1 /* $NetBSD: subr_autoconf.c,v 1.181 2009/09/06 16:18:56 pooka Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.181 2009/09/06 16:18:56 pooka Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/disklabel.h> 90 #include <sys/conf.h> 91 #include <sys/kauth.h> 92 #include <sys/malloc.h> 93 #include <sys/kmem.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/errno.h> 97 #include <sys/proc.h> 98 #include <sys/reboot.h> 99 #include <sys/kthread.h> 100 #include <sys/buf.h> 101 #include <sys/dirent.h> 102 #include <sys/vnode.h> 103 #include <sys/mount.h> 104 #include <sys/namei.h> 105 #include <sys/unistd.h> 106 #include <sys/fcntl.h> 107 #include <sys/lockf.h> 108 #include <sys/callout.h> 109 #include <sys/devmon.h> 110 #include <sys/cpu.h> 111 #include <sys/sysctl.h> 112 113 #include <sys/disk.h> 114 115 #include <machine/limits.h> 116 117 #if defined(__i386__) && defined(_KERNEL_OPT) 118 #include "opt_splash.h" 119 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 120 #include <dev/splash/splash.h> 121 extern struct splash_progress *splash_progress_state; 122 #endif 123 #endif 124 125 /* 126 * Autoconfiguration subroutines. 127 */ 128 129 /* 130 * ioconf.c exports exactly two names: cfdata and cfroots. All system 131 * devices and drivers are found via these tables. 132 */ 133 extern struct cfdata cfdata[]; 134 extern const short cfroots[]; 135 136 /* 137 * List of all cfdriver structures. We use this to detect duplicates 138 * when other cfdrivers are loaded. 139 */ 140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 141 extern struct cfdriver * const cfdriver_list_initial[]; 142 143 /* 144 * Initial list of cfattach's. 145 */ 146 extern const struct cfattachinit cfattachinit[]; 147 148 /* 149 * List of cfdata tables. We always have one such list -- the one 150 * built statically when the kernel was configured. 151 */ 152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 153 static struct cftable initcftable; 154 155 #define ROOT ((device_t)NULL) 156 157 struct matchinfo { 158 cfsubmatch_t fn; 159 struct device *parent; 160 const int *locs; 161 void *aux; 162 struct cfdata *match; 163 int pri; 164 }; 165 166 static char *number(char *, int); 167 static void mapply(struct matchinfo *, cfdata_t); 168 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 169 static void config_devdealloc(device_t); 170 static void config_makeroom(int, struct cfdriver *); 171 static void config_devlink(device_t); 172 static void config_devunlink(device_t); 173 174 static void pmflock_debug(device_t, const char *, int); 175 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO); 176 177 static device_t deviter_next1(deviter_t *); 178 static void deviter_reinit(deviter_t *); 179 180 struct deferred_config { 181 TAILQ_ENTRY(deferred_config) dc_queue; 182 device_t dc_dev; 183 void (*dc_func)(device_t); 184 }; 185 186 TAILQ_HEAD(deferred_config_head, deferred_config); 187 188 struct deferred_config_head deferred_config_queue = 189 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 190 struct deferred_config_head interrupt_config_queue = 191 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 192 int interrupt_config_threads = 8; 193 194 static void config_process_deferred(struct deferred_config_head *, device_t); 195 196 /* Hooks to finalize configuration once all real devices have been found. */ 197 struct finalize_hook { 198 TAILQ_ENTRY(finalize_hook) f_list; 199 int (*f_func)(device_t); 200 device_t f_dev; 201 }; 202 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 203 TAILQ_HEAD_INITIALIZER(config_finalize_list); 204 static int config_finalize_done; 205 206 /* list of all devices */ 207 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 208 kcondvar_t alldevs_cv; 209 kmutex_t alldevs_mtx; 210 static int alldevs_nread = 0; 211 static int alldevs_nwrite = 0; 212 static lwp_t *alldevs_writer = NULL; 213 214 static int config_pending; /* semaphore for mountroot */ 215 static kmutex_t config_misc_lock; 216 static kcondvar_t config_misc_cv; 217 218 static int detachall = 0; 219 220 #define STREQ(s1, s2) \ 221 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 222 223 static int config_initialized; /* config_init() has been called. */ 224 225 static int config_do_twiddle; 226 static callout_t config_twiddle_ch; 227 228 /* 229 * Initialize the autoconfiguration data structures. Normally this 230 * is done by configure(), but some platforms need to do this very 231 * early (to e.g. initialize the console). 232 */ 233 void 234 config_init(void) 235 { 236 const struct cfattachinit *cfai; 237 int i, j; 238 239 if (config_initialized) 240 return; 241 242 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE); 243 cv_init(&alldevs_cv, "alldevs"); 244 245 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 246 cv_init(&config_misc_cv, "cfgmisc"); 247 248 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 249 250 /* allcfdrivers is statically initialized. */ 251 for (i = 0; cfdriver_list_initial[i] != NULL; i++) { 252 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) 253 panic("configure: duplicate `%s' drivers", 254 cfdriver_list_initial[i]->cd_name); 255 } 256 257 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { 258 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 259 if (config_cfattach_attach(cfai->cfai_name, 260 cfai->cfai_list[j]) != 0) 261 panic("configure: duplicate `%s' attachment " 262 "of `%s' driver", 263 cfai->cfai_list[j]->ca_name, 264 cfai->cfai_name); 265 } 266 } 267 268 initcftable.ct_cfdata = cfdata; 269 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 270 271 config_initialized = 1; 272 } 273 274 void 275 config_deferred(device_t dev) 276 { 277 config_process_deferred(&deferred_config_queue, dev); 278 config_process_deferred(&interrupt_config_queue, dev); 279 } 280 281 static void 282 config_interrupts_thread(void *cookie) 283 { 284 struct deferred_config *dc; 285 286 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 287 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 288 (*dc->dc_func)(dc->dc_dev); 289 kmem_free(dc, sizeof(*dc)); 290 config_pending_decr(); 291 } 292 kthread_exit(0); 293 } 294 295 void 296 config_create_interruptthreads() 297 { 298 int i; 299 300 for (i = 0; i < interrupt_config_threads; i++) { 301 (void)kthread_create(PRI_NONE, 0, NULL, 302 config_interrupts_thread, NULL, NULL, "config"); 303 } 304 } 305 306 /* 307 * Announce device attach/detach to userland listeners. 308 */ 309 static void 310 devmon_report_device(device_t dev, bool isattach) 311 { 312 #if NDRVCTL > 0 313 prop_dictionary_t ev; 314 const char *parent; 315 const char *what; 316 device_t pdev = device_parent(dev); 317 318 ev = prop_dictionary_create(); 319 if (ev == NULL) 320 return; 321 322 what = (isattach ? "device-attach" : "device-detach"); 323 parent = (pdev == NULL ? "root" : device_xname(pdev)); 324 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 325 !prop_dictionary_set_cstring(ev, "parent", parent)) { 326 prop_object_release(ev); 327 return; 328 } 329 330 devmon_insert(what, ev); 331 #endif 332 } 333 334 /* 335 * Add a cfdriver to the system. 336 */ 337 int 338 config_cfdriver_attach(struct cfdriver *cd) 339 { 340 struct cfdriver *lcd; 341 342 /* Make sure this driver isn't already in the system. */ 343 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 344 if (STREQ(lcd->cd_name, cd->cd_name)) 345 return EEXIST; 346 } 347 348 LIST_INIT(&cd->cd_attach); 349 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 350 351 return 0; 352 } 353 354 /* 355 * Remove a cfdriver from the system. 356 */ 357 int 358 config_cfdriver_detach(struct cfdriver *cd) 359 { 360 int i; 361 362 /* Make sure there are no active instances. */ 363 for (i = 0; i < cd->cd_ndevs; i++) { 364 if (cd->cd_devs[i] != NULL) 365 return EBUSY; 366 } 367 368 /* ...and no attachments loaded. */ 369 if (LIST_EMPTY(&cd->cd_attach) == 0) 370 return EBUSY; 371 372 LIST_REMOVE(cd, cd_list); 373 374 KASSERT(cd->cd_devs == NULL); 375 376 return 0; 377 } 378 379 /* 380 * Look up a cfdriver by name. 381 */ 382 struct cfdriver * 383 config_cfdriver_lookup(const char *name) 384 { 385 struct cfdriver *cd; 386 387 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 388 if (STREQ(cd->cd_name, name)) 389 return cd; 390 } 391 392 return NULL; 393 } 394 395 /* 396 * Add a cfattach to the specified driver. 397 */ 398 int 399 config_cfattach_attach(const char *driver, struct cfattach *ca) 400 { 401 struct cfattach *lca; 402 struct cfdriver *cd; 403 404 cd = config_cfdriver_lookup(driver); 405 if (cd == NULL) 406 return ESRCH; 407 408 /* Make sure this attachment isn't already on this driver. */ 409 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 410 if (STREQ(lca->ca_name, ca->ca_name)) 411 return EEXIST; 412 } 413 414 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 415 416 return 0; 417 } 418 419 /* 420 * Remove a cfattach from the specified driver. 421 */ 422 int 423 config_cfattach_detach(const char *driver, struct cfattach *ca) 424 { 425 struct cfdriver *cd; 426 device_t dev; 427 int i; 428 429 cd = config_cfdriver_lookup(driver); 430 if (cd == NULL) 431 return ESRCH; 432 433 /* Make sure there are no active instances. */ 434 for (i = 0; i < cd->cd_ndevs; i++) { 435 if ((dev = cd->cd_devs[i]) == NULL) 436 continue; 437 if (dev->dv_cfattach == ca) 438 return EBUSY; 439 } 440 441 LIST_REMOVE(ca, ca_list); 442 443 return 0; 444 } 445 446 /* 447 * Look up a cfattach by name. 448 */ 449 static struct cfattach * 450 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 451 { 452 struct cfattach *ca; 453 454 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 455 if (STREQ(ca->ca_name, atname)) 456 return ca; 457 } 458 459 return NULL; 460 } 461 462 /* 463 * Look up a cfattach by driver/attachment name. 464 */ 465 struct cfattach * 466 config_cfattach_lookup(const char *name, const char *atname) 467 { 468 struct cfdriver *cd; 469 470 cd = config_cfdriver_lookup(name); 471 if (cd == NULL) 472 return NULL; 473 474 return config_cfattach_lookup_cd(cd, atname); 475 } 476 477 /* 478 * Apply the matching function and choose the best. This is used 479 * a few times and we want to keep the code small. 480 */ 481 static void 482 mapply(struct matchinfo *m, cfdata_t cf) 483 { 484 int pri; 485 486 if (m->fn != NULL) { 487 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 488 } else { 489 pri = config_match(m->parent, cf, m->aux); 490 } 491 if (pri > m->pri) { 492 m->match = cf; 493 m->pri = pri; 494 } 495 } 496 497 int 498 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 499 { 500 const struct cfiattrdata *ci; 501 const struct cflocdesc *cl; 502 int nlocs, i; 503 504 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver); 505 KASSERT(ci); 506 nlocs = ci->ci_loclen; 507 KASSERT(!nlocs || locs); 508 for (i = 0; i < nlocs; i++) { 509 cl = &ci->ci_locdesc[i]; 510 /* !cld_defaultstr means no default value */ 511 if ((!(cl->cld_defaultstr) 512 || (cf->cf_loc[i] != cl->cld_default)) 513 && cf->cf_loc[i] != locs[i]) 514 return 0; 515 } 516 517 return config_match(parent, cf, aux); 518 } 519 520 /* 521 * Helper function: check whether the driver supports the interface attribute 522 * and return its descriptor structure. 523 */ 524 static const struct cfiattrdata * 525 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 526 { 527 const struct cfiattrdata * const *cpp; 528 529 if (cd->cd_attrs == NULL) 530 return 0; 531 532 for (cpp = cd->cd_attrs; *cpp; cpp++) { 533 if (STREQ((*cpp)->ci_name, ia)) { 534 /* Match. */ 535 return *cpp; 536 } 537 } 538 return 0; 539 } 540 541 /* 542 * Lookup an interface attribute description by name. 543 * If the driver is given, consider only its supported attributes. 544 */ 545 const struct cfiattrdata * 546 cfiattr_lookup(const char *name, const struct cfdriver *cd) 547 { 548 const struct cfdriver *d; 549 const struct cfiattrdata *ia; 550 551 if (cd) 552 return cfdriver_get_iattr(cd, name); 553 554 LIST_FOREACH(d, &allcfdrivers, cd_list) { 555 ia = cfdriver_get_iattr(d, name); 556 if (ia) 557 return ia; 558 } 559 return 0; 560 } 561 562 /* 563 * Determine if `parent' is a potential parent for a device spec based 564 * on `cfp'. 565 */ 566 static int 567 cfparent_match(const device_t parent, const struct cfparent *cfp) 568 { 569 struct cfdriver *pcd; 570 571 /* We don't match root nodes here. */ 572 if (cfp == NULL) 573 return 0; 574 575 pcd = parent->dv_cfdriver; 576 KASSERT(pcd != NULL); 577 578 /* 579 * First, ensure this parent has the correct interface 580 * attribute. 581 */ 582 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 583 return 0; 584 585 /* 586 * If no specific parent device instance was specified (i.e. 587 * we're attaching to the attribute only), we're done! 588 */ 589 if (cfp->cfp_parent == NULL) 590 return 1; 591 592 /* 593 * Check the parent device's name. 594 */ 595 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 596 return 0; /* not the same parent */ 597 598 /* 599 * Make sure the unit number matches. 600 */ 601 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 602 cfp->cfp_unit == parent->dv_unit) 603 return 1; 604 605 /* Unit numbers don't match. */ 606 return 0; 607 } 608 609 /* 610 * Helper for config_cfdata_attach(): check all devices whether it could be 611 * parent any attachment in the config data table passed, and rescan. 612 */ 613 static void 614 rescan_with_cfdata(const struct cfdata *cf) 615 { 616 device_t d; 617 const struct cfdata *cf1; 618 deviter_t di; 619 620 621 /* 622 * "alldevs" is likely longer than a modules's cfdata, so make it 623 * the outer loop. 624 */ 625 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 626 627 if (!(d->dv_cfattach->ca_rescan)) 628 continue; 629 630 for (cf1 = cf; cf1->cf_name; cf1++) { 631 632 if (!cfparent_match(d, cf1->cf_pspec)) 633 continue; 634 635 (*d->dv_cfattach->ca_rescan)(d, 636 cf1->cf_pspec->cfp_iattr, cf1->cf_loc); 637 } 638 } 639 deviter_release(&di); 640 } 641 642 /* 643 * Attach a supplemental config data table and rescan potential 644 * parent devices if required. 645 */ 646 int 647 config_cfdata_attach(cfdata_t cf, int scannow) 648 { 649 struct cftable *ct; 650 651 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 652 ct->ct_cfdata = cf; 653 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 654 655 if (scannow) 656 rescan_with_cfdata(cf); 657 658 return 0; 659 } 660 661 /* 662 * Helper for config_cfdata_detach: check whether a device is 663 * found through any attachment in the config data table. 664 */ 665 static int 666 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 667 { 668 const struct cfdata *cf1; 669 670 for (cf1 = cf; cf1->cf_name; cf1++) 671 if (d->dv_cfdata == cf1) 672 return 1; 673 674 return 0; 675 } 676 677 /* 678 * Detach a supplemental config data table. Detach all devices found 679 * through that table (and thus keeping references to it) before. 680 */ 681 int 682 config_cfdata_detach(cfdata_t cf) 683 { 684 device_t d; 685 int error = 0; 686 struct cftable *ct; 687 deviter_t di; 688 689 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 690 d = deviter_next(&di)) { 691 if (!dev_in_cfdata(d, cf)) 692 continue; 693 if ((error = config_detach(d, 0)) != 0) 694 break; 695 } 696 deviter_release(&di); 697 if (error) { 698 aprint_error_dev(d, "unable to detach instance\n"); 699 return error; 700 } 701 702 TAILQ_FOREACH(ct, &allcftables, ct_list) { 703 if (ct->ct_cfdata == cf) { 704 TAILQ_REMOVE(&allcftables, ct, ct_list); 705 kmem_free(ct, sizeof(*ct)); 706 return 0; 707 } 708 } 709 710 /* not found -- shouldn't happen */ 711 return EINVAL; 712 } 713 714 /* 715 * Invoke the "match" routine for a cfdata entry on behalf of 716 * an external caller, usually a "submatch" routine. 717 */ 718 int 719 config_match(device_t parent, cfdata_t cf, void *aux) 720 { 721 struct cfattach *ca; 722 723 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 724 if (ca == NULL) { 725 /* No attachment for this entry, oh well. */ 726 return 0; 727 } 728 729 return (*ca->ca_match)(parent, cf, aux); 730 } 731 732 /* 733 * Iterate over all potential children of some device, calling the given 734 * function (default being the child's match function) for each one. 735 * Nonzero returns are matches; the highest value returned is considered 736 * the best match. Return the `found child' if we got a match, or NULL 737 * otherwise. The `aux' pointer is simply passed on through. 738 * 739 * Note that this function is designed so that it can be used to apply 740 * an arbitrary function to all potential children (its return value 741 * can be ignored). 742 */ 743 cfdata_t 744 config_search_loc(cfsubmatch_t fn, device_t parent, 745 const char *ifattr, const int *locs, void *aux) 746 { 747 struct cftable *ct; 748 cfdata_t cf; 749 struct matchinfo m; 750 751 KASSERT(config_initialized); 752 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 753 754 m.fn = fn; 755 m.parent = parent; 756 m.locs = locs; 757 m.aux = aux; 758 m.match = NULL; 759 m.pri = 0; 760 761 TAILQ_FOREACH(ct, &allcftables, ct_list) { 762 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 763 764 /* We don't match root nodes here. */ 765 if (!cf->cf_pspec) 766 continue; 767 768 /* 769 * Skip cf if no longer eligible, otherwise scan 770 * through parents for one matching `parent', and 771 * try match function. 772 */ 773 if (cf->cf_fstate == FSTATE_FOUND) 774 continue; 775 if (cf->cf_fstate == FSTATE_DNOTFOUND || 776 cf->cf_fstate == FSTATE_DSTAR) 777 continue; 778 779 /* 780 * If an interface attribute was specified, 781 * consider only children which attach to 782 * that attribute. 783 */ 784 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr)) 785 continue; 786 787 if (cfparent_match(parent, cf->cf_pspec)) 788 mapply(&m, cf); 789 } 790 } 791 return m.match; 792 } 793 794 cfdata_t 795 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 796 void *aux) 797 { 798 799 return config_search_loc(fn, parent, ifattr, NULL, aux); 800 } 801 802 /* 803 * Find the given root device. 804 * This is much like config_search, but there is no parent. 805 * Don't bother with multiple cfdata tables; the root node 806 * must always be in the initial table. 807 */ 808 cfdata_t 809 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 810 { 811 cfdata_t cf; 812 const short *p; 813 struct matchinfo m; 814 815 m.fn = fn; 816 m.parent = ROOT; 817 m.aux = aux; 818 m.match = NULL; 819 m.pri = 0; 820 m.locs = 0; 821 /* 822 * Look at root entries for matching name. We do not bother 823 * with found-state here since only one root should ever be 824 * searched (and it must be done first). 825 */ 826 for (p = cfroots; *p >= 0; p++) { 827 cf = &cfdata[*p]; 828 if (strcmp(cf->cf_name, rootname) == 0) 829 mapply(&m, cf); 830 } 831 return m.match; 832 } 833 834 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 835 836 /* 837 * The given `aux' argument describes a device that has been found 838 * on the given parent, but not necessarily configured. Locate the 839 * configuration data for that device (using the submatch function 840 * provided, or using candidates' cd_match configuration driver 841 * functions) and attach it, and return true. If the device was 842 * not configured, call the given `print' function and return 0. 843 */ 844 device_t 845 config_found_sm_loc(device_t parent, 846 const char *ifattr, const int *locs, void *aux, 847 cfprint_t print, cfsubmatch_t submatch) 848 { 849 cfdata_t cf; 850 851 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 852 if (splash_progress_state) 853 splash_progress_update(splash_progress_state); 854 #endif 855 856 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 857 return(config_attach_loc(parent, cf, locs, aux, print)); 858 if (print) { 859 if (config_do_twiddle && cold) 860 twiddle(); 861 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 862 } 863 864 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 865 if (splash_progress_state) 866 splash_progress_update(splash_progress_state); 867 #endif 868 869 return NULL; 870 } 871 872 device_t 873 config_found_ia(device_t parent, const char *ifattr, void *aux, 874 cfprint_t print) 875 { 876 877 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 878 } 879 880 device_t 881 config_found(device_t parent, void *aux, cfprint_t print) 882 { 883 884 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 885 } 886 887 /* 888 * As above, but for root devices. 889 */ 890 device_t 891 config_rootfound(const char *rootname, void *aux) 892 { 893 cfdata_t cf; 894 895 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 896 return config_attach(ROOT, cf, aux, (cfprint_t)NULL); 897 aprint_error("root device %s not configured\n", rootname); 898 return NULL; 899 } 900 901 /* just like sprintf(buf, "%d") except that it works from the end */ 902 static char * 903 number(char *ep, int n) 904 { 905 906 *--ep = 0; 907 while (n >= 10) { 908 *--ep = (n % 10) + '0'; 909 n /= 10; 910 } 911 *--ep = n + '0'; 912 return ep; 913 } 914 915 /* 916 * Expand the size of the cd_devs array if necessary. 917 */ 918 static void 919 config_makeroom(int n, struct cfdriver *cd) 920 { 921 int old, new; 922 device_t *nsp; 923 924 if (n < cd->cd_ndevs) 925 return; 926 927 /* 928 * Need to expand the array. 929 */ 930 old = cd->cd_ndevs; 931 if (old == 0) 932 new = 4; 933 else 934 new = old * 2; 935 while (new <= n) 936 new *= 2; 937 cd->cd_ndevs = new; 938 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP); 939 if (nsp == NULL) 940 panic("config_attach: %sing dev array", 941 old != 0 ? "expand" : "creat"); 942 memset(nsp + old, 0, sizeof(device_t [new - old])); 943 if (old != 0) { 944 memcpy(nsp, cd->cd_devs, sizeof(device_t [old])); 945 kmem_free(cd->cd_devs, sizeof(device_t [old])); 946 } 947 cd->cd_devs = nsp; 948 } 949 950 static void 951 config_devlink(device_t dev) 952 { 953 struct cfdriver *cd = dev->dv_cfdriver; 954 955 /* put this device in the devices array */ 956 config_makeroom(dev->dv_unit, cd); 957 if (cd->cd_devs[dev->dv_unit]) 958 panic("config_attach: duplicate %s", device_xname(dev)); 959 cd->cd_devs[dev->dv_unit] = dev; 960 961 /* It is safe to add a device to the tail of the list while 962 * readers are in the list, but not while a writer is in 963 * the list. Wait for any writer to complete. 964 */ 965 mutex_enter(&alldevs_mtx); 966 while (alldevs_nwrite != 0 && alldevs_writer != curlwp) 967 cv_wait(&alldevs_cv, &alldevs_mtx); 968 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */ 969 cv_signal(&alldevs_cv); 970 mutex_exit(&alldevs_mtx); 971 } 972 973 static void 974 config_devunlink(device_t dev) 975 { 976 struct cfdriver *cd = dev->dv_cfdriver; 977 int i; 978 979 /* Unlink from device list. */ 980 TAILQ_REMOVE(&alldevs, dev, dv_list); 981 982 /* Remove from cfdriver's array. */ 983 cd->cd_devs[dev->dv_unit] = NULL; 984 985 /* 986 * If the device now has no units in use, deallocate its softc array. 987 */ 988 for (i = 0; i < cd->cd_ndevs; i++) { 989 if (cd->cd_devs[i] != NULL) 990 return; 991 } 992 /* nothing found; deallocate */ 993 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs])); 994 cd->cd_devs = NULL; 995 cd->cd_ndevs = 0; 996 } 997 998 static device_t 999 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1000 { 1001 struct cfdriver *cd; 1002 struct cfattach *ca; 1003 size_t lname, lunit; 1004 const char *xunit; 1005 int myunit; 1006 char num[10]; 1007 device_t dev; 1008 void *dev_private; 1009 const struct cfiattrdata *ia; 1010 device_lock_t dvl; 1011 1012 cd = config_cfdriver_lookup(cf->cf_name); 1013 if (cd == NULL) 1014 return NULL; 1015 1016 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1017 if (ca == NULL) 1018 return NULL; 1019 1020 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1021 ca->ca_devsize < sizeof(struct device)) 1022 panic("config_devalloc: %s", cf->cf_atname); 1023 1024 #ifndef __BROKEN_CONFIG_UNIT_USAGE 1025 if (cf->cf_fstate == FSTATE_STAR) { 1026 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++) 1027 if (cd->cd_devs[myunit] == NULL) 1028 break; 1029 /* 1030 * myunit is now the unit of the first NULL device pointer, 1031 * or max(cd->cd_ndevs,cf->cf_unit). 1032 */ 1033 } else { 1034 myunit = cf->cf_unit; 1035 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL) 1036 return NULL; 1037 } 1038 #else 1039 myunit = cf->cf_unit; 1040 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */ 1041 1042 /* compute length of name and decimal expansion of unit number */ 1043 lname = strlen(cd->cd_name); 1044 xunit = number(&num[sizeof(num)], myunit); 1045 lunit = &num[sizeof(num)] - xunit; 1046 if (lname + lunit > sizeof(dev->dv_xname)) 1047 panic("config_devalloc: device name too long"); 1048 1049 /* get memory for all device vars */ 1050 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1051 if (ca->ca_devsize > 0) { 1052 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1053 if (dev_private == NULL) 1054 panic("config_devalloc: memory allocation for device softc failed"); 1055 } else { 1056 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1057 dev_private = NULL; 1058 } 1059 1060 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1061 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1062 } else { 1063 dev = dev_private; 1064 } 1065 if (dev == NULL) 1066 panic("config_devalloc: memory allocation for device_t failed"); 1067 1068 dvl = device_getlock(dev); 1069 1070 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1071 cv_init(&dvl->dvl_cv, "pmfsusp"); 1072 1073 dev->dv_class = cd->cd_class; 1074 dev->dv_cfdata = cf; 1075 dev->dv_cfdriver = cd; 1076 dev->dv_cfattach = ca; 1077 dev->dv_unit = myunit; 1078 dev->dv_activity_count = 0; 1079 dev->dv_activity_handlers = NULL; 1080 dev->dv_private = dev_private; 1081 memcpy(dev->dv_xname, cd->cd_name, lname); 1082 memcpy(dev->dv_xname + lname, xunit, lunit); 1083 dev->dv_parent = parent; 1084 if (parent != NULL) 1085 dev->dv_depth = parent->dv_depth + 1; 1086 else 1087 dev->dv_depth = 0; 1088 dev->dv_flags = DVF_ACTIVE; /* always initially active */ 1089 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */ 1090 if (locs) { 1091 KASSERT(parent); /* no locators at root */ 1092 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr, 1093 parent->dv_cfdriver); 1094 dev->dv_locators = 1095 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1096 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1097 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1098 } 1099 dev->dv_properties = prop_dictionary_create(); 1100 KASSERT(dev->dv_properties != NULL); 1101 1102 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1103 "device-driver", dev->dv_cfdriver->cd_name); 1104 prop_dictionary_set_uint16(dev->dv_properties, 1105 "device-unit", dev->dv_unit); 1106 1107 return dev; 1108 } 1109 1110 static void 1111 config_devdealloc(device_t dev) 1112 { 1113 device_lock_t dvl = device_getlock(dev); 1114 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1115 1116 cv_destroy(&dvl->dvl_cv); 1117 mutex_destroy(&dvl->dvl_mtx); 1118 1119 KASSERT(dev->dv_properties != NULL); 1120 prop_object_release(dev->dv_properties); 1121 1122 if (dev->dv_activity_handlers) 1123 panic("config_devdealloc with registered handlers"); 1124 1125 if (dev->dv_locators) { 1126 size_t amount = *--dev->dv_locators; 1127 kmem_free(dev->dv_locators, amount); 1128 } 1129 1130 if (dev->dv_cfattach->ca_devsize > 0) 1131 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1132 if (priv) 1133 kmem_free(dev, sizeof(*dev)); 1134 } 1135 1136 /* 1137 * Attach a found device. 1138 */ 1139 device_t 1140 config_attach_loc(device_t parent, cfdata_t cf, 1141 const int *locs, void *aux, cfprint_t print) 1142 { 1143 device_t dev; 1144 struct cftable *ct; 1145 const char *drvname; 1146 1147 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1148 if (splash_progress_state) 1149 splash_progress_update(splash_progress_state); 1150 #endif 1151 1152 dev = config_devalloc(parent, cf, locs); 1153 if (!dev) 1154 panic("config_attach: allocation of device softc failed"); 1155 1156 /* XXX redundant - see below? */ 1157 if (cf->cf_fstate != FSTATE_STAR) { 1158 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1159 cf->cf_fstate = FSTATE_FOUND; 1160 } 1161 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1162 else 1163 cf->cf_unit++; 1164 #endif 1165 1166 config_devlink(dev); 1167 1168 if (config_do_twiddle && cold) 1169 twiddle(); 1170 else 1171 aprint_naive("Found "); 1172 /* 1173 * We want the next two printfs for normal, verbose, and quiet, 1174 * but not silent (in which case, we're twiddling, instead). 1175 */ 1176 if (parent == ROOT) { 1177 aprint_naive("%s (root)", device_xname(dev)); 1178 aprint_normal("%s (root)", device_xname(dev)); 1179 } else { 1180 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1181 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1182 if (print) 1183 (void) (*print)(aux, NULL); 1184 } 1185 1186 /* 1187 * Before attaching, clobber any unfound devices that are 1188 * otherwise identical. 1189 * XXX code above is redundant? 1190 */ 1191 drvname = dev->dv_cfdriver->cd_name; 1192 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1193 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1194 if (STREQ(cf->cf_name, drvname) && 1195 cf->cf_unit == dev->dv_unit) { 1196 if (cf->cf_fstate == FSTATE_NOTFOUND) 1197 cf->cf_fstate = FSTATE_FOUND; 1198 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1199 /* 1200 * Bump the unit number on all starred cfdata 1201 * entries for this device. 1202 */ 1203 if (cf->cf_fstate == FSTATE_STAR) 1204 cf->cf_unit++; 1205 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1206 } 1207 } 1208 } 1209 #ifdef __HAVE_DEVICE_REGISTER 1210 device_register(dev, aux); 1211 #endif 1212 1213 /* Let userland know */ 1214 devmon_report_device(dev, true); 1215 1216 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1217 if (splash_progress_state) 1218 splash_progress_update(splash_progress_state); 1219 #endif 1220 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1221 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1222 if (splash_progress_state) 1223 splash_progress_update(splash_progress_state); 1224 #endif 1225 1226 if (!device_pmf_is_registered(dev)) 1227 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1228 1229 config_process_deferred(&deferred_config_queue, dev); 1230 return dev; 1231 } 1232 1233 device_t 1234 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1235 { 1236 1237 return config_attach_loc(parent, cf, NULL, aux, print); 1238 } 1239 1240 /* 1241 * As above, but for pseudo-devices. Pseudo-devices attached in this 1242 * way are silently inserted into the device tree, and their children 1243 * attached. 1244 * 1245 * Note that because pseudo-devices are attached silently, any information 1246 * the attach routine wishes to print should be prefixed with the device 1247 * name by the attach routine. 1248 */ 1249 device_t 1250 config_attach_pseudo(cfdata_t cf) 1251 { 1252 device_t dev; 1253 1254 dev = config_devalloc(ROOT, cf, NULL); 1255 if (!dev) 1256 return NULL; 1257 1258 /* XXX mark busy in cfdata */ 1259 1260 if (cf->cf_fstate != FSTATE_STAR) { 1261 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1262 cf->cf_fstate = FSTATE_FOUND; 1263 } 1264 1265 config_devlink(dev); 1266 1267 #if 0 /* XXXJRT not yet */ 1268 #ifdef __HAVE_DEVICE_REGISTER 1269 device_register(dev, NULL); /* like a root node */ 1270 #endif 1271 #endif 1272 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1273 config_process_deferred(&deferred_config_queue, dev); 1274 return dev; 1275 } 1276 1277 /* 1278 * Detach a device. Optionally forced (e.g. because of hardware 1279 * removal) and quiet. Returns zero if successful, non-zero 1280 * (an error code) otherwise. 1281 * 1282 * Note that this code wants to be run from a process context, so 1283 * that the detach can sleep to allow processes which have a device 1284 * open to run and unwind their stacks. 1285 */ 1286 int 1287 config_detach(device_t dev, int flags) 1288 { 1289 struct cftable *ct; 1290 cfdata_t cf; 1291 const struct cfattach *ca; 1292 struct cfdriver *cd; 1293 #ifdef DIAGNOSTIC 1294 device_t d; 1295 #endif 1296 int rv = 0; 1297 1298 #ifdef DIAGNOSTIC 1299 cf = dev->dv_cfdata; 1300 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1301 cf->cf_fstate != FSTATE_STAR) 1302 panic("config_detach: %s: bad device fstate %d", 1303 device_xname(dev), cf ? cf->cf_fstate : -1); 1304 #endif 1305 cd = dev->dv_cfdriver; 1306 KASSERT(cd != NULL); 1307 1308 ca = dev->dv_cfattach; 1309 KASSERT(ca != NULL); 1310 1311 KASSERT(curlwp != NULL); 1312 mutex_enter(&alldevs_mtx); 1313 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 1314 ; 1315 else while (alldevs_nread != 0 || 1316 (alldevs_nwrite != 0 && alldevs_writer != curlwp)) 1317 cv_wait(&alldevs_cv, &alldevs_mtx); 1318 if (alldevs_nwrite++ == 0) 1319 alldevs_writer = curlwp; 1320 mutex_exit(&alldevs_mtx); 1321 1322 /* 1323 * Ensure the device is deactivated. If the device doesn't 1324 * have an activation entry point, we allow DVF_ACTIVE to 1325 * remain set. Otherwise, if DVF_ACTIVE is still set, the 1326 * device is busy, and the detach fails. 1327 */ 1328 if (!detachall && 1329 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1330 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1331 rv = EBUSY; /* XXX EOPNOTSUPP? */ 1332 } else if ((rv = config_deactivate(dev)) == EOPNOTSUPP) 1333 rv = 0; /* Do not treat EOPNOTSUPP as an error */ 1334 1335 /* 1336 * Try to detach the device. If that's not possible, then 1337 * we either panic() (for the forced but failed case), or 1338 * return an error. 1339 */ 1340 if (rv == 0) { 1341 if (ca->ca_detach != NULL) 1342 rv = (*ca->ca_detach)(dev, flags); 1343 else 1344 rv = EOPNOTSUPP; 1345 } 1346 if (rv != 0) { 1347 if ((flags & DETACH_FORCE) == 0) 1348 goto out; 1349 else 1350 panic("config_detach: forced detach of %s failed (%d)", 1351 device_xname(dev), rv); 1352 } 1353 1354 dev->dv_flags &= ~DVF_ACTIVE; 1355 1356 /* 1357 * The device has now been successfully detached. 1358 */ 1359 1360 /* Let userland know */ 1361 devmon_report_device(dev, false); 1362 1363 #ifdef DIAGNOSTIC 1364 /* 1365 * Sanity: If you're successfully detached, you should have no 1366 * children. (Note that because children must be attached 1367 * after parents, we only need to search the latter part of 1368 * the list.) 1369 */ 1370 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1371 d = TAILQ_NEXT(d, dv_list)) { 1372 if (d->dv_parent == dev) { 1373 printf("config_detach: detached device %s" 1374 " has children %s\n", device_xname(dev), device_xname(d)); 1375 panic("config_detach"); 1376 } 1377 } 1378 #endif 1379 1380 /* notify the parent that the child is gone */ 1381 if (dev->dv_parent) { 1382 device_t p = dev->dv_parent; 1383 if (p->dv_cfattach->ca_childdetached) 1384 (*p->dv_cfattach->ca_childdetached)(p, dev); 1385 } 1386 1387 /* 1388 * Mark cfdata to show that the unit can be reused, if possible. 1389 */ 1390 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1391 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1392 if (STREQ(cf->cf_name, cd->cd_name)) { 1393 if (cf->cf_fstate == FSTATE_FOUND && 1394 cf->cf_unit == dev->dv_unit) 1395 cf->cf_fstate = FSTATE_NOTFOUND; 1396 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1397 /* 1398 * Note that we can only re-use a starred 1399 * unit number if the unit being detached 1400 * had the last assigned unit number. 1401 */ 1402 if (cf->cf_fstate == FSTATE_STAR && 1403 cf->cf_unit == dev->dv_unit + 1) 1404 cf->cf_unit--; 1405 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1406 } 1407 } 1408 } 1409 1410 config_devunlink(dev); 1411 1412 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1413 aprint_normal_dev(dev, "detached\n"); 1414 1415 config_devdealloc(dev); 1416 1417 out: 1418 mutex_enter(&alldevs_mtx); 1419 KASSERT(alldevs_nwrite != 0); 1420 if (--alldevs_nwrite == 0) 1421 alldevs_writer = NULL; 1422 cv_signal(&alldevs_cv); 1423 mutex_exit(&alldevs_mtx); 1424 return rv; 1425 } 1426 1427 int 1428 config_detach_children(device_t parent, int flags) 1429 { 1430 device_t dv; 1431 deviter_t di; 1432 int error = 0; 1433 1434 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1435 dv = deviter_next(&di)) { 1436 if (device_parent(dv) != parent) 1437 continue; 1438 if ((error = config_detach(dv, flags)) != 0) 1439 break; 1440 } 1441 deviter_release(&di); 1442 return error; 1443 } 1444 1445 device_t 1446 shutdown_first(struct shutdown_state *s) 1447 { 1448 if (!s->initialized) { 1449 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1450 s->initialized = true; 1451 } 1452 return shutdown_next(s); 1453 } 1454 1455 device_t 1456 shutdown_next(struct shutdown_state *s) 1457 { 1458 device_t dv; 1459 1460 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1461 ; 1462 1463 if (dv == NULL) 1464 s->initialized = false; 1465 1466 return dv; 1467 } 1468 1469 bool 1470 config_detach_all(int how) 1471 { 1472 static struct shutdown_state s; 1473 device_t curdev; 1474 bool progress = false; 1475 1476 if ((how & RB_NOSYNC) != 0) 1477 return false; 1478 1479 for (curdev = shutdown_first(&s); curdev != NULL; 1480 curdev = shutdown_next(&s)) { 1481 aprint_debug(" detaching %s, ", device_xname(curdev)); 1482 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1483 progress = true; 1484 aprint_debug("success."); 1485 } else 1486 aprint_debug("failed."); 1487 } 1488 return progress; 1489 } 1490 1491 int 1492 config_activate(device_t dev) 1493 { 1494 const struct cfattach *ca = dev->dv_cfattach; 1495 int rv = 0, oflags = dev->dv_flags; 1496 1497 if (ca->ca_activate == NULL) 1498 return EOPNOTSUPP; 1499 1500 if ((dev->dv_flags & DVF_ACTIVE) == 0) { 1501 dev->dv_flags |= DVF_ACTIVE; 1502 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE); 1503 if (rv) 1504 dev->dv_flags = oflags; 1505 } 1506 return rv; 1507 } 1508 1509 int 1510 config_deactivate(device_t dev) 1511 { 1512 const struct cfattach *ca = dev->dv_cfattach; 1513 int rv = 0, oflags = dev->dv_flags; 1514 1515 if (ca->ca_activate == NULL) 1516 return EOPNOTSUPP; 1517 1518 if (dev->dv_flags & DVF_ACTIVE) { 1519 dev->dv_flags &= ~DVF_ACTIVE; 1520 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE); 1521 if (rv) 1522 dev->dv_flags = oflags; 1523 } 1524 return rv; 1525 } 1526 1527 /* 1528 * Defer the configuration of the specified device until all 1529 * of its parent's devices have been attached. 1530 */ 1531 void 1532 config_defer(device_t dev, void (*func)(device_t)) 1533 { 1534 struct deferred_config *dc; 1535 1536 if (dev->dv_parent == NULL) 1537 panic("config_defer: can't defer config of a root device"); 1538 1539 #ifdef DIAGNOSTIC 1540 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL; 1541 dc = TAILQ_NEXT(dc, dc_queue)) { 1542 if (dc->dc_dev == dev) 1543 panic("config_defer: deferred twice"); 1544 } 1545 #endif 1546 1547 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1548 if (dc == NULL) 1549 panic("config_defer: unable to allocate callback"); 1550 1551 dc->dc_dev = dev; 1552 dc->dc_func = func; 1553 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1554 config_pending_incr(); 1555 } 1556 1557 /* 1558 * Defer some autoconfiguration for a device until after interrupts 1559 * are enabled. 1560 */ 1561 void 1562 config_interrupts(device_t dev, void (*func)(device_t)) 1563 { 1564 struct deferred_config *dc; 1565 1566 /* 1567 * If interrupts are enabled, callback now. 1568 */ 1569 if (cold == 0) { 1570 (*func)(dev); 1571 return; 1572 } 1573 1574 #ifdef DIAGNOSTIC 1575 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL; 1576 dc = TAILQ_NEXT(dc, dc_queue)) { 1577 if (dc->dc_dev == dev) 1578 panic("config_interrupts: deferred twice"); 1579 } 1580 #endif 1581 1582 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1583 if (dc == NULL) 1584 panic("config_interrupts: unable to allocate callback"); 1585 1586 dc->dc_dev = dev; 1587 dc->dc_func = func; 1588 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1589 config_pending_incr(); 1590 } 1591 1592 /* 1593 * Process a deferred configuration queue. 1594 */ 1595 static void 1596 config_process_deferred(struct deferred_config_head *queue, 1597 device_t parent) 1598 { 1599 struct deferred_config *dc, *ndc; 1600 1601 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1602 ndc = TAILQ_NEXT(dc, dc_queue); 1603 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1604 TAILQ_REMOVE(queue, dc, dc_queue); 1605 (*dc->dc_func)(dc->dc_dev); 1606 kmem_free(dc, sizeof(*dc)); 1607 config_pending_decr(); 1608 } 1609 } 1610 } 1611 1612 /* 1613 * Manipulate the config_pending semaphore. 1614 */ 1615 void 1616 config_pending_incr(void) 1617 { 1618 1619 mutex_enter(&config_misc_lock); 1620 config_pending++; 1621 mutex_exit(&config_misc_lock); 1622 } 1623 1624 void 1625 config_pending_decr(void) 1626 { 1627 1628 #ifdef DIAGNOSTIC 1629 if (config_pending == 0) 1630 panic("config_pending_decr: config_pending == 0"); 1631 #endif 1632 mutex_enter(&config_misc_lock); 1633 config_pending--; 1634 if (config_pending == 0) 1635 cv_broadcast(&config_misc_cv); 1636 mutex_exit(&config_misc_lock); 1637 } 1638 1639 /* 1640 * Register a "finalization" routine. Finalization routines are 1641 * called iteratively once all real devices have been found during 1642 * autoconfiguration, for as long as any one finalizer has done 1643 * any work. 1644 */ 1645 int 1646 config_finalize_register(device_t dev, int (*fn)(device_t)) 1647 { 1648 struct finalize_hook *f; 1649 1650 /* 1651 * If finalization has already been done, invoke the 1652 * callback function now. 1653 */ 1654 if (config_finalize_done) { 1655 while ((*fn)(dev) != 0) 1656 /* loop */ ; 1657 } 1658 1659 /* Ensure this isn't already on the list. */ 1660 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1661 if (f->f_func == fn && f->f_dev == dev) 1662 return EEXIST; 1663 } 1664 1665 f = kmem_alloc(sizeof(*f), KM_SLEEP); 1666 f->f_func = fn; 1667 f->f_dev = dev; 1668 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1669 1670 return 0; 1671 } 1672 1673 void 1674 config_finalize(void) 1675 { 1676 struct finalize_hook *f; 1677 struct pdevinit *pdev; 1678 extern struct pdevinit pdevinit[]; 1679 int errcnt, rv; 1680 1681 /* 1682 * Now that device driver threads have been created, wait for 1683 * them to finish any deferred autoconfiguration. 1684 */ 1685 mutex_enter(&config_misc_lock); 1686 while (config_pending != 0) 1687 cv_wait(&config_misc_cv, &config_misc_lock); 1688 mutex_exit(&config_misc_lock); 1689 1690 KERNEL_LOCK(1, NULL); 1691 1692 /* Attach pseudo-devices. */ 1693 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 1694 (*pdev->pdev_attach)(pdev->pdev_count); 1695 1696 /* Run the hooks until none of them does any work. */ 1697 do { 1698 rv = 0; 1699 TAILQ_FOREACH(f, &config_finalize_list, f_list) 1700 rv |= (*f->f_func)(f->f_dev); 1701 } while (rv != 0); 1702 1703 config_finalize_done = 1; 1704 1705 /* Now free all the hooks. */ 1706 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 1707 TAILQ_REMOVE(&config_finalize_list, f, f_list); 1708 kmem_free(f, sizeof(*f)); 1709 } 1710 1711 KERNEL_UNLOCK_ONE(NULL); 1712 1713 errcnt = aprint_get_error_count(); 1714 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 1715 (boothowto & AB_VERBOSE) == 0) { 1716 mutex_enter(&config_misc_lock); 1717 if (config_do_twiddle) { 1718 config_do_twiddle = 0; 1719 printf_nolog(" done.\n"); 1720 } 1721 mutex_exit(&config_misc_lock); 1722 if (errcnt != 0) { 1723 printf("WARNING: %d error%s while detecting hardware; " 1724 "check system log.\n", errcnt, 1725 errcnt == 1 ? "" : "s"); 1726 } 1727 } 1728 } 1729 1730 void 1731 config_twiddle_init() 1732 { 1733 1734 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 1735 config_do_twiddle = 1; 1736 } 1737 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 1738 } 1739 1740 void 1741 config_twiddle_fn(void *cookie) 1742 { 1743 1744 mutex_enter(&config_misc_lock); 1745 if (config_do_twiddle) { 1746 twiddle(); 1747 callout_schedule(&config_twiddle_ch, mstohz(100)); 1748 } 1749 mutex_exit(&config_misc_lock); 1750 } 1751 1752 /* 1753 * device_lookup: 1754 * 1755 * Look up a device instance for a given driver. 1756 */ 1757 device_t 1758 device_lookup(cfdriver_t cd, int unit) 1759 { 1760 1761 if (unit < 0 || unit >= cd->cd_ndevs) 1762 return NULL; 1763 1764 return cd->cd_devs[unit]; 1765 } 1766 1767 /* 1768 * device_lookup: 1769 * 1770 * Look up a device instance for a given driver. 1771 */ 1772 void * 1773 device_lookup_private(cfdriver_t cd, int unit) 1774 { 1775 device_t dv; 1776 1777 if (unit < 0 || unit >= cd->cd_ndevs) 1778 return NULL; 1779 1780 if ((dv = cd->cd_devs[unit]) == NULL) 1781 return NULL; 1782 1783 return dv->dv_private; 1784 } 1785 1786 /* 1787 * Accessor functions for the device_t type. 1788 */ 1789 devclass_t 1790 device_class(device_t dev) 1791 { 1792 1793 return dev->dv_class; 1794 } 1795 1796 cfdata_t 1797 device_cfdata(device_t dev) 1798 { 1799 1800 return dev->dv_cfdata; 1801 } 1802 1803 cfdriver_t 1804 device_cfdriver(device_t dev) 1805 { 1806 1807 return dev->dv_cfdriver; 1808 } 1809 1810 cfattach_t 1811 device_cfattach(device_t dev) 1812 { 1813 1814 return dev->dv_cfattach; 1815 } 1816 1817 int 1818 device_unit(device_t dev) 1819 { 1820 1821 return dev->dv_unit; 1822 } 1823 1824 const char * 1825 device_xname(device_t dev) 1826 { 1827 1828 return dev->dv_xname; 1829 } 1830 1831 device_t 1832 device_parent(device_t dev) 1833 { 1834 1835 return dev->dv_parent; 1836 } 1837 1838 bool 1839 device_is_active(device_t dev) 1840 { 1841 int active_flags; 1842 1843 active_flags = DVF_ACTIVE; 1844 active_flags |= DVF_CLASS_SUSPENDED; 1845 active_flags |= DVF_DRIVER_SUSPENDED; 1846 active_flags |= DVF_BUS_SUSPENDED; 1847 1848 return (dev->dv_flags & active_flags) == DVF_ACTIVE; 1849 } 1850 1851 bool 1852 device_is_enabled(device_t dev) 1853 { 1854 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE; 1855 } 1856 1857 bool 1858 device_has_power(device_t dev) 1859 { 1860 int active_flags; 1861 1862 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED; 1863 1864 return (dev->dv_flags & active_flags) == DVF_ACTIVE; 1865 } 1866 1867 int 1868 device_locator(device_t dev, u_int locnum) 1869 { 1870 1871 KASSERT(dev->dv_locators != NULL); 1872 return dev->dv_locators[locnum]; 1873 } 1874 1875 void * 1876 device_private(device_t dev) 1877 { 1878 1879 /* 1880 * The reason why device_private(NULL) is allowed is to simplify the 1881 * work of a lot of userspace request handlers (i.e., c/bdev 1882 * handlers) which grab cfdriver_t->cd_units[n]. 1883 * It avoids having them test for it to be NULL and only then calling 1884 * device_private. 1885 */ 1886 return dev == NULL ? NULL : dev->dv_private; 1887 } 1888 1889 prop_dictionary_t 1890 device_properties(device_t dev) 1891 { 1892 1893 return dev->dv_properties; 1894 } 1895 1896 /* 1897 * device_is_a: 1898 * 1899 * Returns true if the device is an instance of the specified 1900 * driver. 1901 */ 1902 bool 1903 device_is_a(device_t dev, const char *dname) 1904 { 1905 1906 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0; 1907 } 1908 1909 /* 1910 * device_find_by_xname: 1911 * 1912 * Returns the device of the given name or NULL if it doesn't exist. 1913 */ 1914 device_t 1915 device_find_by_xname(const char *name) 1916 { 1917 device_t dv; 1918 deviter_t di; 1919 1920 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 1921 if (strcmp(device_xname(dv), name) == 0) 1922 break; 1923 } 1924 deviter_release(&di); 1925 1926 return dv; 1927 } 1928 1929 /* 1930 * device_find_by_driver_unit: 1931 * 1932 * Returns the device of the given driver name and unit or 1933 * NULL if it doesn't exist. 1934 */ 1935 device_t 1936 device_find_by_driver_unit(const char *name, int unit) 1937 { 1938 struct cfdriver *cd; 1939 1940 if ((cd = config_cfdriver_lookup(name)) == NULL) 1941 return NULL; 1942 return device_lookup(cd, unit); 1943 } 1944 1945 /* 1946 * Power management related functions. 1947 */ 1948 1949 bool 1950 device_pmf_is_registered(device_t dev) 1951 { 1952 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 1953 } 1954 1955 bool 1956 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS) 1957 { 1958 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 1959 return true; 1960 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 1961 return false; 1962 if (*dev->dv_driver_suspend != NULL && 1963 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL)) 1964 return false; 1965 1966 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 1967 return true; 1968 } 1969 1970 bool 1971 device_pmf_driver_resume(device_t dev PMF_FN_ARGS) 1972 { 1973 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 1974 return true; 1975 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 1976 return false; 1977 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) 1978 return false; 1979 if (*dev->dv_driver_resume != NULL && 1980 !(*dev->dv_driver_resume)(dev PMF_FN_CALL)) 1981 return false; 1982 1983 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 1984 return true; 1985 } 1986 1987 bool 1988 device_pmf_driver_shutdown(device_t dev, int how) 1989 { 1990 1991 if (*dev->dv_driver_shutdown != NULL && 1992 !(*dev->dv_driver_shutdown)(dev, how)) 1993 return false; 1994 return true; 1995 } 1996 1997 bool 1998 device_pmf_driver_register(device_t dev, 1999 bool (*suspend)(device_t PMF_FN_PROTO), 2000 bool (*resume)(device_t PMF_FN_PROTO), 2001 bool (*shutdown)(device_t, int)) 2002 { 2003 dev->dv_driver_suspend = suspend; 2004 dev->dv_driver_resume = resume; 2005 dev->dv_driver_shutdown = shutdown; 2006 dev->dv_flags |= DVF_POWER_HANDLERS; 2007 return true; 2008 } 2009 2010 static const char * 2011 curlwp_name(void) 2012 { 2013 if (curlwp->l_name != NULL) 2014 return curlwp->l_name; 2015 else 2016 return curlwp->l_proc->p_comm; 2017 } 2018 2019 void 2020 device_pmf_driver_deregister(device_t dev) 2021 { 2022 device_lock_t dvl = device_getlock(dev); 2023 2024 dev->dv_driver_suspend = NULL; 2025 dev->dv_driver_resume = NULL; 2026 2027 mutex_enter(&dvl->dvl_mtx); 2028 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2029 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2030 /* Wake a thread that waits for the lock. That 2031 * thread will fail to acquire the lock, and then 2032 * it will wake the next thread that waits for the 2033 * lock, or else it will wake us. 2034 */ 2035 cv_signal(&dvl->dvl_cv); 2036 pmflock_debug(dev, __func__, __LINE__); 2037 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2038 pmflock_debug(dev, __func__, __LINE__); 2039 } 2040 mutex_exit(&dvl->dvl_mtx); 2041 } 2042 2043 bool 2044 device_pmf_driver_child_register(device_t dev) 2045 { 2046 device_t parent = device_parent(dev); 2047 2048 if (parent == NULL || parent->dv_driver_child_register == NULL) 2049 return true; 2050 return (*parent->dv_driver_child_register)(dev); 2051 } 2052 2053 void 2054 device_pmf_driver_set_child_register(device_t dev, 2055 bool (*child_register)(device_t)) 2056 { 2057 dev->dv_driver_child_register = child_register; 2058 } 2059 2060 void 2061 device_pmf_self_resume(device_t dev PMF_FN_ARGS) 2062 { 2063 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2064 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0) 2065 dev->dv_flags &= ~DVF_SELF_SUSPENDED; 2066 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2067 } 2068 2069 bool 2070 device_is_self_suspended(device_t dev) 2071 { 2072 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0; 2073 } 2074 2075 void 2076 device_pmf_self_suspend(device_t dev PMF_FN_ARGS) 2077 { 2078 bool self = (flags & PMF_F_SELF) != 0; 2079 2080 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2081 2082 if (!self) 2083 dev->dv_flags &= ~DVF_SELF_SUSPENDED; 2084 else if (device_is_active(dev)) 2085 dev->dv_flags |= DVF_SELF_SUSPENDED; 2086 2087 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2088 } 2089 2090 static void 2091 pmflock_debug(device_t dev, const char *func, int line) 2092 { 2093 device_lock_t dvl = device_getlock(dev); 2094 2095 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2096 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2097 dev->dv_flags); 2098 } 2099 2100 static void 2101 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS) 2102 { 2103 device_lock_t dvl = device_getlock(dev); 2104 2105 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x " 2106 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(), 2107 dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL); 2108 } 2109 2110 static bool 2111 device_pmf_lock1(device_t dev PMF_FN_ARGS) 2112 { 2113 device_lock_t dvl = device_getlock(dev); 2114 2115 while (device_pmf_is_registered(dev) && 2116 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2117 dvl->dvl_nwait++; 2118 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2119 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2120 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2121 dvl->dvl_nwait--; 2122 } 2123 if (!device_pmf_is_registered(dev)) { 2124 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2125 /* We could not acquire the lock, but some other thread may 2126 * wait for it, also. Wake that thread. 2127 */ 2128 cv_signal(&dvl->dvl_cv); 2129 return false; 2130 } 2131 dvl->dvl_nlock++; 2132 dvl->dvl_holder = curlwp; 2133 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2134 return true; 2135 } 2136 2137 bool 2138 device_pmf_lock(device_t dev PMF_FN_ARGS) 2139 { 2140 bool rc; 2141 device_lock_t dvl = device_getlock(dev); 2142 2143 mutex_enter(&dvl->dvl_mtx); 2144 rc = device_pmf_lock1(dev PMF_FN_CALL); 2145 mutex_exit(&dvl->dvl_mtx); 2146 2147 return rc; 2148 } 2149 2150 void 2151 device_pmf_unlock(device_t dev PMF_FN_ARGS) 2152 { 2153 device_lock_t dvl = device_getlock(dev); 2154 2155 KASSERT(dvl->dvl_nlock > 0); 2156 mutex_enter(&dvl->dvl_mtx); 2157 if (--dvl->dvl_nlock == 0) 2158 dvl->dvl_holder = NULL; 2159 cv_signal(&dvl->dvl_cv); 2160 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); 2161 mutex_exit(&dvl->dvl_mtx); 2162 } 2163 2164 device_lock_t 2165 device_getlock(device_t dev) 2166 { 2167 return &dev->dv_lock; 2168 } 2169 2170 void * 2171 device_pmf_bus_private(device_t dev) 2172 { 2173 return dev->dv_bus_private; 2174 } 2175 2176 bool 2177 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS) 2178 { 2179 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2180 return true; 2181 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2182 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2183 return false; 2184 if (*dev->dv_bus_suspend != NULL && 2185 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL)) 2186 return false; 2187 2188 dev->dv_flags |= DVF_BUS_SUSPENDED; 2189 return true; 2190 } 2191 2192 bool 2193 device_pmf_bus_resume(device_t dev PMF_FN_ARGS) 2194 { 2195 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2196 return true; 2197 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) 2198 return false; 2199 if (*dev->dv_bus_resume != NULL && 2200 !(*dev->dv_bus_resume)(dev PMF_FN_CALL)) 2201 return false; 2202 2203 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2204 return true; 2205 } 2206 2207 bool 2208 device_pmf_bus_shutdown(device_t dev, int how) 2209 { 2210 2211 if (*dev->dv_bus_shutdown != NULL && 2212 !(*dev->dv_bus_shutdown)(dev, how)) 2213 return false; 2214 return true; 2215 } 2216 2217 void 2218 device_pmf_bus_register(device_t dev, void *priv, 2219 bool (*suspend)(device_t PMF_FN_PROTO), 2220 bool (*resume)(device_t PMF_FN_PROTO), 2221 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2222 { 2223 dev->dv_bus_private = priv; 2224 dev->dv_bus_resume = resume; 2225 dev->dv_bus_suspend = suspend; 2226 dev->dv_bus_shutdown = shutdown; 2227 dev->dv_bus_deregister = deregister; 2228 } 2229 2230 void 2231 device_pmf_bus_deregister(device_t dev) 2232 { 2233 if (dev->dv_bus_deregister == NULL) 2234 return; 2235 (*dev->dv_bus_deregister)(dev); 2236 dev->dv_bus_private = NULL; 2237 dev->dv_bus_suspend = NULL; 2238 dev->dv_bus_resume = NULL; 2239 dev->dv_bus_deregister = NULL; 2240 } 2241 2242 void * 2243 device_pmf_class_private(device_t dev) 2244 { 2245 return dev->dv_class_private; 2246 } 2247 2248 bool 2249 device_pmf_class_suspend(device_t dev PMF_FN_ARGS) 2250 { 2251 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2252 return true; 2253 if (*dev->dv_class_suspend != NULL && 2254 !(*dev->dv_class_suspend)(dev PMF_FN_CALL)) 2255 return false; 2256 2257 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2258 return true; 2259 } 2260 2261 bool 2262 device_pmf_class_resume(device_t dev PMF_FN_ARGS) 2263 { 2264 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2265 return true; 2266 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2267 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2268 return false; 2269 if (*dev->dv_class_resume != NULL && 2270 !(*dev->dv_class_resume)(dev PMF_FN_CALL)) 2271 return false; 2272 2273 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2274 return true; 2275 } 2276 2277 void 2278 device_pmf_class_register(device_t dev, void *priv, 2279 bool (*suspend)(device_t PMF_FN_PROTO), 2280 bool (*resume)(device_t PMF_FN_PROTO), 2281 void (*deregister)(device_t)) 2282 { 2283 dev->dv_class_private = priv; 2284 dev->dv_class_suspend = suspend; 2285 dev->dv_class_resume = resume; 2286 dev->dv_class_deregister = deregister; 2287 } 2288 2289 void 2290 device_pmf_class_deregister(device_t dev) 2291 { 2292 if (dev->dv_class_deregister == NULL) 2293 return; 2294 (*dev->dv_class_deregister)(dev); 2295 dev->dv_class_private = NULL; 2296 dev->dv_class_suspend = NULL; 2297 dev->dv_class_resume = NULL; 2298 dev->dv_class_deregister = NULL; 2299 } 2300 2301 bool 2302 device_active(device_t dev, devactive_t type) 2303 { 2304 size_t i; 2305 2306 if (dev->dv_activity_count == 0) 2307 return false; 2308 2309 for (i = 0; i < dev->dv_activity_count; ++i) { 2310 if (dev->dv_activity_handlers[i] == NULL) 2311 break; 2312 (*dev->dv_activity_handlers[i])(dev, type); 2313 } 2314 2315 return true; 2316 } 2317 2318 bool 2319 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2320 { 2321 void (**new_handlers)(device_t, devactive_t); 2322 void (**old_handlers)(device_t, devactive_t); 2323 size_t i, old_size, new_size; 2324 int s; 2325 2326 old_handlers = dev->dv_activity_handlers; 2327 old_size = dev->dv_activity_count; 2328 2329 for (i = 0; i < old_size; ++i) { 2330 KASSERT(old_handlers[i] != handler); 2331 if (old_handlers[i] == NULL) { 2332 old_handlers[i] = handler; 2333 return true; 2334 } 2335 } 2336 2337 new_size = old_size + 4; 2338 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2339 2340 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2341 new_handlers[old_size] = handler; 2342 memset(new_handlers + old_size + 1, 0, 2343 sizeof(int [new_size - (old_size+1)])); 2344 2345 s = splhigh(); 2346 dev->dv_activity_count = new_size; 2347 dev->dv_activity_handlers = new_handlers; 2348 splx(s); 2349 2350 if (old_handlers != NULL) 2351 kmem_free(old_handlers, sizeof(void * [old_size])); 2352 2353 return true; 2354 } 2355 2356 void 2357 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2358 { 2359 void (**old_handlers)(device_t, devactive_t); 2360 size_t i, old_size; 2361 int s; 2362 2363 old_handlers = dev->dv_activity_handlers; 2364 old_size = dev->dv_activity_count; 2365 2366 for (i = 0; i < old_size; ++i) { 2367 if (old_handlers[i] == handler) 2368 break; 2369 if (old_handlers[i] == NULL) 2370 return; /* XXX panic? */ 2371 } 2372 2373 if (i == old_size) 2374 return; /* XXX panic? */ 2375 2376 for (; i < old_size - 1; ++i) { 2377 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2378 continue; 2379 2380 if (i == 0) { 2381 s = splhigh(); 2382 dev->dv_activity_count = 0; 2383 dev->dv_activity_handlers = NULL; 2384 splx(s); 2385 kmem_free(old_handlers, sizeof(void *[old_size])); 2386 } 2387 return; 2388 } 2389 old_handlers[i] = NULL; 2390 } 2391 2392 /* 2393 * Device Iteration 2394 * 2395 * deviter_t: a device iterator. Holds state for a "walk" visiting 2396 * each device_t's in the device tree. 2397 * 2398 * deviter_init(di, flags): initialize the device iterator `di' 2399 * to "walk" the device tree. deviter_next(di) will return 2400 * the first device_t in the device tree, or NULL if there are 2401 * no devices. 2402 * 2403 * `flags' is one or more of DEVITER_F_RW, indicating that the 2404 * caller intends to modify the device tree by calling 2405 * config_detach(9) on devices in the order that the iterator 2406 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2407 * nearest the "root" of the device tree to be returned, first; 2408 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2409 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2410 * indicating both that deviter_init() should not respect any 2411 * locks on the device tree, and that deviter_next(di) may run 2412 * in more than one LWP before the walk has finished. 2413 * 2414 * Only one DEVITER_F_RW iterator may be in the device tree at 2415 * once. 2416 * 2417 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2418 * 2419 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2420 * DEVITER_F_LEAVES_FIRST are used in combination. 2421 * 2422 * deviter_first(di, flags): initialize the device iterator `di' 2423 * and return the first device_t in the device tree, or NULL 2424 * if there are no devices. The statement 2425 * 2426 * dv = deviter_first(di); 2427 * 2428 * is shorthand for 2429 * 2430 * deviter_init(di); 2431 * dv = deviter_next(di); 2432 * 2433 * deviter_next(di): return the next device_t in the device tree, 2434 * or NULL if there are no more devices. deviter_next(di) 2435 * is undefined if `di' was not initialized with deviter_init() or 2436 * deviter_first(). 2437 * 2438 * deviter_release(di): stops iteration (subsequent calls to 2439 * deviter_next() will return NULL), releases any locks and 2440 * resources held by the device iterator. 2441 * 2442 * Device iteration does not return device_t's in any particular 2443 * order. An iterator will never return the same device_t twice. 2444 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2445 * is called repeatedly on the same `di', it will eventually return 2446 * NULL. It is ok to attach/detach devices during device iteration. 2447 */ 2448 void 2449 deviter_init(deviter_t *di, deviter_flags_t flags) 2450 { 2451 device_t dv; 2452 bool rw; 2453 2454 mutex_enter(&alldevs_mtx); 2455 if ((flags & DEVITER_F_SHUTDOWN) != 0) { 2456 flags |= DEVITER_F_RW; 2457 alldevs_nwrite++; 2458 alldevs_writer = NULL; 2459 alldevs_nread = 0; 2460 } else { 2461 rw = (flags & DEVITER_F_RW) != 0; 2462 2463 if (alldevs_nwrite > 0 && alldevs_writer == NULL) 2464 ; 2465 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) || 2466 (rw && alldevs_nread != 0)) 2467 cv_wait(&alldevs_cv, &alldevs_mtx); 2468 2469 if (rw) { 2470 if (alldevs_nwrite++ == 0) 2471 alldevs_writer = curlwp; 2472 } else 2473 alldevs_nread++; 2474 } 2475 mutex_exit(&alldevs_mtx); 2476 2477 memset(di, 0, sizeof(*di)); 2478 2479 di->di_flags = flags; 2480 2481 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2482 case DEVITER_F_LEAVES_FIRST: 2483 TAILQ_FOREACH(dv, &alldevs, dv_list) 2484 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2485 break; 2486 case DEVITER_F_ROOT_FIRST: 2487 TAILQ_FOREACH(dv, &alldevs, dv_list) 2488 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2489 break; 2490 default: 2491 break; 2492 } 2493 2494 deviter_reinit(di); 2495 } 2496 2497 static void 2498 deviter_reinit(deviter_t *di) 2499 { 2500 if ((di->di_flags & DEVITER_F_RW) != 0) 2501 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2502 else 2503 di->di_prev = TAILQ_FIRST(&alldevs); 2504 } 2505 2506 device_t 2507 deviter_first(deviter_t *di, deviter_flags_t flags) 2508 { 2509 deviter_init(di, flags); 2510 return deviter_next(di); 2511 } 2512 2513 static device_t 2514 deviter_next1(deviter_t *di) 2515 { 2516 device_t dv; 2517 2518 dv = di->di_prev; 2519 2520 if (dv == NULL) 2521 ; 2522 else if ((di->di_flags & DEVITER_F_RW) != 0) 2523 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2524 else 2525 di->di_prev = TAILQ_NEXT(dv, dv_list); 2526 2527 return dv; 2528 } 2529 2530 device_t 2531 deviter_next(deviter_t *di) 2532 { 2533 device_t dv = NULL; 2534 2535 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2536 case 0: 2537 return deviter_next1(di); 2538 case DEVITER_F_LEAVES_FIRST: 2539 while (di->di_curdepth >= 0) { 2540 if ((dv = deviter_next1(di)) == NULL) { 2541 di->di_curdepth--; 2542 deviter_reinit(di); 2543 } else if (dv->dv_depth == di->di_curdepth) 2544 break; 2545 } 2546 return dv; 2547 case DEVITER_F_ROOT_FIRST: 2548 while (di->di_curdepth <= di->di_maxdepth) { 2549 if ((dv = deviter_next1(di)) == NULL) { 2550 di->di_curdepth++; 2551 deviter_reinit(di); 2552 } else if (dv->dv_depth == di->di_curdepth) 2553 break; 2554 } 2555 return dv; 2556 default: 2557 return NULL; 2558 } 2559 } 2560 2561 void 2562 deviter_release(deviter_t *di) 2563 { 2564 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2565 2566 mutex_enter(&alldevs_mtx); 2567 if (!rw) { 2568 --alldevs_nread; 2569 cv_signal(&alldevs_cv); 2570 } else if (alldevs_nwrite > 0 && alldevs_writer == NULL) { 2571 --alldevs_nwrite; /* shutting down: do not signal */ 2572 } else { 2573 KASSERT(alldevs_nwrite != 0); 2574 if (--alldevs_nwrite == 0) 2575 alldevs_writer = NULL; 2576 cv_signal(&alldevs_cv); 2577 } 2578 mutex_exit(&alldevs_mtx); 2579 } 2580 2581 SYSCTL_SETUP(sysctl_detach_setup, "sysctl detach setup") 2582 { 2583 const struct sysctlnode *node = NULL; 2584 2585 sysctl_createv(clog, 0, NULL, &node, 2586 CTLFLAG_PERMANENT, 2587 CTLTYPE_NODE, "kern", NULL, 2588 NULL, 0, NULL, 0, 2589 CTL_KERN, CTL_EOL); 2590 2591 if (node == NULL) 2592 return; 2593 2594 sysctl_createv(clog, 0, &node, NULL, 2595 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2596 CTLTYPE_INT, "detachall", 2597 SYSCTL_DESCR("Detach all devices at shutdown"), 2598 NULL, 0, &detachall, 0, 2599 CTL_CREATE, CTL_EOL); 2600 } 2601