269 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1270 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1271 		if (print)
1272 			(void) (*print)(aux, NULL);
1273 	}
1274 
1275 	/*
1276 	 * Before attaching, clobber any unfound devices that are
1277 	 * otherwise identical.
1278 	 * XXX code above is redundant?
1279 	 */
1280 	drvname = dev->dv_cfdriver->cd_name;
1281 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1282 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1283 			if (STREQ(cf->cf_name, drvname) &&
1284 			    cf->cf_unit == dev->dv_unit) {
1285 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1286 					cf->cf_fstate = FSTATE_FOUND;
1287 			}
1288 		}
1289 	}
1290 #ifdef __HAVE_DEVICE_REGISTER
1291 	device_register(dev, aux);
1292 #endif
1293 
1294 	/* Let userland know */
1295 	devmon_report_device(dev, true);
1296 
1297 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1298 	if (splash_progress_state)
1299 		splash_progress_update(splash_progress_state);
1300 #endif
1301 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1302 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1303 	if (splash_progress_state)
1304 		splash_progress_update(splash_progress_state);
1305 #endif
1306 
1307 	if (!device_pmf_is_registered(dev))
1308 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1309 
1310 	config_process_deferred(&deferred_config_queue, dev);
1311 
1312 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG
1313 	device_register_post_config(dev, aux);
1314 #endif
1315 	return dev;
1316 }
1317 
1318 device_t
1319 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1320 {
1321 
1322 	return config_attach_loc(parent, cf, NULL, aux, print);
1323 }
1324 
1325 /*
1326  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1327  * way are silently inserted into the device tree, and their children
1328  * attached.
1329  *
1330  * Note that because pseudo-devices are attached silently, any information
1331  * the attach routine wishes to print should be prefixed with the device
1332  * name by the attach routine.
1333  */
1334 device_t
1335 config_attach_pseudo(cfdata_t cf)
1336 {
1337 	device_t dev;
1338 
1339 	dev = config_devalloc(ROOT, cf, NULL);
1340 	if (!dev)
1341 		return NULL;
1342 
1343 	/* XXX mark busy in cfdata */
1344 
1345 	if (cf->cf_fstate != FSTATE_STAR) {
1346 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1347 		cf->cf_fstate = FSTATE_FOUND;
1348 	}
1349 
1350 	config_devlink(dev);
1351 
1352 #if 0	/* XXXJRT not yet */
1353 #ifdef __HAVE_DEVICE_REGISTER
1354 	device_register(dev, NULL);	/* like a root node */
1355 #endif
1356 #endif
1357 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1358 	config_process_deferred(&deferred_config_queue, dev);
1359 	return dev;
1360 }
1361 
1362 /*
1363  * Detach a device.  Optionally forced (e.g. because of hardware
1364  * removal) and quiet.  Returns zero if successful, non-zero
1365  * (an error code) otherwise.
1366  *
1367  * Note that this code wants to be run from a process context, so
1368  * that the detach can sleep to allow processes which have a device
1369  * open to run and unwind their stacks.
1370  */
1371 int
1372 config_detach(device_t dev, int flags)
1373 {
1374 	struct cftable *ct;
1375 	cfdata_t cf;
1376 	const struct cfattach *ca;
1377 	struct cfdriver *cd;
1378 #ifdef DIAGNOSTIC
1379 	device_t d;
1380 #endif
1381 	int rv = 0, s;
1382 
1383 #ifdef DIAGNOSTIC
1384 	cf = dev->dv_cfdata;
1385 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1386 	    cf->cf_fstate != FSTATE_STAR)
1387 		panic("config_detach: %s: bad device fstate %d",
1388 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1389 #endif
1390 	cd = dev->dv_cfdriver;
1391 	KASSERT(cd != NULL);
1392 
1393 	ca = dev->dv_cfattach;
1394 	KASSERT(ca != NULL);
1395 
1396 	s = config_alldevs_lock();
1397 	if (dev->dv_del_gen != 0) {
1398 		config_alldevs_unlock(s);
1399 #ifdef DIAGNOSTIC
1400 		printf("%s: %s is already detached\n", __func__,
1401 		    device_xname(dev));
1402 #endif /* DIAGNOSTIC */
1403 		return ENOENT;
1404 	}
1405 	alldevs_nwrite++;
1406 	config_alldevs_unlock(s);
1407 
1408 	if (!detachall &&
1409 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1410 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1411 		rv = EOPNOTSUPP;
1412 	} else if (ca->ca_detach != NULL) {
1413 		rv = (*ca->ca_detach)(dev, flags);
1414 	} else
1415 		rv = EOPNOTSUPP;
1416 
1417 	/*
1418 	 * If it was not possible to detach the device, then we either
1419 	 * panic() (for the forced but failed case), or return an error.
1420 	 *
1421 	 * If it was possible to detach the device, ensure that the
1422 	 * device is deactivated.
1423 	 */
1424 	if (rv == 0)
1425 		dev->dv_flags &= ~DVF_ACTIVE;
1426 	else if ((flags & DETACH_FORCE) == 0)
1427 		goto out;
1428 	else {
1429 		panic("config_detach: forced detach of %s failed (%d)",
1430 		    device_xname(dev), rv);
1431 	}
1432 
1433 	/*
1434 	 * The device has now been successfully detached.
1435 	 */
1436 
1437 	/* Let userland know */
1438 	devmon_report_device(dev, false);
1439 
1440 #ifdef DIAGNOSTIC
1441 	/*
1442 	 * Sanity: If you're successfully detached, you should have no
1443 	 * children.  (Note that because children must be attached
1444 	 * after parents, we only need to search the latter part of
1445 	 * the list.)
1446 	 */
1447 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1448 	    d = TAILQ_NEXT(d, dv_list)) {
1449 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1450 			printf("config_detach: detached device %s"
1451 			    " has children %s\n", device_xname(dev), device_xname(d));
1452 			panic("config_detach");
1453 		}
1454 	}
1455 #endif
1456 
1457 	/* notify the parent that the child is gone */
1458 	if (dev->dv_parent) {
1459 		device_t p = dev->dv_parent;
1460 		if (p->dv_cfattach->ca_childdetached)
1461 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1462 	}
1463 
1464 	/*
1465 	 * Mark cfdata to show that the unit can be reused, if possible.
1466 	 */
1467 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1468 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1469 			if (STREQ(cf->cf_name, cd->cd_name)) {
1470 				if (cf->cf_fstate == FSTATE_FOUND &&
1471 				    cf->cf_unit == dev->dv_unit)
1472 					cf->cf_fstate = FSTATE_NOTFOUND;
1473 			}
1474 		}
1475 	}
1476 
1477 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1478 		aprint_normal_dev(dev, "detached\n");
1479 
1480 out:
1481 	s = config_alldevs_lock();
1482 	KASSERT(alldevs_nwrite != 0);
1483 	--alldevs_nwrite;
1484 	if (rv == 0 && dev->dv_del_gen == 0) {
1485 		dev->dv_del_gen = alldevs_gen;
1486 		alldevs_garbage = true;
1487 	}
1488 	config_alldevs_unlock_gc(s);
1489 
1490 	return rv;
1491 }
1492 
1493 int
1494 config_detach_children(device_t parent, int flags)
1495 {
1496 	device_t dv;
1497 	deviter_t di;
1498 	int error = 0;
1499 
1500 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1501 	     dv = deviter_next(&di)) {
1502 		if (device_parent(dv) != parent)
1503 			continue;
1504 		if ((error = config_detach(dv, flags)) != 0)
1505 			break;
1506 	}
1507 	deviter_release(&di);
1508 	return error;
1509 }
1510 
1511 device_t
1512 shutdown_first(struct shutdown_state *s)
1513 {
1514 	if (!s->initialized) {
1515 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1516 		s->initialized = true;
1517 	}
1518 	return shutdown_next(s);
1519 }
1520 
1521 device_t
1522 shutdown_next(struct shutdown_state *s)
1523 {
1524 	device_t dv;
1525 
1526 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1527 		;
1528 
1529 	if (dv == NULL)
1530 		s->initialized = false;
1531 
1532 	return dv;
1533 }
1534 
1535 bool
1536 config_detach_all(int how)
1537 {
1538 	static struct shutdown_state s;
1539 	device_t curdev;
1540 	bool progress = false;
1541 
1542 	if ((how & RB_NOSYNC) != 0)
1543 		return false;
1544 
1545 	for (curdev = shutdown_first(&s); curdev != NULL;
1546 	     curdev = shutdown_next(&s)) {
1547 		aprint_debug(" detaching %s, ", device_xname(curdev));
1548 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1549 			progress = true;
1550 			aprint_debug("success.");
1551 		} else
1552 			aprint_debug("failed.");
1553 	}
1554 	return progress;
1555 }
1556 
1557 static bool
1558 device_is_ancestor_of(device_t ancestor, device_t descendant)
1559 {
1560 	device_t dv;
1561 
1562 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1563 		if (device_parent(dv) == ancestor)
1564 			return true;
1565 	}
1566 	return false;
1567 }
1568 
1569 int
1570 config_deactivate(device_t dev)
1571 {
1572 	deviter_t di;
1573 	const struct cfattach *ca;
1574 	device_t descendant;
1575 	int s, rv = 0, oflags;
1576 
1577 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1578 	     descendant != NULL;
1579 	     descendant = deviter_next(&di)) {
1580 		if (dev != descendant &&
1581 		    !device_is_ancestor_of(dev, descendant))
1582 			continue;
1583 
1584 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1585 			continue;
1586 
1587 		ca = descendant->dv_cfattach;
1588 		oflags = descendant->dv_flags;
1589 
1590 		descendant->dv_flags &= ~DVF_ACTIVE;
1591 		if (ca->ca_activate == NULL)
1592 			continue;
1593 		s = splhigh();
1594 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1595 		splx(s);
1596 		if (rv != 0)
1597 			descendant->dv_flags = oflags;
1598 	}
1599 	deviter_release(&di);
1600 	return rv;
1601 }
1602 
1603 /*
1604  * Defer the configuration of the specified device until all
1605  * of its parent's devices have been attached.
1606  */
1607 void
1608 config_defer(device_t dev, void (*func)(device_t))
1609 {
1610 	struct deferred_config *dc;
1611 
1612 	if (dev->dv_parent == NULL)
1613 		panic("config_defer: can't defer config of a root device");
1614 
1615 #ifdef DIAGNOSTIC
1616 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1617 		if (dc->dc_dev == dev)
1618 			panic("config_defer: deferred twice");
1619 	}
1620 #endif
1621 
1622 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1623 	if (dc == NULL)
1624 		panic("config_defer: unable to allocate callback");
1625 
1626 	dc->dc_dev = dev;
1627 	dc->dc_func = func;
1628 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1629 	config_pending_incr();
1630 }
1631 
1632 /*
1633  * Defer some autoconfiguration for a device until after interrupts
1634  * are enabled.
1635  */
1636 void
1637 config_interrupts(device_t dev, void (*func)(device_t))
1638 {
1639 	struct deferred_config *dc;
1640 
1641 	/*
1642 	 * If interrupts are enabled, callback now.
1643 	 */
1644 	if (cold == 0) {
1645 		(*func)(dev);
1646 		return;
1647 	}
1648 
1649 #ifdef DIAGNOSTIC
1650 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1651 		if (dc->dc_dev == dev)
1652 			panic("config_interrupts: deferred twice");
1653 	}
1654 #endif
1655 
1656 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1657 	if (dc == NULL)
1658 		panic("config_interrupts: unable to allocate callback");
1659 
1660 	dc->dc_dev = dev;
1661 	dc->dc_func = func;
1662 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1663 	config_pending_incr();
1664 }
1665 
1666 /*
1667  * Process a deferred configuration queue.
1668  */
1669 static void
1670 config_process_deferred(struct deferred_config_head *queue,
1671     device_t parent)
1672 {
1673 	struct deferred_config *dc, *ndc;
1674 
1675 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1676 		ndc = TAILQ_NEXT(dc, dc_queue);
1677 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1678 			TAILQ_REMOVE(queue, dc, dc_queue);
1679 			(*dc->dc_func)(dc->dc_dev);
1680 			kmem_free(dc, sizeof(*dc));
1681 			config_pending_decr();
1682 		}
1683 	}
1684 }
1685 
1686 /*
1687  * Manipulate the config_pending semaphore.
1688  */
1689 void
1690 config_pending_incr(void)
1691 {
1692 
1693 	mutex_enter(&config_misc_lock);
1694 	config_pending++;
1695 	mutex_exit(&config_misc_lock);
1696 }
1697 
1698 void
1699 config_pending_decr(void)
1700 {
1701 
1702 #ifdef DIAGNOSTIC
1703 	if (config_pending == 0)
1704 		panic("config_pending_decr: config_pending == 0");
1705 #endif
1706 	mutex_enter(&config_misc_lock);
1707 	config_pending--;
1708 	if (config_pending == 0)
1709 		cv_broadcast(&config_misc_cv);
1710 	mutex_exit(&config_misc_lock);
1711 }
1712 
1713 /*
1714  * Register a "finalization" routine.  Finalization routines are
1715  * called iteratively once all real devices have been found during
1716  * autoconfiguration, for as long as any one finalizer has done
1717  * any work.
1718  */
1719 int
1720 config_finalize_register(device_t dev, int (*fn)(device_t))
1721 {
1722 	struct finalize_hook *f;
1723 
1724 	/*
1725 	 * If finalization has already been done, invoke the
1726 	 * callback function now.
1727 	 */
1728 	if (config_finalize_done) {
1729 		while ((*fn)(dev) != 0)
1730 			/* loop */ ;
1731 	}
1732 
1733 	/* Ensure this isn't already on the list. */
1734 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1735 		if (f->f_func == fn && f->f_dev == dev)
1736 			return EEXIST;
1737 	}
1738 
1739 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
1740 	f->f_func = fn;
1741 	f->f_dev = dev;
1742 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1743 
1744 	return 0;
1745 }
1746 
1747 void
1748 config_finalize(void)
1749 {
1750 	struct finalize_hook *f;
1751 	struct pdevinit *pdev;
1752 	extern struct pdevinit pdevinit[];
1753 	int errcnt, rv;
1754 
1755 	/*
1756 	 * Now that device driver threads have been created, wait for
1757 	 * them to finish any deferred autoconfiguration.
1758 	 */
1759 	mutex_enter(&config_misc_lock);
1760 	while (config_pending != 0)
1761 		cv_wait(&config_misc_cv, &config_misc_lock);
1762 	mutex_exit(&config_misc_lock);
1763 
1764 	KERNEL_LOCK(1, NULL);
1765 
1766 	/* Attach pseudo-devices. */
1767 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1768 		(*pdev->pdev_attach)(pdev->pdev_count);
1769 
1770 	/* Run the hooks until none of them does any work. */
1771 	do {
1772 		rv = 0;
1773 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1774 			rv |= (*f->f_func)(f->f_dev);
1775 	} while (rv != 0);
1776 
1777 	config_finalize_done = 1;
1778 
1779 	/* Now free all the hooks. */
1780 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1781 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1782 		kmem_free(f, sizeof(*f));
1783 	}
1784 
1785 	KERNEL_UNLOCK_ONE(NULL);
1786 
1787 	errcnt = aprint_get_error_count();
1788 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1789 	    (boothowto & AB_VERBOSE) == 0) {
1790 		mutex_enter(&config_misc_lock);
1791 		if (config_do_twiddle) {
1792 			config_do_twiddle = 0;
1793 			printf_nolog(" done.\n");
1794 		}
1795 		mutex_exit(&config_misc_lock);
1796 		if (errcnt != 0) {
1797 			printf("WARNING: %d error%s while detecting hardware; "
1798 			    "check system log.\n", errcnt,
1799 			    errcnt == 1 ? "" : "s");
1800 		}
1801 	}
1802 }
1803 
1804 void
1805 config_twiddle_init()
1806 {
1807 
1808 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1809 		config_do_twiddle = 1;
1810 	}
1811 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1812 }
1813 
1814 void
1815 config_twiddle_fn(void *cookie)
1816 {
1817 
1818 	mutex_enter(&config_misc_lock);
1819 	if (config_do_twiddle) {
1820 		twiddle();
1821 		callout_schedule(&config_twiddle_ch, mstohz(100));
1822 	}
1823 	mutex_exit(&config_misc_lock);
1824 }
1825 
1826 static int
1827 config_alldevs_lock(void)
1828 {
1829 	device_t dv;
1830 	int s;
1831 
1832 	s = splhigh();
1833 	mutex_enter(&alldevs_mtx);
1834 
1835 	KASSERT(TAILQ_EMPTY(&devs_gclist));
1836 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1837 		TAILQ_FOREACH(dv, &alldevs, dv_list)
1838 			if (dv->dv_del_gen != 0)
1839 				break;
1840 		if (dv == NULL) {
1841 			alldevs_garbage = false;
1842 			break;
1843 		}
1844 		config_devunlink(dv, &devs_gclist);
1845 	}
1846 	return s;
1847 }
1848 
1849 static void
1850 config_alldevs_unlock(int s)
1851 {
1852 
1853 	mutex_exit(&alldevs_mtx);
1854 	splx(s);
1855 }
1856 
1857 /*
1858  * config_alldevs_unlock_gc: unlock and free garbage collected entries.
1859  */
1860 static void
1861 config_alldevs_unlock_gc(int s)
1862 {
1863 	struct devicelist gclist = TAILQ_HEAD_INITIALIZER(gclist);
1864 	device_t dv;
1865 
1866 	KASSERT(mutex_owned(&alldevs_mtx));
1867 	TAILQ_CONCAT(&gclist, &devs_gclist, dv_list);
1868 	KASSERT(TAILQ_EMPTY(&devs_gclist));
1869 	config_alldevs_unlock(s);
1870 
1871 	while ((dv = TAILQ_FIRST(&gclist)) != NULL) {
1872 		TAILQ_REMOVE(&gclist, dv, dv_list);
1873 		config_devdelete(dv);
1874 	}
1875 }
1876 
1877 /*
1878  * device_lookup:
1879  *
1880  *	Look up a device instance for a given driver.
1881  */
1882 device_t
1883 device_lookup(cfdriver_t cd, int unit)
1884 {
1885 	device_t dv;
1886 	int s;
1887 
1888 	s = config_alldevs_lock();
1889 	KASSERT(mutex_owned(&alldevs_mtx));
1890 	if (unit < 0 || unit >= cd->cd_ndevs)
1891 		dv = NULL;
1892 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
1893 		dv = NULL;
1894 	config_alldevs_unlock(s);
1895 
1896 	return dv;
1897 }
1898 
1899 /*
1900  * device_lookup_private:
1901  *
1902  *	Look up a softc instance for a given driver.
1903  */
1904 void *
1905 device_lookup_private(cfdriver_t cd, int unit)
1906 {
1907 	device_t dv;
1908 
1909 	if ((dv = device_lookup(cd, unit)) == NULL)
1910 		return NULL;
1911 
1912 	return dv->dv_private;
1913 }
1914 
1915 /*
1916  * Accessor functions for the device_t type.
1917  */
1918 devclass_t
1919 device_class(device_t dev)
1920 {
1921 
1922 	return dev->dv_class;
1923 }
1924 
1925 cfdata_t
1926 device_cfdata(device_t dev)
1927 {
1928 
1929 	return dev->dv_cfdata;
1930 }
1931 
1932 cfdriver_t
1933 device_cfdriver(device_t dev)
1934 {
1935 
1936 	return dev->dv_cfdriver;
1937 }
1938 
1939 cfattach_t
1940 device_cfattach(device_t dev)
1941 {
1942 
1943 	return dev->dv_cfattach;
1944 }
1945 
1946 int
1947 device_unit(device_t dev)
1948 {
1949 
1950 	return dev->dv_unit;
1951 }
1952 
1953 const char *
1954 device_xname(device_t dev)
1955 {
1956 
1957 	return dev->dv_xname;
1958 }
1959 
1960 device_t
1961 device_parent(device_t dev)
1962 {
1963 
1964 	return dev->dv_parent;
1965 }
1966 
1967 bool
1968 device_activation(device_t dev, devact_level_t level)
1969 {
1970 	int active_flags;
1971 
1972 	active_flags = DVF_ACTIVE;
1973 	switch (level) {
1974 	case DEVACT_LEVEL_FULL:
1975 		active_flags |= DVF_CLASS_SUSPENDED;
1976 		/*FALLTHROUGH*/
1977 	case DEVACT_LEVEL_DRIVER:
1978 		active_flags |= DVF_DRIVER_SUSPENDED;
1979 		/*FALLTHROUGH*/
1980 	case DEVACT_LEVEL_BUS:
1981 		active_flags |= DVF_BUS_SUSPENDED;
1982 		break;
1983 	}
1984 
1985 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1986 }
1987 
1988 bool
1989 device_is_active(device_t dev)
1990 {
1991 	int active_flags;
1992 
1993 	active_flags = DVF_ACTIVE;
1994 	active_flags |= DVF_CLASS_SUSPENDED;
1995 	active_flags |= DVF_DRIVER_SUSPENDED;
1996 	active_flags |= DVF_BUS_SUSPENDED;
1997 
1998 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1999 }
2000 
2001 bool
2002 device_is_enabled(device_t dev)
2003 {
2004 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
2005 }
2006 
2007 bool
2008 device_has_power(device_t dev)
2009 {
2010 	int active_flags;
2011 
2012 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
2013 
2014 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2015 }
2016 
2017 int
2018 device_locator(device_t dev, u_int locnum)
2019 {
2020 
2021 	KASSERT(dev->dv_locators != NULL);
2022 	return dev->dv_locators[locnum];
2023 }
2024 
2025 void *
2026 device_private(device_t dev)
2027 {
2028 
2029 	/*
2030 	 * The reason why device_private(NULL) is allowed is to simplify the
2031 	 * work of a lot of userspace request handlers (i.e., c/bdev
2032 	 * handlers) which grab cfdriver_t->cd_units[n].
2033 	 * It avoids having them test for it to be NULL and only then calling
2034 	 * device_private.
2035 	 */
2036 	return dev == NULL ? NULL : dev->dv_private;
2037 }
2038 
2039 prop_dictionary_t
2040 device_properties(device_t dev)
2041 {
2042 
2043 	return dev->dv_properties;
2044 }
2045 
2046 /*
2047  * device_is_a:
2048  *
2049  *	Returns true if the device is an instance of the specified
2050  *	driver.
2051  */
2052 bool
2053 device_is_a(device_t dev, const char *dname)
2054 {
2055 
2056 	return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
2057 }
2058 
2059 /*
2060  * device_find_by_xname:
2061  *
2062  *	Returns the device of the given name or NULL if it doesn't exist.
2063  */
2064 device_t
2065 device_find_by_xname(const char *name)
2066 {
2067 	device_t dv;
2068 	deviter_t di;
2069 
2070 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2071 		if (strcmp(device_xname(dv), name) == 0)
2072 			break;
2073 	}
2074 	deviter_release(&di);
2075 
2076 	return dv;
2077 }
2078 
2079 /*
2080  * device_find_by_driver_unit:
2081  *
2082  *	Returns the device of the given driver name and unit or
2083  *	NULL if it doesn't exist.
2084  */
2085 device_t
2086 device_find_by_driver_unit(const char *name, int unit)
2087 {
2088 	struct cfdriver *cd;
2089 
2090 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2091 		return NULL;
2092 	return device_lookup(cd, unit);
2093 }
2094 
2095 /*
2096  * Power management related functions.
2097  */
2098 
2099 bool
2100 device_pmf_is_registered(device_t dev)
2101 {
2102 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2103 }
2104 
2105 bool
2106 device_pmf_driver_suspend(device_t dev, pmf_qual_t qual)
2107 {
2108 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2109 		return true;
2110 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2111 		return false;
2112 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2113 	    dev->dv_driver_suspend != NULL &&
2114 	    !(*dev->dv_driver_suspend)(dev, qual))
2115 		return false;
2116 
2117 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2118 	return true;
2119 }
2120 
2121 bool
2122 device_pmf_driver_resume(device_t dev, pmf_qual_t qual)
2123 {
2124 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2125 		return true;
2126 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2127 		return false;
2128 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2129 	    dev->dv_driver_resume != NULL &&
2130 	    !(*dev->dv_driver_resume)(dev, qual))
2131 		return false;
2132 
2133 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2134 	return true;
2135 }
2136 
2137 bool
2138 device_pmf_driver_shutdown(device_t dev, int how)
2139 {
2140 
2141 	if (*dev->dv_driver_shutdown != NULL &&
2142 	    !(*dev->dv_driver_shutdown)(dev, how))
2143 		return false;
2144 	return true;
2145 }
2146 
2147 bool
2148 device_pmf_driver_register(device_t dev,
2149     bool (*suspend)(device_t, pmf_qual_t),
2150     bool (*resume)(device_t, pmf_qual_t),
2151     bool (*shutdown)(device_t, int))
2152 {
2153 	dev->dv_driver_suspend = suspend;
2154 	dev->dv_driver_resume = resume;
2155 	dev->dv_driver_shutdown = shutdown;
2156 	dev->dv_flags |= DVF_POWER_HANDLERS;
2157 	return true;
2158 }
2159 
2160 static const char *
2161 curlwp_name(void)
2162 {
2163 	if (curlwp->l_name != NULL)
2164 		return curlwp->l_name;
2165 	else
2166 		return curlwp->l_proc->p_comm;
2167 }
2168 
2169 void
2170 device_pmf_driver_deregister(device_t dev)
2171 {
2172 	device_lock_t dvl = device_getlock(dev);
2173 
2174 	dev->dv_driver_suspend = NULL;
2175 	dev->dv_driver_resume = NULL;
2176 
2177 	mutex_enter(&dvl->dvl_mtx);
2178 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2179 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2180 		/* Wake a thread that waits for the lock.  That
2181 		 * thread will fail to acquire the lock, and then
2182 		 * it will wake the next thread that waits for the
2183 		 * lock, or else it will wake us.
2184 		 */
2185 		cv_signal(&dvl->dvl_cv);
2186 		pmflock_debug(dev, __func__, __LINE__);
2187 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2188 		pmflock_debug(dev, __func__, __LINE__);
2189 	}
2190 	mutex_exit(&dvl->dvl_mtx);
2191 }
2192 
2193 bool
2194 device_pmf_driver_child_register(device_t dev)
2195 {
2196 	device_t parent = device_parent(dev);
2197 
2198 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2199 		return true;
2200 	return (*parent->dv_driver_child_register)(dev);
2201 }
2202 
2203 void
2204 device_pmf_driver_set_child_register(device_t dev,
2205     bool (*child_register)(device_t))
2206 {
2207 	dev->dv_driver_child_register = child_register;
2208 }
2209 
2210 static void
2211 pmflock_debug(device_t dev, const char *func, int line)
2212 {
2213 	device_lock_t dvl = device_getlock(dev);
2214 
2215 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2216 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2217 	    dev->dv_flags);
2218 }
2219 
2220 static bool
2221 device_pmf_lock1(device_t dev)
2222 {
2223 	device_lock_t dvl = device_getlock(dev);
2224 
2225 	while (device_pmf_is_registered(dev) &&
2226 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2227 		dvl->dvl_nwait++;
2228 		pmflock_debug(dev, __func__, __LINE__);
2229 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2230 		pmflock_debug(dev, __func__, __LINE__);
2231 		dvl->dvl_nwait--;
2232 	}
2233 	if (!device_pmf_is_registered(dev)) {
2234 		pmflock_debug(dev, __func__, __LINE__);
2235 		/* We could not acquire the lock, but some other thread may
2236 		 * wait for it, also.  Wake that thread.
2237 		 */
2238 		cv_signal(&dvl->dvl_cv);
2239 		return false;
2240 	}
2241 	dvl->dvl_nlock++;
2242 	dvl->dvl_holder = curlwp;
2243 	pmflock_debug(dev, __func__, __LINE__);
2244 	return true;
2245 }
2246 
2247 bool
2248 device_pmf_lock(device_t dev)
2249 {
2250 	bool rc;
2251 	device_lock_t dvl = device_getlock(dev);
2252 
2253 	mutex_enter(&dvl->dvl_mtx);
2254 	rc = device_pmf_lock1(dev);
2255 	mutex_exit(&dvl->dvl_mtx);
2256 
2257 	return rc;
2258 }
2259 
2260 void
2261 device_pmf_unlock(device_t dev)
2262 {
2263 	device_lock_t dvl = device_getlock(dev);
2264 
2265 	KASSERT(dvl->dvl_nlock > 0);
2266 	mutex_enter(&dvl->dvl_mtx);
2267 	if (--dvl->dvl_nlock == 0)
2268 		dvl->dvl_holder = NULL;
2269 	cv_signal(&dvl->dvl_cv);
2270 	pmflock_debug(dev, __func__, __LINE__);
2271 	mutex_exit(&dvl->dvl_mtx);
2272 }
2273 
2274 device_lock_t
2275 device_getlock(device_t dev)
2276 {
2277 	return &dev->dv_lock;
2278 }
2279 
2280 void *
2281 device_pmf_bus_private(device_t dev)
2282 {
2283 	return dev->dv_bus_private;
2284 }
2285 
2286 bool
2287 device_pmf_bus_suspend(device_t dev, pmf_qual_t qual)
2288 {
2289 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2290 		return true;
2291 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2292 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2293 		return false;
2294 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2295 	    dev->dv_bus_suspend != NULL &&
2296 	    !(*dev->dv_bus_suspend)(dev, qual))
2297 		return false;
2298 
2299 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2300 	return true;
2301 }
2302 
2303 bool
2304 device_pmf_bus_resume(device_t dev, pmf_qual_t qual)
2305 {
2306 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2307 		return true;
2308 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2309 	    dev->dv_bus_resume != NULL &&
2310 	    !(*dev->dv_bus_resume)(dev, qual))
2311 		return false;
2312 
2313 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2314 	return true;
2315 }
2316 
2317 bool
2318 device_pmf_bus_shutdown(device_t dev, int how)
2319 {
2320 
2321 	if (*dev->dv_bus_shutdown != NULL &&
2322 	    !(*dev->dv_bus_shutdown)(dev, how))
2323 		return false;
2324 	return true;
2325 }
2326 
2327 void
2328 device_pmf_bus_register(device_t dev, void *priv,
2329     bool (*suspend)(device_t, pmf_qual_t),
2330     bool (*resume)(device_t, pmf_qual_t),
2331     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2332 {
2333 	dev->dv_bus_private = priv;
2334 	dev->dv_bus_resume = resume;
2335 	dev->dv_bus_suspend = suspend;
2336 	dev->dv_bus_shutdown = shutdown;
2337 	dev->dv_bus_deregister = deregister;
2338 }
2339 
2340 void
2341 device_pmf_bus_deregister(device_t dev)
2342 {
2343 	if (dev->dv_bus_deregister == NULL)
2344 		return;
2345 	(*dev->dv_bus_deregister)(dev);
2346 	dev->dv_bus_private = NULL;
2347 	dev->dv_bus_suspend = NULL;
2348 	dev->dv_bus_resume = NULL;
2349 	dev->dv_bus_deregister = NULL;
2350 }
2351 
2352 void *
2353 device_pmf_class_private(device_t dev)
2354 {
2355 	return dev->dv_class_private;
2356 }
2357 
2358 bool
2359 device_pmf_class_suspend(device_t dev, pmf_qual_t qual)
2360 {
2361 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2362 		return true;
2363 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2364 	    dev->dv_class_suspend != NULL &&
2365 	    !(*dev->dv_class_suspend)(dev, qual))
2366 		return false;
2367 
2368 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2369 	return true;
2370 }
2371 
2372 bool
2373 device_pmf_class_resume(device_t dev, pmf_qual_t qual)
2374 {
2375 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2376 		return true;
2377 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2378 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2379 		return false;
2380 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2381 	    dev->dv_class_resume != NULL &&
2382 	    !(*dev->dv_class_resume)(dev, qual))
2383 		return false;
2384 
2385 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2386 	return true;
2387 }
2388 
2389 void
2390 device_pmf_class_register(device_t dev, void *priv,
2391     bool (*suspend)(device_t, pmf_qual_t),
2392     bool (*resume)(device_t, pmf_qual_t),
2393     void (*deregister)(device_t))
2394 {
2395 	dev->dv_class_private = priv;
2396 	dev->dv_class_suspend = suspend;
2397 	dev->dv_class_resume = resume;
2398 	dev->dv_class_deregister = deregister;
2399 }
2400 
2401 void
2402 device_pmf_class_deregister(device_t dev)
2403 {
2404 	if (dev->dv_class_deregister == NULL)
2405 		return;
2406 	(*dev->dv_class_deregister)(dev);
2407 	dev->dv_class_private = NULL;
2408 	dev->dv_class_suspend = NULL;
2409 	dev->dv_class_resume = NULL;
2410 	dev->dv_class_deregister = NULL;
2411 }
2412 
2413 bool
2414 device_active(device_t dev, devactive_t type)
2415 {
2416 	size_t i;
2417 
2418 	if (dev->dv_activity_count == 0)
2419 		return false;
2420 
2421 	for (i = 0; i < dev->dv_activity_count; ++i) {
2422 		if (dev->dv_activity_handlers[i] == NULL)
2423 			break;
2424 		(*dev->dv_activity_handlers[i])(dev, type);
2425 	}
2426 
2427 	return true;
2428 }
2429 
2430 bool
2431 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2432 {
2433 	void (**new_handlers)(device_t, devactive_t);
2434 	void (**old_handlers)(device_t, devactive_t);
2435 	size_t i, old_size, new_size;
2436 	int s;
2437 
2438 	old_handlers = dev->dv_activity_handlers;
2439 	old_size = dev->dv_activity_count;
2440 
2441 	for (i = 0; i < old_size; ++i) {
2442 		KASSERT(old_handlers[i] != handler);
2443 		if (old_handlers[i] == NULL) {
2444 			old_handlers[i] = handler;
2445 			return true;
2446 		}
2447 	}
2448 
2449 	new_size = old_size + 4;
2450 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2451 
2452 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2453 	new_handlers[old_size] = handler;
2454 	memset(new_handlers + old_size + 1, 0,
2455 	    sizeof(int [new_size - (old_size+1)]));
2456 
2457 	s = splhigh();
2458 	dev->dv_activity_count = new_size;
2459 	dev->dv_activity_handlers = new_handlers;
2460 	splx(s);
2461 
2462 	if (old_handlers != NULL)
2463 		kmem_free(old_handlers, sizeof(void * [old_size]));
2464 
2465 	return true;
2466 }
2467 
2468 void
2469 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2470 {
2471 	void (**old_handlers)(device_t, devactive_t);
2472 	size_t i, old_size;
2473 	int s;
2474 
2475 	old_handlers = dev->dv_activity_handlers;
2476 	old_size = dev->dv_activity_count;
2477 
2478 	for (i = 0; i < old_size; ++i) {
2479 		if (old_handlers[i] == handler)
2480 			break;
2481 		if (old_handlers[i] == NULL)
2482 			return; /* XXX panic? */
2483 	}
2484 
2485 	if (i == old_size)
2486 		return; /* XXX panic? */
2487 
2488 	for (; i < old_size - 1; ++i) {
2489 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2490 			continue;
2491 
2492 		if (i == 0) {
2493 			s = splhigh();
2494 			dev->dv_activity_count = 0;
2495 			dev->dv_activity_handlers = NULL;
2496 			splx(s);
2497 			kmem_free(old_handlers, sizeof(void *[old_size]));
2498 		}
2499 		return;
2500 	}
2501 	old_handlers[i] = NULL;
2502 }
2503 
2504 /* Return true iff the device_t `dev' exists at generation `gen'. */
2505 static bool
2506 device_exists_at(device_t dv, devgen_t gen)
2507 {
2508 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2509 	    dv->dv_add_gen <= gen;
2510 }
2511 
2512 static bool
2513 deviter_visits(const deviter_t *di, device_t dv)
2514 {
2515 	return device_exists_at(dv, di->di_gen);
2516 }
2517 
2518 /*
2519  * Device Iteration
2520  *
2521  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2522  *     each device_t's in the device tree.
2523  *
2524  * deviter_init(di, flags): initialize the device iterator `di'
2525  *     to "walk" the device tree.  deviter_next(di) will return
2526  *     the first device_t in the device tree, or NULL if there are
2527  *     no devices.
2528  *
2529  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2530  *     caller intends to modify the device tree by calling
2531  *     config_detach(9) on devices in the order that the iterator
2532  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2533  *     nearest the "root" of the device tree to be returned, first;
2534  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2535  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2536  *     indicating both that deviter_init() should not respect any
2537  *     locks on the device tree, and that deviter_next(di) may run
2538  *     in more than one LWP before the walk has finished.
2539  *
2540  *     Only one DEVITER_F_RW iterator may be in the device tree at
2541  *     once.
2542  *
2543  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2544  *
2545  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2546  *     DEVITER_F_LEAVES_FIRST are used in combination.
2547  *
2548  * deviter_first(di, flags): initialize the device iterator `di'
2549  *     and return the first device_t in the device tree, or NULL
2550  *     if there are no devices.  The statement
2551  *
2552  *         dv = deviter_first(di);
2553  *
2554  *     is shorthand for
2555  *
2556  *         deviter_init(di);
2557  *         dv = deviter_next(di);
2558  *
2559  * deviter_next(di): return the next device_t in the device tree,
2560  *     or NULL if there are no more devices.  deviter_next(di)
2561  *     is undefined if `di' was not initialized with deviter_init() or
2562  *     deviter_first().
2563  *
2564  * deviter_release(di): stops iteration (subsequent calls to
2565  *     deviter_next() will return NULL), releases any locks and
2566  *     resources held by the device iterator.
2567  *
2568  * Device iteration does not return device_t's in any particular
2569  * order.  An iterator will never return the same device_t twice.
2570  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2571  * is called repeatedly on the same `di', it will eventually return
2572  * NULL.  It is ok to attach/detach devices during device iteration.
2573  */
2574 void
2575 deviter_init(deviter_t *di, deviter_flags_t flags)
2576 {
2577 	device_t dv;
2578 	int s;
2579 
2580 	memset(di, 0, sizeof(*di));
2581 
2582 	s = config_alldevs_lock();
2583 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2584 		flags |= DEVITER_F_RW;
2585 
2586 	if ((flags & DEVITER_F_RW) != 0)
2587 		alldevs_nwrite++;
2588 	else
2589 		alldevs_nread++;
2590 	di->di_gen = alldevs_gen++;
2591 	config_alldevs_unlock(s);
2592 
2593 	di->di_flags = flags;
2594 
2595 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2596 	case DEVITER_F_LEAVES_FIRST:
2597 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2598 			if (!deviter_visits(di, dv))
2599 				continue;
2600 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2601 		}
2602 		break;
2603 	case DEVITER_F_ROOT_FIRST:
2604 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2605 			if (!deviter_visits(di, dv))
2606 				continue;
2607 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2608 		}
2609 		break;
2610 	default:
2611 		break;
2612 	}
2613 
2614 	deviter_reinit(di);
2615 }
2616 
2617 static void
2618 deviter_reinit(deviter_t *di)
2619 {
2620 	if ((di->di_flags & DEVITER_F_RW) != 0)
2621 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2622 	else
2623 		di->di_prev = TAILQ_FIRST(&alldevs);
2624 }
2625 
2626 device_t
2627 deviter_first(deviter_t *di, deviter_flags_t flags)
2628 {
2629 	deviter_init(di, flags);
2630 	return deviter_next(di);
2631 }
2632 
2633 static device_t
2634 deviter_next2(deviter_t *di)
2635 {
2636 	device_t dv;
2637 
2638 	dv = di->di_prev;
2639 
2640 	if (dv == NULL)
2641 		return NULL;
2642 
2643 	if ((di->di_flags & DEVITER_F_RW) != 0)
2644 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2645 	else
2646 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2647 
2648 	return dv;
2649 }
2650 
2651 static device_t
2652 deviter_next1(deviter_t *di)
2653 {
2654 	device_t dv;
2655 
2656 	do {
2657 		dv = deviter_next2(di);
2658 	} while (dv != NULL && !deviter_visits(di, dv));
2659 
2660 	return dv;
2661 }
2662 
2663 device_t
2664 deviter_next(deviter_t *di)
2665 {
2666 	device_t dv = NULL;
2667 
2668 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2669 	case 0:
2670 		return deviter_next1(di);
2671 	case DEVITER_F_LEAVES_FIRST:
2672 		while (di->di_curdepth >= 0) {
2673 			if ((dv = deviter_next1(di)) == NULL) {
2674 				di->di_curdepth--;
2675 				deviter_reinit(di);
2676 			} else if (dv->dv_depth == di->di_curdepth)
2677 				break;
2678 		}
2679 		return dv;
2680 	case DEVITER_F_ROOT_FIRST:
2681 		while (di->di_curdepth <= di->di_maxdepth) {
2682 			if ((dv = deviter_next1(di)) == NULL) {
2683 				di->di_curdepth++;
2684 				deviter_reinit(di);
2685 			} else if (dv->dv_depth == di->di_curdepth)
2686 				break;
2687 		}
2688 		return dv;
2689 	default:
2690 		return NULL;
2691 	}
2692 }
2693 
2694 void
2695 deviter_release(deviter_t *di)
2696 {
2697 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2698 	int s;
2699 
2700 	s = config_alldevs_lock();
2701 	if (rw)
2702 		--alldevs_nwrite;
2703 	else
2704 		--alldevs_nread;
2705 	/* XXX wake a garbage-collection thread */
2706 	config_alldevs_unlock(s);
2707 }
2708 
2709 bool
2710 ifattr_match(const char *snull, const char *t)
2711 {
2712 	return (snull == NULL) || strcmp(snull, t) == 0;
2713 }
2714 
2715 void
2716 null_childdetached(device_t self, device_t child)
2717 {
2718 	/* do nothing */
2719 }
2720 
2721 static void
2722 sysctl_detach_setup(struct sysctllog **clog)
2723 {
2724 	const struct sysctlnode *node = NULL;
2725 
2726 	sysctl_createv(clog, 0, NULL, &node,
2727 		CTLFLAG_PERMANENT,
2728 		CTLTYPE_NODE, "kern", NULL,
2729 		NULL, 0, NULL, 0,
2730 		CTL_KERN, CTL_EOL);
2731 
2732 	if (node == NULL)
2733 		return;
2734 
2735 	sysctl_createv(clog, 0, &node, NULL,
2736 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2737 		CTLTYPE_INT, "detachall",
2738 		SYSCTL_DESCR("Detach all devices at shutdown"),
2739 		NULL, 0, &detachall, 0,
2740 		CTL_CREATE, CTL_EOL);
2741 }
2742