xref: /netbsd-src/sys/kern/subr_autoconf.c (revision 33881f779a77dce6440bdc44610d94de75bebefe)
1 /* $NetBSD: subr_autoconf.c,v 1.269 2020/02/27 20:16:38 macallan Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.269 2020/02/27 20:16:38 macallan Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <sys/rndsource.h>
114 
115 #include <machine/limits.h>
116 
117 /*
118  * Autoconfiguration subroutines.
119  */
120 
121 /*
122  * Device autoconfiguration timings are mixed into the entropy pool.
123  */
124 extern krndsource_t rnd_autoconf_source;
125 
126 /*
127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
128  * devices and drivers are found via these tables.
129  */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132 
133 /*
134  * List of all cfdriver structures.  We use this to detect duplicates
135  * when other cfdrivers are loaded.
136  */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139 
140 /*
141  * Initial list of cfattach's.
142  */
143 extern const struct cfattachinit cfattachinit[];
144 
145 /*
146  * List of cfdata tables.  We always have one such list -- the one
147  * built statically when the kernel was configured.
148  */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151 
152 #define	ROOT ((device_t)NULL)
153 
154 struct matchinfo {
155 	cfsubmatch_t fn;
156 	device_t parent;
157 	const int *locs;
158 	void	*aux;
159 	struct	cfdata *match;
160 	int	pri;
161 };
162 
163 struct alldevs_foray {
164 	int			af_s;
165 	struct devicelist	af_garbage;
166 };
167 
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178 
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181 
182 static void pmflock_debug(device_t, const char *, int);
183 
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186 
187 struct deferred_config {
188 	TAILQ_ENTRY(deferred_config) dc_queue;
189 	device_t dc_dev;
190 	void (*dc_func)(device_t);
191 };
192 
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194 
195 static struct deferred_config_head deferred_config_queue =
196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 static struct deferred_config_head interrupt_config_queue =
198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 static int interrupt_config_threads = 8;
200 static struct deferred_config_head mountroot_config_queue =
201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 static int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 bool root_is_mounted = false;
206 
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208 
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 	TAILQ_ENTRY(finalize_hook) f_list;
212 	int (*f_func)(device_t);
213 	device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218 
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_lock __cacheline_aligned;
222 static devgen_t alldevs_gen = 1;
223 static int alldevs_nread = 0;
224 static int alldevs_nwrite = 0;
225 static bool alldevs_garbage = false;
226 
227 static int config_pending;		/* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230 
231 static bool detachall = false;
232 
233 #define	STREQ(s1, s2)			\
234 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235 
236 static bool config_initialized = false;	/* config_init() has been called. */
237 
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240 
241 static void sysctl_detach_setup(struct sysctllog **);
242 
243 int no_devmon_insert(const char *, prop_dictionary_t);
244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
245 
246 typedef int (*cfdriver_fn)(struct cfdriver *);
247 static int
248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
249 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
250 	const char *style, bool dopanic)
251 {
252 	void (*pr)(const char *, ...) __printflike(1, 2) =
253 	    dopanic ? panic : printf;
254 	int i, error = 0, e2 __diagused;
255 
256 	for (i = 0; cfdriverv[i] != NULL; i++) {
257 		if ((error = drv_do(cfdriverv[i])) != 0) {
258 			pr("configure: `%s' driver %s failed: %d",
259 			    cfdriverv[i]->cd_name, style, error);
260 			goto bad;
261 		}
262 	}
263 
264 	KASSERT(error == 0);
265 	return 0;
266 
267  bad:
268 	printf("\n");
269 	for (i--; i >= 0; i--) {
270 		e2 = drv_undo(cfdriverv[i]);
271 		KASSERT(e2 == 0);
272 	}
273 
274 	return error;
275 }
276 
277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
278 static int
279 frob_cfattachvec(const struct cfattachinit *cfattachv,
280 	cfattach_fn att_do, cfattach_fn att_undo,
281 	const char *style, bool dopanic)
282 {
283 	const struct cfattachinit *cfai = NULL;
284 	void (*pr)(const char *, ...) __printflike(1, 2) =
285 	    dopanic ? panic : printf;
286 	int j = 0, error = 0, e2 __diagused;
287 
288 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
289 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
290 			if ((error = att_do(cfai->cfai_name,
291 			    cfai->cfai_list[j])) != 0) {
292 				pr("configure: attachment `%s' "
293 				    "of `%s' driver %s failed: %d",
294 				    cfai->cfai_list[j]->ca_name,
295 				    cfai->cfai_name, style, error);
296 				goto bad;
297 			}
298 		}
299 	}
300 
301 	KASSERT(error == 0);
302 	return 0;
303 
304  bad:
305 	/*
306 	 * Rollback in reverse order.  dunno if super-important, but
307 	 * do that anyway.  Although the code looks a little like
308 	 * someone did a little integration (in the math sense).
309 	 */
310 	printf("\n");
311 	if (cfai) {
312 		bool last;
313 
314 		for (last = false; last == false; ) {
315 			if (cfai == &cfattachv[0])
316 				last = true;
317 			for (j--; j >= 0; j--) {
318 				e2 = att_undo(cfai->cfai_name,
319 				    cfai->cfai_list[j]);
320 				KASSERT(e2 == 0);
321 			}
322 			if (!last) {
323 				cfai--;
324 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
325 					;
326 			}
327 		}
328 	}
329 
330 	return error;
331 }
332 
333 /*
334  * Initialize the autoconfiguration data structures.  Normally this
335  * is done by configure(), but some platforms need to do this very
336  * early (to e.g. initialize the console).
337  */
338 void
339 config_init(void)
340 {
341 
342 	KASSERT(config_initialized == false);
343 
344 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
345 
346 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
347 	cv_init(&config_misc_cv, "cfgmisc");
348 
349 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
350 
351 	frob_cfdrivervec(cfdriver_list_initial,
352 	    config_cfdriver_attach, NULL, "bootstrap", true);
353 	frob_cfattachvec(cfattachinit,
354 	    config_cfattach_attach, NULL, "bootstrap", true);
355 
356 	initcftable.ct_cfdata = cfdata;
357 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
358 
359 	config_initialized = true;
360 }
361 
362 /*
363  * Init or fini drivers and attachments.  Either all or none
364  * are processed (via rollback).  It would be nice if this were
365  * atomic to outside consumers, but with the current state of
366  * locking ...
367  */
368 int
369 config_init_component(struct cfdriver * const *cfdriverv,
370 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
371 {
372 	int error;
373 
374 	if ((error = frob_cfdrivervec(cfdriverv,
375 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
376 		return error;
377 	if ((error = frob_cfattachvec(cfattachv,
378 	    config_cfattach_attach, config_cfattach_detach,
379 	    "init", false)) != 0) {
380 		frob_cfdrivervec(cfdriverv,
381 	            config_cfdriver_detach, NULL, "init rollback", true);
382 		return error;
383 	}
384 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
385 		frob_cfattachvec(cfattachv,
386 		    config_cfattach_detach, NULL, "init rollback", true);
387 		frob_cfdrivervec(cfdriverv,
388 	            config_cfdriver_detach, NULL, "init rollback", true);
389 		return error;
390 	}
391 
392 	return 0;
393 }
394 
395 int
396 config_fini_component(struct cfdriver * const *cfdriverv,
397 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
398 {
399 	int error;
400 
401 	if ((error = config_cfdata_detach(cfdatav)) != 0)
402 		return error;
403 	if ((error = frob_cfattachvec(cfattachv,
404 	    config_cfattach_detach, config_cfattach_attach,
405 	    "fini", false)) != 0) {
406 		if (config_cfdata_attach(cfdatav, 0) != 0)
407 			panic("config_cfdata fini rollback failed");
408 		return error;
409 	}
410 	if ((error = frob_cfdrivervec(cfdriverv,
411 	    config_cfdriver_detach, config_cfdriver_attach,
412 	    "fini", false)) != 0) {
413 		frob_cfattachvec(cfattachv,
414 	            config_cfattach_attach, NULL, "fini rollback", true);
415 		if (config_cfdata_attach(cfdatav, 0) != 0)
416 			panic("config_cfdata fini rollback failed");
417 		return error;
418 	}
419 
420 	return 0;
421 }
422 
423 void
424 config_init_mi(void)
425 {
426 
427 	if (!config_initialized)
428 		config_init();
429 
430 	sysctl_detach_setup(NULL);
431 }
432 
433 void
434 config_deferred(device_t dev)
435 {
436 	config_process_deferred(&deferred_config_queue, dev);
437 	config_process_deferred(&interrupt_config_queue, dev);
438 	config_process_deferred(&mountroot_config_queue, dev);
439 }
440 
441 static void
442 config_interrupts_thread(void *cookie)
443 {
444 	struct deferred_config *dc;
445 	device_t dev;
446 
447 	mutex_enter(&config_misc_lock);
448 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
449 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
450 		mutex_exit(&config_misc_lock);
451 
452 		dev = dc->dc_dev;
453 		(*dc->dc_func)(dev);
454 		if (!device_pmf_is_registered(dev))
455 			aprint_debug_dev(dev,
456 			    "WARNING: power management not supported\n");
457 		config_pending_decr(dev);
458 		kmem_free(dc, sizeof(*dc));
459 
460 		mutex_enter(&config_misc_lock);
461 		dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
462 	}
463 	mutex_exit(&config_misc_lock);
464 
465 	kthread_exit(0);
466 }
467 
468 void
469 config_create_interruptthreads(void)
470 {
471 	int i;
472 
473 	for (i = 0; i < interrupt_config_threads; i++) {
474 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
475 		    config_interrupts_thread, NULL, NULL, "configintr");
476 	}
477 }
478 
479 static void
480 config_mountroot_thread(void *cookie)
481 {
482 	struct deferred_config *dc;
483 
484 	mutex_enter(&config_misc_lock);
485 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
486 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
487 		mutex_exit(&config_misc_lock);
488 
489 		(*dc->dc_func)(dc->dc_dev);
490 		kmem_free(dc, sizeof(*dc));
491 
492 		mutex_enter(&config_misc_lock);
493 	}
494 	mutex_exit(&config_misc_lock);
495 
496 	kthread_exit(0);
497 }
498 
499 void
500 config_create_mountrootthreads(void)
501 {
502 	int i;
503 
504 	if (!root_is_mounted)
505 		root_is_mounted = true;
506 
507 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
508 				       mountroot_config_threads;
509 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
510 					     KM_NOSLEEP);
511 	KASSERT(mountroot_config_lwpids);
512 	for (i = 0; i < mountroot_config_threads; i++) {
513 		mountroot_config_lwpids[i] = 0;
514 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
515 				     NULL, config_mountroot_thread, NULL,
516 				     &mountroot_config_lwpids[i],
517 				     "configroot");
518 	}
519 }
520 
521 void
522 config_finalize_mountroot(void)
523 {
524 	int i, error;
525 
526 	for (i = 0; i < mountroot_config_threads; i++) {
527 		if (mountroot_config_lwpids[i] == 0)
528 			continue;
529 
530 		error = kthread_join(mountroot_config_lwpids[i]);
531 		if (error)
532 			printf("%s: thread %x joined with error %d\n",
533 			       __func__, i, error);
534 	}
535 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
536 }
537 
538 /*
539  * Announce device attach/detach to userland listeners.
540  */
541 
542 int
543 no_devmon_insert(const char *name, prop_dictionary_t p)
544 {
545 
546 	return ENODEV;
547 }
548 
549 static void
550 devmon_report_device(device_t dev, bool isattach)
551 {
552 	prop_dictionary_t ev, dict = device_properties(dev);
553 	const char *parent;
554 	const char *what;
555 	const char *where;
556 	device_t pdev = device_parent(dev);
557 
558 	/* If currently no drvctl device, just return */
559 	if (devmon_insert_vec == no_devmon_insert)
560 		return;
561 
562 	ev = prop_dictionary_create();
563 	if (ev == NULL)
564 		return;
565 
566 	what = (isattach ? "device-attach" : "device-detach");
567 	parent = (pdev == NULL ? "root" : device_xname(pdev));
568 	if (prop_dictionary_get_cstring_nocopy(dict, "location", &where)) {
569 		prop_dictionary_set_cstring(ev, "location", where);
570 		aprint_debug("ev: %s %s at %s in [%s]\n",
571 		    what, device_xname(dev), parent, where);
572 	}
573 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
574 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
575 		prop_object_release(ev);
576 		return;
577 	}
578 
579 	if ((*devmon_insert_vec)(what, ev) != 0)
580 		prop_object_release(ev);
581 }
582 
583 /*
584  * Add a cfdriver to the system.
585  */
586 int
587 config_cfdriver_attach(struct cfdriver *cd)
588 {
589 	struct cfdriver *lcd;
590 
591 	/* Make sure this driver isn't already in the system. */
592 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
593 		if (STREQ(lcd->cd_name, cd->cd_name))
594 			return EEXIST;
595 	}
596 
597 	LIST_INIT(&cd->cd_attach);
598 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
599 
600 	return 0;
601 }
602 
603 /*
604  * Remove a cfdriver from the system.
605  */
606 int
607 config_cfdriver_detach(struct cfdriver *cd)
608 {
609 	struct alldevs_foray af;
610 	int i, rc = 0;
611 
612 	config_alldevs_enter(&af);
613 	/* Make sure there are no active instances. */
614 	for (i = 0; i < cd->cd_ndevs; i++) {
615 		if (cd->cd_devs[i] != NULL) {
616 			rc = EBUSY;
617 			break;
618 		}
619 	}
620 	config_alldevs_exit(&af);
621 
622 	if (rc != 0)
623 		return rc;
624 
625 	/* ...and no attachments loaded. */
626 	if (LIST_EMPTY(&cd->cd_attach) == 0)
627 		return EBUSY;
628 
629 	LIST_REMOVE(cd, cd_list);
630 
631 	KASSERT(cd->cd_devs == NULL);
632 
633 	return 0;
634 }
635 
636 /*
637  * Look up a cfdriver by name.
638  */
639 struct cfdriver *
640 config_cfdriver_lookup(const char *name)
641 {
642 	struct cfdriver *cd;
643 
644 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
645 		if (STREQ(cd->cd_name, name))
646 			return cd;
647 	}
648 
649 	return NULL;
650 }
651 
652 /*
653  * Add a cfattach to the specified driver.
654  */
655 int
656 config_cfattach_attach(const char *driver, struct cfattach *ca)
657 {
658 	struct cfattach *lca;
659 	struct cfdriver *cd;
660 
661 	cd = config_cfdriver_lookup(driver);
662 	if (cd == NULL)
663 		return ESRCH;
664 
665 	/* Make sure this attachment isn't already on this driver. */
666 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
667 		if (STREQ(lca->ca_name, ca->ca_name))
668 			return EEXIST;
669 	}
670 
671 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
672 
673 	return 0;
674 }
675 
676 /*
677  * Remove a cfattach from the specified driver.
678  */
679 int
680 config_cfattach_detach(const char *driver, struct cfattach *ca)
681 {
682 	struct alldevs_foray af;
683 	struct cfdriver *cd;
684 	device_t dev;
685 	int i, rc = 0;
686 
687 	cd = config_cfdriver_lookup(driver);
688 	if (cd == NULL)
689 		return ESRCH;
690 
691 	config_alldevs_enter(&af);
692 	/* Make sure there are no active instances. */
693 	for (i = 0; i < cd->cd_ndevs; i++) {
694 		if ((dev = cd->cd_devs[i]) == NULL)
695 			continue;
696 		if (dev->dv_cfattach == ca) {
697 			rc = EBUSY;
698 			break;
699 		}
700 	}
701 	config_alldevs_exit(&af);
702 
703 	if (rc != 0)
704 		return rc;
705 
706 	LIST_REMOVE(ca, ca_list);
707 
708 	return 0;
709 }
710 
711 /*
712  * Look up a cfattach by name.
713  */
714 static struct cfattach *
715 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
716 {
717 	struct cfattach *ca;
718 
719 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
720 		if (STREQ(ca->ca_name, atname))
721 			return ca;
722 	}
723 
724 	return NULL;
725 }
726 
727 /*
728  * Look up a cfattach by driver/attachment name.
729  */
730 struct cfattach *
731 config_cfattach_lookup(const char *name, const char *atname)
732 {
733 	struct cfdriver *cd;
734 
735 	cd = config_cfdriver_lookup(name);
736 	if (cd == NULL)
737 		return NULL;
738 
739 	return config_cfattach_lookup_cd(cd, atname);
740 }
741 
742 /*
743  * Apply the matching function and choose the best.  This is used
744  * a few times and we want to keep the code small.
745  */
746 static void
747 mapply(struct matchinfo *m, cfdata_t cf)
748 {
749 	int pri;
750 
751 	if (m->fn != NULL) {
752 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
753 	} else {
754 		pri = config_match(m->parent, cf, m->aux);
755 	}
756 	if (pri > m->pri) {
757 		m->match = cf;
758 		m->pri = pri;
759 	}
760 }
761 
762 int
763 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
764 {
765 	const struct cfiattrdata *ci;
766 	const struct cflocdesc *cl;
767 	int nlocs, i;
768 
769 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
770 	KASSERT(ci);
771 	nlocs = ci->ci_loclen;
772 	KASSERT(!nlocs || locs);
773 	for (i = 0; i < nlocs; i++) {
774 		cl = &ci->ci_locdesc[i];
775 		if (cl->cld_defaultstr != NULL &&
776 		    cf->cf_loc[i] == cl->cld_default)
777 			continue;
778 		if (cf->cf_loc[i] == locs[i])
779 			continue;
780 		return 0;
781 	}
782 
783 	return config_match(parent, cf, aux);
784 }
785 
786 /*
787  * Helper function: check whether the driver supports the interface attribute
788  * and return its descriptor structure.
789  */
790 static const struct cfiattrdata *
791 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
792 {
793 	const struct cfiattrdata * const *cpp;
794 
795 	if (cd->cd_attrs == NULL)
796 		return 0;
797 
798 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
799 		if (STREQ((*cpp)->ci_name, ia)) {
800 			/* Match. */
801 			return *cpp;
802 		}
803 	}
804 	return 0;
805 }
806 
807 /*
808  * Lookup an interface attribute description by name.
809  * If the driver is given, consider only its supported attributes.
810  */
811 const struct cfiattrdata *
812 cfiattr_lookup(const char *name, const struct cfdriver *cd)
813 {
814 	const struct cfdriver *d;
815 	const struct cfiattrdata *ia;
816 
817 	if (cd)
818 		return cfdriver_get_iattr(cd, name);
819 
820 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
821 		ia = cfdriver_get_iattr(d, name);
822 		if (ia)
823 			return ia;
824 	}
825 	return 0;
826 }
827 
828 /*
829  * Determine if `parent' is a potential parent for a device spec based
830  * on `cfp'.
831  */
832 static int
833 cfparent_match(const device_t parent, const struct cfparent *cfp)
834 {
835 	struct cfdriver *pcd;
836 
837 	/* We don't match root nodes here. */
838 	if (cfp == NULL)
839 		return 0;
840 
841 	pcd = parent->dv_cfdriver;
842 	KASSERT(pcd != NULL);
843 
844 	/*
845 	 * First, ensure this parent has the correct interface
846 	 * attribute.
847 	 */
848 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
849 		return 0;
850 
851 	/*
852 	 * If no specific parent device instance was specified (i.e.
853 	 * we're attaching to the attribute only), we're done!
854 	 */
855 	if (cfp->cfp_parent == NULL)
856 		return 1;
857 
858 	/*
859 	 * Check the parent device's name.
860 	 */
861 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
862 		return 0;	/* not the same parent */
863 
864 	/*
865 	 * Make sure the unit number matches.
866 	 */
867 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
868 	    cfp->cfp_unit == parent->dv_unit)
869 		return 1;
870 
871 	/* Unit numbers don't match. */
872 	return 0;
873 }
874 
875 /*
876  * Helper for config_cfdata_attach(): check all devices whether it could be
877  * parent any attachment in the config data table passed, and rescan.
878  */
879 static void
880 rescan_with_cfdata(const struct cfdata *cf)
881 {
882 	device_t d;
883 	const struct cfdata *cf1;
884 	deviter_t di;
885 
886 
887 	/*
888 	 * "alldevs" is likely longer than a modules's cfdata, so make it
889 	 * the outer loop.
890 	 */
891 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
892 
893 		if (!(d->dv_cfattach->ca_rescan))
894 			continue;
895 
896 		for (cf1 = cf; cf1->cf_name; cf1++) {
897 
898 			if (!cfparent_match(d, cf1->cf_pspec))
899 				continue;
900 
901 			(*d->dv_cfattach->ca_rescan)(d,
902 				cfdata_ifattr(cf1), cf1->cf_loc);
903 
904 			config_deferred(d);
905 		}
906 	}
907 	deviter_release(&di);
908 }
909 
910 /*
911  * Attach a supplemental config data table and rescan potential
912  * parent devices if required.
913  */
914 int
915 config_cfdata_attach(cfdata_t cf, int scannow)
916 {
917 	struct cftable *ct;
918 
919 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
920 	ct->ct_cfdata = cf;
921 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
922 
923 	if (scannow)
924 		rescan_with_cfdata(cf);
925 
926 	return 0;
927 }
928 
929 /*
930  * Helper for config_cfdata_detach: check whether a device is
931  * found through any attachment in the config data table.
932  */
933 static int
934 dev_in_cfdata(device_t d, cfdata_t cf)
935 {
936 	const struct cfdata *cf1;
937 
938 	for (cf1 = cf; cf1->cf_name; cf1++)
939 		if (d->dv_cfdata == cf1)
940 			return 1;
941 
942 	return 0;
943 }
944 
945 /*
946  * Detach a supplemental config data table. Detach all devices found
947  * through that table (and thus keeping references to it) before.
948  */
949 int
950 config_cfdata_detach(cfdata_t cf)
951 {
952 	device_t d;
953 	int error = 0;
954 	struct cftable *ct;
955 	deviter_t di;
956 
957 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
958 	     d = deviter_next(&di)) {
959 		if (!dev_in_cfdata(d, cf))
960 			continue;
961 		if ((error = config_detach(d, 0)) != 0)
962 			break;
963 	}
964 	deviter_release(&di);
965 	if (error) {
966 		aprint_error_dev(d, "unable to detach instance\n");
967 		return error;
968 	}
969 
970 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
971 		if (ct->ct_cfdata == cf) {
972 			TAILQ_REMOVE(&allcftables, ct, ct_list);
973 			kmem_free(ct, sizeof(*ct));
974 			return 0;
975 		}
976 	}
977 
978 	/* not found -- shouldn't happen */
979 	return EINVAL;
980 }
981 
982 /*
983  * Invoke the "match" routine for a cfdata entry on behalf of
984  * an external caller, usually a "submatch" routine.
985  */
986 int
987 config_match(device_t parent, cfdata_t cf, void *aux)
988 {
989 	struct cfattach *ca;
990 
991 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
992 	if (ca == NULL) {
993 		/* No attachment for this entry, oh well. */
994 		return 0;
995 	}
996 
997 	return (*ca->ca_match)(parent, cf, aux);
998 }
999 
1000 /*
1001  * Iterate over all potential children of some device, calling the given
1002  * function (default being the child's match function) for each one.
1003  * Nonzero returns are matches; the highest value returned is considered
1004  * the best match.  Return the `found child' if we got a match, or NULL
1005  * otherwise.  The `aux' pointer is simply passed on through.
1006  *
1007  * Note that this function is designed so that it can be used to apply
1008  * an arbitrary function to all potential children (its return value
1009  * can be ignored).
1010  */
1011 cfdata_t
1012 config_search_loc(cfsubmatch_t fn, device_t parent,
1013 		  const char *ifattr, const int *locs, void *aux)
1014 {
1015 	struct cftable *ct;
1016 	cfdata_t cf;
1017 	struct matchinfo m;
1018 
1019 	KASSERT(config_initialized);
1020 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1021 
1022 	m.fn = fn;
1023 	m.parent = parent;
1024 	m.locs = locs;
1025 	m.aux = aux;
1026 	m.match = NULL;
1027 	m.pri = 0;
1028 
1029 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1030 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1031 
1032 			/* We don't match root nodes here. */
1033 			if (!cf->cf_pspec)
1034 				continue;
1035 
1036 			/*
1037 			 * Skip cf if no longer eligible, otherwise scan
1038 			 * through parents for one matching `parent', and
1039 			 * try match function.
1040 			 */
1041 			if (cf->cf_fstate == FSTATE_FOUND)
1042 				continue;
1043 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1044 			    cf->cf_fstate == FSTATE_DSTAR)
1045 				continue;
1046 
1047 			/*
1048 			 * If an interface attribute was specified,
1049 			 * consider only children which attach to
1050 			 * that attribute.
1051 			 */
1052 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1053 				continue;
1054 
1055 			if (cfparent_match(parent, cf->cf_pspec))
1056 				mapply(&m, cf);
1057 		}
1058 	}
1059 	return m.match;
1060 }
1061 
1062 cfdata_t
1063 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1064     void *aux)
1065 {
1066 
1067 	return config_search_loc(fn, parent, ifattr, NULL, aux);
1068 }
1069 
1070 /*
1071  * Find the given root device.
1072  * This is much like config_search, but there is no parent.
1073  * Don't bother with multiple cfdata tables; the root node
1074  * must always be in the initial table.
1075  */
1076 cfdata_t
1077 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1078 {
1079 	cfdata_t cf;
1080 	const short *p;
1081 	struct matchinfo m;
1082 
1083 	m.fn = fn;
1084 	m.parent = ROOT;
1085 	m.aux = aux;
1086 	m.match = NULL;
1087 	m.pri = 0;
1088 	m.locs = 0;
1089 	/*
1090 	 * Look at root entries for matching name.  We do not bother
1091 	 * with found-state here since only one root should ever be
1092 	 * searched (and it must be done first).
1093 	 */
1094 	for (p = cfroots; *p >= 0; p++) {
1095 		cf = &cfdata[*p];
1096 		if (strcmp(cf->cf_name, rootname) == 0)
1097 			mapply(&m, cf);
1098 	}
1099 	return m.match;
1100 }
1101 
1102 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1103 
1104 /*
1105  * The given `aux' argument describes a device that has been found
1106  * on the given parent, but not necessarily configured.  Locate the
1107  * configuration data for that device (using the submatch function
1108  * provided, or using candidates' cd_match configuration driver
1109  * functions) and attach it, and return its device_t.  If the device was
1110  * not configured, call the given `print' function and return NULL.
1111  */
1112 device_t
1113 config_found_sm_loc(device_t parent,
1114 		const char *ifattr, const int *locs, void *aux,
1115 		cfprint_t print, cfsubmatch_t submatch)
1116 {
1117 	cfdata_t cf;
1118 
1119 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1120 		return(config_attach_loc(parent, cf, locs, aux, print));
1121 	if (print) {
1122 		if (config_do_twiddle && cold)
1123 			twiddle();
1124 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1125 	}
1126 
1127 	/*
1128 	 * This has the effect of mixing in a single timestamp to the
1129 	 * entropy pool.  Experiments indicate the estimator will almost
1130 	 * always attribute one bit of entropy to this sample; analysis
1131 	 * of device attach/detach timestamps on FreeBSD indicates 4
1132 	 * bits of entropy/sample so this seems appropriately conservative.
1133 	 */
1134 	rnd_add_uint32(&rnd_autoconf_source, 0);
1135 	return NULL;
1136 }
1137 
1138 device_t
1139 config_found_ia(device_t parent, const char *ifattr, void *aux,
1140     cfprint_t print)
1141 {
1142 
1143 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1144 }
1145 
1146 device_t
1147 config_found(device_t parent, void *aux, cfprint_t print)
1148 {
1149 
1150 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1151 }
1152 
1153 /*
1154  * As above, but for root devices.
1155  */
1156 device_t
1157 config_rootfound(const char *rootname, void *aux)
1158 {
1159 	cfdata_t cf;
1160 
1161 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1162 		return config_attach(ROOT, cf, aux, NULL);
1163 	aprint_error("root device %s not configured\n", rootname);
1164 	return NULL;
1165 }
1166 
1167 /* just like sprintf(buf, "%d") except that it works from the end */
1168 static char *
1169 number(char *ep, int n)
1170 {
1171 
1172 	*--ep = 0;
1173 	while (n >= 10) {
1174 		*--ep = (n % 10) + '0';
1175 		n /= 10;
1176 	}
1177 	*--ep = n + '0';
1178 	return ep;
1179 }
1180 
1181 /*
1182  * Expand the size of the cd_devs array if necessary.
1183  *
1184  * The caller must hold alldevs_lock. config_makeroom() may release and
1185  * re-acquire alldevs_lock, so callers should re-check conditions such
1186  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1187  * returns.
1188  */
1189 static void
1190 config_makeroom(int n, struct cfdriver *cd)
1191 {
1192 	int ondevs, nndevs;
1193 	device_t *osp, *nsp;
1194 
1195 	KASSERT(mutex_owned(&alldevs_lock));
1196 	alldevs_nwrite++;
1197 
1198 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1199 		;
1200 
1201 	while (n >= cd->cd_ndevs) {
1202 		/*
1203 		 * Need to expand the array.
1204 		 */
1205 		ondevs = cd->cd_ndevs;
1206 		osp = cd->cd_devs;
1207 
1208 		/*
1209 		 * Release alldevs_lock around allocation, which may
1210 		 * sleep.
1211 		 */
1212 		mutex_exit(&alldevs_lock);
1213 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1214 		mutex_enter(&alldevs_lock);
1215 
1216 		/*
1217 		 * If another thread moved the array while we did
1218 		 * not hold alldevs_lock, try again.
1219 		 */
1220 		if (cd->cd_devs != osp) {
1221 			mutex_exit(&alldevs_lock);
1222 			kmem_free(nsp, sizeof(device_t[nndevs]));
1223 			mutex_enter(&alldevs_lock);
1224 			continue;
1225 		}
1226 
1227 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1228 		if (ondevs != 0)
1229 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1230 
1231 		cd->cd_ndevs = nndevs;
1232 		cd->cd_devs = nsp;
1233 		if (ondevs != 0) {
1234 			mutex_exit(&alldevs_lock);
1235 			kmem_free(osp, sizeof(device_t[ondevs]));
1236 			mutex_enter(&alldevs_lock);
1237 		}
1238 	}
1239 	KASSERT(mutex_owned(&alldevs_lock));
1240 	alldevs_nwrite--;
1241 }
1242 
1243 /*
1244  * Put dev into the devices list.
1245  */
1246 static void
1247 config_devlink(device_t dev)
1248 {
1249 
1250 	mutex_enter(&alldevs_lock);
1251 
1252 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1253 
1254 	dev->dv_add_gen = alldevs_gen;
1255 	/* It is safe to add a device to the tail of the list while
1256 	 * readers and writers are in the list.
1257 	 */
1258 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1259 	mutex_exit(&alldevs_lock);
1260 }
1261 
1262 static void
1263 config_devfree(device_t dev)
1264 {
1265 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1266 
1267 	if (dev->dv_cfattach->ca_devsize > 0)
1268 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1269 	if (priv)
1270 		kmem_free(dev, sizeof(*dev));
1271 }
1272 
1273 /*
1274  * Caller must hold alldevs_lock.
1275  */
1276 static void
1277 config_devunlink(device_t dev, struct devicelist *garbage)
1278 {
1279 	struct device_garbage *dg = &dev->dv_garbage;
1280 	cfdriver_t cd = device_cfdriver(dev);
1281 	int i;
1282 
1283 	KASSERT(mutex_owned(&alldevs_lock));
1284 
1285  	/* Unlink from device list.  Link to garbage list. */
1286 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1287 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1288 
1289 	/* Remove from cfdriver's array. */
1290 	cd->cd_devs[dev->dv_unit] = NULL;
1291 
1292 	/*
1293 	 * If the device now has no units in use, unlink its softc array.
1294 	 */
1295 	for (i = 0; i < cd->cd_ndevs; i++) {
1296 		if (cd->cd_devs[i] != NULL)
1297 			break;
1298 	}
1299 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1300 	if (i == cd->cd_ndevs) {
1301 		dg->dg_ndevs = cd->cd_ndevs;
1302 		dg->dg_devs = cd->cd_devs;
1303 		cd->cd_devs = NULL;
1304 		cd->cd_ndevs = 0;
1305 	}
1306 }
1307 
1308 static void
1309 config_devdelete(device_t dev)
1310 {
1311 	struct device_garbage *dg = &dev->dv_garbage;
1312 	device_lock_t dvl = device_getlock(dev);
1313 
1314 	if (dg->dg_devs != NULL)
1315 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1316 
1317 	cv_destroy(&dvl->dvl_cv);
1318 	mutex_destroy(&dvl->dvl_mtx);
1319 
1320 	KASSERT(dev->dv_properties != NULL);
1321 	prop_object_release(dev->dv_properties);
1322 
1323 	if (dev->dv_activity_handlers)
1324 		panic("%s with registered handlers", __func__);
1325 
1326 	if (dev->dv_locators) {
1327 		size_t amount = *--dev->dv_locators;
1328 		kmem_free(dev->dv_locators, amount);
1329 	}
1330 
1331 	config_devfree(dev);
1332 }
1333 
1334 static int
1335 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1336 {
1337 	int unit;
1338 
1339 	if (cf->cf_fstate == FSTATE_STAR) {
1340 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1341 			if (cd->cd_devs[unit] == NULL)
1342 				break;
1343 		/*
1344 		 * unit is now the unit of the first NULL device pointer,
1345 		 * or max(cd->cd_ndevs,cf->cf_unit).
1346 		 */
1347 	} else {
1348 		unit = cf->cf_unit;
1349 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1350 			unit = -1;
1351 	}
1352 	return unit;
1353 }
1354 
1355 static int
1356 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1357 {
1358 	struct alldevs_foray af;
1359 	int unit;
1360 
1361 	config_alldevs_enter(&af);
1362 	for (;;) {
1363 		unit = config_unit_nextfree(cd, cf);
1364 		if (unit == -1)
1365 			break;
1366 		if (unit < cd->cd_ndevs) {
1367 			cd->cd_devs[unit] = dev;
1368 			dev->dv_unit = unit;
1369 			break;
1370 		}
1371 		config_makeroom(unit, cd);
1372 	}
1373 	config_alldevs_exit(&af);
1374 
1375 	return unit;
1376 }
1377 
1378 static device_t
1379 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1380 {
1381 	cfdriver_t cd;
1382 	cfattach_t ca;
1383 	size_t lname, lunit;
1384 	const char *xunit;
1385 	int myunit;
1386 	char num[10];
1387 	device_t dev;
1388 	void *dev_private;
1389 	const struct cfiattrdata *ia;
1390 	device_lock_t dvl;
1391 
1392 	cd = config_cfdriver_lookup(cf->cf_name);
1393 	if (cd == NULL)
1394 		return NULL;
1395 
1396 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1397 	if (ca == NULL)
1398 		return NULL;
1399 
1400 	/* get memory for all device vars */
1401 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1402 	    || ca->ca_devsize >= sizeof(struct device),
1403 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1404 	    sizeof(struct device));
1405 	if (ca->ca_devsize > 0) {
1406 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1407 	} else {
1408 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1409 		dev_private = NULL;
1410 	}
1411 
1412 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1413 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1414 	} else {
1415 		dev = dev_private;
1416 #ifdef DIAGNOSTIC
1417 		printf("%s has not been converted to device_t\n", cd->cd_name);
1418 #endif
1419 		KASSERT(dev != NULL);
1420 	}
1421 	dev->dv_class = cd->cd_class;
1422 	dev->dv_cfdata = cf;
1423 	dev->dv_cfdriver = cd;
1424 	dev->dv_cfattach = ca;
1425 	dev->dv_activity_count = 0;
1426 	dev->dv_activity_handlers = NULL;
1427 	dev->dv_private = dev_private;
1428 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1429 
1430 	myunit = config_unit_alloc(dev, cd, cf);
1431 	if (myunit == -1) {
1432 		config_devfree(dev);
1433 		return NULL;
1434 	}
1435 
1436 	/* compute length of name and decimal expansion of unit number */
1437 	lname = strlen(cd->cd_name);
1438 	xunit = number(&num[sizeof(num)], myunit);
1439 	lunit = &num[sizeof(num)] - xunit;
1440 	if (lname + lunit > sizeof(dev->dv_xname))
1441 		panic("config_devalloc: device name too long");
1442 
1443 	dvl = device_getlock(dev);
1444 
1445 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1446 	cv_init(&dvl->dvl_cv, "pmfsusp");
1447 
1448 	memcpy(dev->dv_xname, cd->cd_name, lname);
1449 	memcpy(dev->dv_xname + lname, xunit, lunit);
1450 	dev->dv_parent = parent;
1451 	if (parent != NULL)
1452 		dev->dv_depth = parent->dv_depth + 1;
1453 	else
1454 		dev->dv_depth = 0;
1455 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1456 	if (locs) {
1457 		KASSERT(parent); /* no locators at root */
1458 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1459 		dev->dv_locators =
1460 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1461 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1462 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1463 	}
1464 	dev->dv_properties = prop_dictionary_create();
1465 	KASSERT(dev->dv_properties != NULL);
1466 
1467 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1468 	    "device-driver", dev->dv_cfdriver->cd_name);
1469 	prop_dictionary_set_uint16(dev->dv_properties,
1470 	    "device-unit", dev->dv_unit);
1471 	if (parent != NULL) {
1472 		prop_dictionary_set_cstring(dev->dv_properties,
1473 		    "device-parent", device_xname(parent));
1474 	}
1475 
1476 	if (dev->dv_cfdriver->cd_attrs != NULL)
1477 		config_add_attrib_dict(dev);
1478 
1479 	return dev;
1480 }
1481 
1482 /*
1483  * Create an array of device attach attributes and add it
1484  * to the device's dv_properties dictionary.
1485  *
1486  * <key>interface-attributes</key>
1487  * <array>
1488  *    <dict>
1489  *       <key>attribute-name</key>
1490  *       <string>foo</string>
1491  *       <key>locators</key>
1492  *       <array>
1493  *          <dict>
1494  *             <key>loc-name</key>
1495  *             <string>foo-loc1</string>
1496  *          </dict>
1497  *          <dict>
1498  *             <key>loc-name</key>
1499  *             <string>foo-loc2</string>
1500  *             <key>default</key>
1501  *             <string>foo-loc2-default</string>
1502  *          </dict>
1503  *          ...
1504  *       </array>
1505  *    </dict>
1506  *    ...
1507  * </array>
1508  */
1509 
1510 static void
1511 config_add_attrib_dict(device_t dev)
1512 {
1513 	int i, j;
1514 	const struct cfiattrdata *ci;
1515 	prop_dictionary_t attr_dict, loc_dict;
1516 	prop_array_t attr_array, loc_array;
1517 
1518 	if ((attr_array = prop_array_create()) == NULL)
1519 		return;
1520 
1521 	for (i = 0; ; i++) {
1522 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1523 			break;
1524 		if ((attr_dict = prop_dictionary_create()) == NULL)
1525 			break;
1526 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1527 		    ci->ci_name);
1528 
1529 		/* Create an array of the locator names and defaults */
1530 
1531 		if (ci->ci_loclen != 0 &&
1532 		    (loc_array = prop_array_create()) != NULL) {
1533 			for (j = 0; j < ci->ci_loclen; j++) {
1534 				loc_dict = prop_dictionary_create();
1535 				if (loc_dict == NULL)
1536 					continue;
1537 				prop_dictionary_set_cstring_nocopy(loc_dict,
1538 				    "loc-name", ci->ci_locdesc[j].cld_name);
1539 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1540 					prop_dictionary_set_cstring_nocopy(
1541 					    loc_dict, "default",
1542 					    ci->ci_locdesc[j].cld_defaultstr);
1543 				prop_array_set(loc_array, j, loc_dict);
1544 				prop_object_release(loc_dict);
1545 			}
1546 			prop_dictionary_set_and_rel(attr_dict, "locators",
1547 			    loc_array);
1548 		}
1549 		prop_array_add(attr_array, attr_dict);
1550 		prop_object_release(attr_dict);
1551 	}
1552 	if (i == 0)
1553 		prop_object_release(attr_array);
1554 	else
1555 		prop_dictionary_set_and_rel(dev->dv_properties,
1556 		    "interface-attributes", attr_array);
1557 
1558 	return;
1559 }
1560 
1561 /*
1562  * Attach a found device.
1563  */
1564 device_t
1565 config_attach_loc(device_t parent, cfdata_t cf,
1566 	const int *locs, void *aux, cfprint_t print)
1567 {
1568 	device_t dev;
1569 	struct cftable *ct;
1570 	const char *drvname;
1571 
1572 	dev = config_devalloc(parent, cf, locs);
1573 	if (!dev)
1574 		panic("config_attach: allocation of device softc failed");
1575 
1576 	/* XXX redundant - see below? */
1577 	if (cf->cf_fstate != FSTATE_STAR) {
1578 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1579 		cf->cf_fstate = FSTATE_FOUND;
1580 	}
1581 
1582 	config_devlink(dev);
1583 
1584 	if (config_do_twiddle && cold)
1585 		twiddle();
1586 	else
1587 		aprint_naive("Found ");
1588 	/*
1589 	 * We want the next two printfs for normal, verbose, and quiet,
1590 	 * but not silent (in which case, we're twiddling, instead).
1591 	 */
1592 	if (parent == ROOT) {
1593 		aprint_naive("%s (root)", device_xname(dev));
1594 		aprint_normal("%s (root)", device_xname(dev));
1595 	} else {
1596 		aprint_naive("%s at %s", device_xname(dev),
1597 		    device_xname(parent));
1598 		aprint_normal("%s at %s", device_xname(dev),
1599 		    device_xname(parent));
1600 		if (print)
1601 			(void) (*print)(aux, NULL);
1602 	}
1603 
1604 	/*
1605 	 * Before attaching, clobber any unfound devices that are
1606 	 * otherwise identical.
1607 	 * XXX code above is redundant?
1608 	 */
1609 	drvname = dev->dv_cfdriver->cd_name;
1610 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1611 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1612 			if (STREQ(cf->cf_name, drvname) &&
1613 			    cf->cf_unit == dev->dv_unit) {
1614 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1615 					cf->cf_fstate = FSTATE_FOUND;
1616 			}
1617 		}
1618 	}
1619 	device_register(dev, aux);
1620 
1621 	/* Let userland know */
1622 	devmon_report_device(dev, true);
1623 
1624 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1625 
1626 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1627 	    && !device_pmf_is_registered(dev))
1628 		aprint_debug_dev(dev,
1629 		    "WARNING: power management not supported\n");
1630 
1631 	config_process_deferred(&deferred_config_queue, dev);
1632 
1633 	device_register_post_config(dev, aux);
1634 	return dev;
1635 }
1636 
1637 device_t
1638 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1639 {
1640 
1641 	return config_attach_loc(parent, cf, NULL, aux, print);
1642 }
1643 
1644 /*
1645  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1646  * way are silently inserted into the device tree, and their children
1647  * attached.
1648  *
1649  * Note that because pseudo-devices are attached silently, any information
1650  * the attach routine wishes to print should be prefixed with the device
1651  * name by the attach routine.
1652  */
1653 device_t
1654 config_attach_pseudo(cfdata_t cf)
1655 {
1656 	device_t dev;
1657 
1658 	dev = config_devalloc(ROOT, cf, NULL);
1659 	if (!dev)
1660 		return NULL;
1661 
1662 	/* XXX mark busy in cfdata */
1663 
1664 	if (cf->cf_fstate != FSTATE_STAR) {
1665 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1666 		cf->cf_fstate = FSTATE_FOUND;
1667 	}
1668 
1669 	config_devlink(dev);
1670 
1671 #if 0	/* XXXJRT not yet */
1672 	device_register(dev, NULL);	/* like a root node */
1673 #endif
1674 
1675 	/* Let userland know */
1676 	devmon_report_device(dev, true);
1677 
1678 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1679 
1680 	config_process_deferred(&deferred_config_queue, dev);
1681 	return dev;
1682 }
1683 
1684 /*
1685  * Caller must hold alldevs_lock.
1686  */
1687 static void
1688 config_collect_garbage(struct devicelist *garbage)
1689 {
1690 	device_t dv;
1691 
1692 	KASSERT(!cpu_intr_p());
1693 	KASSERT(!cpu_softintr_p());
1694 	KASSERT(mutex_owned(&alldevs_lock));
1695 
1696 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1697 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1698 			if (dv->dv_del_gen != 0)
1699 				break;
1700 		}
1701 		if (dv == NULL) {
1702 			alldevs_garbage = false;
1703 			break;
1704 		}
1705 		config_devunlink(dv, garbage);
1706 	}
1707 	KASSERT(mutex_owned(&alldevs_lock));
1708 }
1709 
1710 static void
1711 config_dump_garbage(struct devicelist *garbage)
1712 {
1713 	device_t dv;
1714 
1715 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1716 		TAILQ_REMOVE(garbage, dv, dv_list);
1717 		config_devdelete(dv);
1718 	}
1719 }
1720 
1721 /*
1722  * Detach a device.  Optionally forced (e.g. because of hardware
1723  * removal) and quiet.  Returns zero if successful, non-zero
1724  * (an error code) otherwise.
1725  *
1726  * Note that this code wants to be run from a process context, so
1727  * that the detach can sleep to allow processes which have a device
1728  * open to run and unwind their stacks.
1729  */
1730 int
1731 config_detach(device_t dev, int flags)
1732 {
1733 	struct alldevs_foray af;
1734 	struct cftable *ct;
1735 	cfdata_t cf;
1736 	const struct cfattach *ca;
1737 	struct cfdriver *cd;
1738 	device_t d __diagused;
1739 	int rv = 0;
1740 
1741 	cf = dev->dv_cfdata;
1742 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1743 		cf->cf_fstate == FSTATE_STAR),
1744 	    "config_detach: %s: bad device fstate: %d",
1745 	    device_xname(dev), cf ? cf->cf_fstate : -1);
1746 
1747 	cd = dev->dv_cfdriver;
1748 	KASSERT(cd != NULL);
1749 
1750 	ca = dev->dv_cfattach;
1751 	KASSERT(ca != NULL);
1752 
1753 	mutex_enter(&alldevs_lock);
1754 	if (dev->dv_del_gen != 0) {
1755 		mutex_exit(&alldevs_lock);
1756 #ifdef DIAGNOSTIC
1757 		printf("%s: %s is already detached\n", __func__,
1758 		    device_xname(dev));
1759 #endif /* DIAGNOSTIC */
1760 		return ENOENT;
1761 	}
1762 	alldevs_nwrite++;
1763 	mutex_exit(&alldevs_lock);
1764 
1765 	if (!detachall &&
1766 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1767 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1768 		rv = EOPNOTSUPP;
1769 	} else if (ca->ca_detach != NULL) {
1770 		rv = (*ca->ca_detach)(dev, flags);
1771 	} else
1772 		rv = EOPNOTSUPP;
1773 
1774 	/*
1775 	 * If it was not possible to detach the device, then we either
1776 	 * panic() (for the forced but failed case), or return an error.
1777 	 *
1778 	 * If it was possible to detach the device, ensure that the
1779 	 * device is deactivated.
1780 	 */
1781 	if (rv == 0)
1782 		dev->dv_flags &= ~DVF_ACTIVE;
1783 	else if ((flags & DETACH_FORCE) == 0)
1784 		goto out;
1785 	else {
1786 		panic("config_detach: forced detach of %s failed (%d)",
1787 		    device_xname(dev), rv);
1788 	}
1789 
1790 	/*
1791 	 * The device has now been successfully detached.
1792 	 */
1793 
1794 	/* Let userland know */
1795 	devmon_report_device(dev, false);
1796 
1797 #ifdef DIAGNOSTIC
1798 	/*
1799 	 * Sanity: If you're successfully detached, you should have no
1800 	 * children.  (Note that because children must be attached
1801 	 * after parents, we only need to search the latter part of
1802 	 * the list.)
1803 	 */
1804 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1805 	    d = TAILQ_NEXT(d, dv_list)) {
1806 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1807 			printf("config_detach: detached device %s"
1808 			    " has children %s\n", device_xname(dev),
1809 			    device_xname(d));
1810 			panic("config_detach");
1811 		}
1812 	}
1813 #endif
1814 
1815 	/* notify the parent that the child is gone */
1816 	if (dev->dv_parent) {
1817 		device_t p = dev->dv_parent;
1818 		if (p->dv_cfattach->ca_childdetached)
1819 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1820 	}
1821 
1822 	/*
1823 	 * Mark cfdata to show that the unit can be reused, if possible.
1824 	 */
1825 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1826 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1827 			if (STREQ(cf->cf_name, cd->cd_name)) {
1828 				if (cf->cf_fstate == FSTATE_FOUND &&
1829 				    cf->cf_unit == dev->dv_unit)
1830 					cf->cf_fstate = FSTATE_NOTFOUND;
1831 			}
1832 		}
1833 	}
1834 
1835 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1836 		aprint_normal_dev(dev, "detached\n");
1837 
1838 out:
1839 	config_alldevs_enter(&af);
1840 	KASSERT(alldevs_nwrite != 0);
1841 	--alldevs_nwrite;
1842 	if (rv == 0 && dev->dv_del_gen == 0) {
1843 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
1844 			config_devunlink(dev, &af.af_garbage);
1845 		else {
1846 			dev->dv_del_gen = alldevs_gen;
1847 			alldevs_garbage = true;
1848 		}
1849 	}
1850 	config_alldevs_exit(&af);
1851 
1852 	return rv;
1853 }
1854 
1855 int
1856 config_detach_children(device_t parent, int flags)
1857 {
1858 	device_t dv;
1859 	deviter_t di;
1860 	int error = 0;
1861 
1862 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1863 	     dv = deviter_next(&di)) {
1864 		if (device_parent(dv) != parent)
1865 			continue;
1866 		if ((error = config_detach(dv, flags)) != 0)
1867 			break;
1868 	}
1869 	deviter_release(&di);
1870 	return error;
1871 }
1872 
1873 device_t
1874 shutdown_first(struct shutdown_state *s)
1875 {
1876 	if (!s->initialized) {
1877 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1878 		s->initialized = true;
1879 	}
1880 	return shutdown_next(s);
1881 }
1882 
1883 device_t
1884 shutdown_next(struct shutdown_state *s)
1885 {
1886 	device_t dv;
1887 
1888 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1889 		;
1890 
1891 	if (dv == NULL)
1892 		s->initialized = false;
1893 
1894 	return dv;
1895 }
1896 
1897 bool
1898 config_detach_all(int how)
1899 {
1900 	static struct shutdown_state s;
1901 	device_t curdev;
1902 	bool progress = false;
1903 	int flags;
1904 
1905 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1906 		return false;
1907 
1908 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1909 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1910 	else
1911 		flags = DETACH_SHUTDOWN;
1912 
1913 	for (curdev = shutdown_first(&s); curdev != NULL;
1914 	     curdev = shutdown_next(&s)) {
1915 		aprint_debug(" detaching %s, ", device_xname(curdev));
1916 		if (config_detach(curdev, flags) == 0) {
1917 			progress = true;
1918 			aprint_debug("success.");
1919 		} else
1920 			aprint_debug("failed.");
1921 	}
1922 	return progress;
1923 }
1924 
1925 static bool
1926 device_is_ancestor_of(device_t ancestor, device_t descendant)
1927 {
1928 	device_t dv;
1929 
1930 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1931 		if (device_parent(dv) == ancestor)
1932 			return true;
1933 	}
1934 	return false;
1935 }
1936 
1937 int
1938 config_deactivate(device_t dev)
1939 {
1940 	deviter_t di;
1941 	const struct cfattach *ca;
1942 	device_t descendant;
1943 	int s, rv = 0, oflags;
1944 
1945 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1946 	     descendant != NULL;
1947 	     descendant = deviter_next(&di)) {
1948 		if (dev != descendant &&
1949 		    !device_is_ancestor_of(dev, descendant))
1950 			continue;
1951 
1952 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1953 			continue;
1954 
1955 		ca = descendant->dv_cfattach;
1956 		oflags = descendant->dv_flags;
1957 
1958 		descendant->dv_flags &= ~DVF_ACTIVE;
1959 		if (ca->ca_activate == NULL)
1960 			continue;
1961 		s = splhigh();
1962 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1963 		splx(s);
1964 		if (rv != 0)
1965 			descendant->dv_flags = oflags;
1966 	}
1967 	deviter_release(&di);
1968 	return rv;
1969 }
1970 
1971 /*
1972  * Defer the configuration of the specified device until all
1973  * of its parent's devices have been attached.
1974  */
1975 void
1976 config_defer(device_t dev, void (*func)(device_t))
1977 {
1978 	struct deferred_config *dc;
1979 
1980 	if (dev->dv_parent == NULL)
1981 		panic("config_defer: can't defer config of a root device");
1982 
1983 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1984 
1985 	config_pending_incr(dev);
1986 
1987 	mutex_enter(&config_misc_lock);
1988 #ifdef DIAGNOSTIC
1989 	struct deferred_config *odc;
1990 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
1991 		if (odc->dc_dev == dev)
1992 			panic("config_defer: deferred twice");
1993 	}
1994 #endif
1995 	dc->dc_dev = dev;
1996 	dc->dc_func = func;
1997 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1998 	mutex_exit(&config_misc_lock);
1999 }
2000 
2001 /*
2002  * Defer some autoconfiguration for a device until after interrupts
2003  * are enabled.
2004  */
2005 void
2006 config_interrupts(device_t dev, void (*func)(device_t))
2007 {
2008 	struct deferred_config *dc;
2009 
2010 	/*
2011 	 * If interrupts are enabled, callback now.
2012 	 */
2013 	if (cold == 0) {
2014 		(*func)(dev);
2015 		return;
2016 	}
2017 
2018 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2019 
2020 	config_pending_incr(dev);
2021 
2022 	mutex_enter(&config_misc_lock);
2023 #ifdef DIAGNOSTIC
2024 	struct deferred_config *odc;
2025 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2026 		if (odc->dc_dev == dev)
2027 			panic("config_interrupts: deferred twice");
2028 	}
2029 #endif
2030 	dc->dc_dev = dev;
2031 	dc->dc_func = func;
2032 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2033 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2034 	mutex_exit(&config_misc_lock);
2035 }
2036 
2037 /*
2038  * Defer some autoconfiguration for a device until after root file system
2039  * is mounted (to load firmware etc).
2040  */
2041 void
2042 config_mountroot(device_t dev, void (*func)(device_t))
2043 {
2044 	struct deferred_config *dc;
2045 
2046 	/*
2047 	 * If root file system is mounted, callback now.
2048 	 */
2049 	if (root_is_mounted) {
2050 		(*func)(dev);
2051 		return;
2052 	}
2053 
2054 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2055 
2056 	mutex_enter(&config_misc_lock);
2057 #ifdef DIAGNOSTIC
2058 	struct deferred_config *odc;
2059 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2060 		if (odc->dc_dev == dev)
2061 			panic("%s: deferred twice", __func__);
2062 	}
2063 #endif
2064 
2065 	dc->dc_dev = dev;
2066 	dc->dc_func = func;
2067 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2068 	mutex_exit(&config_misc_lock);
2069 }
2070 
2071 /*
2072  * Process a deferred configuration queue.
2073  */
2074 static void
2075 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2076 {
2077 	struct deferred_config *dc;
2078 
2079 	mutex_enter(&config_misc_lock);
2080 	dc = TAILQ_FIRST(queue);
2081 	while (dc) {
2082 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2083 			TAILQ_REMOVE(queue, dc, dc_queue);
2084 			mutex_exit(&config_misc_lock);
2085 
2086 			(*dc->dc_func)(dc->dc_dev);
2087 			config_pending_decr(dc->dc_dev);
2088 			kmem_free(dc, sizeof(*dc));
2089 
2090 			mutex_enter(&config_misc_lock);
2091 			/* Restart, queue might have changed */
2092 			dc = TAILQ_FIRST(queue);
2093 		} else {
2094 			dc = TAILQ_NEXT(dc, dc_queue);
2095 		}
2096 	}
2097 	mutex_exit(&config_misc_lock);
2098 }
2099 
2100 /*
2101  * Manipulate the config_pending semaphore.
2102  */
2103 void
2104 config_pending_incr(device_t dev)
2105 {
2106 
2107 	mutex_enter(&config_misc_lock);
2108 	config_pending++;
2109 #ifdef DEBUG_AUTOCONF
2110 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2111 #endif
2112 	mutex_exit(&config_misc_lock);
2113 }
2114 
2115 void
2116 config_pending_decr(device_t dev)
2117 {
2118 
2119 	KASSERT(0 < config_pending);
2120 	mutex_enter(&config_misc_lock);
2121 	config_pending--;
2122 #ifdef DEBUG_AUTOCONF
2123 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2124 #endif
2125 	if (config_pending == 0)
2126 		cv_broadcast(&config_misc_cv);
2127 	mutex_exit(&config_misc_lock);
2128 }
2129 
2130 /*
2131  * Register a "finalization" routine.  Finalization routines are
2132  * called iteratively once all real devices have been found during
2133  * autoconfiguration, for as long as any one finalizer has done
2134  * any work.
2135  */
2136 int
2137 config_finalize_register(device_t dev, int (*fn)(device_t))
2138 {
2139 	struct finalize_hook *f;
2140 
2141 	/*
2142 	 * If finalization has already been done, invoke the
2143 	 * callback function now.
2144 	 */
2145 	if (config_finalize_done) {
2146 		while ((*fn)(dev) != 0)
2147 			/* loop */ ;
2148 		return 0;
2149 	}
2150 
2151 	/* Ensure this isn't already on the list. */
2152 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2153 		if (f->f_func == fn && f->f_dev == dev)
2154 			return EEXIST;
2155 	}
2156 
2157 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
2158 	f->f_func = fn;
2159 	f->f_dev = dev;
2160 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2161 
2162 	return 0;
2163 }
2164 
2165 void
2166 config_finalize(void)
2167 {
2168 	struct finalize_hook *f;
2169 	struct pdevinit *pdev;
2170 	extern struct pdevinit pdevinit[];
2171 	int errcnt, rv;
2172 
2173 	/*
2174 	 * Now that device driver threads have been created, wait for
2175 	 * them to finish any deferred autoconfiguration.
2176 	 */
2177 	mutex_enter(&config_misc_lock);
2178 	while (config_pending != 0)
2179 		cv_wait(&config_misc_cv, &config_misc_lock);
2180 	mutex_exit(&config_misc_lock);
2181 
2182 	KERNEL_LOCK(1, NULL);
2183 
2184 	/* Attach pseudo-devices. */
2185 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2186 		(*pdev->pdev_attach)(pdev->pdev_count);
2187 
2188 	/* Run the hooks until none of them does any work. */
2189 	do {
2190 		rv = 0;
2191 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
2192 			rv |= (*f->f_func)(f->f_dev);
2193 	} while (rv != 0);
2194 
2195 	config_finalize_done = 1;
2196 
2197 	/* Now free all the hooks. */
2198 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2199 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2200 		kmem_free(f, sizeof(*f));
2201 	}
2202 
2203 	KERNEL_UNLOCK_ONE(NULL);
2204 
2205 	errcnt = aprint_get_error_count();
2206 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2207 	    (boothowto & AB_VERBOSE) == 0) {
2208 		mutex_enter(&config_misc_lock);
2209 		if (config_do_twiddle) {
2210 			config_do_twiddle = 0;
2211 			printf_nolog(" done.\n");
2212 		}
2213 		mutex_exit(&config_misc_lock);
2214 	}
2215 	if (errcnt != 0) {
2216 		printf("WARNING: %d error%s while detecting hardware; "
2217 		    "check system log.\n", errcnt,
2218 		    errcnt == 1 ? "" : "s");
2219 	}
2220 }
2221 
2222 void
2223 config_twiddle_init(void)
2224 {
2225 
2226 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2227 		config_do_twiddle = 1;
2228 	}
2229 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2230 }
2231 
2232 void
2233 config_twiddle_fn(void *cookie)
2234 {
2235 
2236 	mutex_enter(&config_misc_lock);
2237 	if (config_do_twiddle) {
2238 		twiddle();
2239 		callout_schedule(&config_twiddle_ch, mstohz(100));
2240 	}
2241 	mutex_exit(&config_misc_lock);
2242 }
2243 
2244 static void
2245 config_alldevs_enter(struct alldevs_foray *af)
2246 {
2247 	TAILQ_INIT(&af->af_garbage);
2248 	mutex_enter(&alldevs_lock);
2249 	config_collect_garbage(&af->af_garbage);
2250 }
2251 
2252 static void
2253 config_alldevs_exit(struct alldevs_foray *af)
2254 {
2255 	mutex_exit(&alldevs_lock);
2256 	config_dump_garbage(&af->af_garbage);
2257 }
2258 
2259 /*
2260  * device_lookup:
2261  *
2262  *	Look up a device instance for a given driver.
2263  */
2264 device_t
2265 device_lookup(cfdriver_t cd, int unit)
2266 {
2267 	device_t dv;
2268 
2269 	mutex_enter(&alldevs_lock);
2270 	if (unit < 0 || unit >= cd->cd_ndevs)
2271 		dv = NULL;
2272 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2273 		dv = NULL;
2274 	mutex_exit(&alldevs_lock);
2275 
2276 	return dv;
2277 }
2278 
2279 /*
2280  * device_lookup_private:
2281  *
2282  *	Look up a softc instance for a given driver.
2283  */
2284 void *
2285 device_lookup_private(cfdriver_t cd, int unit)
2286 {
2287 
2288 	return device_private(device_lookup(cd, unit));
2289 }
2290 
2291 /*
2292  * device_find_by_xname:
2293  *
2294  *	Returns the device of the given name or NULL if it doesn't exist.
2295  */
2296 device_t
2297 device_find_by_xname(const char *name)
2298 {
2299 	device_t dv;
2300 	deviter_t di;
2301 
2302 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2303 		if (strcmp(device_xname(dv), name) == 0)
2304 			break;
2305 	}
2306 	deviter_release(&di);
2307 
2308 	return dv;
2309 }
2310 
2311 /*
2312  * device_find_by_driver_unit:
2313  *
2314  *	Returns the device of the given driver name and unit or
2315  *	NULL if it doesn't exist.
2316  */
2317 device_t
2318 device_find_by_driver_unit(const char *name, int unit)
2319 {
2320 	struct cfdriver *cd;
2321 
2322 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2323 		return NULL;
2324 	return device_lookup(cd, unit);
2325 }
2326 
2327 /*
2328  * device_compatible_match:
2329  *
2330  *	Match a driver's "compatible" data against a device's
2331  *	"compatible" strings.  If a match is found, we return
2332  *	a weighted match result, and optionally the matching
2333  *	entry.
2334  */
2335 int
2336 device_compatible_match(const char **device_compats, int ndevice_compats,
2337 			const struct device_compatible_entry *driver_compats,
2338 			const struct device_compatible_entry **matching_entryp)
2339 {
2340 	const struct device_compatible_entry *dce = NULL;
2341 	int i, match_weight;
2342 
2343 	if (ndevice_compats == 0 || device_compats == NULL ||
2344 	    driver_compats == NULL)
2345 		return 0;
2346 
2347 	/*
2348 	 * We take the first match because we start with the most-specific
2349 	 * device compatible string.
2350 	 */
2351 	for (i = 0, match_weight = ndevice_compats - 1;
2352 	     i < ndevice_compats;
2353 	     i++, match_weight--) {
2354 		for (dce = driver_compats; dce->compat != NULL; dce++) {
2355 			if (strcmp(dce->compat, device_compats[i]) == 0) {
2356 				KASSERT(match_weight >= 0);
2357 				if (matching_entryp)
2358 					*matching_entryp = dce;
2359 				return 1 + match_weight;
2360 			}
2361 		}
2362 	}
2363 	return 0;
2364 }
2365 
2366 /*
2367  * Power management related functions.
2368  */
2369 
2370 bool
2371 device_pmf_is_registered(device_t dev)
2372 {
2373 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2374 }
2375 
2376 bool
2377 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2378 {
2379 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2380 		return true;
2381 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2382 		return false;
2383 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2384 	    dev->dv_driver_suspend != NULL &&
2385 	    !(*dev->dv_driver_suspend)(dev, qual))
2386 		return false;
2387 
2388 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2389 	return true;
2390 }
2391 
2392 bool
2393 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2394 {
2395 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2396 		return true;
2397 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2398 		return false;
2399 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2400 	    dev->dv_driver_resume != NULL &&
2401 	    !(*dev->dv_driver_resume)(dev, qual))
2402 		return false;
2403 
2404 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2405 	return true;
2406 }
2407 
2408 bool
2409 device_pmf_driver_shutdown(device_t dev, int how)
2410 {
2411 
2412 	if (*dev->dv_driver_shutdown != NULL &&
2413 	    !(*dev->dv_driver_shutdown)(dev, how))
2414 		return false;
2415 	return true;
2416 }
2417 
2418 bool
2419 device_pmf_driver_register(device_t dev,
2420     bool (*suspend)(device_t, const pmf_qual_t *),
2421     bool (*resume)(device_t, const pmf_qual_t *),
2422     bool (*shutdown)(device_t, int))
2423 {
2424 	dev->dv_driver_suspend = suspend;
2425 	dev->dv_driver_resume = resume;
2426 	dev->dv_driver_shutdown = shutdown;
2427 	dev->dv_flags |= DVF_POWER_HANDLERS;
2428 	return true;
2429 }
2430 
2431 static const char *
2432 curlwp_name(void)
2433 {
2434 	if (curlwp->l_name != NULL)
2435 		return curlwp->l_name;
2436 	else
2437 		return curlwp->l_proc->p_comm;
2438 }
2439 
2440 void
2441 device_pmf_driver_deregister(device_t dev)
2442 {
2443 	device_lock_t dvl = device_getlock(dev);
2444 
2445 	dev->dv_driver_suspend = NULL;
2446 	dev->dv_driver_resume = NULL;
2447 
2448 	mutex_enter(&dvl->dvl_mtx);
2449 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2450 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2451 		/* Wake a thread that waits for the lock.  That
2452 		 * thread will fail to acquire the lock, and then
2453 		 * it will wake the next thread that waits for the
2454 		 * lock, or else it will wake us.
2455 		 */
2456 		cv_signal(&dvl->dvl_cv);
2457 		pmflock_debug(dev, __func__, __LINE__);
2458 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2459 		pmflock_debug(dev, __func__, __LINE__);
2460 	}
2461 	mutex_exit(&dvl->dvl_mtx);
2462 }
2463 
2464 bool
2465 device_pmf_driver_child_register(device_t dev)
2466 {
2467 	device_t parent = device_parent(dev);
2468 
2469 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2470 		return true;
2471 	return (*parent->dv_driver_child_register)(dev);
2472 }
2473 
2474 void
2475 device_pmf_driver_set_child_register(device_t dev,
2476     bool (*child_register)(device_t))
2477 {
2478 	dev->dv_driver_child_register = child_register;
2479 }
2480 
2481 static void
2482 pmflock_debug(device_t dev, const char *func, int line)
2483 {
2484 	device_lock_t dvl = device_getlock(dev);
2485 
2486 	aprint_debug_dev(dev,
2487 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2488 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2489 }
2490 
2491 static bool
2492 device_pmf_lock1(device_t dev)
2493 {
2494 	device_lock_t dvl = device_getlock(dev);
2495 
2496 	while (device_pmf_is_registered(dev) &&
2497 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2498 		dvl->dvl_nwait++;
2499 		pmflock_debug(dev, __func__, __LINE__);
2500 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2501 		pmflock_debug(dev, __func__, __LINE__);
2502 		dvl->dvl_nwait--;
2503 	}
2504 	if (!device_pmf_is_registered(dev)) {
2505 		pmflock_debug(dev, __func__, __LINE__);
2506 		/* We could not acquire the lock, but some other thread may
2507 		 * wait for it, also.  Wake that thread.
2508 		 */
2509 		cv_signal(&dvl->dvl_cv);
2510 		return false;
2511 	}
2512 	dvl->dvl_nlock++;
2513 	dvl->dvl_holder = curlwp;
2514 	pmflock_debug(dev, __func__, __LINE__);
2515 	return true;
2516 }
2517 
2518 bool
2519 device_pmf_lock(device_t dev)
2520 {
2521 	bool rc;
2522 	device_lock_t dvl = device_getlock(dev);
2523 
2524 	mutex_enter(&dvl->dvl_mtx);
2525 	rc = device_pmf_lock1(dev);
2526 	mutex_exit(&dvl->dvl_mtx);
2527 
2528 	return rc;
2529 }
2530 
2531 void
2532 device_pmf_unlock(device_t dev)
2533 {
2534 	device_lock_t dvl = device_getlock(dev);
2535 
2536 	KASSERT(dvl->dvl_nlock > 0);
2537 	mutex_enter(&dvl->dvl_mtx);
2538 	if (--dvl->dvl_nlock == 0)
2539 		dvl->dvl_holder = NULL;
2540 	cv_signal(&dvl->dvl_cv);
2541 	pmflock_debug(dev, __func__, __LINE__);
2542 	mutex_exit(&dvl->dvl_mtx);
2543 }
2544 
2545 device_lock_t
2546 device_getlock(device_t dev)
2547 {
2548 	return &dev->dv_lock;
2549 }
2550 
2551 void *
2552 device_pmf_bus_private(device_t dev)
2553 {
2554 	return dev->dv_bus_private;
2555 }
2556 
2557 bool
2558 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2559 {
2560 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2561 		return true;
2562 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2563 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2564 		return false;
2565 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2566 	    dev->dv_bus_suspend != NULL &&
2567 	    !(*dev->dv_bus_suspend)(dev, qual))
2568 		return false;
2569 
2570 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2571 	return true;
2572 }
2573 
2574 bool
2575 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2576 {
2577 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2578 		return true;
2579 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2580 	    dev->dv_bus_resume != NULL &&
2581 	    !(*dev->dv_bus_resume)(dev, qual))
2582 		return false;
2583 
2584 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2585 	return true;
2586 }
2587 
2588 bool
2589 device_pmf_bus_shutdown(device_t dev, int how)
2590 {
2591 
2592 	if (*dev->dv_bus_shutdown != NULL &&
2593 	    !(*dev->dv_bus_shutdown)(dev, how))
2594 		return false;
2595 	return true;
2596 }
2597 
2598 void
2599 device_pmf_bus_register(device_t dev, void *priv,
2600     bool (*suspend)(device_t, const pmf_qual_t *),
2601     bool (*resume)(device_t, const pmf_qual_t *),
2602     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2603 {
2604 	dev->dv_bus_private = priv;
2605 	dev->dv_bus_resume = resume;
2606 	dev->dv_bus_suspend = suspend;
2607 	dev->dv_bus_shutdown = shutdown;
2608 	dev->dv_bus_deregister = deregister;
2609 }
2610 
2611 void
2612 device_pmf_bus_deregister(device_t dev)
2613 {
2614 	if (dev->dv_bus_deregister == NULL)
2615 		return;
2616 	(*dev->dv_bus_deregister)(dev);
2617 	dev->dv_bus_private = NULL;
2618 	dev->dv_bus_suspend = NULL;
2619 	dev->dv_bus_resume = NULL;
2620 	dev->dv_bus_deregister = NULL;
2621 }
2622 
2623 void *
2624 device_pmf_class_private(device_t dev)
2625 {
2626 	return dev->dv_class_private;
2627 }
2628 
2629 bool
2630 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2631 {
2632 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2633 		return true;
2634 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2635 	    dev->dv_class_suspend != NULL &&
2636 	    !(*dev->dv_class_suspend)(dev, qual))
2637 		return false;
2638 
2639 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2640 	return true;
2641 }
2642 
2643 bool
2644 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2645 {
2646 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2647 		return true;
2648 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2649 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2650 		return false;
2651 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2652 	    dev->dv_class_resume != NULL &&
2653 	    !(*dev->dv_class_resume)(dev, qual))
2654 		return false;
2655 
2656 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2657 	return true;
2658 }
2659 
2660 void
2661 device_pmf_class_register(device_t dev, void *priv,
2662     bool (*suspend)(device_t, const pmf_qual_t *),
2663     bool (*resume)(device_t, const pmf_qual_t *),
2664     void (*deregister)(device_t))
2665 {
2666 	dev->dv_class_private = priv;
2667 	dev->dv_class_suspend = suspend;
2668 	dev->dv_class_resume = resume;
2669 	dev->dv_class_deregister = deregister;
2670 }
2671 
2672 void
2673 device_pmf_class_deregister(device_t dev)
2674 {
2675 	if (dev->dv_class_deregister == NULL)
2676 		return;
2677 	(*dev->dv_class_deregister)(dev);
2678 	dev->dv_class_private = NULL;
2679 	dev->dv_class_suspend = NULL;
2680 	dev->dv_class_resume = NULL;
2681 	dev->dv_class_deregister = NULL;
2682 }
2683 
2684 bool
2685 device_active(device_t dev, devactive_t type)
2686 {
2687 	size_t i;
2688 
2689 	if (dev->dv_activity_count == 0)
2690 		return false;
2691 
2692 	for (i = 0; i < dev->dv_activity_count; ++i) {
2693 		if (dev->dv_activity_handlers[i] == NULL)
2694 			break;
2695 		(*dev->dv_activity_handlers[i])(dev, type);
2696 	}
2697 
2698 	return true;
2699 }
2700 
2701 bool
2702 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2703 {
2704 	void (**new_handlers)(device_t, devactive_t);
2705 	void (**old_handlers)(device_t, devactive_t);
2706 	size_t i, old_size, new_size;
2707 	int s;
2708 
2709 	old_handlers = dev->dv_activity_handlers;
2710 	old_size = dev->dv_activity_count;
2711 
2712 	KASSERT(old_size == 0 || old_handlers != NULL);
2713 
2714 	for (i = 0; i < old_size; ++i) {
2715 		KASSERT(old_handlers[i] != handler);
2716 		if (old_handlers[i] == NULL) {
2717 			old_handlers[i] = handler;
2718 			return true;
2719 		}
2720 	}
2721 
2722 	new_size = old_size + 4;
2723 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2724 
2725 	for (i = 0; i < old_size; ++i)
2726 		new_handlers[i] = old_handlers[i];
2727 	new_handlers[old_size] = handler;
2728 	for (i = old_size+1; i < new_size; ++i)
2729 		new_handlers[i] = NULL;
2730 
2731 	s = splhigh();
2732 	dev->dv_activity_count = new_size;
2733 	dev->dv_activity_handlers = new_handlers;
2734 	splx(s);
2735 
2736 	if (old_size > 0)
2737 		kmem_free(old_handlers, sizeof(void * [old_size]));
2738 
2739 	return true;
2740 }
2741 
2742 void
2743 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2744 {
2745 	void (**old_handlers)(device_t, devactive_t);
2746 	size_t i, old_size;
2747 	int s;
2748 
2749 	old_handlers = dev->dv_activity_handlers;
2750 	old_size = dev->dv_activity_count;
2751 
2752 	for (i = 0; i < old_size; ++i) {
2753 		if (old_handlers[i] == handler)
2754 			break;
2755 		if (old_handlers[i] == NULL)
2756 			return; /* XXX panic? */
2757 	}
2758 
2759 	if (i == old_size)
2760 		return; /* XXX panic? */
2761 
2762 	for (; i < old_size - 1; ++i) {
2763 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2764 			continue;
2765 
2766 		if (i == 0) {
2767 			s = splhigh();
2768 			dev->dv_activity_count = 0;
2769 			dev->dv_activity_handlers = NULL;
2770 			splx(s);
2771 			kmem_free(old_handlers, sizeof(void *[old_size]));
2772 		}
2773 		return;
2774 	}
2775 	old_handlers[i] = NULL;
2776 }
2777 
2778 /* Return true iff the device_t `dev' exists at generation `gen'. */
2779 static bool
2780 device_exists_at(device_t dv, devgen_t gen)
2781 {
2782 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2783 	    dv->dv_add_gen <= gen;
2784 }
2785 
2786 static bool
2787 deviter_visits(const deviter_t *di, device_t dv)
2788 {
2789 	return device_exists_at(dv, di->di_gen);
2790 }
2791 
2792 /*
2793  * Device Iteration
2794  *
2795  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2796  *     each device_t's in the device tree.
2797  *
2798  * deviter_init(di, flags): initialize the device iterator `di'
2799  *     to "walk" the device tree.  deviter_next(di) will return
2800  *     the first device_t in the device tree, or NULL if there are
2801  *     no devices.
2802  *
2803  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2804  *     caller intends to modify the device tree by calling
2805  *     config_detach(9) on devices in the order that the iterator
2806  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2807  *     nearest the "root" of the device tree to be returned, first;
2808  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2809  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2810  *     indicating both that deviter_init() should not respect any
2811  *     locks on the device tree, and that deviter_next(di) may run
2812  *     in more than one LWP before the walk has finished.
2813  *
2814  *     Only one DEVITER_F_RW iterator may be in the device tree at
2815  *     once.
2816  *
2817  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2818  *
2819  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2820  *     DEVITER_F_LEAVES_FIRST are used in combination.
2821  *
2822  * deviter_first(di, flags): initialize the device iterator `di'
2823  *     and return the first device_t in the device tree, or NULL
2824  *     if there are no devices.  The statement
2825  *
2826  *         dv = deviter_first(di);
2827  *
2828  *     is shorthand for
2829  *
2830  *         deviter_init(di);
2831  *         dv = deviter_next(di);
2832  *
2833  * deviter_next(di): return the next device_t in the device tree,
2834  *     or NULL if there are no more devices.  deviter_next(di)
2835  *     is undefined if `di' was not initialized with deviter_init() or
2836  *     deviter_first().
2837  *
2838  * deviter_release(di): stops iteration (subsequent calls to
2839  *     deviter_next() will return NULL), releases any locks and
2840  *     resources held by the device iterator.
2841  *
2842  * Device iteration does not return device_t's in any particular
2843  * order.  An iterator will never return the same device_t twice.
2844  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2845  * is called repeatedly on the same `di', it will eventually return
2846  * NULL.  It is ok to attach/detach devices during device iteration.
2847  */
2848 void
2849 deviter_init(deviter_t *di, deviter_flags_t flags)
2850 {
2851 	device_t dv;
2852 
2853 	memset(di, 0, sizeof(*di));
2854 
2855 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2856 		flags |= DEVITER_F_RW;
2857 
2858 	mutex_enter(&alldevs_lock);
2859 	if ((flags & DEVITER_F_RW) != 0)
2860 		alldevs_nwrite++;
2861 	else
2862 		alldevs_nread++;
2863 	di->di_gen = alldevs_gen++;
2864 	di->di_flags = flags;
2865 
2866 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2867 	case DEVITER_F_LEAVES_FIRST:
2868 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2869 			if (!deviter_visits(di, dv))
2870 				continue;
2871 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2872 		}
2873 		break;
2874 	case DEVITER_F_ROOT_FIRST:
2875 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2876 			if (!deviter_visits(di, dv))
2877 				continue;
2878 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2879 		}
2880 		break;
2881 	default:
2882 		break;
2883 	}
2884 
2885 	deviter_reinit(di);
2886 	mutex_exit(&alldevs_lock);
2887 }
2888 
2889 static void
2890 deviter_reinit(deviter_t *di)
2891 {
2892 
2893 	KASSERT(mutex_owned(&alldevs_lock));
2894 	if ((di->di_flags & DEVITER_F_RW) != 0)
2895 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2896 	else
2897 		di->di_prev = TAILQ_FIRST(&alldevs);
2898 }
2899 
2900 device_t
2901 deviter_first(deviter_t *di, deviter_flags_t flags)
2902 {
2903 
2904 	deviter_init(di, flags);
2905 	return deviter_next(di);
2906 }
2907 
2908 static device_t
2909 deviter_next2(deviter_t *di)
2910 {
2911 	device_t dv;
2912 
2913 	KASSERT(mutex_owned(&alldevs_lock));
2914 
2915 	dv = di->di_prev;
2916 
2917 	if (dv == NULL)
2918 		return NULL;
2919 
2920 	if ((di->di_flags & DEVITER_F_RW) != 0)
2921 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2922 	else
2923 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2924 
2925 	return dv;
2926 }
2927 
2928 static device_t
2929 deviter_next1(deviter_t *di)
2930 {
2931 	device_t dv;
2932 
2933 	KASSERT(mutex_owned(&alldevs_lock));
2934 
2935 	do {
2936 		dv = deviter_next2(di);
2937 	} while (dv != NULL && !deviter_visits(di, dv));
2938 
2939 	return dv;
2940 }
2941 
2942 device_t
2943 deviter_next(deviter_t *di)
2944 {
2945 	device_t dv = NULL;
2946 
2947 	mutex_enter(&alldevs_lock);
2948 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2949 	case 0:
2950 		dv = deviter_next1(di);
2951 		break;
2952 	case DEVITER_F_LEAVES_FIRST:
2953 		while (di->di_curdepth >= 0) {
2954 			if ((dv = deviter_next1(di)) == NULL) {
2955 				di->di_curdepth--;
2956 				deviter_reinit(di);
2957 			} else if (dv->dv_depth == di->di_curdepth)
2958 				break;
2959 		}
2960 		break;
2961 	case DEVITER_F_ROOT_FIRST:
2962 		while (di->di_curdepth <= di->di_maxdepth) {
2963 			if ((dv = deviter_next1(di)) == NULL) {
2964 				di->di_curdepth++;
2965 				deviter_reinit(di);
2966 			} else if (dv->dv_depth == di->di_curdepth)
2967 				break;
2968 		}
2969 		break;
2970 	default:
2971 		break;
2972 	}
2973 	mutex_exit(&alldevs_lock);
2974 
2975 	return dv;
2976 }
2977 
2978 void
2979 deviter_release(deviter_t *di)
2980 {
2981 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2982 
2983 	mutex_enter(&alldevs_lock);
2984 	if (rw)
2985 		--alldevs_nwrite;
2986 	else
2987 		--alldevs_nread;
2988 	/* XXX wake a garbage-collection thread */
2989 	mutex_exit(&alldevs_lock);
2990 }
2991 
2992 const char *
2993 cfdata_ifattr(const struct cfdata *cf)
2994 {
2995 	return cf->cf_pspec->cfp_iattr;
2996 }
2997 
2998 bool
2999 ifattr_match(const char *snull, const char *t)
3000 {
3001 	return (snull == NULL) || strcmp(snull, t) == 0;
3002 }
3003 
3004 void
3005 null_childdetached(device_t self, device_t child)
3006 {
3007 	/* do nothing */
3008 }
3009 
3010 static void
3011 sysctl_detach_setup(struct sysctllog **clog)
3012 {
3013 
3014 	sysctl_createv(clog, 0, NULL, NULL,
3015 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3016 		CTLTYPE_BOOL, "detachall",
3017 		SYSCTL_DESCR("Detach all devices at shutdown"),
3018 		NULL, 0, &detachall, 0,
3019 		CTL_KERN, CTL_CREATE, CTL_EOL);
3020 }
3021