xref: /netbsd-src/sys/kern/subr_autoconf.c (revision 2de962bd804263c16657f586aa00f1704045df8e)
1 /* $NetBSD: subr_autoconf.c,v 1.148 2008/05/19 17:06:02 ad Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.148 2008/05/19 17:06:02 ad Exp $");
81 
82 #include "opt_ddb.h"
83 
84 #include <sys/param.h>
85 #include <sys/device.h>
86 #include <sys/disklabel.h>
87 #include <sys/conf.h>
88 #include <sys/kauth.h>
89 #include <sys/malloc.h>
90 #include <sys/systm.h>
91 #include <sys/kernel.h>
92 #include <sys/errno.h>
93 #include <sys/proc.h>
94 #include <sys/reboot.h>
95 #include <sys/kthread.h>
96 #include <sys/buf.h>
97 #include <sys/dirent.h>
98 #include <sys/vnode.h>
99 #include <sys/mount.h>
100 #include <sys/namei.h>
101 #include <sys/unistd.h>
102 #include <sys/fcntl.h>
103 #include <sys/lockf.h>
104 #include <sys/callout.h>
105 #include <sys/mutex.h>
106 #include <sys/condvar.h>
107 
108 #include <sys/disk.h>
109 
110 #include <machine/limits.h>
111 
112 #include "opt_userconf.h"
113 #ifdef USERCONF
114 #include <sys/userconf.h>
115 #endif
116 
117 #ifdef __i386__
118 #include "opt_splash.h"
119 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
120 #include <dev/splash/splash.h>
121 extern struct splash_progress *splash_progress_state;
122 #endif
123 #endif
124 
125 /*
126  * Autoconfiguration subroutines.
127  */
128 
129 typedef struct pmf_private {
130 	int		pp_nwait;
131 	int		pp_nlock;
132 	lwp_t		*pp_holder;
133 	kmutex_t	pp_mtx;
134 	kcondvar_t	pp_cv;
135 } pmf_private_t;
136 
137 /*
138  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
139  * devices and drivers are found via these tables.
140  */
141 extern struct cfdata cfdata[];
142 extern const short cfroots[];
143 
144 /*
145  * List of all cfdriver structures.  We use this to detect duplicates
146  * when other cfdrivers are loaded.
147  */
148 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
149 extern struct cfdriver * const cfdriver_list_initial[];
150 
151 /*
152  * Initial list of cfattach's.
153  */
154 extern const struct cfattachinit cfattachinit[];
155 
156 /*
157  * List of cfdata tables.  We always have one such list -- the one
158  * built statically when the kernel was configured.
159  */
160 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
161 static struct cftable initcftable;
162 
163 #define	ROOT ((device_t)NULL)
164 
165 struct matchinfo {
166 	cfsubmatch_t fn;
167 	struct	device *parent;
168 	const int *locs;
169 	void	*aux;
170 	struct	cfdata *match;
171 	int	pri;
172 };
173 
174 static char *number(char *, int);
175 static void mapply(struct matchinfo *, cfdata_t);
176 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
177 static void config_devdealloc(device_t);
178 static void config_makeroom(int, struct cfdriver *);
179 static void config_devlink(device_t);
180 static void config_devunlink(device_t);
181 
182 static void pmflock_debug(device_t, const char *, int);
183 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
184 
185 static device_t deviter_next1(deviter_t *);
186 static void deviter_reinit(deviter_t *);
187 
188 struct deferred_config {
189 	TAILQ_ENTRY(deferred_config) dc_queue;
190 	device_t dc_dev;
191 	void (*dc_func)(device_t);
192 };
193 
194 TAILQ_HEAD(deferred_config_head, deferred_config);
195 
196 struct deferred_config_head deferred_config_queue =
197 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
198 struct deferred_config_head interrupt_config_queue =
199 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
200 int interrupt_config_threads = 8;
201 
202 static void config_process_deferred(struct deferred_config_head *, device_t);
203 
204 /* Hooks to finalize configuration once all real devices have been found. */
205 struct finalize_hook {
206 	TAILQ_ENTRY(finalize_hook) f_list;
207 	int (*f_func)(device_t);
208 	device_t f_dev;
209 };
210 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
211 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
212 static int config_finalize_done;
213 
214 /* list of all devices */
215 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
216 kcondvar_t alldevs_cv;
217 kmutex_t alldevs_mtx;
218 static int alldevs_nread = 0;
219 static int alldevs_nwrite = 0;
220 static lwp_t *alldevs_writer = NULL;
221 
222 volatile int config_pending;		/* semaphore for mountroot */
223 
224 #define	STREQ(s1, s2)			\
225 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
226 
227 static int config_initialized;		/* config_init() has been called. */
228 
229 static int config_do_twiddle;
230 
231 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
232 
233 struct vnode *
234 opendisk(struct device *dv)
235 {
236 	int bmajor, bminor;
237 	struct vnode *tmpvn;
238 	int error;
239 	dev_t dev;
240 
241 	/*
242 	 * Lookup major number for disk block device.
243 	 */
244 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
245 	if (bmajor == -1)
246 		return NULL;
247 
248 	bminor = minor(device_unit(dv));
249 	/*
250 	 * Fake a temporary vnode for the disk, open it, and read
251 	 * and hash the sectors.
252 	 */
253 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
254 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
255 	if (bdevvp(dev, &tmpvn))
256 		panic("%s: can't alloc vnode for %s", __func__,
257 		    device_xname(dv));
258 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
259 	if (error) {
260 #ifndef DEBUG
261 		/*
262 		 * Ignore errors caused by missing device, partition,
263 		 * or medium.
264 		 */
265 		if (error != ENXIO && error != ENODEV)
266 #endif
267 			printf("%s: can't open dev %s (%d)\n",
268 			    __func__, device_xname(dv), error);
269 		vput(tmpvn);
270 		return NULL;
271 	}
272 
273 	return tmpvn;
274 }
275 
276 int
277 config_handle_wedges(struct device *dv, int par)
278 {
279 	struct dkwedge_list wl;
280 	struct dkwedge_info *wi;
281 	struct vnode *vn;
282 	char diskname[16];
283 	int i, error;
284 
285 	if ((vn = opendisk(dv)) == NULL)
286 		return -1;
287 
288 	wl.dkwl_bufsize = sizeof(*wi) * 16;
289 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
290 
291 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
292 	VOP_CLOSE(vn, FREAD, NOCRED);
293 	vput(vn);
294 	if (error) {
295 #ifdef DEBUG_WEDGE
296 		printf("%s: List wedges returned %d\n",
297 		    device_xname(dv), error);
298 #endif
299 		free(wi, M_TEMP);
300 		return -1;
301 	}
302 
303 #ifdef DEBUG_WEDGE
304 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
305 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
306 #endif
307 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
308 	    par + 'a');
309 
310 	for (i = 0; i < wl.dkwl_ncopied; i++) {
311 #ifdef DEBUG_WEDGE
312 		printf("%s: Looking for %s in %s\n",
313 		    device_xname(dv), diskname, wi[i].dkw_wname);
314 #endif
315 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
316 			break;
317 	}
318 
319 	if (i == wl.dkwl_ncopied) {
320 #ifdef DEBUG_WEDGE
321 		printf("%s: Cannot find wedge with parent %s\n",
322 		    device_xname(dv), diskname);
323 #endif
324 		free(wi, M_TEMP);
325 		return -1;
326 	}
327 
328 #ifdef DEBUG_WEDGE
329 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
330 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
331 		(unsigned long long)wi[i].dkw_offset,
332 		(unsigned long long)wi[i].dkw_size);
333 #endif
334 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
335 	free(wi, M_TEMP);
336 	return 0;
337 }
338 
339 /*
340  * Initialize the autoconfiguration data structures.  Normally this
341  * is done by configure(), but some platforms need to do this very
342  * early (to e.g. initialize the console).
343  */
344 void
345 config_init(void)
346 {
347 	const struct cfattachinit *cfai;
348 	int i, j;
349 
350 	if (config_initialized)
351 		return;
352 
353 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
354 	cv_init(&alldevs_cv, "alldevs");
355 
356 	/* allcfdrivers is statically initialized. */
357 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
358 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
359 			panic("configure: duplicate `%s' drivers",
360 			    cfdriver_list_initial[i]->cd_name);
361 	}
362 
363 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
364 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
365 			if (config_cfattach_attach(cfai->cfai_name,
366 						   cfai->cfai_list[j]) != 0)
367 				panic("configure: duplicate `%s' attachment "
368 				    "of `%s' driver",
369 				    cfai->cfai_list[j]->ca_name,
370 				    cfai->cfai_name);
371 		}
372 	}
373 
374 	initcftable.ct_cfdata = cfdata;
375 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
376 
377 	config_initialized = 1;
378 }
379 
380 void
381 config_deferred(device_t dev)
382 {
383 	config_process_deferred(&deferred_config_queue, dev);
384 	config_process_deferred(&interrupt_config_queue, dev);
385 }
386 
387 static void
388 config_interrupts_thread(void *cookie)
389 {
390 	struct deferred_config *dc;
391 
392 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
393 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
394 		(*dc->dc_func)(dc->dc_dev);
395 		free(dc, M_DEVBUF);
396 		config_pending_decr();
397 	}
398 	kthread_exit(0);
399 }
400 
401 /*
402  * Configure the system's hardware.
403  */
404 void
405 configure(void)
406 {
407 	extern void ssp_init(void);
408 	int i, s;
409 
410 	/* Initialize data structures. */
411 	config_init();
412 	pmf_init();
413 
414 #ifdef USERCONF
415 	if (boothowto & RB_USERCONF)
416 		user_config();
417 #endif
418 
419 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
420 		config_do_twiddle = 1;
421 		printf_nolog("Detecting hardware...");
422 	}
423 
424 	/*
425 	 * Do the machine-dependent portion of autoconfiguration.  This
426 	 * sets the configuration machinery here in motion by "finding"
427 	 * the root bus.  When this function returns, we expect interrupts
428 	 * to be enabled.
429 	 */
430 	cpu_configure();
431 
432 	/* Initialize SSP. */
433 	ssp_init();
434 
435 	/*
436 	 * Now that we've found all the hardware, start the real time
437 	 * and statistics clocks.
438 	 */
439 	initclocks();
440 
441 	cold = 0;	/* clocks are running, we're warm now! */
442 	s = splsched();
443 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
444 	splx(s);
445 
446 	/* Boot the secondary processors. */
447 	mp_online = true;
448 #if defined(MULTIPROCESSOR)
449 	cpu_boot_secondary_processors();
450 #endif
451 
452 	/* Setup the runqueues and scheduler. */
453 	runq_init();
454 	sched_init();
455 
456 	/*
457 	 * Create threads to call back and finish configuration for
458 	 * devices that want interrupts enabled.
459 	 */
460 	for (i = 0; i < interrupt_config_threads; i++) {
461 		(void)kthread_create(PRI_NONE, 0, NULL,
462 		    config_interrupts_thread, NULL, NULL, "config");
463 	}
464 
465 	/* Get the threads going and into any sleeps before continuing. */
466 	yield();
467 
468 	/* Lock the kernel on behalf of lwp0. */
469 	KERNEL_LOCK(1, NULL);
470 }
471 
472 /*
473  * Add a cfdriver to the system.
474  */
475 int
476 config_cfdriver_attach(struct cfdriver *cd)
477 {
478 	struct cfdriver *lcd;
479 
480 	/* Make sure this driver isn't already in the system. */
481 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
482 		if (STREQ(lcd->cd_name, cd->cd_name))
483 			return (EEXIST);
484 	}
485 
486 	LIST_INIT(&cd->cd_attach);
487 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
488 
489 	return (0);
490 }
491 
492 /*
493  * Remove a cfdriver from the system.
494  */
495 int
496 config_cfdriver_detach(struct cfdriver *cd)
497 {
498 	int i;
499 
500 	/* Make sure there are no active instances. */
501 	for (i = 0; i < cd->cd_ndevs; i++) {
502 		if (cd->cd_devs[i] != NULL)
503 			return (EBUSY);
504 	}
505 
506 	/* ...and no attachments loaded. */
507 	if (LIST_EMPTY(&cd->cd_attach) == 0)
508 		return (EBUSY);
509 
510 	LIST_REMOVE(cd, cd_list);
511 
512 	KASSERT(cd->cd_devs == NULL);
513 
514 	return (0);
515 }
516 
517 /*
518  * Look up a cfdriver by name.
519  */
520 struct cfdriver *
521 config_cfdriver_lookup(const char *name)
522 {
523 	struct cfdriver *cd;
524 
525 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
526 		if (STREQ(cd->cd_name, name))
527 			return (cd);
528 	}
529 
530 	return (NULL);
531 }
532 
533 /*
534  * Add a cfattach to the specified driver.
535  */
536 int
537 config_cfattach_attach(const char *driver, struct cfattach *ca)
538 {
539 	struct cfattach *lca;
540 	struct cfdriver *cd;
541 
542 	cd = config_cfdriver_lookup(driver);
543 	if (cd == NULL)
544 		return (ESRCH);
545 
546 	/* Make sure this attachment isn't already on this driver. */
547 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
548 		if (STREQ(lca->ca_name, ca->ca_name))
549 			return (EEXIST);
550 	}
551 
552 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
553 
554 	return (0);
555 }
556 
557 /*
558  * Remove a cfattach from the specified driver.
559  */
560 int
561 config_cfattach_detach(const char *driver, struct cfattach *ca)
562 {
563 	struct cfdriver *cd;
564 	device_t dev;
565 	int i;
566 
567 	cd = config_cfdriver_lookup(driver);
568 	if (cd == NULL)
569 		return (ESRCH);
570 
571 	/* Make sure there are no active instances. */
572 	for (i = 0; i < cd->cd_ndevs; i++) {
573 		if ((dev = cd->cd_devs[i]) == NULL)
574 			continue;
575 		if (dev->dv_cfattach == ca)
576 			return (EBUSY);
577 	}
578 
579 	LIST_REMOVE(ca, ca_list);
580 
581 	return (0);
582 }
583 
584 /*
585  * Look up a cfattach by name.
586  */
587 static struct cfattach *
588 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
589 {
590 	struct cfattach *ca;
591 
592 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
593 		if (STREQ(ca->ca_name, atname))
594 			return (ca);
595 	}
596 
597 	return (NULL);
598 }
599 
600 /*
601  * Look up a cfattach by driver/attachment name.
602  */
603 struct cfattach *
604 config_cfattach_lookup(const char *name, const char *atname)
605 {
606 	struct cfdriver *cd;
607 
608 	cd = config_cfdriver_lookup(name);
609 	if (cd == NULL)
610 		return (NULL);
611 
612 	return (config_cfattach_lookup_cd(cd, atname));
613 }
614 
615 /*
616  * Apply the matching function and choose the best.  This is used
617  * a few times and we want to keep the code small.
618  */
619 static void
620 mapply(struct matchinfo *m, cfdata_t cf)
621 {
622 	int pri;
623 
624 	if (m->fn != NULL) {
625 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
626 	} else {
627 		pri = config_match(m->parent, cf, m->aux);
628 	}
629 	if (pri > m->pri) {
630 		m->match = cf;
631 		m->pri = pri;
632 	}
633 }
634 
635 int
636 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
637 {
638 	const struct cfiattrdata *ci;
639 	const struct cflocdesc *cl;
640 	int nlocs, i;
641 
642 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
643 	KASSERT(ci);
644 	nlocs = ci->ci_loclen;
645 	for (i = 0; i < nlocs; i++) {
646 		cl = &ci->ci_locdesc[i];
647 		/* !cld_defaultstr means no default value */
648 		if ((!(cl->cld_defaultstr)
649 		     || (cf->cf_loc[i] != cl->cld_default))
650 		    && cf->cf_loc[i] != locs[i])
651 			return (0);
652 	}
653 
654 	return (config_match(parent, cf, aux));
655 }
656 
657 /*
658  * Helper function: check whether the driver supports the interface attribute
659  * and return its descriptor structure.
660  */
661 static const struct cfiattrdata *
662 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
663 {
664 	const struct cfiattrdata * const *cpp;
665 
666 	if (cd->cd_attrs == NULL)
667 		return (0);
668 
669 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
670 		if (STREQ((*cpp)->ci_name, ia)) {
671 			/* Match. */
672 			return (*cpp);
673 		}
674 	}
675 	return (0);
676 }
677 
678 /*
679  * Lookup an interface attribute description by name.
680  * If the driver is given, consider only its supported attributes.
681  */
682 const struct cfiattrdata *
683 cfiattr_lookup(const char *name, const struct cfdriver *cd)
684 {
685 	const struct cfdriver *d;
686 	const struct cfiattrdata *ia;
687 
688 	if (cd)
689 		return (cfdriver_get_iattr(cd, name));
690 
691 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
692 		ia = cfdriver_get_iattr(d, name);
693 		if (ia)
694 			return (ia);
695 	}
696 	return (0);
697 }
698 
699 /*
700  * Determine if `parent' is a potential parent for a device spec based
701  * on `cfp'.
702  */
703 static int
704 cfparent_match(const device_t parent, const struct cfparent *cfp)
705 {
706 	struct cfdriver *pcd;
707 
708 	/* We don't match root nodes here. */
709 	if (cfp == NULL)
710 		return (0);
711 
712 	pcd = parent->dv_cfdriver;
713 	KASSERT(pcd != NULL);
714 
715 	/*
716 	 * First, ensure this parent has the correct interface
717 	 * attribute.
718 	 */
719 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
720 		return (0);
721 
722 	/*
723 	 * If no specific parent device instance was specified (i.e.
724 	 * we're attaching to the attribute only), we're done!
725 	 */
726 	if (cfp->cfp_parent == NULL)
727 		return (1);
728 
729 	/*
730 	 * Check the parent device's name.
731 	 */
732 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
733 		return (0);	/* not the same parent */
734 
735 	/*
736 	 * Make sure the unit number matches.
737 	 */
738 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
739 	    cfp->cfp_unit == parent->dv_unit)
740 		return (1);
741 
742 	/* Unit numbers don't match. */
743 	return (0);
744 }
745 
746 /*
747  * Helper for config_cfdata_attach(): check all devices whether it could be
748  * parent any attachment in the config data table passed, and rescan.
749  */
750 static void
751 rescan_with_cfdata(const struct cfdata *cf)
752 {
753 	device_t d;
754 	const struct cfdata *cf1;
755 	deviter_t di;
756 
757 
758 	/*
759 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
760 	 * the outer loop.
761 	 */
762 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
763 
764 		if (!(d->dv_cfattach->ca_rescan))
765 			continue;
766 
767 		for (cf1 = cf; cf1->cf_name; cf1++) {
768 
769 			if (!cfparent_match(d, cf1->cf_pspec))
770 				continue;
771 
772 			(*d->dv_cfattach->ca_rescan)(d,
773 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
774 		}
775 	}
776 	deviter_release(&di);
777 }
778 
779 /*
780  * Attach a supplemental config data table and rescan potential
781  * parent devices if required.
782  */
783 int
784 config_cfdata_attach(cfdata_t cf, int scannow)
785 {
786 	struct cftable *ct;
787 
788 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
789 	ct->ct_cfdata = cf;
790 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
791 
792 	if (scannow)
793 		rescan_with_cfdata(cf);
794 
795 	return (0);
796 }
797 
798 /*
799  * Helper for config_cfdata_detach: check whether a device is
800  * found through any attachment in the config data table.
801  */
802 static int
803 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
804 {
805 	const struct cfdata *cf1;
806 
807 	for (cf1 = cf; cf1->cf_name; cf1++)
808 		if (d->dv_cfdata == cf1)
809 			return (1);
810 
811 	return (0);
812 }
813 
814 /*
815  * Detach a supplemental config data table. Detach all devices found
816  * through that table (and thus keeping references to it) before.
817  */
818 int
819 config_cfdata_detach(cfdata_t cf)
820 {
821 	device_t d;
822 	int error = 0;
823 	struct cftable *ct;
824 	deviter_t di;
825 
826 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
827 	     d = deviter_next(&di)) {
828 		if (!dev_in_cfdata(d, cf))
829 			continue;
830 		if ((error = config_detach(d, 0)) != 0)
831 			break;
832 	}
833 	deviter_release(&di);
834 	if (error) {
835 		aprint_error_dev(d, "unable to detach instance\n");
836 		return error;
837 	}
838 
839 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
840 		if (ct->ct_cfdata == cf) {
841 			TAILQ_REMOVE(&allcftables, ct, ct_list);
842 			free(ct, M_DEVBUF);
843 			return (0);
844 		}
845 	}
846 
847 	/* not found -- shouldn't happen */
848 	return (EINVAL);
849 }
850 
851 /*
852  * Invoke the "match" routine for a cfdata entry on behalf of
853  * an external caller, usually a "submatch" routine.
854  */
855 int
856 config_match(device_t parent, cfdata_t cf, void *aux)
857 {
858 	struct cfattach *ca;
859 
860 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
861 	if (ca == NULL) {
862 		/* No attachment for this entry, oh well. */
863 		return (0);
864 	}
865 
866 	return ((*ca->ca_match)(parent, cf, aux));
867 }
868 
869 /*
870  * Iterate over all potential children of some device, calling the given
871  * function (default being the child's match function) for each one.
872  * Nonzero returns are matches; the highest value returned is considered
873  * the best match.  Return the `found child' if we got a match, or NULL
874  * otherwise.  The `aux' pointer is simply passed on through.
875  *
876  * Note that this function is designed so that it can be used to apply
877  * an arbitrary function to all potential children (its return value
878  * can be ignored).
879  */
880 cfdata_t
881 config_search_loc(cfsubmatch_t fn, device_t parent,
882 		  const char *ifattr, const int *locs, void *aux)
883 {
884 	struct cftable *ct;
885 	cfdata_t cf;
886 	struct matchinfo m;
887 
888 	KASSERT(config_initialized);
889 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
890 
891 	m.fn = fn;
892 	m.parent = parent;
893 	m.locs = locs;
894 	m.aux = aux;
895 	m.match = NULL;
896 	m.pri = 0;
897 
898 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
899 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
900 
901 			/* We don't match root nodes here. */
902 			if (!cf->cf_pspec)
903 				continue;
904 
905 			/*
906 			 * Skip cf if no longer eligible, otherwise scan
907 			 * through parents for one matching `parent', and
908 			 * try match function.
909 			 */
910 			if (cf->cf_fstate == FSTATE_FOUND)
911 				continue;
912 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
913 			    cf->cf_fstate == FSTATE_DSTAR)
914 				continue;
915 
916 			/*
917 			 * If an interface attribute was specified,
918 			 * consider only children which attach to
919 			 * that attribute.
920 			 */
921 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
922 				continue;
923 
924 			if (cfparent_match(parent, cf->cf_pspec))
925 				mapply(&m, cf);
926 		}
927 	}
928 	return (m.match);
929 }
930 
931 cfdata_t
932 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
933     void *aux)
934 {
935 
936 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
937 }
938 
939 /*
940  * Find the given root device.
941  * This is much like config_search, but there is no parent.
942  * Don't bother with multiple cfdata tables; the root node
943  * must always be in the initial table.
944  */
945 cfdata_t
946 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
947 {
948 	cfdata_t cf;
949 	const short *p;
950 	struct matchinfo m;
951 
952 	m.fn = fn;
953 	m.parent = ROOT;
954 	m.aux = aux;
955 	m.match = NULL;
956 	m.pri = 0;
957 	m.locs = 0;
958 	/*
959 	 * Look at root entries for matching name.  We do not bother
960 	 * with found-state here since only one root should ever be
961 	 * searched (and it must be done first).
962 	 */
963 	for (p = cfroots; *p >= 0; p++) {
964 		cf = &cfdata[*p];
965 		if (strcmp(cf->cf_name, rootname) == 0)
966 			mapply(&m, cf);
967 	}
968 	return (m.match);
969 }
970 
971 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
972 
973 /*
974  * The given `aux' argument describes a device that has been found
975  * on the given parent, but not necessarily configured.  Locate the
976  * configuration data for that device (using the submatch function
977  * provided, or using candidates' cd_match configuration driver
978  * functions) and attach it, and return true.  If the device was
979  * not configured, call the given `print' function and return 0.
980  */
981 device_t
982 config_found_sm_loc(device_t parent,
983 		const char *ifattr, const int *locs, void *aux,
984 		cfprint_t print, cfsubmatch_t submatch)
985 {
986 	cfdata_t cf;
987 
988 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
989 	if (splash_progress_state)
990 		splash_progress_update(splash_progress_state);
991 #endif
992 
993 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
994 		return(config_attach_loc(parent, cf, locs, aux, print));
995 	if (print) {
996 		if (config_do_twiddle)
997 			twiddle();
998 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
999 	}
1000 
1001 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1002 	if (splash_progress_state)
1003 		splash_progress_update(splash_progress_state);
1004 #endif
1005 
1006 	return (NULL);
1007 }
1008 
1009 device_t
1010 config_found_ia(device_t parent, const char *ifattr, void *aux,
1011     cfprint_t print)
1012 {
1013 
1014 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1015 }
1016 
1017 device_t
1018 config_found(device_t parent, void *aux, cfprint_t print)
1019 {
1020 
1021 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1022 }
1023 
1024 /*
1025  * As above, but for root devices.
1026  */
1027 device_t
1028 config_rootfound(const char *rootname, void *aux)
1029 {
1030 	cfdata_t cf;
1031 
1032 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1033 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1034 	aprint_error("root device %s not configured\n", rootname);
1035 	return (NULL);
1036 }
1037 
1038 /* just like sprintf(buf, "%d") except that it works from the end */
1039 static char *
1040 number(char *ep, int n)
1041 {
1042 
1043 	*--ep = 0;
1044 	while (n >= 10) {
1045 		*--ep = (n % 10) + '0';
1046 		n /= 10;
1047 	}
1048 	*--ep = n + '0';
1049 	return (ep);
1050 }
1051 
1052 /*
1053  * Expand the size of the cd_devs array if necessary.
1054  */
1055 static void
1056 config_makeroom(int n, struct cfdriver *cd)
1057 {
1058 	int old, new;
1059 	void **nsp;
1060 
1061 	if (n < cd->cd_ndevs)
1062 		return;
1063 
1064 	/*
1065 	 * Need to expand the array.
1066 	 */
1067 	old = cd->cd_ndevs;
1068 	if (old == 0)
1069 		new = 4;
1070 	else
1071 		new = old * 2;
1072 	while (new <= n)
1073 		new *= 2;
1074 	cd->cd_ndevs = new;
1075 	nsp = malloc(new * sizeof(void *), M_DEVBUF,
1076 	    cold ? M_NOWAIT : M_WAITOK);
1077 	if (nsp == NULL)
1078 		panic("config_attach: %sing dev array",
1079 		    old != 0 ? "expand" : "creat");
1080 	memset(nsp + old, 0, (new - old) * sizeof(void *));
1081 	if (old != 0) {
1082 		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
1083 		free(cd->cd_devs, M_DEVBUF);
1084 	}
1085 	cd->cd_devs = nsp;
1086 }
1087 
1088 static void
1089 config_devlink(device_t dev)
1090 {
1091 	struct cfdriver *cd = dev->dv_cfdriver;
1092 
1093 	/* put this device in the devices array */
1094 	config_makeroom(dev->dv_unit, cd);
1095 	if (cd->cd_devs[dev->dv_unit])
1096 		panic("config_attach: duplicate %s", device_xname(dev));
1097 	cd->cd_devs[dev->dv_unit] = dev;
1098 
1099 	/* It is safe to add a device to the tail of the list while
1100 	 * readers are in the list, but not while a writer is in
1101 	 * the list.  Wait for any writer to complete.
1102 	 */
1103 	mutex_enter(&alldevs_mtx);
1104 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1105 		cv_wait(&alldevs_cv, &alldevs_mtx);
1106 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
1107 	cv_signal(&alldevs_cv);
1108 	mutex_exit(&alldevs_mtx);
1109 }
1110 
1111 static void
1112 config_devunlink(device_t dev)
1113 {
1114 	struct cfdriver *cd = dev->dv_cfdriver;
1115 	int i;
1116 
1117 	/* Unlink from device list. */
1118 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1119 
1120 	/* Remove from cfdriver's array. */
1121 	cd->cd_devs[dev->dv_unit] = NULL;
1122 
1123 	/*
1124 	 * If the device now has no units in use, deallocate its softc array.
1125 	 */
1126 	for (i = 0; i < cd->cd_ndevs; i++)
1127 		if (cd->cd_devs[i] != NULL)
1128 			break;
1129 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
1130 		free(cd->cd_devs, M_DEVBUF);
1131 		cd->cd_devs = NULL;
1132 		cd->cd_ndevs = 0;
1133 	}
1134 }
1135 
1136 static device_t
1137 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1138 {
1139 	struct cfdriver *cd;
1140 	struct cfattach *ca;
1141 	size_t lname, lunit;
1142 	const char *xunit;
1143 	int myunit;
1144 	char num[10];
1145 	device_t dev;
1146 	void *dev_private;
1147 	const struct cfiattrdata *ia;
1148 
1149 	cd = config_cfdriver_lookup(cf->cf_name);
1150 	if (cd == NULL)
1151 		return (NULL);
1152 
1153 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1154 	if (ca == NULL)
1155 		return (NULL);
1156 
1157 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1158 	    ca->ca_devsize < sizeof(struct device))
1159 		panic("config_devalloc: %s", cf->cf_atname);
1160 
1161 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1162 	if (cf->cf_fstate == FSTATE_STAR) {
1163 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1164 			if (cd->cd_devs[myunit] == NULL)
1165 				break;
1166 		/*
1167 		 * myunit is now the unit of the first NULL device pointer,
1168 		 * or max(cd->cd_ndevs,cf->cf_unit).
1169 		 */
1170 	} else {
1171 		myunit = cf->cf_unit;
1172 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1173 			return (NULL);
1174 	}
1175 #else
1176 	myunit = cf->cf_unit;
1177 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1178 
1179 	/* compute length of name and decimal expansion of unit number */
1180 	lname = strlen(cd->cd_name);
1181 	xunit = number(&num[sizeof(num)], myunit);
1182 	lunit = &num[sizeof(num)] - xunit;
1183 	if (lname + lunit > sizeof(dev->dv_xname))
1184 		panic("config_devalloc: device name too long");
1185 
1186 	/* get memory for all device vars */
1187 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1188 	if (ca->ca_devsize > 0) {
1189 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
1190 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1191 		if (dev_private == NULL)
1192 			panic("config_devalloc: memory allocation for device softc failed");
1193 	} else {
1194 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1195 		dev_private = NULL;
1196 	}
1197 
1198 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1199 		dev = malloc(sizeof(struct device), M_DEVBUF,
1200 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1201 	} else {
1202 		dev = dev_private;
1203 	}
1204 	if (dev == NULL)
1205 		panic("config_devalloc: memory allocation for device_t failed");
1206 
1207 	dev->dv_class = cd->cd_class;
1208 	dev->dv_cfdata = cf;
1209 	dev->dv_cfdriver = cd;
1210 	dev->dv_cfattach = ca;
1211 	dev->dv_unit = myunit;
1212 	dev->dv_activity_count = 0;
1213 	dev->dv_activity_handlers = NULL;
1214 	dev->dv_private = dev_private;
1215 	memcpy(dev->dv_xname, cd->cd_name, lname);
1216 	memcpy(dev->dv_xname + lname, xunit, lunit);
1217 	dev->dv_parent = parent;
1218 	if (parent != NULL)
1219 		dev->dv_depth = parent->dv_depth + 1;
1220 	else
1221 		dev->dv_depth = 0;
1222 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
1223 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
1224 	if (locs) {
1225 		KASSERT(parent); /* no locators at root */
1226 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1227 				    parent->dv_cfdriver);
1228 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
1229 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1230 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
1231 	}
1232 	dev->dv_properties = prop_dictionary_create();
1233 	KASSERT(dev->dv_properties != NULL);
1234 
1235 	return (dev);
1236 }
1237 
1238 static void
1239 config_devdealloc(device_t dev)
1240 {
1241 
1242 	KASSERT(dev->dv_properties != NULL);
1243 	prop_object_release(dev->dv_properties);
1244 
1245 	if (dev->dv_activity_handlers)
1246 		panic("config_devdealloc with registered handlers");
1247 
1248 	if (dev->dv_locators)
1249 		free(dev->dv_locators, M_DEVBUF);
1250 
1251 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
1252 		free(dev->dv_private, M_DEVBUF);
1253 
1254 	free(dev, M_DEVBUF);
1255 }
1256 
1257 /*
1258  * Attach a found device.
1259  */
1260 device_t
1261 config_attach_loc(device_t parent, cfdata_t cf,
1262 	const int *locs, void *aux, cfprint_t print)
1263 {
1264 	device_t dev;
1265 	struct cftable *ct;
1266 	const char *drvname;
1267 
1268 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1269 	if (splash_progress_state)
1270 		splash_progress_update(splash_progress_state);
1271 #endif
1272 
1273 	dev = config_devalloc(parent, cf, locs);
1274 	if (!dev)
1275 		panic("config_attach: allocation of device softc failed");
1276 
1277 	/* XXX redundant - see below? */
1278 	if (cf->cf_fstate != FSTATE_STAR) {
1279 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1280 		cf->cf_fstate = FSTATE_FOUND;
1281 	}
1282 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1283 	  else
1284 		cf->cf_unit++;
1285 #endif
1286 
1287 	config_devlink(dev);
1288 
1289 	if (config_do_twiddle)
1290 		twiddle();
1291 	else
1292 		aprint_naive("Found ");
1293 	/*
1294 	 * We want the next two printfs for normal, verbose, and quiet,
1295 	 * but not silent (in which case, we're twiddling, instead).
1296 	 */
1297 	if (parent == ROOT) {
1298 		aprint_naive("%s (root)", device_xname(dev));
1299 		aprint_normal("%s (root)", device_xname(dev));
1300 	} else {
1301 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1302 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1303 		if (print)
1304 			(void) (*print)(aux, NULL);
1305 	}
1306 
1307 	/*
1308 	 * Before attaching, clobber any unfound devices that are
1309 	 * otherwise identical.
1310 	 * XXX code above is redundant?
1311 	 */
1312 	drvname = dev->dv_cfdriver->cd_name;
1313 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1314 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1315 			if (STREQ(cf->cf_name, drvname) &&
1316 			    cf->cf_unit == dev->dv_unit) {
1317 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1318 					cf->cf_fstate = FSTATE_FOUND;
1319 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1320 				/*
1321 				 * Bump the unit number on all starred cfdata
1322 				 * entries for this device.
1323 				 */
1324 				if (cf->cf_fstate == FSTATE_STAR)
1325 					cf->cf_unit++;
1326 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1327 			}
1328 		}
1329 	}
1330 #ifdef __HAVE_DEVICE_REGISTER
1331 	device_register(dev, aux);
1332 #endif
1333 
1334 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1335 	if (splash_progress_state)
1336 		splash_progress_update(splash_progress_state);
1337 #endif
1338 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1339 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1340 	if (splash_progress_state)
1341 		splash_progress_update(splash_progress_state);
1342 #endif
1343 
1344 	if (!device_pmf_is_registered(dev))
1345 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1346 
1347 	config_process_deferred(&deferred_config_queue, dev);
1348 	return (dev);
1349 }
1350 
1351 device_t
1352 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1353 {
1354 
1355 	return (config_attach_loc(parent, cf, NULL, aux, print));
1356 }
1357 
1358 /*
1359  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1360  * way are silently inserted into the device tree, and their children
1361  * attached.
1362  *
1363  * Note that because pseudo-devices are attached silently, any information
1364  * the attach routine wishes to print should be prefixed with the device
1365  * name by the attach routine.
1366  */
1367 device_t
1368 config_attach_pseudo(cfdata_t cf)
1369 {
1370 	device_t dev;
1371 
1372 	dev = config_devalloc(ROOT, cf, NULL);
1373 	if (!dev)
1374 		return (NULL);
1375 
1376 	/* XXX mark busy in cfdata */
1377 
1378 	config_devlink(dev);
1379 
1380 #if 0	/* XXXJRT not yet */
1381 #ifdef __HAVE_DEVICE_REGISTER
1382 	device_register(dev, NULL);	/* like a root node */
1383 #endif
1384 #endif
1385 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1386 	config_process_deferred(&deferred_config_queue, dev);
1387 	return (dev);
1388 }
1389 
1390 /*
1391  * Detach a device.  Optionally forced (e.g. because of hardware
1392  * removal) and quiet.  Returns zero if successful, non-zero
1393  * (an error code) otherwise.
1394  *
1395  * Note that this code wants to be run from a process context, so
1396  * that the detach can sleep to allow processes which have a device
1397  * open to run and unwind their stacks.
1398  */
1399 int
1400 config_detach(device_t dev, int flags)
1401 {
1402 	struct cftable *ct;
1403 	cfdata_t cf;
1404 	const struct cfattach *ca;
1405 	struct cfdriver *cd;
1406 #ifdef DIAGNOSTIC
1407 	device_t d;
1408 #endif
1409 	int rv = 0;
1410 
1411 #ifdef DIAGNOSTIC
1412 	if (dev->dv_cfdata != NULL &&
1413 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
1414 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
1415 		panic("config_detach: bad device fstate");
1416 #endif
1417 	cd = dev->dv_cfdriver;
1418 	KASSERT(cd != NULL);
1419 
1420 	ca = dev->dv_cfattach;
1421 	KASSERT(ca != NULL);
1422 
1423 	KASSERT(curlwp != NULL);
1424 	mutex_enter(&alldevs_mtx);
1425 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1426 		;
1427 	else while (alldevs_nread != 0 ||
1428 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1429 		cv_wait(&alldevs_cv, &alldevs_mtx);
1430 	if (alldevs_nwrite++ == 0)
1431 		alldevs_writer = curlwp;
1432 	mutex_exit(&alldevs_mtx);
1433 
1434 	/*
1435 	 * Ensure the device is deactivated.  If the device doesn't
1436 	 * have an activation entry point, we allow DVF_ACTIVE to
1437 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
1438 	 * device is busy, and the detach fails.
1439 	 */
1440 	if (ca->ca_activate != NULL)
1441 		rv = config_deactivate(dev);
1442 
1443 	/*
1444 	 * Try to detach the device.  If that's not possible, then
1445 	 * we either panic() (for the forced but failed case), or
1446 	 * return an error.
1447 	 */
1448 	if (rv == 0) {
1449 		if (ca->ca_detach != NULL)
1450 			rv = (*ca->ca_detach)(dev, flags);
1451 		else
1452 			rv = EOPNOTSUPP;
1453 	}
1454 	if (rv != 0) {
1455 		if ((flags & DETACH_FORCE) == 0)
1456 			goto out;
1457 		else
1458 			panic("config_detach: forced detach of %s failed (%d)",
1459 			    device_xname(dev), rv);
1460 	}
1461 
1462 	/*
1463 	 * The device has now been successfully detached.
1464 	 */
1465 
1466 #ifdef DIAGNOSTIC
1467 	/*
1468 	 * Sanity: If you're successfully detached, you should have no
1469 	 * children.  (Note that because children must be attached
1470 	 * after parents, we only need to search the latter part of
1471 	 * the list.)
1472 	 */
1473 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1474 	    d = TAILQ_NEXT(d, dv_list)) {
1475 		if (d->dv_parent == dev) {
1476 			printf("config_detach: detached device %s"
1477 			    " has children %s\n", device_xname(dev), device_xname(d));
1478 			panic("config_detach");
1479 		}
1480 	}
1481 #endif
1482 
1483 	/* notify the parent that the child is gone */
1484 	if (dev->dv_parent) {
1485 		device_t p = dev->dv_parent;
1486 		if (p->dv_cfattach->ca_childdetached)
1487 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1488 	}
1489 
1490 	/*
1491 	 * Mark cfdata to show that the unit can be reused, if possible.
1492 	 */
1493 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1494 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1495 			if (STREQ(cf->cf_name, cd->cd_name)) {
1496 				if (cf->cf_fstate == FSTATE_FOUND &&
1497 				    cf->cf_unit == dev->dv_unit)
1498 					cf->cf_fstate = FSTATE_NOTFOUND;
1499 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1500 				/*
1501 				 * Note that we can only re-use a starred
1502 				 * unit number if the unit being detached
1503 				 * had the last assigned unit number.
1504 				 */
1505 				if (cf->cf_fstate == FSTATE_STAR &&
1506 				    cf->cf_unit == dev->dv_unit + 1)
1507 					cf->cf_unit--;
1508 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1509 			}
1510 		}
1511 	}
1512 
1513 	config_devunlink(dev);
1514 
1515 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1516 		aprint_normal_dev(dev, "detached\n");
1517 
1518 	config_devdealloc(dev);
1519 
1520 out:
1521 	mutex_enter(&alldevs_mtx);
1522 	if (--alldevs_nwrite == 0)
1523 		alldevs_writer = NULL;
1524 	cv_signal(&alldevs_cv);
1525 	mutex_exit(&alldevs_mtx);
1526 	return rv;
1527 }
1528 
1529 int
1530 config_detach_children(device_t parent, int flags)
1531 {
1532 	device_t dv;
1533 	deviter_t di;
1534 	int error = 0;
1535 
1536 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1537 	     dv = deviter_next(&di)) {
1538 		if (device_parent(dv) != parent)
1539 			continue;
1540 		if ((error = config_detach(dv, flags)) != 0)
1541 			break;
1542 	}
1543 	deviter_release(&di);
1544 	return error;
1545 }
1546 
1547 int
1548 config_activate(device_t dev)
1549 {
1550 	const struct cfattach *ca = dev->dv_cfattach;
1551 	int rv = 0, oflags = dev->dv_flags;
1552 
1553 	if (ca->ca_activate == NULL)
1554 		return (EOPNOTSUPP);
1555 
1556 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1557 		dev->dv_flags |= DVF_ACTIVE;
1558 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1559 		if (rv)
1560 			dev->dv_flags = oflags;
1561 	}
1562 	return (rv);
1563 }
1564 
1565 int
1566 config_deactivate(device_t dev)
1567 {
1568 	const struct cfattach *ca = dev->dv_cfattach;
1569 	int rv = 0, oflags = dev->dv_flags;
1570 
1571 	if (ca->ca_activate == NULL)
1572 		return (EOPNOTSUPP);
1573 
1574 	if (dev->dv_flags & DVF_ACTIVE) {
1575 		dev->dv_flags &= ~DVF_ACTIVE;
1576 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1577 		if (rv)
1578 			dev->dv_flags = oflags;
1579 	}
1580 	return (rv);
1581 }
1582 
1583 /*
1584  * Defer the configuration of the specified device until all
1585  * of its parent's devices have been attached.
1586  */
1587 void
1588 config_defer(device_t dev, void (*func)(device_t))
1589 {
1590 	struct deferred_config *dc;
1591 
1592 	if (dev->dv_parent == NULL)
1593 		panic("config_defer: can't defer config of a root device");
1594 
1595 #ifdef DIAGNOSTIC
1596 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1597 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1598 		if (dc->dc_dev == dev)
1599 			panic("config_defer: deferred twice");
1600 	}
1601 #endif
1602 
1603 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1604 	if (dc == NULL)
1605 		panic("config_defer: unable to allocate callback");
1606 
1607 	dc->dc_dev = dev;
1608 	dc->dc_func = func;
1609 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1610 	config_pending_incr();
1611 }
1612 
1613 /*
1614  * Defer some autoconfiguration for a device until after interrupts
1615  * are enabled.
1616  */
1617 void
1618 config_interrupts(device_t dev, void (*func)(device_t))
1619 {
1620 	struct deferred_config *dc;
1621 
1622 	/*
1623 	 * If interrupts are enabled, callback now.
1624 	 */
1625 	if (cold == 0) {
1626 		(*func)(dev);
1627 		return;
1628 	}
1629 
1630 #ifdef DIAGNOSTIC
1631 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1632 	     dc = TAILQ_NEXT(dc, dc_queue)) {
1633 		if (dc->dc_dev == dev)
1634 			panic("config_interrupts: deferred twice");
1635 	}
1636 #endif
1637 
1638 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1639 	if (dc == NULL)
1640 		panic("config_interrupts: unable to allocate callback");
1641 
1642 	dc->dc_dev = dev;
1643 	dc->dc_func = func;
1644 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1645 	config_pending_incr();
1646 }
1647 
1648 /*
1649  * Process a deferred configuration queue.
1650  */
1651 static void
1652 config_process_deferred(struct deferred_config_head *queue,
1653     device_t parent)
1654 {
1655 	struct deferred_config *dc, *ndc;
1656 
1657 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1658 		ndc = TAILQ_NEXT(dc, dc_queue);
1659 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1660 			TAILQ_REMOVE(queue, dc, dc_queue);
1661 			(*dc->dc_func)(dc->dc_dev);
1662 			free(dc, M_DEVBUF);
1663 			config_pending_decr();
1664 		}
1665 	}
1666 }
1667 
1668 /*
1669  * Manipulate the config_pending semaphore.
1670  */
1671 void
1672 config_pending_incr(void)
1673 {
1674 
1675 	config_pending++;
1676 }
1677 
1678 void
1679 config_pending_decr(void)
1680 {
1681 
1682 #ifdef DIAGNOSTIC
1683 	if (config_pending == 0)
1684 		panic("config_pending_decr: config_pending == 0");
1685 #endif
1686 	config_pending--;
1687 	if (config_pending == 0)
1688 		wakeup(&config_pending);
1689 }
1690 
1691 /*
1692  * Register a "finalization" routine.  Finalization routines are
1693  * called iteratively once all real devices have been found during
1694  * autoconfiguration, for as long as any one finalizer has done
1695  * any work.
1696  */
1697 int
1698 config_finalize_register(device_t dev, int (*fn)(device_t))
1699 {
1700 	struct finalize_hook *f;
1701 
1702 	/*
1703 	 * If finalization has already been done, invoke the
1704 	 * callback function now.
1705 	 */
1706 	if (config_finalize_done) {
1707 		while ((*fn)(dev) != 0)
1708 			/* loop */ ;
1709 	}
1710 
1711 	/* Ensure this isn't already on the list. */
1712 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1713 		if (f->f_func == fn && f->f_dev == dev)
1714 			return (EEXIST);
1715 	}
1716 
1717 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
1718 	f->f_func = fn;
1719 	f->f_dev = dev;
1720 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1721 
1722 	return (0);
1723 }
1724 
1725 void
1726 config_finalize(void)
1727 {
1728 	struct finalize_hook *f;
1729 	struct pdevinit *pdev;
1730 	extern struct pdevinit pdevinit[];
1731 	int errcnt, rv;
1732 
1733 	/*
1734 	 * Now that device driver threads have been created, wait for
1735 	 * them to finish any deferred autoconfiguration.
1736 	 */
1737 	while (config_pending)
1738 		(void) tsleep(&config_pending, PWAIT, "cfpend", hz);
1739 
1740 	/* Attach pseudo-devices. */
1741 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1742 		(*pdev->pdev_attach)(pdev->pdev_count);
1743 
1744 	/* Run the hooks until none of them does any work. */
1745 	do {
1746 		rv = 0;
1747 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
1748 			rv |= (*f->f_func)(f->f_dev);
1749 	} while (rv != 0);
1750 
1751 	config_finalize_done = 1;
1752 
1753 	/* Now free all the hooks. */
1754 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1755 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
1756 		free(f, M_TEMP);
1757 	}
1758 
1759 	errcnt = aprint_get_error_count();
1760 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1761 	    (boothowto & AB_VERBOSE) == 0) {
1762 		if (config_do_twiddle) {
1763 			config_do_twiddle = 0;
1764 			printf_nolog("done.\n");
1765 		}
1766 		if (errcnt != 0) {
1767 			printf("WARNING: %d error%s while detecting hardware; "
1768 			    "check system log.\n", errcnt,
1769 			    errcnt == 1 ? "" : "s");
1770 		}
1771 	}
1772 }
1773 
1774 /*
1775  * device_lookup:
1776  *
1777  *	Look up a device instance for a given driver.
1778  */
1779 void *
1780 device_lookup(cfdriver_t cd, int unit)
1781 {
1782 
1783 	if (unit < 0 || unit >= cd->cd_ndevs)
1784 		return (NULL);
1785 
1786 	return (cd->cd_devs[unit]);
1787 }
1788 
1789 /*
1790  * device_lookup:
1791  *
1792  *	Look up a device instance for a given driver.
1793  */
1794 void *
1795 device_lookup_private(cfdriver_t cd, int unit)
1796 {
1797 	device_t dv;
1798 
1799 	if (unit < 0 || unit >= cd->cd_ndevs)
1800 		return NULL;
1801 
1802 	if ((dv = cd->cd_devs[unit]) == NULL)
1803 		return NULL;
1804 
1805 	return dv->dv_private;
1806 }
1807 
1808 /*
1809  * Accessor functions for the device_t type.
1810  */
1811 devclass_t
1812 device_class(device_t dev)
1813 {
1814 
1815 	return (dev->dv_class);
1816 }
1817 
1818 cfdata_t
1819 device_cfdata(device_t dev)
1820 {
1821 
1822 	return (dev->dv_cfdata);
1823 }
1824 
1825 cfdriver_t
1826 device_cfdriver(device_t dev)
1827 {
1828 
1829 	return (dev->dv_cfdriver);
1830 }
1831 
1832 cfattach_t
1833 device_cfattach(device_t dev)
1834 {
1835 
1836 	return (dev->dv_cfattach);
1837 }
1838 
1839 int
1840 device_unit(device_t dev)
1841 {
1842 
1843 	return (dev->dv_unit);
1844 }
1845 
1846 const char *
1847 device_xname(device_t dev)
1848 {
1849 
1850 	return (dev->dv_xname);
1851 }
1852 
1853 device_t
1854 device_parent(device_t dev)
1855 {
1856 
1857 	return (dev->dv_parent);
1858 }
1859 
1860 bool
1861 device_is_active(device_t dev)
1862 {
1863 	int active_flags;
1864 
1865 	active_flags = DVF_ACTIVE;
1866 	active_flags |= DVF_CLASS_SUSPENDED;
1867 	active_flags |= DVF_DRIVER_SUSPENDED;
1868 	active_flags |= DVF_BUS_SUSPENDED;
1869 
1870 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1871 }
1872 
1873 bool
1874 device_is_enabled(device_t dev)
1875 {
1876 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1877 }
1878 
1879 bool
1880 device_has_power(device_t dev)
1881 {
1882 	int active_flags;
1883 
1884 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1885 
1886 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1887 }
1888 
1889 int
1890 device_locator(device_t dev, u_int locnum)
1891 {
1892 
1893 	KASSERT(dev->dv_locators != NULL);
1894 	return (dev->dv_locators[locnum]);
1895 }
1896 
1897 void *
1898 device_private(device_t dev)
1899 {
1900 
1901 	/*
1902 	 * The reason why device_private(NULL) is allowed is to simplify the
1903 	 * work of a lot of userspace request handlers (i.e., c/bdev
1904 	 * handlers) which grab cfdriver_t->cd_units[n].
1905 	 * It avoids having them test for it to be NULL and only then calling
1906 	 * device_private.
1907 	 */
1908 	return dev == NULL ? NULL : dev->dv_private;
1909 }
1910 
1911 prop_dictionary_t
1912 device_properties(device_t dev)
1913 {
1914 
1915 	return (dev->dv_properties);
1916 }
1917 
1918 /*
1919  * device_is_a:
1920  *
1921  *	Returns true if the device is an instance of the specified
1922  *	driver.
1923  */
1924 bool
1925 device_is_a(device_t dev, const char *dname)
1926 {
1927 
1928 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1929 }
1930 
1931 /*
1932  * device_find_by_xname:
1933  *
1934  *	Returns the device of the given name or NULL if it doesn't exist.
1935  */
1936 device_t
1937 device_find_by_xname(const char *name)
1938 {
1939 	device_t dv;
1940 	deviter_t di;
1941 
1942 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
1943 		if (strcmp(device_xname(dv), name) == 0)
1944 			break;
1945 	}
1946 	deviter_release(&di);
1947 
1948 	return dv;
1949 }
1950 
1951 /*
1952  * device_find_by_driver_unit:
1953  *
1954  *	Returns the device of the given driver name and unit or
1955  *	NULL if it doesn't exist.
1956  */
1957 device_t
1958 device_find_by_driver_unit(const char *name, int unit)
1959 {
1960 	struct cfdriver *cd;
1961 
1962 	if ((cd = config_cfdriver_lookup(name)) == NULL)
1963 		return NULL;
1964 	return device_lookup(cd, unit);
1965 }
1966 
1967 /*
1968  * Power management related functions.
1969  */
1970 
1971 bool
1972 device_pmf_is_registered(device_t dev)
1973 {
1974 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
1975 }
1976 
1977 bool
1978 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
1979 {
1980 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
1981 		return true;
1982 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
1983 		return false;
1984 	if (*dev->dv_driver_suspend != NULL &&
1985 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
1986 		return false;
1987 
1988 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
1989 	return true;
1990 }
1991 
1992 bool
1993 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
1994 {
1995 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
1996 		return true;
1997 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
1998 		return false;
1999 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2000 		return false;
2001 	if (*dev->dv_driver_resume != NULL &&
2002 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2003 		return false;
2004 
2005 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2006 	return true;
2007 }
2008 
2009 bool
2010 device_pmf_driver_shutdown(device_t dev, int how)
2011 {
2012 
2013 	if (*dev->dv_driver_shutdown != NULL &&
2014 	    !(*dev->dv_driver_shutdown)(dev, how))
2015 		return false;
2016 	return true;
2017 }
2018 
2019 bool
2020 device_pmf_driver_register(device_t dev,
2021     bool (*suspend)(device_t PMF_FN_PROTO),
2022     bool (*resume)(device_t PMF_FN_PROTO),
2023     bool (*shutdown)(device_t, int))
2024 {
2025 	pmf_private_t *pp;
2026 
2027 	if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
2028 		return false;
2029 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2030 	cv_init(&pp->pp_cv, "pmfsusp");
2031 	dev->dv_pmf_private = pp;
2032 
2033 	dev->dv_driver_suspend = suspend;
2034 	dev->dv_driver_resume = resume;
2035 	dev->dv_driver_shutdown = shutdown;
2036 	dev->dv_flags |= DVF_POWER_HANDLERS;
2037 	return true;
2038 }
2039 
2040 static const char *
2041 curlwp_name(void)
2042 {
2043 	if (curlwp->l_name != NULL)
2044 		return curlwp->l_name;
2045 	else
2046 		return curlwp->l_proc->p_comm;
2047 }
2048 
2049 void
2050 device_pmf_driver_deregister(device_t dev)
2051 {
2052 	pmf_private_t *pp = dev->dv_pmf_private;
2053 
2054 	dev->dv_driver_suspend = NULL;
2055 	dev->dv_driver_resume = NULL;
2056 
2057 	dev->dv_pmf_private = NULL;
2058 
2059 	mutex_enter(&pp->pp_mtx);
2060 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2061 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2062 		/* Wake a thread that waits for the lock.  That
2063 		 * thread will fail to acquire the lock, and then
2064 		 * it will wake the next thread that waits for the
2065 		 * lock, or else it will wake us.
2066 		 */
2067 		cv_signal(&pp->pp_cv);
2068 		pmflock_debug(dev, __func__, __LINE__);
2069 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2070 		pmflock_debug(dev, __func__, __LINE__);
2071 	}
2072 	mutex_exit(&pp->pp_mtx);
2073 
2074 	cv_destroy(&pp->pp_cv);
2075 	mutex_destroy(&pp->pp_mtx);
2076 	free(pp, M_PMFPRIV);
2077 }
2078 
2079 bool
2080 device_pmf_driver_child_register(device_t dev)
2081 {
2082 	device_t parent = device_parent(dev);
2083 
2084 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2085 		return true;
2086 	return (*parent->dv_driver_child_register)(dev);
2087 }
2088 
2089 void
2090 device_pmf_driver_set_child_register(device_t dev,
2091     bool (*child_register)(device_t))
2092 {
2093 	dev->dv_driver_child_register = child_register;
2094 }
2095 
2096 void
2097 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2098 {
2099 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2100 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2101 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2102 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2103 }
2104 
2105 bool
2106 device_is_self_suspended(device_t dev)
2107 {
2108 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2109 }
2110 
2111 void
2112 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2113 {
2114 	bool self = (flags & PMF_F_SELF) != 0;
2115 
2116 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2117 
2118 	if (!self)
2119 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2120 	else if (device_is_active(dev))
2121 		dev->dv_flags |= DVF_SELF_SUSPENDED;
2122 
2123 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2124 }
2125 
2126 static void
2127 pmflock_debug(device_t dev, const char *func, int line)
2128 {
2129 	pmf_private_t *pp = device_pmf_private(dev);
2130 
2131 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2132 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2133 	    dev->dv_flags);
2134 }
2135 
2136 static void
2137 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2138 {
2139 	pmf_private_t *pp = device_pmf_private(dev);
2140 
2141 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2142 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2143 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2144 }
2145 
2146 static bool
2147 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2148 {
2149 	pmf_private_t *pp = device_pmf_private(dev);
2150 
2151 	while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
2152 	       device_pmf_is_registered(dev)) {
2153 		pp->pp_nwait++;
2154 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2155 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
2156 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2157 		pp->pp_nwait--;
2158 	}
2159 	if (!device_pmf_is_registered(dev)) {
2160 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2161 		/* We could not acquire the lock, but some other thread may
2162 		 * wait for it, also.  Wake that thread.
2163 		 */
2164 		cv_signal(&pp->pp_cv);
2165 		return false;
2166 	}
2167 	pp->pp_nlock++;
2168 	pp->pp_holder = curlwp;
2169 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2170 	return true;
2171 }
2172 
2173 bool
2174 device_pmf_lock(device_t dev PMF_FN_ARGS)
2175 {
2176 	bool rc;
2177 	pmf_private_t *pp = device_pmf_private(dev);
2178 
2179 	mutex_enter(&pp->pp_mtx);
2180 	rc = device_pmf_lock1(dev PMF_FN_CALL);
2181 	mutex_exit(&pp->pp_mtx);
2182 
2183 	return rc;
2184 }
2185 
2186 void
2187 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2188 {
2189 	pmf_private_t *pp = device_pmf_private(dev);
2190 
2191 	KASSERT(pp->pp_nlock > 0);
2192 	mutex_enter(&pp->pp_mtx);
2193 	if (--pp->pp_nlock == 0)
2194 		pp->pp_holder = NULL;
2195 	cv_signal(&pp->pp_cv);
2196 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2197 	mutex_exit(&pp->pp_mtx);
2198 }
2199 
2200 void *
2201 device_pmf_private(device_t dev)
2202 {
2203 	return dev->dv_pmf_private;
2204 }
2205 
2206 void *
2207 device_pmf_bus_private(device_t dev)
2208 {
2209 	return dev->dv_bus_private;
2210 }
2211 
2212 bool
2213 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2214 {
2215 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2216 		return true;
2217 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2218 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2219 		return false;
2220 	if (*dev->dv_bus_suspend != NULL &&
2221 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2222 		return false;
2223 
2224 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2225 	return true;
2226 }
2227 
2228 bool
2229 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2230 {
2231 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2232 		return true;
2233 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2234 		return false;
2235 	if (*dev->dv_bus_resume != NULL &&
2236 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2237 		return false;
2238 
2239 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2240 	return true;
2241 }
2242 
2243 bool
2244 device_pmf_bus_shutdown(device_t dev, int how)
2245 {
2246 
2247 	if (*dev->dv_bus_shutdown != NULL &&
2248 	    !(*dev->dv_bus_shutdown)(dev, how))
2249 		return false;
2250 	return true;
2251 }
2252 
2253 void
2254 device_pmf_bus_register(device_t dev, void *priv,
2255     bool (*suspend)(device_t PMF_FN_PROTO),
2256     bool (*resume)(device_t PMF_FN_PROTO),
2257     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2258 {
2259 	dev->dv_bus_private = priv;
2260 	dev->dv_bus_resume = resume;
2261 	dev->dv_bus_suspend = suspend;
2262 	dev->dv_bus_shutdown = shutdown;
2263 	dev->dv_bus_deregister = deregister;
2264 }
2265 
2266 void
2267 device_pmf_bus_deregister(device_t dev)
2268 {
2269 	if (dev->dv_bus_deregister == NULL)
2270 		return;
2271 	(*dev->dv_bus_deregister)(dev);
2272 	dev->dv_bus_private = NULL;
2273 	dev->dv_bus_suspend = NULL;
2274 	dev->dv_bus_resume = NULL;
2275 	dev->dv_bus_deregister = NULL;
2276 }
2277 
2278 void *
2279 device_pmf_class_private(device_t dev)
2280 {
2281 	return dev->dv_class_private;
2282 }
2283 
2284 bool
2285 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2286 {
2287 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2288 		return true;
2289 	if (*dev->dv_class_suspend != NULL &&
2290 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2291 		return false;
2292 
2293 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2294 	return true;
2295 }
2296 
2297 bool
2298 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2299 {
2300 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2301 		return true;
2302 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2303 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2304 		return false;
2305 	if (*dev->dv_class_resume != NULL &&
2306 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2307 		return false;
2308 
2309 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2310 	return true;
2311 }
2312 
2313 void
2314 device_pmf_class_register(device_t dev, void *priv,
2315     bool (*suspend)(device_t PMF_FN_PROTO),
2316     bool (*resume)(device_t PMF_FN_PROTO),
2317     void (*deregister)(device_t))
2318 {
2319 	dev->dv_class_private = priv;
2320 	dev->dv_class_suspend = suspend;
2321 	dev->dv_class_resume = resume;
2322 	dev->dv_class_deregister = deregister;
2323 }
2324 
2325 void
2326 device_pmf_class_deregister(device_t dev)
2327 {
2328 	if (dev->dv_class_deregister == NULL)
2329 		return;
2330 	(*dev->dv_class_deregister)(dev);
2331 	dev->dv_class_private = NULL;
2332 	dev->dv_class_suspend = NULL;
2333 	dev->dv_class_resume = NULL;
2334 	dev->dv_class_deregister = NULL;
2335 }
2336 
2337 bool
2338 device_active(device_t dev, devactive_t type)
2339 {
2340 	size_t i;
2341 
2342 	if (dev->dv_activity_count == 0)
2343 		return false;
2344 
2345 	for (i = 0; i < dev->dv_activity_count; ++i)
2346 		(*dev->dv_activity_handlers[i])(dev, type);
2347 
2348 	return true;
2349 }
2350 
2351 bool
2352 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2353 {
2354 	void (**new_handlers)(device_t, devactive_t);
2355 	void (**old_handlers)(device_t, devactive_t);
2356 	size_t i, new_size;
2357 	int s;
2358 
2359 	old_handlers = dev->dv_activity_handlers;
2360 
2361 	for (i = 0; i < dev->dv_activity_count; ++i) {
2362 		if (old_handlers[i] == handler)
2363 			panic("Double registering of idle handlers");
2364 	}
2365 
2366 	new_size = dev->dv_activity_count + 1;
2367 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
2368 
2369 	memcpy(new_handlers, old_handlers,
2370 	    sizeof(void *) * dev->dv_activity_count);
2371 	new_handlers[new_size - 1] = handler;
2372 
2373 	s = splhigh();
2374 	dev->dv_activity_count = new_size;
2375 	dev->dv_activity_handlers = new_handlers;
2376 	splx(s);
2377 
2378 	if (old_handlers != NULL)
2379 		free(old_handlers, M_DEVBUF);
2380 
2381 	return true;
2382 }
2383 
2384 void
2385 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2386 {
2387 	void (**new_handlers)(device_t, devactive_t);
2388 	void (**old_handlers)(device_t, devactive_t);
2389 	size_t i, new_size;
2390 	int s;
2391 
2392 	old_handlers = dev->dv_activity_handlers;
2393 
2394 	for (i = 0; i < dev->dv_activity_count; ++i) {
2395 		if (old_handlers[i] == handler)
2396 			break;
2397 	}
2398 
2399 	if (i == dev->dv_activity_count)
2400 		return; /* XXX panic? */
2401 
2402 	new_size = dev->dv_activity_count - 1;
2403 
2404 	if (new_size == 0) {
2405 		new_handlers = NULL;
2406 	} else {
2407 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
2408 		    M_WAITOK);
2409 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
2410 		memcpy(new_handlers + i, old_handlers + i + 1,
2411 		    sizeof(void *) * (new_size - i));
2412 	}
2413 
2414 	s = splhigh();
2415 	dev->dv_activity_count = new_size;
2416 	dev->dv_activity_handlers = new_handlers;
2417 	splx(s);
2418 
2419 	free(old_handlers, M_DEVBUF);
2420 }
2421 
2422 /*
2423  * Device Iteration
2424  *
2425  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2426  *     each device_t's in the device tree.
2427  *
2428  * deviter_init(di, flags): initialize the device iterator `di'
2429  *     to "walk" the device tree.  deviter_next(di) will return
2430  *     the first device_t in the device tree, or NULL if there are
2431  *     no devices.
2432  *
2433  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2434  *     caller intends to modify the device tree by calling
2435  *     config_detach(9) on devices in the order that the iterator
2436  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2437  *     nearest the "root" of the device tree to be returned, first;
2438  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2439  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2440  *     indicating both that deviter_init() should not respect any
2441  *     locks on the device tree, and that deviter_next(di) may run
2442  *     in more than one LWP before the walk has finished.
2443  *
2444  *     Only one DEVITER_F_RW iterator may be in the device tree at
2445  *     once.
2446  *
2447  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2448  *
2449  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2450  *     DEVITER_F_LEAVES_FIRST are used in combination.
2451  *
2452  * deviter_first(di, flags): initialize the device iterator `di'
2453  *     and return the first device_t in the device tree, or NULL
2454  *     if there are no devices.  The statement
2455  *
2456  *         dv = deviter_first(di);
2457  *
2458  *     is shorthand for
2459  *
2460  *         deviter_init(di);
2461  *         dv = deviter_next(di);
2462  *
2463  * deviter_next(di): return the next device_t in the device tree,
2464  *     or NULL if there are no more devices.  deviter_next(di)
2465  *     is undefined if `di' was not initialized with deviter_init() or
2466  *     deviter_first().
2467  *
2468  * deviter_release(di): stops iteration (subsequent calls to
2469  *     deviter_next() will return NULL), releases any locks and
2470  *     resources held by the device iterator.
2471  *
2472  * Device iteration does not return device_t's in any particular
2473  * order.  An iterator will never return the same device_t twice.
2474  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2475  * is called repeatedly on the same `di', it will eventually return
2476  * NULL.  It is ok to attach/detach devices during device iteration.
2477  */
2478 void
2479 deviter_init(deviter_t *di, deviter_flags_t flags)
2480 {
2481 	device_t dv;
2482 	bool rw;
2483 
2484 	mutex_enter(&alldevs_mtx);
2485 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2486 		flags |= DEVITER_F_RW;
2487 		alldevs_nwrite++;
2488 		alldevs_writer = NULL;
2489 		alldevs_nread = 0;
2490 	} else {
2491 		rw = (flags & DEVITER_F_RW) != 0;
2492 
2493 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2494 			;
2495 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2496 		       (rw && alldevs_nread != 0))
2497 			cv_wait(&alldevs_cv, &alldevs_mtx);
2498 
2499 		if (rw) {
2500 			if (alldevs_nwrite++ == 0)
2501 				alldevs_writer = curlwp;
2502 		} else
2503 			alldevs_nread++;
2504 	}
2505 	mutex_exit(&alldevs_mtx);
2506 
2507 	memset(di, 0, sizeof(*di));
2508 
2509 	di->di_flags = flags;
2510 
2511 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2512 	case DEVITER_F_LEAVES_FIRST:
2513 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2514 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2515 		break;
2516 	case DEVITER_F_ROOT_FIRST:
2517 		TAILQ_FOREACH(dv, &alldevs, dv_list)
2518 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2519 		break;
2520 	default:
2521 		break;
2522 	}
2523 
2524 	deviter_reinit(di);
2525 }
2526 
2527 static void
2528 deviter_reinit(deviter_t *di)
2529 {
2530 	if ((di->di_flags & DEVITER_F_RW) != 0)
2531 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2532 	else
2533 		di->di_prev = TAILQ_FIRST(&alldevs);
2534 }
2535 
2536 device_t
2537 deviter_first(deviter_t *di, deviter_flags_t flags)
2538 {
2539 	deviter_init(di, flags);
2540 	return deviter_next(di);
2541 }
2542 
2543 static device_t
2544 deviter_next1(deviter_t *di)
2545 {
2546 	device_t dv;
2547 
2548 	dv = di->di_prev;
2549 
2550 	if (dv == NULL)
2551 		;
2552 	else if ((di->di_flags & DEVITER_F_RW) != 0)
2553 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2554 	else
2555 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2556 
2557 	return dv;
2558 }
2559 
2560 device_t
2561 deviter_next(deviter_t *di)
2562 {
2563 	device_t dv = NULL;
2564 
2565 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2566 	case 0:
2567 		return deviter_next1(di);
2568 	case DEVITER_F_LEAVES_FIRST:
2569 		while (di->di_curdepth >= 0) {
2570 			if ((dv = deviter_next1(di)) == NULL) {
2571 				di->di_curdepth--;
2572 				deviter_reinit(di);
2573 			} else if (dv->dv_depth == di->di_curdepth)
2574 				break;
2575 		}
2576 		return dv;
2577 	case DEVITER_F_ROOT_FIRST:
2578 		while (di->di_curdepth <= di->di_maxdepth) {
2579 			if ((dv = deviter_next1(di)) == NULL) {
2580 				di->di_curdepth++;
2581 				deviter_reinit(di);
2582 			} else if (dv->dv_depth == di->di_curdepth)
2583 				break;
2584 		}
2585 		return dv;
2586 	default:
2587 		return NULL;
2588 	}
2589 }
2590 
2591 void
2592 deviter_release(deviter_t *di)
2593 {
2594 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2595 
2596 	mutex_enter(&alldevs_mtx);
2597 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2598 		--alldevs_nwrite;
2599 	else {
2600 
2601 		if (rw) {
2602 			if (--alldevs_nwrite == 0)
2603 				alldevs_writer = NULL;
2604 		} else
2605 			--alldevs_nread;
2606 
2607 		cv_signal(&alldevs_cv);
2608 	}
2609 	mutex_exit(&alldevs_mtx);
2610 }
2611