1 /* $NetBSD: subr_autoconf.c,v 1.269 2020/02/27 20:16:38 macallan Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.269 2020/02/27 20:16:38 macallan Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/disklabel.h> 90 #include <sys/conf.h> 91 #include <sys/kauth.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 111 #include <sys/disk.h> 112 113 #include <sys/rndsource.h> 114 115 #include <machine/limits.h> 116 117 /* 118 * Autoconfiguration subroutines. 119 */ 120 121 /* 122 * Device autoconfiguration timings are mixed into the entropy pool. 123 */ 124 extern krndsource_t rnd_autoconf_source; 125 126 /* 127 * ioconf.c exports exactly two names: cfdata and cfroots. All system 128 * devices and drivers are found via these tables. 129 */ 130 extern struct cfdata cfdata[]; 131 extern const short cfroots[]; 132 133 /* 134 * List of all cfdriver structures. We use this to detect duplicates 135 * when other cfdrivers are loaded. 136 */ 137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 138 extern struct cfdriver * const cfdriver_list_initial[]; 139 140 /* 141 * Initial list of cfattach's. 142 */ 143 extern const struct cfattachinit cfattachinit[]; 144 145 /* 146 * List of cfdata tables. We always have one such list -- the one 147 * built statically when the kernel was configured. 148 */ 149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 150 static struct cftable initcftable; 151 152 #define ROOT ((device_t)NULL) 153 154 struct matchinfo { 155 cfsubmatch_t fn; 156 device_t parent; 157 const int *locs; 158 void *aux; 159 struct cfdata *match; 160 int pri; 161 }; 162 163 struct alldevs_foray { 164 int af_s; 165 struct devicelist af_garbage; 166 }; 167 168 static char *number(char *, int); 169 static void mapply(struct matchinfo *, cfdata_t); 170 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 171 static void config_devdelete(device_t); 172 static void config_devunlink(device_t, struct devicelist *); 173 static void config_makeroom(int, struct cfdriver *); 174 static void config_devlink(device_t); 175 static void config_alldevs_enter(struct alldevs_foray *); 176 static void config_alldevs_exit(struct alldevs_foray *); 177 static void config_add_attrib_dict(device_t); 178 179 static void config_collect_garbage(struct devicelist *); 180 static void config_dump_garbage(struct devicelist *); 181 182 static void pmflock_debug(device_t, const char *, int); 183 184 static device_t deviter_next1(deviter_t *); 185 static void deviter_reinit(deviter_t *); 186 187 struct deferred_config { 188 TAILQ_ENTRY(deferred_config) dc_queue; 189 device_t dc_dev; 190 void (*dc_func)(device_t); 191 }; 192 193 TAILQ_HEAD(deferred_config_head, deferred_config); 194 195 static struct deferred_config_head deferred_config_queue = 196 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 197 static struct deferred_config_head interrupt_config_queue = 198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 199 static int interrupt_config_threads = 8; 200 static struct deferred_config_head mountroot_config_queue = 201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 202 static int mountroot_config_threads = 2; 203 static lwp_t **mountroot_config_lwpids; 204 static size_t mountroot_config_lwpids_size; 205 bool root_is_mounted = false; 206 207 static void config_process_deferred(struct deferred_config_head *, device_t); 208 209 /* Hooks to finalize configuration once all real devices have been found. */ 210 struct finalize_hook { 211 TAILQ_ENTRY(finalize_hook) f_list; 212 int (*f_func)(device_t); 213 device_t f_dev; 214 }; 215 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 216 TAILQ_HEAD_INITIALIZER(config_finalize_list); 217 static int config_finalize_done; 218 219 /* list of all devices */ 220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 221 static kmutex_t alldevs_lock __cacheline_aligned; 222 static devgen_t alldevs_gen = 1; 223 static int alldevs_nread = 0; 224 static int alldevs_nwrite = 0; 225 static bool alldevs_garbage = false; 226 227 static int config_pending; /* semaphore for mountroot */ 228 static kmutex_t config_misc_lock; 229 static kcondvar_t config_misc_cv; 230 231 static bool detachall = false; 232 233 #define STREQ(s1, s2) \ 234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 235 236 static bool config_initialized = false; /* config_init() has been called. */ 237 238 static int config_do_twiddle; 239 static callout_t config_twiddle_ch; 240 241 static void sysctl_detach_setup(struct sysctllog **); 242 243 int no_devmon_insert(const char *, prop_dictionary_t); 244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; 245 246 typedef int (*cfdriver_fn)(struct cfdriver *); 247 static int 248 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 249 cfdriver_fn drv_do, cfdriver_fn drv_undo, 250 const char *style, bool dopanic) 251 { 252 void (*pr)(const char *, ...) __printflike(1, 2) = 253 dopanic ? panic : printf; 254 int i, error = 0, e2 __diagused; 255 256 for (i = 0; cfdriverv[i] != NULL; i++) { 257 if ((error = drv_do(cfdriverv[i])) != 0) { 258 pr("configure: `%s' driver %s failed: %d", 259 cfdriverv[i]->cd_name, style, error); 260 goto bad; 261 } 262 } 263 264 KASSERT(error == 0); 265 return 0; 266 267 bad: 268 printf("\n"); 269 for (i--; i >= 0; i--) { 270 e2 = drv_undo(cfdriverv[i]); 271 KASSERT(e2 == 0); 272 } 273 274 return error; 275 } 276 277 typedef int (*cfattach_fn)(const char *, struct cfattach *); 278 static int 279 frob_cfattachvec(const struct cfattachinit *cfattachv, 280 cfattach_fn att_do, cfattach_fn att_undo, 281 const char *style, bool dopanic) 282 { 283 const struct cfattachinit *cfai = NULL; 284 void (*pr)(const char *, ...) __printflike(1, 2) = 285 dopanic ? panic : printf; 286 int j = 0, error = 0, e2 __diagused; 287 288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 289 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 290 if ((error = att_do(cfai->cfai_name, 291 cfai->cfai_list[j])) != 0) { 292 pr("configure: attachment `%s' " 293 "of `%s' driver %s failed: %d", 294 cfai->cfai_list[j]->ca_name, 295 cfai->cfai_name, style, error); 296 goto bad; 297 } 298 } 299 } 300 301 KASSERT(error == 0); 302 return 0; 303 304 bad: 305 /* 306 * Rollback in reverse order. dunno if super-important, but 307 * do that anyway. Although the code looks a little like 308 * someone did a little integration (in the math sense). 309 */ 310 printf("\n"); 311 if (cfai) { 312 bool last; 313 314 for (last = false; last == false; ) { 315 if (cfai == &cfattachv[0]) 316 last = true; 317 for (j--; j >= 0; j--) { 318 e2 = att_undo(cfai->cfai_name, 319 cfai->cfai_list[j]); 320 KASSERT(e2 == 0); 321 } 322 if (!last) { 323 cfai--; 324 for (j = 0; cfai->cfai_list[j] != NULL; j++) 325 ; 326 } 327 } 328 } 329 330 return error; 331 } 332 333 /* 334 * Initialize the autoconfiguration data structures. Normally this 335 * is done by configure(), but some platforms need to do this very 336 * early (to e.g. initialize the console). 337 */ 338 void 339 config_init(void) 340 { 341 342 KASSERT(config_initialized == false); 343 344 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM); 345 346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 347 cv_init(&config_misc_cv, "cfgmisc"); 348 349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 350 351 frob_cfdrivervec(cfdriver_list_initial, 352 config_cfdriver_attach, NULL, "bootstrap", true); 353 frob_cfattachvec(cfattachinit, 354 config_cfattach_attach, NULL, "bootstrap", true); 355 356 initcftable.ct_cfdata = cfdata; 357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 358 359 config_initialized = true; 360 } 361 362 /* 363 * Init or fini drivers and attachments. Either all or none 364 * are processed (via rollback). It would be nice if this were 365 * atomic to outside consumers, but with the current state of 366 * locking ... 367 */ 368 int 369 config_init_component(struct cfdriver * const *cfdriverv, 370 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 371 { 372 int error; 373 374 if ((error = frob_cfdrivervec(cfdriverv, 375 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 376 return error; 377 if ((error = frob_cfattachvec(cfattachv, 378 config_cfattach_attach, config_cfattach_detach, 379 "init", false)) != 0) { 380 frob_cfdrivervec(cfdriverv, 381 config_cfdriver_detach, NULL, "init rollback", true); 382 return error; 383 } 384 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 385 frob_cfattachvec(cfattachv, 386 config_cfattach_detach, NULL, "init rollback", true); 387 frob_cfdrivervec(cfdriverv, 388 config_cfdriver_detach, NULL, "init rollback", true); 389 return error; 390 } 391 392 return 0; 393 } 394 395 int 396 config_fini_component(struct cfdriver * const *cfdriverv, 397 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 398 { 399 int error; 400 401 if ((error = config_cfdata_detach(cfdatav)) != 0) 402 return error; 403 if ((error = frob_cfattachvec(cfattachv, 404 config_cfattach_detach, config_cfattach_attach, 405 "fini", false)) != 0) { 406 if (config_cfdata_attach(cfdatav, 0) != 0) 407 panic("config_cfdata fini rollback failed"); 408 return error; 409 } 410 if ((error = frob_cfdrivervec(cfdriverv, 411 config_cfdriver_detach, config_cfdriver_attach, 412 "fini", false)) != 0) { 413 frob_cfattachvec(cfattachv, 414 config_cfattach_attach, NULL, "fini rollback", true); 415 if (config_cfdata_attach(cfdatav, 0) != 0) 416 panic("config_cfdata fini rollback failed"); 417 return error; 418 } 419 420 return 0; 421 } 422 423 void 424 config_init_mi(void) 425 { 426 427 if (!config_initialized) 428 config_init(); 429 430 sysctl_detach_setup(NULL); 431 } 432 433 void 434 config_deferred(device_t dev) 435 { 436 config_process_deferred(&deferred_config_queue, dev); 437 config_process_deferred(&interrupt_config_queue, dev); 438 config_process_deferred(&mountroot_config_queue, dev); 439 } 440 441 static void 442 config_interrupts_thread(void *cookie) 443 { 444 struct deferred_config *dc; 445 device_t dev; 446 447 mutex_enter(&config_misc_lock); 448 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 449 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 450 mutex_exit(&config_misc_lock); 451 452 dev = dc->dc_dev; 453 (*dc->dc_func)(dev); 454 if (!device_pmf_is_registered(dev)) 455 aprint_debug_dev(dev, 456 "WARNING: power management not supported\n"); 457 config_pending_decr(dev); 458 kmem_free(dc, sizeof(*dc)); 459 460 mutex_enter(&config_misc_lock); 461 dev->dv_flags &= ~DVF_ATTACH_INPROGRESS; 462 } 463 mutex_exit(&config_misc_lock); 464 465 kthread_exit(0); 466 } 467 468 void 469 config_create_interruptthreads(void) 470 { 471 int i; 472 473 for (i = 0; i < interrupt_config_threads; i++) { 474 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL, 475 config_interrupts_thread, NULL, NULL, "configintr"); 476 } 477 } 478 479 static void 480 config_mountroot_thread(void *cookie) 481 { 482 struct deferred_config *dc; 483 484 mutex_enter(&config_misc_lock); 485 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 486 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 487 mutex_exit(&config_misc_lock); 488 489 (*dc->dc_func)(dc->dc_dev); 490 kmem_free(dc, sizeof(*dc)); 491 492 mutex_enter(&config_misc_lock); 493 } 494 mutex_exit(&config_misc_lock); 495 496 kthread_exit(0); 497 } 498 499 void 500 config_create_mountrootthreads(void) 501 { 502 int i; 503 504 if (!root_is_mounted) 505 root_is_mounted = true; 506 507 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * 508 mountroot_config_threads; 509 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, 510 KM_NOSLEEP); 511 KASSERT(mountroot_config_lwpids); 512 for (i = 0; i < mountroot_config_threads; i++) { 513 mountroot_config_lwpids[i] = 0; 514 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */, 515 NULL, config_mountroot_thread, NULL, 516 &mountroot_config_lwpids[i], 517 "configroot"); 518 } 519 } 520 521 void 522 config_finalize_mountroot(void) 523 { 524 int i, error; 525 526 for (i = 0; i < mountroot_config_threads; i++) { 527 if (mountroot_config_lwpids[i] == 0) 528 continue; 529 530 error = kthread_join(mountroot_config_lwpids[i]); 531 if (error) 532 printf("%s: thread %x joined with error %d\n", 533 __func__, i, error); 534 } 535 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); 536 } 537 538 /* 539 * Announce device attach/detach to userland listeners. 540 */ 541 542 int 543 no_devmon_insert(const char *name, prop_dictionary_t p) 544 { 545 546 return ENODEV; 547 } 548 549 static void 550 devmon_report_device(device_t dev, bool isattach) 551 { 552 prop_dictionary_t ev, dict = device_properties(dev); 553 const char *parent; 554 const char *what; 555 const char *where; 556 device_t pdev = device_parent(dev); 557 558 /* If currently no drvctl device, just return */ 559 if (devmon_insert_vec == no_devmon_insert) 560 return; 561 562 ev = prop_dictionary_create(); 563 if (ev == NULL) 564 return; 565 566 what = (isattach ? "device-attach" : "device-detach"); 567 parent = (pdev == NULL ? "root" : device_xname(pdev)); 568 if (prop_dictionary_get_cstring_nocopy(dict, "location", &where)) { 569 prop_dictionary_set_cstring(ev, "location", where); 570 aprint_debug("ev: %s %s at %s in [%s]\n", 571 what, device_xname(dev), parent, where); 572 } 573 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 574 !prop_dictionary_set_cstring(ev, "parent", parent)) { 575 prop_object_release(ev); 576 return; 577 } 578 579 if ((*devmon_insert_vec)(what, ev) != 0) 580 prop_object_release(ev); 581 } 582 583 /* 584 * Add a cfdriver to the system. 585 */ 586 int 587 config_cfdriver_attach(struct cfdriver *cd) 588 { 589 struct cfdriver *lcd; 590 591 /* Make sure this driver isn't already in the system. */ 592 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 593 if (STREQ(lcd->cd_name, cd->cd_name)) 594 return EEXIST; 595 } 596 597 LIST_INIT(&cd->cd_attach); 598 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 599 600 return 0; 601 } 602 603 /* 604 * Remove a cfdriver from the system. 605 */ 606 int 607 config_cfdriver_detach(struct cfdriver *cd) 608 { 609 struct alldevs_foray af; 610 int i, rc = 0; 611 612 config_alldevs_enter(&af); 613 /* Make sure there are no active instances. */ 614 for (i = 0; i < cd->cd_ndevs; i++) { 615 if (cd->cd_devs[i] != NULL) { 616 rc = EBUSY; 617 break; 618 } 619 } 620 config_alldevs_exit(&af); 621 622 if (rc != 0) 623 return rc; 624 625 /* ...and no attachments loaded. */ 626 if (LIST_EMPTY(&cd->cd_attach) == 0) 627 return EBUSY; 628 629 LIST_REMOVE(cd, cd_list); 630 631 KASSERT(cd->cd_devs == NULL); 632 633 return 0; 634 } 635 636 /* 637 * Look up a cfdriver by name. 638 */ 639 struct cfdriver * 640 config_cfdriver_lookup(const char *name) 641 { 642 struct cfdriver *cd; 643 644 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 645 if (STREQ(cd->cd_name, name)) 646 return cd; 647 } 648 649 return NULL; 650 } 651 652 /* 653 * Add a cfattach to the specified driver. 654 */ 655 int 656 config_cfattach_attach(const char *driver, struct cfattach *ca) 657 { 658 struct cfattach *lca; 659 struct cfdriver *cd; 660 661 cd = config_cfdriver_lookup(driver); 662 if (cd == NULL) 663 return ESRCH; 664 665 /* Make sure this attachment isn't already on this driver. */ 666 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 667 if (STREQ(lca->ca_name, ca->ca_name)) 668 return EEXIST; 669 } 670 671 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 672 673 return 0; 674 } 675 676 /* 677 * Remove a cfattach from the specified driver. 678 */ 679 int 680 config_cfattach_detach(const char *driver, struct cfattach *ca) 681 { 682 struct alldevs_foray af; 683 struct cfdriver *cd; 684 device_t dev; 685 int i, rc = 0; 686 687 cd = config_cfdriver_lookup(driver); 688 if (cd == NULL) 689 return ESRCH; 690 691 config_alldevs_enter(&af); 692 /* Make sure there are no active instances. */ 693 for (i = 0; i < cd->cd_ndevs; i++) { 694 if ((dev = cd->cd_devs[i]) == NULL) 695 continue; 696 if (dev->dv_cfattach == ca) { 697 rc = EBUSY; 698 break; 699 } 700 } 701 config_alldevs_exit(&af); 702 703 if (rc != 0) 704 return rc; 705 706 LIST_REMOVE(ca, ca_list); 707 708 return 0; 709 } 710 711 /* 712 * Look up a cfattach by name. 713 */ 714 static struct cfattach * 715 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 716 { 717 struct cfattach *ca; 718 719 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 720 if (STREQ(ca->ca_name, atname)) 721 return ca; 722 } 723 724 return NULL; 725 } 726 727 /* 728 * Look up a cfattach by driver/attachment name. 729 */ 730 struct cfattach * 731 config_cfattach_lookup(const char *name, const char *atname) 732 { 733 struct cfdriver *cd; 734 735 cd = config_cfdriver_lookup(name); 736 if (cd == NULL) 737 return NULL; 738 739 return config_cfattach_lookup_cd(cd, atname); 740 } 741 742 /* 743 * Apply the matching function and choose the best. This is used 744 * a few times and we want to keep the code small. 745 */ 746 static void 747 mapply(struct matchinfo *m, cfdata_t cf) 748 { 749 int pri; 750 751 if (m->fn != NULL) { 752 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 753 } else { 754 pri = config_match(m->parent, cf, m->aux); 755 } 756 if (pri > m->pri) { 757 m->match = cf; 758 m->pri = pri; 759 } 760 } 761 762 int 763 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 764 { 765 const struct cfiattrdata *ci; 766 const struct cflocdesc *cl; 767 int nlocs, i; 768 769 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 770 KASSERT(ci); 771 nlocs = ci->ci_loclen; 772 KASSERT(!nlocs || locs); 773 for (i = 0; i < nlocs; i++) { 774 cl = &ci->ci_locdesc[i]; 775 if (cl->cld_defaultstr != NULL && 776 cf->cf_loc[i] == cl->cld_default) 777 continue; 778 if (cf->cf_loc[i] == locs[i]) 779 continue; 780 return 0; 781 } 782 783 return config_match(parent, cf, aux); 784 } 785 786 /* 787 * Helper function: check whether the driver supports the interface attribute 788 * and return its descriptor structure. 789 */ 790 static const struct cfiattrdata * 791 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 792 { 793 const struct cfiattrdata * const *cpp; 794 795 if (cd->cd_attrs == NULL) 796 return 0; 797 798 for (cpp = cd->cd_attrs; *cpp; cpp++) { 799 if (STREQ((*cpp)->ci_name, ia)) { 800 /* Match. */ 801 return *cpp; 802 } 803 } 804 return 0; 805 } 806 807 /* 808 * Lookup an interface attribute description by name. 809 * If the driver is given, consider only its supported attributes. 810 */ 811 const struct cfiattrdata * 812 cfiattr_lookup(const char *name, const struct cfdriver *cd) 813 { 814 const struct cfdriver *d; 815 const struct cfiattrdata *ia; 816 817 if (cd) 818 return cfdriver_get_iattr(cd, name); 819 820 LIST_FOREACH(d, &allcfdrivers, cd_list) { 821 ia = cfdriver_get_iattr(d, name); 822 if (ia) 823 return ia; 824 } 825 return 0; 826 } 827 828 /* 829 * Determine if `parent' is a potential parent for a device spec based 830 * on `cfp'. 831 */ 832 static int 833 cfparent_match(const device_t parent, const struct cfparent *cfp) 834 { 835 struct cfdriver *pcd; 836 837 /* We don't match root nodes here. */ 838 if (cfp == NULL) 839 return 0; 840 841 pcd = parent->dv_cfdriver; 842 KASSERT(pcd != NULL); 843 844 /* 845 * First, ensure this parent has the correct interface 846 * attribute. 847 */ 848 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 849 return 0; 850 851 /* 852 * If no specific parent device instance was specified (i.e. 853 * we're attaching to the attribute only), we're done! 854 */ 855 if (cfp->cfp_parent == NULL) 856 return 1; 857 858 /* 859 * Check the parent device's name. 860 */ 861 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 862 return 0; /* not the same parent */ 863 864 /* 865 * Make sure the unit number matches. 866 */ 867 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 868 cfp->cfp_unit == parent->dv_unit) 869 return 1; 870 871 /* Unit numbers don't match. */ 872 return 0; 873 } 874 875 /* 876 * Helper for config_cfdata_attach(): check all devices whether it could be 877 * parent any attachment in the config data table passed, and rescan. 878 */ 879 static void 880 rescan_with_cfdata(const struct cfdata *cf) 881 { 882 device_t d; 883 const struct cfdata *cf1; 884 deviter_t di; 885 886 887 /* 888 * "alldevs" is likely longer than a modules's cfdata, so make it 889 * the outer loop. 890 */ 891 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 892 893 if (!(d->dv_cfattach->ca_rescan)) 894 continue; 895 896 for (cf1 = cf; cf1->cf_name; cf1++) { 897 898 if (!cfparent_match(d, cf1->cf_pspec)) 899 continue; 900 901 (*d->dv_cfattach->ca_rescan)(d, 902 cfdata_ifattr(cf1), cf1->cf_loc); 903 904 config_deferred(d); 905 } 906 } 907 deviter_release(&di); 908 } 909 910 /* 911 * Attach a supplemental config data table and rescan potential 912 * parent devices if required. 913 */ 914 int 915 config_cfdata_attach(cfdata_t cf, int scannow) 916 { 917 struct cftable *ct; 918 919 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 920 ct->ct_cfdata = cf; 921 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 922 923 if (scannow) 924 rescan_with_cfdata(cf); 925 926 return 0; 927 } 928 929 /* 930 * Helper for config_cfdata_detach: check whether a device is 931 * found through any attachment in the config data table. 932 */ 933 static int 934 dev_in_cfdata(device_t d, cfdata_t cf) 935 { 936 const struct cfdata *cf1; 937 938 for (cf1 = cf; cf1->cf_name; cf1++) 939 if (d->dv_cfdata == cf1) 940 return 1; 941 942 return 0; 943 } 944 945 /* 946 * Detach a supplemental config data table. Detach all devices found 947 * through that table (and thus keeping references to it) before. 948 */ 949 int 950 config_cfdata_detach(cfdata_t cf) 951 { 952 device_t d; 953 int error = 0; 954 struct cftable *ct; 955 deviter_t di; 956 957 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 958 d = deviter_next(&di)) { 959 if (!dev_in_cfdata(d, cf)) 960 continue; 961 if ((error = config_detach(d, 0)) != 0) 962 break; 963 } 964 deviter_release(&di); 965 if (error) { 966 aprint_error_dev(d, "unable to detach instance\n"); 967 return error; 968 } 969 970 TAILQ_FOREACH(ct, &allcftables, ct_list) { 971 if (ct->ct_cfdata == cf) { 972 TAILQ_REMOVE(&allcftables, ct, ct_list); 973 kmem_free(ct, sizeof(*ct)); 974 return 0; 975 } 976 } 977 978 /* not found -- shouldn't happen */ 979 return EINVAL; 980 } 981 982 /* 983 * Invoke the "match" routine for a cfdata entry on behalf of 984 * an external caller, usually a "submatch" routine. 985 */ 986 int 987 config_match(device_t parent, cfdata_t cf, void *aux) 988 { 989 struct cfattach *ca; 990 991 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 992 if (ca == NULL) { 993 /* No attachment for this entry, oh well. */ 994 return 0; 995 } 996 997 return (*ca->ca_match)(parent, cf, aux); 998 } 999 1000 /* 1001 * Iterate over all potential children of some device, calling the given 1002 * function (default being the child's match function) for each one. 1003 * Nonzero returns are matches; the highest value returned is considered 1004 * the best match. Return the `found child' if we got a match, or NULL 1005 * otherwise. The `aux' pointer is simply passed on through. 1006 * 1007 * Note that this function is designed so that it can be used to apply 1008 * an arbitrary function to all potential children (its return value 1009 * can be ignored). 1010 */ 1011 cfdata_t 1012 config_search_loc(cfsubmatch_t fn, device_t parent, 1013 const char *ifattr, const int *locs, void *aux) 1014 { 1015 struct cftable *ct; 1016 cfdata_t cf; 1017 struct matchinfo m; 1018 1019 KASSERT(config_initialized); 1020 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 1021 1022 m.fn = fn; 1023 m.parent = parent; 1024 m.locs = locs; 1025 m.aux = aux; 1026 m.match = NULL; 1027 m.pri = 0; 1028 1029 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1030 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1031 1032 /* We don't match root nodes here. */ 1033 if (!cf->cf_pspec) 1034 continue; 1035 1036 /* 1037 * Skip cf if no longer eligible, otherwise scan 1038 * through parents for one matching `parent', and 1039 * try match function. 1040 */ 1041 if (cf->cf_fstate == FSTATE_FOUND) 1042 continue; 1043 if (cf->cf_fstate == FSTATE_DNOTFOUND || 1044 cf->cf_fstate == FSTATE_DSTAR) 1045 continue; 1046 1047 /* 1048 * If an interface attribute was specified, 1049 * consider only children which attach to 1050 * that attribute. 1051 */ 1052 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 1053 continue; 1054 1055 if (cfparent_match(parent, cf->cf_pspec)) 1056 mapply(&m, cf); 1057 } 1058 } 1059 return m.match; 1060 } 1061 1062 cfdata_t 1063 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 1064 void *aux) 1065 { 1066 1067 return config_search_loc(fn, parent, ifattr, NULL, aux); 1068 } 1069 1070 /* 1071 * Find the given root device. 1072 * This is much like config_search, but there is no parent. 1073 * Don't bother with multiple cfdata tables; the root node 1074 * must always be in the initial table. 1075 */ 1076 cfdata_t 1077 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1078 { 1079 cfdata_t cf; 1080 const short *p; 1081 struct matchinfo m; 1082 1083 m.fn = fn; 1084 m.parent = ROOT; 1085 m.aux = aux; 1086 m.match = NULL; 1087 m.pri = 0; 1088 m.locs = 0; 1089 /* 1090 * Look at root entries for matching name. We do not bother 1091 * with found-state here since only one root should ever be 1092 * searched (and it must be done first). 1093 */ 1094 for (p = cfroots; *p >= 0; p++) { 1095 cf = &cfdata[*p]; 1096 if (strcmp(cf->cf_name, rootname) == 0) 1097 mapply(&m, cf); 1098 } 1099 return m.match; 1100 } 1101 1102 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1103 1104 /* 1105 * The given `aux' argument describes a device that has been found 1106 * on the given parent, but not necessarily configured. Locate the 1107 * configuration data for that device (using the submatch function 1108 * provided, or using candidates' cd_match configuration driver 1109 * functions) and attach it, and return its device_t. If the device was 1110 * not configured, call the given `print' function and return NULL. 1111 */ 1112 device_t 1113 config_found_sm_loc(device_t parent, 1114 const char *ifattr, const int *locs, void *aux, 1115 cfprint_t print, cfsubmatch_t submatch) 1116 { 1117 cfdata_t cf; 1118 1119 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1120 return(config_attach_loc(parent, cf, locs, aux, print)); 1121 if (print) { 1122 if (config_do_twiddle && cold) 1123 twiddle(); 1124 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1125 } 1126 1127 /* 1128 * This has the effect of mixing in a single timestamp to the 1129 * entropy pool. Experiments indicate the estimator will almost 1130 * always attribute one bit of entropy to this sample; analysis 1131 * of device attach/detach timestamps on FreeBSD indicates 4 1132 * bits of entropy/sample so this seems appropriately conservative. 1133 */ 1134 rnd_add_uint32(&rnd_autoconf_source, 0); 1135 return NULL; 1136 } 1137 1138 device_t 1139 config_found_ia(device_t parent, const char *ifattr, void *aux, 1140 cfprint_t print) 1141 { 1142 1143 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1144 } 1145 1146 device_t 1147 config_found(device_t parent, void *aux, cfprint_t print) 1148 { 1149 1150 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1151 } 1152 1153 /* 1154 * As above, but for root devices. 1155 */ 1156 device_t 1157 config_rootfound(const char *rootname, void *aux) 1158 { 1159 cfdata_t cf; 1160 1161 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1162 return config_attach(ROOT, cf, aux, NULL); 1163 aprint_error("root device %s not configured\n", rootname); 1164 return NULL; 1165 } 1166 1167 /* just like sprintf(buf, "%d") except that it works from the end */ 1168 static char * 1169 number(char *ep, int n) 1170 { 1171 1172 *--ep = 0; 1173 while (n >= 10) { 1174 *--ep = (n % 10) + '0'; 1175 n /= 10; 1176 } 1177 *--ep = n + '0'; 1178 return ep; 1179 } 1180 1181 /* 1182 * Expand the size of the cd_devs array if necessary. 1183 * 1184 * The caller must hold alldevs_lock. config_makeroom() may release and 1185 * re-acquire alldevs_lock, so callers should re-check conditions such 1186 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1187 * returns. 1188 */ 1189 static void 1190 config_makeroom(int n, struct cfdriver *cd) 1191 { 1192 int ondevs, nndevs; 1193 device_t *osp, *nsp; 1194 1195 KASSERT(mutex_owned(&alldevs_lock)); 1196 alldevs_nwrite++; 1197 1198 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1199 ; 1200 1201 while (n >= cd->cd_ndevs) { 1202 /* 1203 * Need to expand the array. 1204 */ 1205 ondevs = cd->cd_ndevs; 1206 osp = cd->cd_devs; 1207 1208 /* 1209 * Release alldevs_lock around allocation, which may 1210 * sleep. 1211 */ 1212 mutex_exit(&alldevs_lock); 1213 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP); 1214 mutex_enter(&alldevs_lock); 1215 1216 /* 1217 * If another thread moved the array while we did 1218 * not hold alldevs_lock, try again. 1219 */ 1220 if (cd->cd_devs != osp) { 1221 mutex_exit(&alldevs_lock); 1222 kmem_free(nsp, sizeof(device_t[nndevs])); 1223 mutex_enter(&alldevs_lock); 1224 continue; 1225 } 1226 1227 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs])); 1228 if (ondevs != 0) 1229 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs])); 1230 1231 cd->cd_ndevs = nndevs; 1232 cd->cd_devs = nsp; 1233 if (ondevs != 0) { 1234 mutex_exit(&alldevs_lock); 1235 kmem_free(osp, sizeof(device_t[ondevs])); 1236 mutex_enter(&alldevs_lock); 1237 } 1238 } 1239 KASSERT(mutex_owned(&alldevs_lock)); 1240 alldevs_nwrite--; 1241 } 1242 1243 /* 1244 * Put dev into the devices list. 1245 */ 1246 static void 1247 config_devlink(device_t dev) 1248 { 1249 1250 mutex_enter(&alldevs_lock); 1251 1252 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1253 1254 dev->dv_add_gen = alldevs_gen; 1255 /* It is safe to add a device to the tail of the list while 1256 * readers and writers are in the list. 1257 */ 1258 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1259 mutex_exit(&alldevs_lock); 1260 } 1261 1262 static void 1263 config_devfree(device_t dev) 1264 { 1265 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1266 1267 if (dev->dv_cfattach->ca_devsize > 0) 1268 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1269 if (priv) 1270 kmem_free(dev, sizeof(*dev)); 1271 } 1272 1273 /* 1274 * Caller must hold alldevs_lock. 1275 */ 1276 static void 1277 config_devunlink(device_t dev, struct devicelist *garbage) 1278 { 1279 struct device_garbage *dg = &dev->dv_garbage; 1280 cfdriver_t cd = device_cfdriver(dev); 1281 int i; 1282 1283 KASSERT(mutex_owned(&alldevs_lock)); 1284 1285 /* Unlink from device list. Link to garbage list. */ 1286 TAILQ_REMOVE(&alldevs, dev, dv_list); 1287 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1288 1289 /* Remove from cfdriver's array. */ 1290 cd->cd_devs[dev->dv_unit] = NULL; 1291 1292 /* 1293 * If the device now has no units in use, unlink its softc array. 1294 */ 1295 for (i = 0; i < cd->cd_ndevs; i++) { 1296 if (cd->cd_devs[i] != NULL) 1297 break; 1298 } 1299 /* Nothing found. Unlink, now. Deallocate, later. */ 1300 if (i == cd->cd_ndevs) { 1301 dg->dg_ndevs = cd->cd_ndevs; 1302 dg->dg_devs = cd->cd_devs; 1303 cd->cd_devs = NULL; 1304 cd->cd_ndevs = 0; 1305 } 1306 } 1307 1308 static void 1309 config_devdelete(device_t dev) 1310 { 1311 struct device_garbage *dg = &dev->dv_garbage; 1312 device_lock_t dvl = device_getlock(dev); 1313 1314 if (dg->dg_devs != NULL) 1315 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1316 1317 cv_destroy(&dvl->dvl_cv); 1318 mutex_destroy(&dvl->dvl_mtx); 1319 1320 KASSERT(dev->dv_properties != NULL); 1321 prop_object_release(dev->dv_properties); 1322 1323 if (dev->dv_activity_handlers) 1324 panic("%s with registered handlers", __func__); 1325 1326 if (dev->dv_locators) { 1327 size_t amount = *--dev->dv_locators; 1328 kmem_free(dev->dv_locators, amount); 1329 } 1330 1331 config_devfree(dev); 1332 } 1333 1334 static int 1335 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1336 { 1337 int unit; 1338 1339 if (cf->cf_fstate == FSTATE_STAR) { 1340 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1341 if (cd->cd_devs[unit] == NULL) 1342 break; 1343 /* 1344 * unit is now the unit of the first NULL device pointer, 1345 * or max(cd->cd_ndevs,cf->cf_unit). 1346 */ 1347 } else { 1348 unit = cf->cf_unit; 1349 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1350 unit = -1; 1351 } 1352 return unit; 1353 } 1354 1355 static int 1356 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1357 { 1358 struct alldevs_foray af; 1359 int unit; 1360 1361 config_alldevs_enter(&af); 1362 for (;;) { 1363 unit = config_unit_nextfree(cd, cf); 1364 if (unit == -1) 1365 break; 1366 if (unit < cd->cd_ndevs) { 1367 cd->cd_devs[unit] = dev; 1368 dev->dv_unit = unit; 1369 break; 1370 } 1371 config_makeroom(unit, cd); 1372 } 1373 config_alldevs_exit(&af); 1374 1375 return unit; 1376 } 1377 1378 static device_t 1379 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1380 { 1381 cfdriver_t cd; 1382 cfattach_t ca; 1383 size_t lname, lunit; 1384 const char *xunit; 1385 int myunit; 1386 char num[10]; 1387 device_t dev; 1388 void *dev_private; 1389 const struct cfiattrdata *ia; 1390 device_lock_t dvl; 1391 1392 cd = config_cfdriver_lookup(cf->cf_name); 1393 if (cd == NULL) 1394 return NULL; 1395 1396 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1397 if (ca == NULL) 1398 return NULL; 1399 1400 /* get memory for all device vars */ 1401 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC) 1402 || ca->ca_devsize >= sizeof(struct device), 1403 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize, 1404 sizeof(struct device)); 1405 if (ca->ca_devsize > 0) { 1406 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1407 } else { 1408 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1409 dev_private = NULL; 1410 } 1411 1412 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1413 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1414 } else { 1415 dev = dev_private; 1416 #ifdef DIAGNOSTIC 1417 printf("%s has not been converted to device_t\n", cd->cd_name); 1418 #endif 1419 KASSERT(dev != NULL); 1420 } 1421 dev->dv_class = cd->cd_class; 1422 dev->dv_cfdata = cf; 1423 dev->dv_cfdriver = cd; 1424 dev->dv_cfattach = ca; 1425 dev->dv_activity_count = 0; 1426 dev->dv_activity_handlers = NULL; 1427 dev->dv_private = dev_private; 1428 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1429 1430 myunit = config_unit_alloc(dev, cd, cf); 1431 if (myunit == -1) { 1432 config_devfree(dev); 1433 return NULL; 1434 } 1435 1436 /* compute length of name and decimal expansion of unit number */ 1437 lname = strlen(cd->cd_name); 1438 xunit = number(&num[sizeof(num)], myunit); 1439 lunit = &num[sizeof(num)] - xunit; 1440 if (lname + lunit > sizeof(dev->dv_xname)) 1441 panic("config_devalloc: device name too long"); 1442 1443 dvl = device_getlock(dev); 1444 1445 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1446 cv_init(&dvl->dvl_cv, "pmfsusp"); 1447 1448 memcpy(dev->dv_xname, cd->cd_name, lname); 1449 memcpy(dev->dv_xname + lname, xunit, lunit); 1450 dev->dv_parent = parent; 1451 if (parent != NULL) 1452 dev->dv_depth = parent->dv_depth + 1; 1453 else 1454 dev->dv_depth = 0; 1455 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1456 if (locs) { 1457 KASSERT(parent); /* no locators at root */ 1458 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1459 dev->dv_locators = 1460 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1461 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1462 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1463 } 1464 dev->dv_properties = prop_dictionary_create(); 1465 KASSERT(dev->dv_properties != NULL); 1466 1467 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1468 "device-driver", dev->dv_cfdriver->cd_name); 1469 prop_dictionary_set_uint16(dev->dv_properties, 1470 "device-unit", dev->dv_unit); 1471 if (parent != NULL) { 1472 prop_dictionary_set_cstring(dev->dv_properties, 1473 "device-parent", device_xname(parent)); 1474 } 1475 1476 if (dev->dv_cfdriver->cd_attrs != NULL) 1477 config_add_attrib_dict(dev); 1478 1479 return dev; 1480 } 1481 1482 /* 1483 * Create an array of device attach attributes and add it 1484 * to the device's dv_properties dictionary. 1485 * 1486 * <key>interface-attributes</key> 1487 * <array> 1488 * <dict> 1489 * <key>attribute-name</key> 1490 * <string>foo</string> 1491 * <key>locators</key> 1492 * <array> 1493 * <dict> 1494 * <key>loc-name</key> 1495 * <string>foo-loc1</string> 1496 * </dict> 1497 * <dict> 1498 * <key>loc-name</key> 1499 * <string>foo-loc2</string> 1500 * <key>default</key> 1501 * <string>foo-loc2-default</string> 1502 * </dict> 1503 * ... 1504 * </array> 1505 * </dict> 1506 * ... 1507 * </array> 1508 */ 1509 1510 static void 1511 config_add_attrib_dict(device_t dev) 1512 { 1513 int i, j; 1514 const struct cfiattrdata *ci; 1515 prop_dictionary_t attr_dict, loc_dict; 1516 prop_array_t attr_array, loc_array; 1517 1518 if ((attr_array = prop_array_create()) == NULL) 1519 return; 1520 1521 for (i = 0; ; i++) { 1522 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1523 break; 1524 if ((attr_dict = prop_dictionary_create()) == NULL) 1525 break; 1526 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name", 1527 ci->ci_name); 1528 1529 /* Create an array of the locator names and defaults */ 1530 1531 if (ci->ci_loclen != 0 && 1532 (loc_array = prop_array_create()) != NULL) { 1533 for (j = 0; j < ci->ci_loclen; j++) { 1534 loc_dict = prop_dictionary_create(); 1535 if (loc_dict == NULL) 1536 continue; 1537 prop_dictionary_set_cstring_nocopy(loc_dict, 1538 "loc-name", ci->ci_locdesc[j].cld_name); 1539 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1540 prop_dictionary_set_cstring_nocopy( 1541 loc_dict, "default", 1542 ci->ci_locdesc[j].cld_defaultstr); 1543 prop_array_set(loc_array, j, loc_dict); 1544 prop_object_release(loc_dict); 1545 } 1546 prop_dictionary_set_and_rel(attr_dict, "locators", 1547 loc_array); 1548 } 1549 prop_array_add(attr_array, attr_dict); 1550 prop_object_release(attr_dict); 1551 } 1552 if (i == 0) 1553 prop_object_release(attr_array); 1554 else 1555 prop_dictionary_set_and_rel(dev->dv_properties, 1556 "interface-attributes", attr_array); 1557 1558 return; 1559 } 1560 1561 /* 1562 * Attach a found device. 1563 */ 1564 device_t 1565 config_attach_loc(device_t parent, cfdata_t cf, 1566 const int *locs, void *aux, cfprint_t print) 1567 { 1568 device_t dev; 1569 struct cftable *ct; 1570 const char *drvname; 1571 1572 dev = config_devalloc(parent, cf, locs); 1573 if (!dev) 1574 panic("config_attach: allocation of device softc failed"); 1575 1576 /* XXX redundant - see below? */ 1577 if (cf->cf_fstate != FSTATE_STAR) { 1578 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1579 cf->cf_fstate = FSTATE_FOUND; 1580 } 1581 1582 config_devlink(dev); 1583 1584 if (config_do_twiddle && cold) 1585 twiddle(); 1586 else 1587 aprint_naive("Found "); 1588 /* 1589 * We want the next two printfs for normal, verbose, and quiet, 1590 * but not silent (in which case, we're twiddling, instead). 1591 */ 1592 if (parent == ROOT) { 1593 aprint_naive("%s (root)", device_xname(dev)); 1594 aprint_normal("%s (root)", device_xname(dev)); 1595 } else { 1596 aprint_naive("%s at %s", device_xname(dev), 1597 device_xname(parent)); 1598 aprint_normal("%s at %s", device_xname(dev), 1599 device_xname(parent)); 1600 if (print) 1601 (void) (*print)(aux, NULL); 1602 } 1603 1604 /* 1605 * Before attaching, clobber any unfound devices that are 1606 * otherwise identical. 1607 * XXX code above is redundant? 1608 */ 1609 drvname = dev->dv_cfdriver->cd_name; 1610 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1611 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1612 if (STREQ(cf->cf_name, drvname) && 1613 cf->cf_unit == dev->dv_unit) { 1614 if (cf->cf_fstate == FSTATE_NOTFOUND) 1615 cf->cf_fstate = FSTATE_FOUND; 1616 } 1617 } 1618 } 1619 device_register(dev, aux); 1620 1621 /* Let userland know */ 1622 devmon_report_device(dev, true); 1623 1624 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1625 1626 if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0) 1627 && !device_pmf_is_registered(dev)) 1628 aprint_debug_dev(dev, 1629 "WARNING: power management not supported\n"); 1630 1631 config_process_deferred(&deferred_config_queue, dev); 1632 1633 device_register_post_config(dev, aux); 1634 return dev; 1635 } 1636 1637 device_t 1638 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1639 { 1640 1641 return config_attach_loc(parent, cf, NULL, aux, print); 1642 } 1643 1644 /* 1645 * As above, but for pseudo-devices. Pseudo-devices attached in this 1646 * way are silently inserted into the device tree, and their children 1647 * attached. 1648 * 1649 * Note that because pseudo-devices are attached silently, any information 1650 * the attach routine wishes to print should be prefixed with the device 1651 * name by the attach routine. 1652 */ 1653 device_t 1654 config_attach_pseudo(cfdata_t cf) 1655 { 1656 device_t dev; 1657 1658 dev = config_devalloc(ROOT, cf, NULL); 1659 if (!dev) 1660 return NULL; 1661 1662 /* XXX mark busy in cfdata */ 1663 1664 if (cf->cf_fstate != FSTATE_STAR) { 1665 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1666 cf->cf_fstate = FSTATE_FOUND; 1667 } 1668 1669 config_devlink(dev); 1670 1671 #if 0 /* XXXJRT not yet */ 1672 device_register(dev, NULL); /* like a root node */ 1673 #endif 1674 1675 /* Let userland know */ 1676 devmon_report_device(dev, true); 1677 1678 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1679 1680 config_process_deferred(&deferred_config_queue, dev); 1681 return dev; 1682 } 1683 1684 /* 1685 * Caller must hold alldevs_lock. 1686 */ 1687 static void 1688 config_collect_garbage(struct devicelist *garbage) 1689 { 1690 device_t dv; 1691 1692 KASSERT(!cpu_intr_p()); 1693 KASSERT(!cpu_softintr_p()); 1694 KASSERT(mutex_owned(&alldevs_lock)); 1695 1696 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1697 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1698 if (dv->dv_del_gen != 0) 1699 break; 1700 } 1701 if (dv == NULL) { 1702 alldevs_garbage = false; 1703 break; 1704 } 1705 config_devunlink(dv, garbage); 1706 } 1707 KASSERT(mutex_owned(&alldevs_lock)); 1708 } 1709 1710 static void 1711 config_dump_garbage(struct devicelist *garbage) 1712 { 1713 device_t dv; 1714 1715 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1716 TAILQ_REMOVE(garbage, dv, dv_list); 1717 config_devdelete(dv); 1718 } 1719 } 1720 1721 /* 1722 * Detach a device. Optionally forced (e.g. because of hardware 1723 * removal) and quiet. Returns zero if successful, non-zero 1724 * (an error code) otherwise. 1725 * 1726 * Note that this code wants to be run from a process context, so 1727 * that the detach can sleep to allow processes which have a device 1728 * open to run and unwind their stacks. 1729 */ 1730 int 1731 config_detach(device_t dev, int flags) 1732 { 1733 struct alldevs_foray af; 1734 struct cftable *ct; 1735 cfdata_t cf; 1736 const struct cfattach *ca; 1737 struct cfdriver *cd; 1738 device_t d __diagused; 1739 int rv = 0; 1740 1741 cf = dev->dv_cfdata; 1742 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND || 1743 cf->cf_fstate == FSTATE_STAR), 1744 "config_detach: %s: bad device fstate: %d", 1745 device_xname(dev), cf ? cf->cf_fstate : -1); 1746 1747 cd = dev->dv_cfdriver; 1748 KASSERT(cd != NULL); 1749 1750 ca = dev->dv_cfattach; 1751 KASSERT(ca != NULL); 1752 1753 mutex_enter(&alldevs_lock); 1754 if (dev->dv_del_gen != 0) { 1755 mutex_exit(&alldevs_lock); 1756 #ifdef DIAGNOSTIC 1757 printf("%s: %s is already detached\n", __func__, 1758 device_xname(dev)); 1759 #endif /* DIAGNOSTIC */ 1760 return ENOENT; 1761 } 1762 alldevs_nwrite++; 1763 mutex_exit(&alldevs_lock); 1764 1765 if (!detachall && 1766 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1767 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1768 rv = EOPNOTSUPP; 1769 } else if (ca->ca_detach != NULL) { 1770 rv = (*ca->ca_detach)(dev, flags); 1771 } else 1772 rv = EOPNOTSUPP; 1773 1774 /* 1775 * If it was not possible to detach the device, then we either 1776 * panic() (for the forced but failed case), or return an error. 1777 * 1778 * If it was possible to detach the device, ensure that the 1779 * device is deactivated. 1780 */ 1781 if (rv == 0) 1782 dev->dv_flags &= ~DVF_ACTIVE; 1783 else if ((flags & DETACH_FORCE) == 0) 1784 goto out; 1785 else { 1786 panic("config_detach: forced detach of %s failed (%d)", 1787 device_xname(dev), rv); 1788 } 1789 1790 /* 1791 * The device has now been successfully detached. 1792 */ 1793 1794 /* Let userland know */ 1795 devmon_report_device(dev, false); 1796 1797 #ifdef DIAGNOSTIC 1798 /* 1799 * Sanity: If you're successfully detached, you should have no 1800 * children. (Note that because children must be attached 1801 * after parents, we only need to search the latter part of 1802 * the list.) 1803 */ 1804 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1805 d = TAILQ_NEXT(d, dv_list)) { 1806 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1807 printf("config_detach: detached device %s" 1808 " has children %s\n", device_xname(dev), 1809 device_xname(d)); 1810 panic("config_detach"); 1811 } 1812 } 1813 #endif 1814 1815 /* notify the parent that the child is gone */ 1816 if (dev->dv_parent) { 1817 device_t p = dev->dv_parent; 1818 if (p->dv_cfattach->ca_childdetached) 1819 (*p->dv_cfattach->ca_childdetached)(p, dev); 1820 } 1821 1822 /* 1823 * Mark cfdata to show that the unit can be reused, if possible. 1824 */ 1825 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1826 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1827 if (STREQ(cf->cf_name, cd->cd_name)) { 1828 if (cf->cf_fstate == FSTATE_FOUND && 1829 cf->cf_unit == dev->dv_unit) 1830 cf->cf_fstate = FSTATE_NOTFOUND; 1831 } 1832 } 1833 } 1834 1835 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1836 aprint_normal_dev(dev, "detached\n"); 1837 1838 out: 1839 config_alldevs_enter(&af); 1840 KASSERT(alldevs_nwrite != 0); 1841 --alldevs_nwrite; 1842 if (rv == 0 && dev->dv_del_gen == 0) { 1843 if (alldevs_nwrite == 0 && alldevs_nread == 0) 1844 config_devunlink(dev, &af.af_garbage); 1845 else { 1846 dev->dv_del_gen = alldevs_gen; 1847 alldevs_garbage = true; 1848 } 1849 } 1850 config_alldevs_exit(&af); 1851 1852 return rv; 1853 } 1854 1855 int 1856 config_detach_children(device_t parent, int flags) 1857 { 1858 device_t dv; 1859 deviter_t di; 1860 int error = 0; 1861 1862 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1863 dv = deviter_next(&di)) { 1864 if (device_parent(dv) != parent) 1865 continue; 1866 if ((error = config_detach(dv, flags)) != 0) 1867 break; 1868 } 1869 deviter_release(&di); 1870 return error; 1871 } 1872 1873 device_t 1874 shutdown_first(struct shutdown_state *s) 1875 { 1876 if (!s->initialized) { 1877 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1878 s->initialized = true; 1879 } 1880 return shutdown_next(s); 1881 } 1882 1883 device_t 1884 shutdown_next(struct shutdown_state *s) 1885 { 1886 device_t dv; 1887 1888 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1889 ; 1890 1891 if (dv == NULL) 1892 s->initialized = false; 1893 1894 return dv; 1895 } 1896 1897 bool 1898 config_detach_all(int how) 1899 { 1900 static struct shutdown_state s; 1901 device_t curdev; 1902 bool progress = false; 1903 int flags; 1904 1905 if ((how & (RB_NOSYNC|RB_DUMP)) != 0) 1906 return false; 1907 1908 if ((how & RB_POWERDOWN) == RB_POWERDOWN) 1909 flags = DETACH_SHUTDOWN | DETACH_POWEROFF; 1910 else 1911 flags = DETACH_SHUTDOWN; 1912 1913 for (curdev = shutdown_first(&s); curdev != NULL; 1914 curdev = shutdown_next(&s)) { 1915 aprint_debug(" detaching %s, ", device_xname(curdev)); 1916 if (config_detach(curdev, flags) == 0) { 1917 progress = true; 1918 aprint_debug("success."); 1919 } else 1920 aprint_debug("failed."); 1921 } 1922 return progress; 1923 } 1924 1925 static bool 1926 device_is_ancestor_of(device_t ancestor, device_t descendant) 1927 { 1928 device_t dv; 1929 1930 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1931 if (device_parent(dv) == ancestor) 1932 return true; 1933 } 1934 return false; 1935 } 1936 1937 int 1938 config_deactivate(device_t dev) 1939 { 1940 deviter_t di; 1941 const struct cfattach *ca; 1942 device_t descendant; 1943 int s, rv = 0, oflags; 1944 1945 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1946 descendant != NULL; 1947 descendant = deviter_next(&di)) { 1948 if (dev != descendant && 1949 !device_is_ancestor_of(dev, descendant)) 1950 continue; 1951 1952 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1953 continue; 1954 1955 ca = descendant->dv_cfattach; 1956 oflags = descendant->dv_flags; 1957 1958 descendant->dv_flags &= ~DVF_ACTIVE; 1959 if (ca->ca_activate == NULL) 1960 continue; 1961 s = splhigh(); 1962 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1963 splx(s); 1964 if (rv != 0) 1965 descendant->dv_flags = oflags; 1966 } 1967 deviter_release(&di); 1968 return rv; 1969 } 1970 1971 /* 1972 * Defer the configuration of the specified device until all 1973 * of its parent's devices have been attached. 1974 */ 1975 void 1976 config_defer(device_t dev, void (*func)(device_t)) 1977 { 1978 struct deferred_config *dc; 1979 1980 if (dev->dv_parent == NULL) 1981 panic("config_defer: can't defer config of a root device"); 1982 1983 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1984 1985 config_pending_incr(dev); 1986 1987 mutex_enter(&config_misc_lock); 1988 #ifdef DIAGNOSTIC 1989 struct deferred_config *odc; 1990 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) { 1991 if (odc->dc_dev == dev) 1992 panic("config_defer: deferred twice"); 1993 } 1994 #endif 1995 dc->dc_dev = dev; 1996 dc->dc_func = func; 1997 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1998 mutex_exit(&config_misc_lock); 1999 } 2000 2001 /* 2002 * Defer some autoconfiguration for a device until after interrupts 2003 * are enabled. 2004 */ 2005 void 2006 config_interrupts(device_t dev, void (*func)(device_t)) 2007 { 2008 struct deferred_config *dc; 2009 2010 /* 2011 * If interrupts are enabled, callback now. 2012 */ 2013 if (cold == 0) { 2014 (*func)(dev); 2015 return; 2016 } 2017 2018 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2019 2020 config_pending_incr(dev); 2021 2022 mutex_enter(&config_misc_lock); 2023 #ifdef DIAGNOSTIC 2024 struct deferred_config *odc; 2025 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) { 2026 if (odc->dc_dev == dev) 2027 panic("config_interrupts: deferred twice"); 2028 } 2029 #endif 2030 dc->dc_dev = dev; 2031 dc->dc_func = func; 2032 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 2033 dev->dv_flags |= DVF_ATTACH_INPROGRESS; 2034 mutex_exit(&config_misc_lock); 2035 } 2036 2037 /* 2038 * Defer some autoconfiguration for a device until after root file system 2039 * is mounted (to load firmware etc). 2040 */ 2041 void 2042 config_mountroot(device_t dev, void (*func)(device_t)) 2043 { 2044 struct deferred_config *dc; 2045 2046 /* 2047 * If root file system is mounted, callback now. 2048 */ 2049 if (root_is_mounted) { 2050 (*func)(dev); 2051 return; 2052 } 2053 2054 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2055 2056 mutex_enter(&config_misc_lock); 2057 #ifdef DIAGNOSTIC 2058 struct deferred_config *odc; 2059 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) { 2060 if (odc->dc_dev == dev) 2061 panic("%s: deferred twice", __func__); 2062 } 2063 #endif 2064 2065 dc->dc_dev = dev; 2066 dc->dc_func = func; 2067 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 2068 mutex_exit(&config_misc_lock); 2069 } 2070 2071 /* 2072 * Process a deferred configuration queue. 2073 */ 2074 static void 2075 config_process_deferred(struct deferred_config_head *queue, device_t parent) 2076 { 2077 struct deferred_config *dc; 2078 2079 mutex_enter(&config_misc_lock); 2080 dc = TAILQ_FIRST(queue); 2081 while (dc) { 2082 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2083 TAILQ_REMOVE(queue, dc, dc_queue); 2084 mutex_exit(&config_misc_lock); 2085 2086 (*dc->dc_func)(dc->dc_dev); 2087 config_pending_decr(dc->dc_dev); 2088 kmem_free(dc, sizeof(*dc)); 2089 2090 mutex_enter(&config_misc_lock); 2091 /* Restart, queue might have changed */ 2092 dc = TAILQ_FIRST(queue); 2093 } else { 2094 dc = TAILQ_NEXT(dc, dc_queue); 2095 } 2096 } 2097 mutex_exit(&config_misc_lock); 2098 } 2099 2100 /* 2101 * Manipulate the config_pending semaphore. 2102 */ 2103 void 2104 config_pending_incr(device_t dev) 2105 { 2106 2107 mutex_enter(&config_misc_lock); 2108 config_pending++; 2109 #ifdef DEBUG_AUTOCONF 2110 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2111 #endif 2112 mutex_exit(&config_misc_lock); 2113 } 2114 2115 void 2116 config_pending_decr(device_t dev) 2117 { 2118 2119 KASSERT(0 < config_pending); 2120 mutex_enter(&config_misc_lock); 2121 config_pending--; 2122 #ifdef DEBUG_AUTOCONF 2123 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2124 #endif 2125 if (config_pending == 0) 2126 cv_broadcast(&config_misc_cv); 2127 mutex_exit(&config_misc_lock); 2128 } 2129 2130 /* 2131 * Register a "finalization" routine. Finalization routines are 2132 * called iteratively once all real devices have been found during 2133 * autoconfiguration, for as long as any one finalizer has done 2134 * any work. 2135 */ 2136 int 2137 config_finalize_register(device_t dev, int (*fn)(device_t)) 2138 { 2139 struct finalize_hook *f; 2140 2141 /* 2142 * If finalization has already been done, invoke the 2143 * callback function now. 2144 */ 2145 if (config_finalize_done) { 2146 while ((*fn)(dev) != 0) 2147 /* loop */ ; 2148 return 0; 2149 } 2150 2151 /* Ensure this isn't already on the list. */ 2152 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2153 if (f->f_func == fn && f->f_dev == dev) 2154 return EEXIST; 2155 } 2156 2157 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2158 f->f_func = fn; 2159 f->f_dev = dev; 2160 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2161 2162 return 0; 2163 } 2164 2165 void 2166 config_finalize(void) 2167 { 2168 struct finalize_hook *f; 2169 struct pdevinit *pdev; 2170 extern struct pdevinit pdevinit[]; 2171 int errcnt, rv; 2172 2173 /* 2174 * Now that device driver threads have been created, wait for 2175 * them to finish any deferred autoconfiguration. 2176 */ 2177 mutex_enter(&config_misc_lock); 2178 while (config_pending != 0) 2179 cv_wait(&config_misc_cv, &config_misc_lock); 2180 mutex_exit(&config_misc_lock); 2181 2182 KERNEL_LOCK(1, NULL); 2183 2184 /* Attach pseudo-devices. */ 2185 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2186 (*pdev->pdev_attach)(pdev->pdev_count); 2187 2188 /* Run the hooks until none of them does any work. */ 2189 do { 2190 rv = 0; 2191 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2192 rv |= (*f->f_func)(f->f_dev); 2193 } while (rv != 0); 2194 2195 config_finalize_done = 1; 2196 2197 /* Now free all the hooks. */ 2198 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2199 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2200 kmem_free(f, sizeof(*f)); 2201 } 2202 2203 KERNEL_UNLOCK_ONE(NULL); 2204 2205 errcnt = aprint_get_error_count(); 2206 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2207 (boothowto & AB_VERBOSE) == 0) { 2208 mutex_enter(&config_misc_lock); 2209 if (config_do_twiddle) { 2210 config_do_twiddle = 0; 2211 printf_nolog(" done.\n"); 2212 } 2213 mutex_exit(&config_misc_lock); 2214 } 2215 if (errcnt != 0) { 2216 printf("WARNING: %d error%s while detecting hardware; " 2217 "check system log.\n", errcnt, 2218 errcnt == 1 ? "" : "s"); 2219 } 2220 } 2221 2222 void 2223 config_twiddle_init(void) 2224 { 2225 2226 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2227 config_do_twiddle = 1; 2228 } 2229 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2230 } 2231 2232 void 2233 config_twiddle_fn(void *cookie) 2234 { 2235 2236 mutex_enter(&config_misc_lock); 2237 if (config_do_twiddle) { 2238 twiddle(); 2239 callout_schedule(&config_twiddle_ch, mstohz(100)); 2240 } 2241 mutex_exit(&config_misc_lock); 2242 } 2243 2244 static void 2245 config_alldevs_enter(struct alldevs_foray *af) 2246 { 2247 TAILQ_INIT(&af->af_garbage); 2248 mutex_enter(&alldevs_lock); 2249 config_collect_garbage(&af->af_garbage); 2250 } 2251 2252 static void 2253 config_alldevs_exit(struct alldevs_foray *af) 2254 { 2255 mutex_exit(&alldevs_lock); 2256 config_dump_garbage(&af->af_garbage); 2257 } 2258 2259 /* 2260 * device_lookup: 2261 * 2262 * Look up a device instance for a given driver. 2263 */ 2264 device_t 2265 device_lookup(cfdriver_t cd, int unit) 2266 { 2267 device_t dv; 2268 2269 mutex_enter(&alldevs_lock); 2270 if (unit < 0 || unit >= cd->cd_ndevs) 2271 dv = NULL; 2272 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2273 dv = NULL; 2274 mutex_exit(&alldevs_lock); 2275 2276 return dv; 2277 } 2278 2279 /* 2280 * device_lookup_private: 2281 * 2282 * Look up a softc instance for a given driver. 2283 */ 2284 void * 2285 device_lookup_private(cfdriver_t cd, int unit) 2286 { 2287 2288 return device_private(device_lookup(cd, unit)); 2289 } 2290 2291 /* 2292 * device_find_by_xname: 2293 * 2294 * Returns the device of the given name or NULL if it doesn't exist. 2295 */ 2296 device_t 2297 device_find_by_xname(const char *name) 2298 { 2299 device_t dv; 2300 deviter_t di; 2301 2302 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2303 if (strcmp(device_xname(dv), name) == 0) 2304 break; 2305 } 2306 deviter_release(&di); 2307 2308 return dv; 2309 } 2310 2311 /* 2312 * device_find_by_driver_unit: 2313 * 2314 * Returns the device of the given driver name and unit or 2315 * NULL if it doesn't exist. 2316 */ 2317 device_t 2318 device_find_by_driver_unit(const char *name, int unit) 2319 { 2320 struct cfdriver *cd; 2321 2322 if ((cd = config_cfdriver_lookup(name)) == NULL) 2323 return NULL; 2324 return device_lookup(cd, unit); 2325 } 2326 2327 /* 2328 * device_compatible_match: 2329 * 2330 * Match a driver's "compatible" data against a device's 2331 * "compatible" strings. If a match is found, we return 2332 * a weighted match result, and optionally the matching 2333 * entry. 2334 */ 2335 int 2336 device_compatible_match(const char **device_compats, int ndevice_compats, 2337 const struct device_compatible_entry *driver_compats, 2338 const struct device_compatible_entry **matching_entryp) 2339 { 2340 const struct device_compatible_entry *dce = NULL; 2341 int i, match_weight; 2342 2343 if (ndevice_compats == 0 || device_compats == NULL || 2344 driver_compats == NULL) 2345 return 0; 2346 2347 /* 2348 * We take the first match because we start with the most-specific 2349 * device compatible string. 2350 */ 2351 for (i = 0, match_weight = ndevice_compats - 1; 2352 i < ndevice_compats; 2353 i++, match_weight--) { 2354 for (dce = driver_compats; dce->compat != NULL; dce++) { 2355 if (strcmp(dce->compat, device_compats[i]) == 0) { 2356 KASSERT(match_weight >= 0); 2357 if (matching_entryp) 2358 *matching_entryp = dce; 2359 return 1 + match_weight; 2360 } 2361 } 2362 } 2363 return 0; 2364 } 2365 2366 /* 2367 * Power management related functions. 2368 */ 2369 2370 bool 2371 device_pmf_is_registered(device_t dev) 2372 { 2373 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2374 } 2375 2376 bool 2377 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2378 { 2379 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2380 return true; 2381 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2382 return false; 2383 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2384 dev->dv_driver_suspend != NULL && 2385 !(*dev->dv_driver_suspend)(dev, qual)) 2386 return false; 2387 2388 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2389 return true; 2390 } 2391 2392 bool 2393 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2394 { 2395 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2396 return true; 2397 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2398 return false; 2399 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2400 dev->dv_driver_resume != NULL && 2401 !(*dev->dv_driver_resume)(dev, qual)) 2402 return false; 2403 2404 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2405 return true; 2406 } 2407 2408 bool 2409 device_pmf_driver_shutdown(device_t dev, int how) 2410 { 2411 2412 if (*dev->dv_driver_shutdown != NULL && 2413 !(*dev->dv_driver_shutdown)(dev, how)) 2414 return false; 2415 return true; 2416 } 2417 2418 bool 2419 device_pmf_driver_register(device_t dev, 2420 bool (*suspend)(device_t, const pmf_qual_t *), 2421 bool (*resume)(device_t, const pmf_qual_t *), 2422 bool (*shutdown)(device_t, int)) 2423 { 2424 dev->dv_driver_suspend = suspend; 2425 dev->dv_driver_resume = resume; 2426 dev->dv_driver_shutdown = shutdown; 2427 dev->dv_flags |= DVF_POWER_HANDLERS; 2428 return true; 2429 } 2430 2431 static const char * 2432 curlwp_name(void) 2433 { 2434 if (curlwp->l_name != NULL) 2435 return curlwp->l_name; 2436 else 2437 return curlwp->l_proc->p_comm; 2438 } 2439 2440 void 2441 device_pmf_driver_deregister(device_t dev) 2442 { 2443 device_lock_t dvl = device_getlock(dev); 2444 2445 dev->dv_driver_suspend = NULL; 2446 dev->dv_driver_resume = NULL; 2447 2448 mutex_enter(&dvl->dvl_mtx); 2449 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2450 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2451 /* Wake a thread that waits for the lock. That 2452 * thread will fail to acquire the lock, and then 2453 * it will wake the next thread that waits for the 2454 * lock, or else it will wake us. 2455 */ 2456 cv_signal(&dvl->dvl_cv); 2457 pmflock_debug(dev, __func__, __LINE__); 2458 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2459 pmflock_debug(dev, __func__, __LINE__); 2460 } 2461 mutex_exit(&dvl->dvl_mtx); 2462 } 2463 2464 bool 2465 device_pmf_driver_child_register(device_t dev) 2466 { 2467 device_t parent = device_parent(dev); 2468 2469 if (parent == NULL || parent->dv_driver_child_register == NULL) 2470 return true; 2471 return (*parent->dv_driver_child_register)(dev); 2472 } 2473 2474 void 2475 device_pmf_driver_set_child_register(device_t dev, 2476 bool (*child_register)(device_t)) 2477 { 2478 dev->dv_driver_child_register = child_register; 2479 } 2480 2481 static void 2482 pmflock_debug(device_t dev, const char *func, int line) 2483 { 2484 device_lock_t dvl = device_getlock(dev); 2485 2486 aprint_debug_dev(dev, 2487 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line, 2488 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags); 2489 } 2490 2491 static bool 2492 device_pmf_lock1(device_t dev) 2493 { 2494 device_lock_t dvl = device_getlock(dev); 2495 2496 while (device_pmf_is_registered(dev) && 2497 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2498 dvl->dvl_nwait++; 2499 pmflock_debug(dev, __func__, __LINE__); 2500 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2501 pmflock_debug(dev, __func__, __LINE__); 2502 dvl->dvl_nwait--; 2503 } 2504 if (!device_pmf_is_registered(dev)) { 2505 pmflock_debug(dev, __func__, __LINE__); 2506 /* We could not acquire the lock, but some other thread may 2507 * wait for it, also. Wake that thread. 2508 */ 2509 cv_signal(&dvl->dvl_cv); 2510 return false; 2511 } 2512 dvl->dvl_nlock++; 2513 dvl->dvl_holder = curlwp; 2514 pmflock_debug(dev, __func__, __LINE__); 2515 return true; 2516 } 2517 2518 bool 2519 device_pmf_lock(device_t dev) 2520 { 2521 bool rc; 2522 device_lock_t dvl = device_getlock(dev); 2523 2524 mutex_enter(&dvl->dvl_mtx); 2525 rc = device_pmf_lock1(dev); 2526 mutex_exit(&dvl->dvl_mtx); 2527 2528 return rc; 2529 } 2530 2531 void 2532 device_pmf_unlock(device_t dev) 2533 { 2534 device_lock_t dvl = device_getlock(dev); 2535 2536 KASSERT(dvl->dvl_nlock > 0); 2537 mutex_enter(&dvl->dvl_mtx); 2538 if (--dvl->dvl_nlock == 0) 2539 dvl->dvl_holder = NULL; 2540 cv_signal(&dvl->dvl_cv); 2541 pmflock_debug(dev, __func__, __LINE__); 2542 mutex_exit(&dvl->dvl_mtx); 2543 } 2544 2545 device_lock_t 2546 device_getlock(device_t dev) 2547 { 2548 return &dev->dv_lock; 2549 } 2550 2551 void * 2552 device_pmf_bus_private(device_t dev) 2553 { 2554 return dev->dv_bus_private; 2555 } 2556 2557 bool 2558 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2559 { 2560 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2561 return true; 2562 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2563 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2564 return false; 2565 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2566 dev->dv_bus_suspend != NULL && 2567 !(*dev->dv_bus_suspend)(dev, qual)) 2568 return false; 2569 2570 dev->dv_flags |= DVF_BUS_SUSPENDED; 2571 return true; 2572 } 2573 2574 bool 2575 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2576 { 2577 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2578 return true; 2579 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2580 dev->dv_bus_resume != NULL && 2581 !(*dev->dv_bus_resume)(dev, qual)) 2582 return false; 2583 2584 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2585 return true; 2586 } 2587 2588 bool 2589 device_pmf_bus_shutdown(device_t dev, int how) 2590 { 2591 2592 if (*dev->dv_bus_shutdown != NULL && 2593 !(*dev->dv_bus_shutdown)(dev, how)) 2594 return false; 2595 return true; 2596 } 2597 2598 void 2599 device_pmf_bus_register(device_t dev, void *priv, 2600 bool (*suspend)(device_t, const pmf_qual_t *), 2601 bool (*resume)(device_t, const pmf_qual_t *), 2602 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2603 { 2604 dev->dv_bus_private = priv; 2605 dev->dv_bus_resume = resume; 2606 dev->dv_bus_suspend = suspend; 2607 dev->dv_bus_shutdown = shutdown; 2608 dev->dv_bus_deregister = deregister; 2609 } 2610 2611 void 2612 device_pmf_bus_deregister(device_t dev) 2613 { 2614 if (dev->dv_bus_deregister == NULL) 2615 return; 2616 (*dev->dv_bus_deregister)(dev); 2617 dev->dv_bus_private = NULL; 2618 dev->dv_bus_suspend = NULL; 2619 dev->dv_bus_resume = NULL; 2620 dev->dv_bus_deregister = NULL; 2621 } 2622 2623 void * 2624 device_pmf_class_private(device_t dev) 2625 { 2626 return dev->dv_class_private; 2627 } 2628 2629 bool 2630 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2631 { 2632 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2633 return true; 2634 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2635 dev->dv_class_suspend != NULL && 2636 !(*dev->dv_class_suspend)(dev, qual)) 2637 return false; 2638 2639 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2640 return true; 2641 } 2642 2643 bool 2644 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2645 { 2646 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2647 return true; 2648 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2649 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2650 return false; 2651 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2652 dev->dv_class_resume != NULL && 2653 !(*dev->dv_class_resume)(dev, qual)) 2654 return false; 2655 2656 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2657 return true; 2658 } 2659 2660 void 2661 device_pmf_class_register(device_t dev, void *priv, 2662 bool (*suspend)(device_t, const pmf_qual_t *), 2663 bool (*resume)(device_t, const pmf_qual_t *), 2664 void (*deregister)(device_t)) 2665 { 2666 dev->dv_class_private = priv; 2667 dev->dv_class_suspend = suspend; 2668 dev->dv_class_resume = resume; 2669 dev->dv_class_deregister = deregister; 2670 } 2671 2672 void 2673 device_pmf_class_deregister(device_t dev) 2674 { 2675 if (dev->dv_class_deregister == NULL) 2676 return; 2677 (*dev->dv_class_deregister)(dev); 2678 dev->dv_class_private = NULL; 2679 dev->dv_class_suspend = NULL; 2680 dev->dv_class_resume = NULL; 2681 dev->dv_class_deregister = NULL; 2682 } 2683 2684 bool 2685 device_active(device_t dev, devactive_t type) 2686 { 2687 size_t i; 2688 2689 if (dev->dv_activity_count == 0) 2690 return false; 2691 2692 for (i = 0; i < dev->dv_activity_count; ++i) { 2693 if (dev->dv_activity_handlers[i] == NULL) 2694 break; 2695 (*dev->dv_activity_handlers[i])(dev, type); 2696 } 2697 2698 return true; 2699 } 2700 2701 bool 2702 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2703 { 2704 void (**new_handlers)(device_t, devactive_t); 2705 void (**old_handlers)(device_t, devactive_t); 2706 size_t i, old_size, new_size; 2707 int s; 2708 2709 old_handlers = dev->dv_activity_handlers; 2710 old_size = dev->dv_activity_count; 2711 2712 KASSERT(old_size == 0 || old_handlers != NULL); 2713 2714 for (i = 0; i < old_size; ++i) { 2715 KASSERT(old_handlers[i] != handler); 2716 if (old_handlers[i] == NULL) { 2717 old_handlers[i] = handler; 2718 return true; 2719 } 2720 } 2721 2722 new_size = old_size + 4; 2723 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2724 2725 for (i = 0; i < old_size; ++i) 2726 new_handlers[i] = old_handlers[i]; 2727 new_handlers[old_size] = handler; 2728 for (i = old_size+1; i < new_size; ++i) 2729 new_handlers[i] = NULL; 2730 2731 s = splhigh(); 2732 dev->dv_activity_count = new_size; 2733 dev->dv_activity_handlers = new_handlers; 2734 splx(s); 2735 2736 if (old_size > 0) 2737 kmem_free(old_handlers, sizeof(void * [old_size])); 2738 2739 return true; 2740 } 2741 2742 void 2743 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2744 { 2745 void (**old_handlers)(device_t, devactive_t); 2746 size_t i, old_size; 2747 int s; 2748 2749 old_handlers = dev->dv_activity_handlers; 2750 old_size = dev->dv_activity_count; 2751 2752 for (i = 0; i < old_size; ++i) { 2753 if (old_handlers[i] == handler) 2754 break; 2755 if (old_handlers[i] == NULL) 2756 return; /* XXX panic? */ 2757 } 2758 2759 if (i == old_size) 2760 return; /* XXX panic? */ 2761 2762 for (; i < old_size - 1; ++i) { 2763 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2764 continue; 2765 2766 if (i == 0) { 2767 s = splhigh(); 2768 dev->dv_activity_count = 0; 2769 dev->dv_activity_handlers = NULL; 2770 splx(s); 2771 kmem_free(old_handlers, sizeof(void *[old_size])); 2772 } 2773 return; 2774 } 2775 old_handlers[i] = NULL; 2776 } 2777 2778 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2779 static bool 2780 device_exists_at(device_t dv, devgen_t gen) 2781 { 2782 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2783 dv->dv_add_gen <= gen; 2784 } 2785 2786 static bool 2787 deviter_visits(const deviter_t *di, device_t dv) 2788 { 2789 return device_exists_at(dv, di->di_gen); 2790 } 2791 2792 /* 2793 * Device Iteration 2794 * 2795 * deviter_t: a device iterator. Holds state for a "walk" visiting 2796 * each device_t's in the device tree. 2797 * 2798 * deviter_init(di, flags): initialize the device iterator `di' 2799 * to "walk" the device tree. deviter_next(di) will return 2800 * the first device_t in the device tree, or NULL if there are 2801 * no devices. 2802 * 2803 * `flags' is one or more of DEVITER_F_RW, indicating that the 2804 * caller intends to modify the device tree by calling 2805 * config_detach(9) on devices in the order that the iterator 2806 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2807 * nearest the "root" of the device tree to be returned, first; 2808 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2809 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2810 * indicating both that deviter_init() should not respect any 2811 * locks on the device tree, and that deviter_next(di) may run 2812 * in more than one LWP before the walk has finished. 2813 * 2814 * Only one DEVITER_F_RW iterator may be in the device tree at 2815 * once. 2816 * 2817 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2818 * 2819 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2820 * DEVITER_F_LEAVES_FIRST are used in combination. 2821 * 2822 * deviter_first(di, flags): initialize the device iterator `di' 2823 * and return the first device_t in the device tree, or NULL 2824 * if there are no devices. The statement 2825 * 2826 * dv = deviter_first(di); 2827 * 2828 * is shorthand for 2829 * 2830 * deviter_init(di); 2831 * dv = deviter_next(di); 2832 * 2833 * deviter_next(di): return the next device_t in the device tree, 2834 * or NULL if there are no more devices. deviter_next(di) 2835 * is undefined if `di' was not initialized with deviter_init() or 2836 * deviter_first(). 2837 * 2838 * deviter_release(di): stops iteration (subsequent calls to 2839 * deviter_next() will return NULL), releases any locks and 2840 * resources held by the device iterator. 2841 * 2842 * Device iteration does not return device_t's in any particular 2843 * order. An iterator will never return the same device_t twice. 2844 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2845 * is called repeatedly on the same `di', it will eventually return 2846 * NULL. It is ok to attach/detach devices during device iteration. 2847 */ 2848 void 2849 deviter_init(deviter_t *di, deviter_flags_t flags) 2850 { 2851 device_t dv; 2852 2853 memset(di, 0, sizeof(*di)); 2854 2855 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2856 flags |= DEVITER_F_RW; 2857 2858 mutex_enter(&alldevs_lock); 2859 if ((flags & DEVITER_F_RW) != 0) 2860 alldevs_nwrite++; 2861 else 2862 alldevs_nread++; 2863 di->di_gen = alldevs_gen++; 2864 di->di_flags = flags; 2865 2866 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2867 case DEVITER_F_LEAVES_FIRST: 2868 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2869 if (!deviter_visits(di, dv)) 2870 continue; 2871 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2872 } 2873 break; 2874 case DEVITER_F_ROOT_FIRST: 2875 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2876 if (!deviter_visits(di, dv)) 2877 continue; 2878 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2879 } 2880 break; 2881 default: 2882 break; 2883 } 2884 2885 deviter_reinit(di); 2886 mutex_exit(&alldevs_lock); 2887 } 2888 2889 static void 2890 deviter_reinit(deviter_t *di) 2891 { 2892 2893 KASSERT(mutex_owned(&alldevs_lock)); 2894 if ((di->di_flags & DEVITER_F_RW) != 0) 2895 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2896 else 2897 di->di_prev = TAILQ_FIRST(&alldevs); 2898 } 2899 2900 device_t 2901 deviter_first(deviter_t *di, deviter_flags_t flags) 2902 { 2903 2904 deviter_init(di, flags); 2905 return deviter_next(di); 2906 } 2907 2908 static device_t 2909 deviter_next2(deviter_t *di) 2910 { 2911 device_t dv; 2912 2913 KASSERT(mutex_owned(&alldevs_lock)); 2914 2915 dv = di->di_prev; 2916 2917 if (dv == NULL) 2918 return NULL; 2919 2920 if ((di->di_flags & DEVITER_F_RW) != 0) 2921 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2922 else 2923 di->di_prev = TAILQ_NEXT(dv, dv_list); 2924 2925 return dv; 2926 } 2927 2928 static device_t 2929 deviter_next1(deviter_t *di) 2930 { 2931 device_t dv; 2932 2933 KASSERT(mutex_owned(&alldevs_lock)); 2934 2935 do { 2936 dv = deviter_next2(di); 2937 } while (dv != NULL && !deviter_visits(di, dv)); 2938 2939 return dv; 2940 } 2941 2942 device_t 2943 deviter_next(deviter_t *di) 2944 { 2945 device_t dv = NULL; 2946 2947 mutex_enter(&alldevs_lock); 2948 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2949 case 0: 2950 dv = deviter_next1(di); 2951 break; 2952 case DEVITER_F_LEAVES_FIRST: 2953 while (di->di_curdepth >= 0) { 2954 if ((dv = deviter_next1(di)) == NULL) { 2955 di->di_curdepth--; 2956 deviter_reinit(di); 2957 } else if (dv->dv_depth == di->di_curdepth) 2958 break; 2959 } 2960 break; 2961 case DEVITER_F_ROOT_FIRST: 2962 while (di->di_curdepth <= di->di_maxdepth) { 2963 if ((dv = deviter_next1(di)) == NULL) { 2964 di->di_curdepth++; 2965 deviter_reinit(di); 2966 } else if (dv->dv_depth == di->di_curdepth) 2967 break; 2968 } 2969 break; 2970 default: 2971 break; 2972 } 2973 mutex_exit(&alldevs_lock); 2974 2975 return dv; 2976 } 2977 2978 void 2979 deviter_release(deviter_t *di) 2980 { 2981 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2982 2983 mutex_enter(&alldevs_lock); 2984 if (rw) 2985 --alldevs_nwrite; 2986 else 2987 --alldevs_nread; 2988 /* XXX wake a garbage-collection thread */ 2989 mutex_exit(&alldevs_lock); 2990 } 2991 2992 const char * 2993 cfdata_ifattr(const struct cfdata *cf) 2994 { 2995 return cf->cf_pspec->cfp_iattr; 2996 } 2997 2998 bool 2999 ifattr_match(const char *snull, const char *t) 3000 { 3001 return (snull == NULL) || strcmp(snull, t) == 0; 3002 } 3003 3004 void 3005 null_childdetached(device_t self, device_t child) 3006 { 3007 /* do nothing */ 3008 } 3009 3010 static void 3011 sysctl_detach_setup(struct sysctllog **clog) 3012 { 3013 3014 sysctl_createv(clog, 0, NULL, NULL, 3015 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3016 CTLTYPE_BOOL, "detachall", 3017 SYSCTL_DESCR("Detach all devices at shutdown"), 3018 NULL, 0, &detachall, 0, 3019 CTL_KERN, CTL_CREATE, CTL_EOL); 3020 } 3021