1 /* $NetBSD: subr_autoconf.c,v 1.301 2022/03/28 12:38:59 riastradh Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.301 2022/03/28 12:38:59 riastradh Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/device_impl.h> 90 #include <sys/disklabel.h> 91 #include <sys/conf.h> 92 #include <sys/kauth.h> 93 #include <sys/kmem.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/errno.h> 97 #include <sys/proc.h> 98 #include <sys/reboot.h> 99 #include <sys/kthread.h> 100 #include <sys/buf.h> 101 #include <sys/dirent.h> 102 #include <sys/mount.h> 103 #include <sys/namei.h> 104 #include <sys/unistd.h> 105 #include <sys/fcntl.h> 106 #include <sys/lockf.h> 107 #include <sys/callout.h> 108 #include <sys/devmon.h> 109 #include <sys/cpu.h> 110 #include <sys/sysctl.h> 111 #include <sys/stdarg.h> 112 #include <sys/localcount.h> 113 114 #include <sys/disk.h> 115 116 #include <sys/rndsource.h> 117 118 #include <machine/limits.h> 119 120 /* 121 * Autoconfiguration subroutines. 122 */ 123 124 /* 125 * Device autoconfiguration timings are mixed into the entropy pool. 126 */ 127 static krndsource_t rnd_autoconf_source; 128 129 /* 130 * ioconf.c exports exactly two names: cfdata and cfroots. All system 131 * devices and drivers are found via these tables. 132 */ 133 extern struct cfdata cfdata[]; 134 extern const short cfroots[]; 135 136 /* 137 * List of all cfdriver structures. We use this to detect duplicates 138 * when other cfdrivers are loaded. 139 */ 140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 141 extern struct cfdriver * const cfdriver_list_initial[]; 142 143 /* 144 * Initial list of cfattach's. 145 */ 146 extern const struct cfattachinit cfattachinit[]; 147 148 /* 149 * List of cfdata tables. We always have one such list -- the one 150 * built statically when the kernel was configured. 151 */ 152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 153 static struct cftable initcftable; 154 155 #define ROOT ((device_t)NULL) 156 157 struct matchinfo { 158 cfsubmatch_t fn; 159 device_t parent; 160 const int *locs; 161 void *aux; 162 struct cfdata *match; 163 int pri; 164 }; 165 166 struct alldevs_foray { 167 int af_s; 168 struct devicelist af_garbage; 169 }; 170 171 /* 172 * Internal version of the cfargs structure; all versions are 173 * canonicalized to this. 174 */ 175 struct cfargs_internal { 176 union { 177 cfsubmatch_t submatch;/* submatch function (direct config) */ 178 cfsearch_t search; /* search function (indirect config) */ 179 }; 180 const char * iattr; /* interface attribute */ 181 const int * locators; /* locators array */ 182 devhandle_t devhandle; /* devhandle_t (by value) */ 183 }; 184 185 static char *number(char *, int); 186 static void mapply(struct matchinfo *, cfdata_t); 187 static void config_devdelete(device_t); 188 static void config_devunlink(device_t, struct devicelist *); 189 static void config_makeroom(int, struct cfdriver *); 190 static void config_devlink(device_t); 191 static void config_alldevs_enter(struct alldevs_foray *); 192 static void config_alldevs_exit(struct alldevs_foray *); 193 static void config_add_attrib_dict(device_t); 194 static device_t config_attach_internal(device_t, cfdata_t, void *, 195 cfprint_t, const struct cfargs_internal *); 196 197 static void config_collect_garbage(struct devicelist *); 198 static void config_dump_garbage(struct devicelist *); 199 200 static void pmflock_debug(device_t, const char *, int); 201 202 static device_t deviter_next1(deviter_t *); 203 static void deviter_reinit(deviter_t *); 204 205 struct deferred_config { 206 TAILQ_ENTRY(deferred_config) dc_queue; 207 device_t dc_dev; 208 void (*dc_func)(device_t); 209 }; 210 211 TAILQ_HEAD(deferred_config_head, deferred_config); 212 213 static struct deferred_config_head deferred_config_queue = 214 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 215 static struct deferred_config_head interrupt_config_queue = 216 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 217 static int interrupt_config_threads = 8; 218 static struct deferred_config_head mountroot_config_queue = 219 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 220 static int mountroot_config_threads = 2; 221 static lwp_t **mountroot_config_lwpids; 222 static size_t mountroot_config_lwpids_size; 223 bool root_is_mounted = false; 224 225 static void config_process_deferred(struct deferred_config_head *, device_t); 226 227 /* Hooks to finalize configuration once all real devices have been found. */ 228 struct finalize_hook { 229 TAILQ_ENTRY(finalize_hook) f_list; 230 int (*f_func)(device_t); 231 device_t f_dev; 232 }; 233 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 234 TAILQ_HEAD_INITIALIZER(config_finalize_list); 235 static int config_finalize_done; 236 237 /* list of all devices */ 238 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 239 static kmutex_t alldevs_lock __cacheline_aligned; 240 static devgen_t alldevs_gen = 1; 241 static int alldevs_nread = 0; 242 static int alldevs_nwrite = 0; 243 static bool alldevs_garbage = false; 244 245 static struct devicelist config_pending = 246 TAILQ_HEAD_INITIALIZER(config_pending); 247 static kmutex_t config_misc_lock; 248 static kcondvar_t config_misc_cv; 249 250 static bool detachall = false; 251 252 #define STREQ(s1, s2) \ 253 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 254 255 static bool config_initialized = false; /* config_init() has been called. */ 256 257 static int config_do_twiddle; 258 static callout_t config_twiddle_ch; 259 260 static void sysctl_detach_setup(struct sysctllog **); 261 262 int no_devmon_insert(const char *, prop_dictionary_t); 263 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; 264 265 typedef int (*cfdriver_fn)(struct cfdriver *); 266 static int 267 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 268 cfdriver_fn drv_do, cfdriver_fn drv_undo, 269 const char *style, bool dopanic) 270 { 271 void (*pr)(const char *, ...) __printflike(1, 2) = 272 dopanic ? panic : printf; 273 int i, error = 0, e2 __diagused; 274 275 for (i = 0; cfdriverv[i] != NULL; i++) { 276 if ((error = drv_do(cfdriverv[i])) != 0) { 277 pr("configure: `%s' driver %s failed: %d", 278 cfdriverv[i]->cd_name, style, error); 279 goto bad; 280 } 281 } 282 283 KASSERT(error == 0); 284 return 0; 285 286 bad: 287 printf("\n"); 288 for (i--; i >= 0; i--) { 289 e2 = drv_undo(cfdriverv[i]); 290 KASSERT(e2 == 0); 291 } 292 293 return error; 294 } 295 296 typedef int (*cfattach_fn)(const char *, struct cfattach *); 297 static int 298 frob_cfattachvec(const struct cfattachinit *cfattachv, 299 cfattach_fn att_do, cfattach_fn att_undo, 300 const char *style, bool dopanic) 301 { 302 const struct cfattachinit *cfai = NULL; 303 void (*pr)(const char *, ...) __printflike(1, 2) = 304 dopanic ? panic : printf; 305 int j = 0, error = 0, e2 __diagused; 306 307 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 308 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 309 if ((error = att_do(cfai->cfai_name, 310 cfai->cfai_list[j])) != 0) { 311 pr("configure: attachment `%s' " 312 "of `%s' driver %s failed: %d", 313 cfai->cfai_list[j]->ca_name, 314 cfai->cfai_name, style, error); 315 goto bad; 316 } 317 } 318 } 319 320 KASSERT(error == 0); 321 return 0; 322 323 bad: 324 /* 325 * Rollback in reverse order. dunno if super-important, but 326 * do that anyway. Although the code looks a little like 327 * someone did a little integration (in the math sense). 328 */ 329 printf("\n"); 330 if (cfai) { 331 bool last; 332 333 for (last = false; last == false; ) { 334 if (cfai == &cfattachv[0]) 335 last = true; 336 for (j--; j >= 0; j--) { 337 e2 = att_undo(cfai->cfai_name, 338 cfai->cfai_list[j]); 339 KASSERT(e2 == 0); 340 } 341 if (!last) { 342 cfai--; 343 for (j = 0; cfai->cfai_list[j] != NULL; j++) 344 ; 345 } 346 } 347 } 348 349 return error; 350 } 351 352 /* 353 * Initialize the autoconfiguration data structures. Normally this 354 * is done by configure(), but some platforms need to do this very 355 * early (to e.g. initialize the console). 356 */ 357 void 358 config_init(void) 359 { 360 361 KASSERT(config_initialized == false); 362 363 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM); 364 365 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 366 cv_init(&config_misc_cv, "cfgmisc"); 367 368 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 369 370 frob_cfdrivervec(cfdriver_list_initial, 371 config_cfdriver_attach, NULL, "bootstrap", true); 372 frob_cfattachvec(cfattachinit, 373 config_cfattach_attach, NULL, "bootstrap", true); 374 375 initcftable.ct_cfdata = cfdata; 376 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 377 378 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN, 379 RND_FLAG_COLLECT_TIME); 380 381 config_initialized = true; 382 } 383 384 /* 385 * Init or fini drivers and attachments. Either all or none 386 * are processed (via rollback). It would be nice if this were 387 * atomic to outside consumers, but with the current state of 388 * locking ... 389 */ 390 int 391 config_init_component(struct cfdriver * const *cfdriverv, 392 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 393 { 394 int error; 395 396 KERNEL_LOCK(1, NULL); 397 398 if ((error = frob_cfdrivervec(cfdriverv, 399 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 400 goto out; 401 if ((error = frob_cfattachvec(cfattachv, 402 config_cfattach_attach, config_cfattach_detach, 403 "init", false)) != 0) { 404 frob_cfdrivervec(cfdriverv, 405 config_cfdriver_detach, NULL, "init rollback", true); 406 goto out; 407 } 408 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 409 frob_cfattachvec(cfattachv, 410 config_cfattach_detach, NULL, "init rollback", true); 411 frob_cfdrivervec(cfdriverv, 412 config_cfdriver_detach, NULL, "init rollback", true); 413 goto out; 414 } 415 416 /* Success! */ 417 error = 0; 418 419 out: KERNEL_UNLOCK_ONE(NULL); 420 return error; 421 } 422 423 int 424 config_fini_component(struct cfdriver * const *cfdriverv, 425 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 426 { 427 int error; 428 429 KERNEL_LOCK(1, NULL); 430 431 if ((error = config_cfdata_detach(cfdatav)) != 0) 432 goto out; 433 if ((error = frob_cfattachvec(cfattachv, 434 config_cfattach_detach, config_cfattach_attach, 435 "fini", false)) != 0) { 436 if (config_cfdata_attach(cfdatav, 0) != 0) 437 panic("config_cfdata fini rollback failed"); 438 goto out; 439 } 440 if ((error = frob_cfdrivervec(cfdriverv, 441 config_cfdriver_detach, config_cfdriver_attach, 442 "fini", false)) != 0) { 443 frob_cfattachvec(cfattachv, 444 config_cfattach_attach, NULL, "fini rollback", true); 445 if (config_cfdata_attach(cfdatav, 0) != 0) 446 panic("config_cfdata fini rollback failed"); 447 goto out; 448 } 449 450 /* Success! */ 451 error = 0; 452 453 out: KERNEL_UNLOCK_ONE(NULL); 454 return error; 455 } 456 457 void 458 config_init_mi(void) 459 { 460 461 if (!config_initialized) 462 config_init(); 463 464 sysctl_detach_setup(NULL); 465 } 466 467 void 468 config_deferred(device_t dev) 469 { 470 471 KASSERT(KERNEL_LOCKED_P()); 472 473 config_process_deferred(&deferred_config_queue, dev); 474 config_process_deferred(&interrupt_config_queue, dev); 475 config_process_deferred(&mountroot_config_queue, dev); 476 } 477 478 static void 479 config_interrupts_thread(void *cookie) 480 { 481 struct deferred_config *dc; 482 device_t dev; 483 484 mutex_enter(&config_misc_lock); 485 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 486 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 487 mutex_exit(&config_misc_lock); 488 489 dev = dc->dc_dev; 490 (*dc->dc_func)(dev); 491 if (!device_pmf_is_registered(dev)) 492 aprint_debug_dev(dev, 493 "WARNING: power management not supported\n"); 494 config_pending_decr(dev); 495 kmem_free(dc, sizeof(*dc)); 496 497 mutex_enter(&config_misc_lock); 498 } 499 mutex_exit(&config_misc_lock); 500 501 kthread_exit(0); 502 } 503 504 void 505 config_create_interruptthreads(void) 506 { 507 int i; 508 509 for (i = 0; i < interrupt_config_threads; i++) { 510 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL, 511 config_interrupts_thread, NULL, NULL, "configintr"); 512 } 513 } 514 515 static void 516 config_mountroot_thread(void *cookie) 517 { 518 struct deferred_config *dc; 519 520 mutex_enter(&config_misc_lock); 521 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 522 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 523 mutex_exit(&config_misc_lock); 524 525 (*dc->dc_func)(dc->dc_dev); 526 kmem_free(dc, sizeof(*dc)); 527 528 mutex_enter(&config_misc_lock); 529 } 530 mutex_exit(&config_misc_lock); 531 532 kthread_exit(0); 533 } 534 535 void 536 config_create_mountrootthreads(void) 537 { 538 int i; 539 540 if (!root_is_mounted) 541 root_is_mounted = true; 542 543 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * 544 mountroot_config_threads; 545 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, 546 KM_NOSLEEP); 547 KASSERT(mountroot_config_lwpids); 548 for (i = 0; i < mountroot_config_threads; i++) { 549 mountroot_config_lwpids[i] = 0; 550 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */, 551 NULL, config_mountroot_thread, NULL, 552 &mountroot_config_lwpids[i], 553 "configroot"); 554 } 555 } 556 557 void 558 config_finalize_mountroot(void) 559 { 560 int i, error; 561 562 for (i = 0; i < mountroot_config_threads; i++) { 563 if (mountroot_config_lwpids[i] == 0) 564 continue; 565 566 error = kthread_join(mountroot_config_lwpids[i]); 567 if (error) 568 printf("%s: thread %x joined with error %d\n", 569 __func__, i, error); 570 } 571 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); 572 } 573 574 /* 575 * Announce device attach/detach to userland listeners. 576 */ 577 578 int 579 no_devmon_insert(const char *name, prop_dictionary_t p) 580 { 581 582 return ENODEV; 583 } 584 585 static void 586 devmon_report_device(device_t dev, bool isattach) 587 { 588 prop_dictionary_t ev, dict = device_properties(dev); 589 const char *parent; 590 const char *what; 591 const char *where; 592 device_t pdev = device_parent(dev); 593 594 /* If currently no drvctl device, just return */ 595 if (devmon_insert_vec == no_devmon_insert) 596 return; 597 598 ev = prop_dictionary_create(); 599 if (ev == NULL) 600 return; 601 602 what = (isattach ? "device-attach" : "device-detach"); 603 parent = (pdev == NULL ? "root" : device_xname(pdev)); 604 if (prop_dictionary_get_string(dict, "location", &where)) { 605 prop_dictionary_set_string(ev, "location", where); 606 aprint_debug("ev: %s %s at %s in [%s]\n", 607 what, device_xname(dev), parent, where); 608 } 609 if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) || 610 !prop_dictionary_set_string(ev, "parent", parent)) { 611 prop_object_release(ev); 612 return; 613 } 614 615 if ((*devmon_insert_vec)(what, ev) != 0) 616 prop_object_release(ev); 617 } 618 619 /* 620 * Add a cfdriver to the system. 621 */ 622 int 623 config_cfdriver_attach(struct cfdriver *cd) 624 { 625 struct cfdriver *lcd; 626 627 /* Make sure this driver isn't already in the system. */ 628 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 629 if (STREQ(lcd->cd_name, cd->cd_name)) 630 return EEXIST; 631 } 632 633 LIST_INIT(&cd->cd_attach); 634 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 635 636 return 0; 637 } 638 639 /* 640 * Remove a cfdriver from the system. 641 */ 642 int 643 config_cfdriver_detach(struct cfdriver *cd) 644 { 645 struct alldevs_foray af; 646 int i, rc = 0; 647 648 config_alldevs_enter(&af); 649 /* Make sure there are no active instances. */ 650 for (i = 0; i < cd->cd_ndevs; i++) { 651 if (cd->cd_devs[i] != NULL) { 652 rc = EBUSY; 653 break; 654 } 655 } 656 config_alldevs_exit(&af); 657 658 if (rc != 0) 659 return rc; 660 661 /* ...and no attachments loaded. */ 662 if (LIST_EMPTY(&cd->cd_attach) == 0) 663 return EBUSY; 664 665 LIST_REMOVE(cd, cd_list); 666 667 KASSERT(cd->cd_devs == NULL); 668 669 return 0; 670 } 671 672 /* 673 * Look up a cfdriver by name. 674 */ 675 struct cfdriver * 676 config_cfdriver_lookup(const char *name) 677 { 678 struct cfdriver *cd; 679 680 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 681 if (STREQ(cd->cd_name, name)) 682 return cd; 683 } 684 685 return NULL; 686 } 687 688 /* 689 * Add a cfattach to the specified driver. 690 */ 691 int 692 config_cfattach_attach(const char *driver, struct cfattach *ca) 693 { 694 struct cfattach *lca; 695 struct cfdriver *cd; 696 697 cd = config_cfdriver_lookup(driver); 698 if (cd == NULL) 699 return ESRCH; 700 701 /* Make sure this attachment isn't already on this driver. */ 702 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 703 if (STREQ(lca->ca_name, ca->ca_name)) 704 return EEXIST; 705 } 706 707 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 708 709 return 0; 710 } 711 712 /* 713 * Remove a cfattach from the specified driver. 714 */ 715 int 716 config_cfattach_detach(const char *driver, struct cfattach *ca) 717 { 718 struct alldevs_foray af; 719 struct cfdriver *cd; 720 device_t dev; 721 int i, rc = 0; 722 723 cd = config_cfdriver_lookup(driver); 724 if (cd == NULL) 725 return ESRCH; 726 727 config_alldevs_enter(&af); 728 /* Make sure there are no active instances. */ 729 for (i = 0; i < cd->cd_ndevs; i++) { 730 if ((dev = cd->cd_devs[i]) == NULL) 731 continue; 732 if (dev->dv_cfattach == ca) { 733 rc = EBUSY; 734 break; 735 } 736 } 737 config_alldevs_exit(&af); 738 739 if (rc != 0) 740 return rc; 741 742 LIST_REMOVE(ca, ca_list); 743 744 return 0; 745 } 746 747 /* 748 * Look up a cfattach by name. 749 */ 750 static struct cfattach * 751 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 752 { 753 struct cfattach *ca; 754 755 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 756 if (STREQ(ca->ca_name, atname)) 757 return ca; 758 } 759 760 return NULL; 761 } 762 763 /* 764 * Look up a cfattach by driver/attachment name. 765 */ 766 struct cfattach * 767 config_cfattach_lookup(const char *name, const char *atname) 768 { 769 struct cfdriver *cd; 770 771 cd = config_cfdriver_lookup(name); 772 if (cd == NULL) 773 return NULL; 774 775 return config_cfattach_lookup_cd(cd, atname); 776 } 777 778 /* 779 * Apply the matching function and choose the best. This is used 780 * a few times and we want to keep the code small. 781 */ 782 static void 783 mapply(struct matchinfo *m, cfdata_t cf) 784 { 785 int pri; 786 787 if (m->fn != NULL) { 788 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 789 } else { 790 pri = config_match(m->parent, cf, m->aux); 791 } 792 if (pri > m->pri) { 793 m->match = cf; 794 m->pri = pri; 795 } 796 } 797 798 int 799 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 800 { 801 const struct cfiattrdata *ci; 802 const struct cflocdesc *cl; 803 int nlocs, i; 804 805 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 806 KASSERT(ci); 807 nlocs = ci->ci_loclen; 808 KASSERT(!nlocs || locs); 809 for (i = 0; i < nlocs; i++) { 810 cl = &ci->ci_locdesc[i]; 811 if (cl->cld_defaultstr != NULL && 812 cf->cf_loc[i] == cl->cld_default) 813 continue; 814 if (cf->cf_loc[i] == locs[i]) 815 continue; 816 return 0; 817 } 818 819 return config_match(parent, cf, aux); 820 } 821 822 /* 823 * Helper function: check whether the driver supports the interface attribute 824 * and return its descriptor structure. 825 */ 826 static const struct cfiattrdata * 827 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 828 { 829 const struct cfiattrdata * const *cpp; 830 831 if (cd->cd_attrs == NULL) 832 return 0; 833 834 for (cpp = cd->cd_attrs; *cpp; cpp++) { 835 if (STREQ((*cpp)->ci_name, ia)) { 836 /* Match. */ 837 return *cpp; 838 } 839 } 840 return 0; 841 } 842 843 static int __diagused 844 cfdriver_iattr_count(const struct cfdriver *cd) 845 { 846 const struct cfiattrdata * const *cpp; 847 int i; 848 849 if (cd->cd_attrs == NULL) 850 return 0; 851 852 for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) { 853 i++; 854 } 855 return i; 856 } 857 858 /* 859 * Lookup an interface attribute description by name. 860 * If the driver is given, consider only its supported attributes. 861 */ 862 const struct cfiattrdata * 863 cfiattr_lookup(const char *name, const struct cfdriver *cd) 864 { 865 const struct cfdriver *d; 866 const struct cfiattrdata *ia; 867 868 if (cd) 869 return cfdriver_get_iattr(cd, name); 870 871 LIST_FOREACH(d, &allcfdrivers, cd_list) { 872 ia = cfdriver_get_iattr(d, name); 873 if (ia) 874 return ia; 875 } 876 return 0; 877 } 878 879 /* 880 * Determine if `parent' is a potential parent for a device spec based 881 * on `cfp'. 882 */ 883 static int 884 cfparent_match(const device_t parent, const struct cfparent *cfp) 885 { 886 struct cfdriver *pcd; 887 888 /* We don't match root nodes here. */ 889 if (cfp == NULL) 890 return 0; 891 892 pcd = parent->dv_cfdriver; 893 KASSERT(pcd != NULL); 894 895 /* 896 * First, ensure this parent has the correct interface 897 * attribute. 898 */ 899 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 900 return 0; 901 902 /* 903 * If no specific parent device instance was specified (i.e. 904 * we're attaching to the attribute only), we're done! 905 */ 906 if (cfp->cfp_parent == NULL) 907 return 1; 908 909 /* 910 * Check the parent device's name. 911 */ 912 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 913 return 0; /* not the same parent */ 914 915 /* 916 * Make sure the unit number matches. 917 */ 918 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 919 cfp->cfp_unit == parent->dv_unit) 920 return 1; 921 922 /* Unit numbers don't match. */ 923 return 0; 924 } 925 926 /* 927 * Helper for config_cfdata_attach(): check all devices whether it could be 928 * parent any attachment in the config data table passed, and rescan. 929 */ 930 static void 931 rescan_with_cfdata(const struct cfdata *cf) 932 { 933 device_t d; 934 const struct cfdata *cf1; 935 deviter_t di; 936 937 KASSERT(KERNEL_LOCKED_P()); 938 939 /* 940 * "alldevs" is likely longer than a modules's cfdata, so make it 941 * the outer loop. 942 */ 943 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 944 945 if (!(d->dv_cfattach->ca_rescan)) 946 continue; 947 948 for (cf1 = cf; cf1->cf_name; cf1++) { 949 950 if (!cfparent_match(d, cf1->cf_pspec)) 951 continue; 952 953 (*d->dv_cfattach->ca_rescan)(d, 954 cfdata_ifattr(cf1), cf1->cf_loc); 955 956 config_deferred(d); 957 } 958 } 959 deviter_release(&di); 960 } 961 962 /* 963 * Attach a supplemental config data table and rescan potential 964 * parent devices if required. 965 */ 966 int 967 config_cfdata_attach(cfdata_t cf, int scannow) 968 { 969 struct cftable *ct; 970 971 KERNEL_LOCK(1, NULL); 972 973 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 974 ct->ct_cfdata = cf; 975 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 976 977 if (scannow) 978 rescan_with_cfdata(cf); 979 980 KERNEL_UNLOCK_ONE(NULL); 981 982 return 0; 983 } 984 985 /* 986 * Helper for config_cfdata_detach: check whether a device is 987 * found through any attachment in the config data table. 988 */ 989 static int 990 dev_in_cfdata(device_t d, cfdata_t cf) 991 { 992 const struct cfdata *cf1; 993 994 for (cf1 = cf; cf1->cf_name; cf1++) 995 if (d->dv_cfdata == cf1) 996 return 1; 997 998 return 0; 999 } 1000 1001 /* 1002 * Detach a supplemental config data table. Detach all devices found 1003 * through that table (and thus keeping references to it) before. 1004 */ 1005 int 1006 config_cfdata_detach(cfdata_t cf) 1007 { 1008 device_t d; 1009 int error = 0; 1010 struct cftable *ct; 1011 deviter_t di; 1012 1013 KERNEL_LOCK(1, NULL); 1014 1015 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 1016 d = deviter_next(&di)) { 1017 if (!dev_in_cfdata(d, cf)) 1018 continue; 1019 if ((error = config_detach(d, 0)) != 0) 1020 break; 1021 } 1022 deviter_release(&di); 1023 if (error) { 1024 aprint_error_dev(d, "unable to detach instance\n"); 1025 goto out; 1026 } 1027 1028 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1029 if (ct->ct_cfdata == cf) { 1030 TAILQ_REMOVE(&allcftables, ct, ct_list); 1031 kmem_free(ct, sizeof(*ct)); 1032 error = 0; 1033 goto out; 1034 } 1035 } 1036 1037 /* not found -- shouldn't happen */ 1038 error = EINVAL; 1039 1040 out: KERNEL_UNLOCK_ONE(NULL); 1041 return error; 1042 } 1043 1044 /* 1045 * Invoke the "match" routine for a cfdata entry on behalf of 1046 * an external caller, usually a direct config "submatch" routine. 1047 */ 1048 int 1049 config_match(device_t parent, cfdata_t cf, void *aux) 1050 { 1051 struct cfattach *ca; 1052 1053 KASSERT(KERNEL_LOCKED_P()); 1054 1055 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 1056 if (ca == NULL) { 1057 /* No attachment for this entry, oh well. */ 1058 return 0; 1059 } 1060 1061 return (*ca->ca_match)(parent, cf, aux); 1062 } 1063 1064 /* 1065 * Invoke the "probe" routine for a cfdata entry on behalf of 1066 * an external caller, usually an indirect config "search" routine. 1067 */ 1068 int 1069 config_probe(device_t parent, cfdata_t cf, void *aux) 1070 { 1071 /* 1072 * This is currently a synonym for config_match(), but this 1073 * is an implementation detail; "match" and "probe" routines 1074 * have different behaviors. 1075 * 1076 * XXX config_probe() should return a bool, because there is 1077 * XXX no match score for probe -- it's either there or it's 1078 * XXX not, but some ports abuse the return value as a way 1079 * XXX to attach "critical" devices before "non-critical" 1080 * XXX devices. 1081 */ 1082 return config_match(parent, cf, aux); 1083 } 1084 1085 static struct cfargs_internal * 1086 cfargs_canonicalize(const struct cfargs * const cfargs, 1087 struct cfargs_internal * const store) 1088 { 1089 struct cfargs_internal *args = store; 1090 1091 memset(args, 0, sizeof(*args)); 1092 1093 /* If none specified, are all-NULL pointers are good. */ 1094 if (cfargs == NULL) { 1095 return args; 1096 } 1097 1098 /* 1099 * Only one arguments version is recognized at this time. 1100 */ 1101 if (cfargs->cfargs_version != CFARGS_VERSION) { 1102 panic("cfargs_canonicalize: unknown version %lu\n", 1103 (unsigned long)cfargs->cfargs_version); 1104 } 1105 1106 /* 1107 * submatch and search are mutually-exclusive. 1108 */ 1109 if (cfargs->submatch != NULL && cfargs->search != NULL) { 1110 panic("cfargs_canonicalize: submatch and search are " 1111 "mutually-exclusive"); 1112 } 1113 if (cfargs->submatch != NULL) { 1114 args->submatch = cfargs->submatch; 1115 } else if (cfargs->search != NULL) { 1116 args->search = cfargs->search; 1117 } 1118 1119 args->iattr = cfargs->iattr; 1120 args->locators = cfargs->locators; 1121 args->devhandle = cfargs->devhandle; 1122 1123 return args; 1124 } 1125 1126 /* 1127 * Iterate over all potential children of some device, calling the given 1128 * function (default being the child's match function) for each one. 1129 * Nonzero returns are matches; the highest value returned is considered 1130 * the best match. Return the `found child' if we got a match, or NULL 1131 * otherwise. The `aux' pointer is simply passed on through. 1132 * 1133 * Note that this function is designed so that it can be used to apply 1134 * an arbitrary function to all potential children (its return value 1135 * can be ignored). 1136 */ 1137 static cfdata_t 1138 config_search_internal(device_t parent, void *aux, 1139 const struct cfargs_internal * const args) 1140 { 1141 struct cftable *ct; 1142 cfdata_t cf; 1143 struct matchinfo m; 1144 1145 KASSERT(config_initialized); 1146 KASSERT(!args->iattr || 1147 cfdriver_get_iattr(parent->dv_cfdriver, args->iattr)); 1148 KASSERT(args->iattr || 1149 cfdriver_iattr_count(parent->dv_cfdriver) < 2); 1150 1151 m.fn = args->submatch; /* N.B. union */ 1152 m.parent = parent; 1153 m.locs = args->locators; 1154 m.aux = aux; 1155 m.match = NULL; 1156 m.pri = 0; 1157 1158 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1159 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1160 1161 /* We don't match root nodes here. */ 1162 if (!cf->cf_pspec) 1163 continue; 1164 1165 /* 1166 * Skip cf if no longer eligible, otherwise scan 1167 * through parents for one matching `parent', and 1168 * try match function. 1169 */ 1170 if (cf->cf_fstate == FSTATE_FOUND) 1171 continue; 1172 if (cf->cf_fstate == FSTATE_DNOTFOUND || 1173 cf->cf_fstate == FSTATE_DSTAR) 1174 continue; 1175 1176 /* 1177 * If an interface attribute was specified, 1178 * consider only children which attach to 1179 * that attribute. 1180 */ 1181 if (args->iattr != NULL && 1182 !STREQ(args->iattr, cfdata_ifattr(cf))) 1183 continue; 1184 1185 if (cfparent_match(parent, cf->cf_pspec)) 1186 mapply(&m, cf); 1187 } 1188 } 1189 rnd_add_uint32(&rnd_autoconf_source, 0); 1190 return m.match; 1191 } 1192 1193 cfdata_t 1194 config_search(device_t parent, void *aux, const struct cfargs *cfargs) 1195 { 1196 cfdata_t cf; 1197 struct cfargs_internal store; 1198 1199 cf = config_search_internal(parent, aux, 1200 cfargs_canonicalize(cfargs, &store)); 1201 1202 return cf; 1203 } 1204 1205 /* 1206 * Find the given root device. 1207 * This is much like config_search, but there is no parent. 1208 * Don't bother with multiple cfdata tables; the root node 1209 * must always be in the initial table. 1210 */ 1211 cfdata_t 1212 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1213 { 1214 cfdata_t cf; 1215 const short *p; 1216 struct matchinfo m; 1217 1218 m.fn = fn; 1219 m.parent = ROOT; 1220 m.aux = aux; 1221 m.match = NULL; 1222 m.pri = 0; 1223 m.locs = 0; 1224 /* 1225 * Look at root entries for matching name. We do not bother 1226 * with found-state here since only one root should ever be 1227 * searched (and it must be done first). 1228 */ 1229 for (p = cfroots; *p >= 0; p++) { 1230 cf = &cfdata[*p]; 1231 if (strcmp(cf->cf_name, rootname) == 0) 1232 mapply(&m, cf); 1233 } 1234 return m.match; 1235 } 1236 1237 static const char * const msgs[] = { 1238 [QUIET] = "", 1239 [UNCONF] = " not configured\n", 1240 [UNSUPP] = " unsupported\n", 1241 }; 1242 1243 /* 1244 * The given `aux' argument describes a device that has been found 1245 * on the given parent, but not necessarily configured. Locate the 1246 * configuration data for that device (using the submatch function 1247 * provided, or using candidates' cd_match configuration driver 1248 * functions) and attach it, and return its device_t. If the device was 1249 * not configured, call the given `print' function and return NULL. 1250 */ 1251 device_t 1252 config_found(device_t parent, void *aux, cfprint_t print, 1253 const struct cfargs * const cfargs) 1254 { 1255 cfdata_t cf; 1256 struct cfargs_internal store; 1257 const struct cfargs_internal * const args = 1258 cfargs_canonicalize(cfargs, &store); 1259 1260 cf = config_search_internal(parent, aux, args); 1261 if (cf != NULL) { 1262 return config_attach_internal(parent, cf, aux, print, args); 1263 } 1264 1265 if (print) { 1266 if (config_do_twiddle && cold) 1267 twiddle(); 1268 1269 const int pret = (*print)(aux, device_xname(parent)); 1270 KASSERT(pret >= 0); 1271 KASSERT(pret < __arraycount(msgs)); 1272 KASSERT(msgs[pret] != NULL); 1273 aprint_normal("%s", msgs[pret]); 1274 } 1275 1276 return NULL; 1277 } 1278 1279 /* 1280 * As above, but for root devices. 1281 */ 1282 device_t 1283 config_rootfound(const char *rootname, void *aux) 1284 { 1285 cfdata_t cf; 1286 device_t dev = NULL; 1287 1288 KERNEL_LOCK(1, NULL); 1289 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1290 dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE); 1291 else 1292 aprint_error("root device %s not configured\n", rootname); 1293 KERNEL_UNLOCK_ONE(NULL); 1294 return dev; 1295 } 1296 1297 /* just like sprintf(buf, "%d") except that it works from the end */ 1298 static char * 1299 number(char *ep, int n) 1300 { 1301 1302 *--ep = 0; 1303 while (n >= 10) { 1304 *--ep = (n % 10) + '0'; 1305 n /= 10; 1306 } 1307 *--ep = n + '0'; 1308 return ep; 1309 } 1310 1311 /* 1312 * Expand the size of the cd_devs array if necessary. 1313 * 1314 * The caller must hold alldevs_lock. config_makeroom() may release and 1315 * re-acquire alldevs_lock, so callers should re-check conditions such 1316 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1317 * returns. 1318 */ 1319 static void 1320 config_makeroom(int n, struct cfdriver *cd) 1321 { 1322 int ondevs, nndevs; 1323 device_t *osp, *nsp; 1324 1325 KASSERT(mutex_owned(&alldevs_lock)); 1326 alldevs_nwrite++; 1327 1328 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1329 ; 1330 1331 while (n >= cd->cd_ndevs) { 1332 /* 1333 * Need to expand the array. 1334 */ 1335 ondevs = cd->cd_ndevs; 1336 osp = cd->cd_devs; 1337 1338 /* 1339 * Release alldevs_lock around allocation, which may 1340 * sleep. 1341 */ 1342 mutex_exit(&alldevs_lock); 1343 nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP); 1344 mutex_enter(&alldevs_lock); 1345 1346 /* 1347 * If another thread moved the array while we did 1348 * not hold alldevs_lock, try again. 1349 */ 1350 if (cd->cd_devs != osp) { 1351 mutex_exit(&alldevs_lock); 1352 kmem_free(nsp, sizeof(device_t) * nndevs); 1353 mutex_enter(&alldevs_lock); 1354 continue; 1355 } 1356 1357 memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs)); 1358 if (ondevs != 0) 1359 memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs); 1360 1361 cd->cd_ndevs = nndevs; 1362 cd->cd_devs = nsp; 1363 if (ondevs != 0) { 1364 mutex_exit(&alldevs_lock); 1365 kmem_free(osp, sizeof(device_t) * ondevs); 1366 mutex_enter(&alldevs_lock); 1367 } 1368 } 1369 KASSERT(mutex_owned(&alldevs_lock)); 1370 alldevs_nwrite--; 1371 } 1372 1373 /* 1374 * Put dev into the devices list. 1375 */ 1376 static void 1377 config_devlink(device_t dev) 1378 { 1379 1380 mutex_enter(&alldevs_lock); 1381 1382 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1383 1384 dev->dv_add_gen = alldevs_gen; 1385 /* It is safe to add a device to the tail of the list while 1386 * readers and writers are in the list. 1387 */ 1388 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1389 mutex_exit(&alldevs_lock); 1390 } 1391 1392 static void 1393 config_devfree(device_t dev) 1394 { 1395 1396 KASSERT(dev->dv_flags & DVF_PRIV_ALLOC); 1397 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1398 1399 if (dev->dv_cfattach->ca_devsize > 0) 1400 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1401 kmem_free(dev, sizeof(*dev)); 1402 } 1403 1404 /* 1405 * Caller must hold alldevs_lock. 1406 */ 1407 static void 1408 config_devunlink(device_t dev, struct devicelist *garbage) 1409 { 1410 struct device_garbage *dg = &dev->dv_garbage; 1411 cfdriver_t cd = device_cfdriver(dev); 1412 int i; 1413 1414 KASSERT(mutex_owned(&alldevs_lock)); 1415 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1416 1417 /* Unlink from device list. Link to garbage list. */ 1418 TAILQ_REMOVE(&alldevs, dev, dv_list); 1419 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1420 1421 /* Remove from cfdriver's array. */ 1422 cd->cd_devs[dev->dv_unit] = NULL; 1423 1424 /* 1425 * If the device now has no units in use, unlink its softc array. 1426 */ 1427 for (i = 0; i < cd->cd_ndevs; i++) { 1428 if (cd->cd_devs[i] != NULL) 1429 break; 1430 } 1431 /* Nothing found. Unlink, now. Deallocate, later. */ 1432 if (i == cd->cd_ndevs) { 1433 dg->dg_ndevs = cd->cd_ndevs; 1434 dg->dg_devs = cd->cd_devs; 1435 cd->cd_devs = NULL; 1436 cd->cd_ndevs = 0; 1437 } 1438 } 1439 1440 static void 1441 config_devdelete(device_t dev) 1442 { 1443 struct device_garbage *dg = &dev->dv_garbage; 1444 device_lock_t dvl = device_getlock(dev); 1445 1446 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1447 1448 if (dg->dg_devs != NULL) 1449 kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs); 1450 1451 localcount_fini(dev->dv_localcount); 1452 kmem_free(dev->dv_localcount, sizeof(*dev->dv_localcount)); 1453 1454 cv_destroy(&dvl->dvl_cv); 1455 mutex_destroy(&dvl->dvl_mtx); 1456 1457 KASSERT(dev->dv_properties != NULL); 1458 prop_object_release(dev->dv_properties); 1459 1460 if (dev->dv_activity_handlers) 1461 panic("%s with registered handlers", __func__); 1462 1463 if (dev->dv_locators) { 1464 size_t amount = *--dev->dv_locators; 1465 kmem_free(dev->dv_locators, amount); 1466 } 1467 1468 config_devfree(dev); 1469 } 1470 1471 static int 1472 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1473 { 1474 int unit = cf->cf_unit; 1475 1476 if (unit < 0) 1477 return -1; 1478 if (cf->cf_fstate == FSTATE_STAR) { 1479 for (; unit < cd->cd_ndevs; unit++) 1480 if (cd->cd_devs[unit] == NULL) 1481 break; 1482 /* 1483 * unit is now the unit of the first NULL device pointer, 1484 * or max(cd->cd_ndevs,cf->cf_unit). 1485 */ 1486 } else { 1487 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1488 unit = -1; 1489 } 1490 return unit; 1491 } 1492 1493 static int 1494 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1495 { 1496 struct alldevs_foray af; 1497 int unit; 1498 1499 config_alldevs_enter(&af); 1500 for (;;) { 1501 unit = config_unit_nextfree(cd, cf); 1502 if (unit == -1) 1503 break; 1504 if (unit < cd->cd_ndevs) { 1505 cd->cd_devs[unit] = dev; 1506 dev->dv_unit = unit; 1507 break; 1508 } 1509 config_makeroom(unit, cd); 1510 } 1511 config_alldevs_exit(&af); 1512 1513 return unit; 1514 } 1515 1516 static device_t 1517 config_devalloc(const device_t parent, const cfdata_t cf, 1518 const struct cfargs_internal * const args) 1519 { 1520 cfdriver_t cd; 1521 cfattach_t ca; 1522 size_t lname, lunit; 1523 const char *xunit; 1524 int myunit; 1525 char num[10]; 1526 device_t dev; 1527 void *dev_private; 1528 const struct cfiattrdata *ia; 1529 device_lock_t dvl; 1530 1531 cd = config_cfdriver_lookup(cf->cf_name); 1532 if (cd == NULL) 1533 return NULL; 1534 1535 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1536 if (ca == NULL) 1537 return NULL; 1538 1539 /* get memory for all device vars */ 1540 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1541 if (ca->ca_devsize > 0) { 1542 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1543 } else { 1544 dev_private = NULL; 1545 } 1546 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1547 1548 dev->dv_handle = args->devhandle; 1549 1550 dev->dv_class = cd->cd_class; 1551 dev->dv_cfdata = cf; 1552 dev->dv_cfdriver = cd; 1553 dev->dv_cfattach = ca; 1554 dev->dv_activity_count = 0; 1555 dev->dv_activity_handlers = NULL; 1556 dev->dv_private = dev_private; 1557 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1558 dev->dv_attaching = curlwp; 1559 1560 myunit = config_unit_alloc(dev, cd, cf); 1561 if (myunit == -1) { 1562 config_devfree(dev); 1563 return NULL; 1564 } 1565 1566 /* compute length of name and decimal expansion of unit number */ 1567 lname = strlen(cd->cd_name); 1568 xunit = number(&num[sizeof(num)], myunit); 1569 lunit = &num[sizeof(num)] - xunit; 1570 if (lname + lunit > sizeof(dev->dv_xname)) 1571 panic("config_devalloc: device name too long"); 1572 1573 dvl = device_getlock(dev); 1574 1575 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1576 cv_init(&dvl->dvl_cv, "pmfsusp"); 1577 1578 memcpy(dev->dv_xname, cd->cd_name, lname); 1579 memcpy(dev->dv_xname + lname, xunit, lunit); 1580 dev->dv_parent = parent; 1581 if (parent != NULL) 1582 dev->dv_depth = parent->dv_depth + 1; 1583 else 1584 dev->dv_depth = 0; 1585 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1586 if (args->locators) { 1587 KASSERT(parent); /* no locators at root */ 1588 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1589 dev->dv_locators = 1590 kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP); 1591 *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1); 1592 memcpy(dev->dv_locators, args->locators, 1593 sizeof(int) * ia->ci_loclen); 1594 } 1595 dev->dv_properties = prop_dictionary_create(); 1596 KASSERT(dev->dv_properties != NULL); 1597 1598 prop_dictionary_set_string_nocopy(dev->dv_properties, 1599 "device-driver", dev->dv_cfdriver->cd_name); 1600 prop_dictionary_set_uint16(dev->dv_properties, 1601 "device-unit", dev->dv_unit); 1602 if (parent != NULL) { 1603 prop_dictionary_set_string(dev->dv_properties, 1604 "device-parent", device_xname(parent)); 1605 } 1606 1607 dev->dv_localcount = kmem_zalloc(sizeof(*dev->dv_localcount), 1608 KM_SLEEP); 1609 localcount_init(dev->dv_localcount); 1610 1611 if (dev->dv_cfdriver->cd_attrs != NULL) 1612 config_add_attrib_dict(dev); 1613 1614 return dev; 1615 } 1616 1617 /* 1618 * Create an array of device attach attributes and add it 1619 * to the device's dv_properties dictionary. 1620 * 1621 * <key>interface-attributes</key> 1622 * <array> 1623 * <dict> 1624 * <key>attribute-name</key> 1625 * <string>foo</string> 1626 * <key>locators</key> 1627 * <array> 1628 * <dict> 1629 * <key>loc-name</key> 1630 * <string>foo-loc1</string> 1631 * </dict> 1632 * <dict> 1633 * <key>loc-name</key> 1634 * <string>foo-loc2</string> 1635 * <key>default</key> 1636 * <string>foo-loc2-default</string> 1637 * </dict> 1638 * ... 1639 * </array> 1640 * </dict> 1641 * ... 1642 * </array> 1643 */ 1644 1645 static void 1646 config_add_attrib_dict(device_t dev) 1647 { 1648 int i, j; 1649 const struct cfiattrdata *ci; 1650 prop_dictionary_t attr_dict, loc_dict; 1651 prop_array_t attr_array, loc_array; 1652 1653 if ((attr_array = prop_array_create()) == NULL) 1654 return; 1655 1656 for (i = 0; ; i++) { 1657 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1658 break; 1659 if ((attr_dict = prop_dictionary_create()) == NULL) 1660 break; 1661 prop_dictionary_set_string_nocopy(attr_dict, "attribute-name", 1662 ci->ci_name); 1663 1664 /* Create an array of the locator names and defaults */ 1665 1666 if (ci->ci_loclen != 0 && 1667 (loc_array = prop_array_create()) != NULL) { 1668 for (j = 0; j < ci->ci_loclen; j++) { 1669 loc_dict = prop_dictionary_create(); 1670 if (loc_dict == NULL) 1671 continue; 1672 prop_dictionary_set_string_nocopy(loc_dict, 1673 "loc-name", ci->ci_locdesc[j].cld_name); 1674 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1675 prop_dictionary_set_string_nocopy( 1676 loc_dict, "default", 1677 ci->ci_locdesc[j].cld_defaultstr); 1678 prop_array_set(loc_array, j, loc_dict); 1679 prop_object_release(loc_dict); 1680 } 1681 prop_dictionary_set_and_rel(attr_dict, "locators", 1682 loc_array); 1683 } 1684 prop_array_add(attr_array, attr_dict); 1685 prop_object_release(attr_dict); 1686 } 1687 if (i == 0) 1688 prop_object_release(attr_array); 1689 else 1690 prop_dictionary_set_and_rel(dev->dv_properties, 1691 "interface-attributes", attr_array); 1692 1693 return; 1694 } 1695 1696 /* 1697 * Attach a found device. 1698 */ 1699 static device_t 1700 config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1701 const struct cfargs_internal * const args) 1702 { 1703 device_t dev; 1704 struct cftable *ct; 1705 const char *drvname; 1706 bool deferred; 1707 1708 KASSERT(KERNEL_LOCKED_P()); 1709 1710 dev = config_devalloc(parent, cf, args); 1711 if (!dev) 1712 panic("config_attach: allocation of device softc failed"); 1713 1714 /* XXX redundant - see below? */ 1715 if (cf->cf_fstate != FSTATE_STAR) { 1716 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1717 cf->cf_fstate = FSTATE_FOUND; 1718 } 1719 1720 config_devlink(dev); 1721 1722 if (config_do_twiddle && cold) 1723 twiddle(); 1724 else 1725 aprint_naive("Found "); 1726 /* 1727 * We want the next two printfs for normal, verbose, and quiet, 1728 * but not silent (in which case, we're twiddling, instead). 1729 */ 1730 if (parent == ROOT) { 1731 aprint_naive("%s (root)", device_xname(dev)); 1732 aprint_normal("%s (root)", device_xname(dev)); 1733 } else { 1734 aprint_naive("%s at %s", device_xname(dev), 1735 device_xname(parent)); 1736 aprint_normal("%s at %s", device_xname(dev), 1737 device_xname(parent)); 1738 if (print) 1739 (void) (*print)(aux, NULL); 1740 } 1741 1742 /* 1743 * Before attaching, clobber any unfound devices that are 1744 * otherwise identical. 1745 * XXX code above is redundant? 1746 */ 1747 drvname = dev->dv_cfdriver->cd_name; 1748 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1749 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1750 if (STREQ(cf->cf_name, drvname) && 1751 cf->cf_unit == dev->dv_unit) { 1752 if (cf->cf_fstate == FSTATE_NOTFOUND) 1753 cf->cf_fstate = FSTATE_FOUND; 1754 } 1755 } 1756 } 1757 device_register(dev, aux); 1758 1759 /* Let userland know */ 1760 devmon_report_device(dev, true); 1761 1762 /* 1763 * Prevent detach until the driver's attach function, and all 1764 * deferred actions, have finished. 1765 */ 1766 config_pending_incr(dev); 1767 1768 /* Call the driver's attach function. */ 1769 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1770 1771 /* 1772 * Allow other threads to acquire references to the device now 1773 * that the driver's attach function is done. 1774 */ 1775 mutex_enter(&config_misc_lock); 1776 KASSERT(dev->dv_attaching == curlwp); 1777 dev->dv_attaching = NULL; 1778 cv_broadcast(&config_misc_cv); 1779 mutex_exit(&config_misc_lock); 1780 1781 /* 1782 * Synchronous parts of attach are done. Allow detach, unless 1783 * the driver's attach function scheduled deferred actions. 1784 */ 1785 config_pending_decr(dev); 1786 1787 mutex_enter(&config_misc_lock); 1788 deferred = (dev->dv_pending != 0); 1789 mutex_exit(&config_misc_lock); 1790 1791 if (!deferred && !device_pmf_is_registered(dev)) 1792 aprint_debug_dev(dev, 1793 "WARNING: power management not supported\n"); 1794 1795 config_process_deferred(&deferred_config_queue, dev); 1796 1797 device_register_post_config(dev, aux); 1798 rnd_add_uint32(&rnd_autoconf_source, 0); 1799 return dev; 1800 } 1801 1802 device_t 1803 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1804 const struct cfargs *cfargs) 1805 { 1806 struct cfargs_internal store; 1807 1808 KASSERT(KERNEL_LOCKED_P()); 1809 1810 return config_attach_internal(parent, cf, aux, print, 1811 cfargs_canonicalize(cfargs, &store)); 1812 } 1813 1814 /* 1815 * As above, but for pseudo-devices. Pseudo-devices attached in this 1816 * way are silently inserted into the device tree, and their children 1817 * attached. 1818 * 1819 * Note that because pseudo-devices are attached silently, any information 1820 * the attach routine wishes to print should be prefixed with the device 1821 * name by the attach routine. 1822 */ 1823 device_t 1824 config_attach_pseudo(cfdata_t cf) 1825 { 1826 device_t dev; 1827 1828 KERNEL_LOCK(1, NULL); 1829 1830 struct cfargs_internal args = { }; 1831 dev = config_devalloc(ROOT, cf, &args); 1832 if (!dev) 1833 goto out; 1834 1835 /* XXX mark busy in cfdata */ 1836 1837 if (cf->cf_fstate != FSTATE_STAR) { 1838 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1839 cf->cf_fstate = FSTATE_FOUND; 1840 } 1841 1842 config_devlink(dev); 1843 1844 #if 0 /* XXXJRT not yet */ 1845 device_register(dev, NULL); /* like a root node */ 1846 #endif 1847 1848 /* Let userland know */ 1849 devmon_report_device(dev, true); 1850 1851 /* 1852 * Prevent detach until the driver's attach function, and all 1853 * deferred actions, have finished. 1854 */ 1855 config_pending_incr(dev); 1856 1857 /* Call the driver's attach function. */ 1858 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1859 1860 /* 1861 * Allow other threads to acquire references to the device now 1862 * that the driver's attach function is done. 1863 */ 1864 mutex_enter(&config_misc_lock); 1865 KASSERT(dev->dv_attaching == curlwp); 1866 dev->dv_attaching = NULL; 1867 cv_broadcast(&config_misc_cv); 1868 mutex_exit(&config_misc_lock); 1869 1870 /* 1871 * Synchronous parts of attach are done. Allow detach, unless 1872 * the driver's attach function scheduled deferred actions. 1873 */ 1874 config_pending_decr(dev); 1875 1876 config_process_deferred(&deferred_config_queue, dev); 1877 1878 out: KERNEL_UNLOCK_ONE(NULL); 1879 return dev; 1880 } 1881 1882 /* 1883 * Caller must hold alldevs_lock. 1884 */ 1885 static void 1886 config_collect_garbage(struct devicelist *garbage) 1887 { 1888 device_t dv; 1889 1890 KASSERT(!cpu_intr_p()); 1891 KASSERT(!cpu_softintr_p()); 1892 KASSERT(mutex_owned(&alldevs_lock)); 1893 1894 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1895 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1896 if (dv->dv_del_gen != 0) 1897 break; 1898 } 1899 if (dv == NULL) { 1900 alldevs_garbage = false; 1901 break; 1902 } 1903 config_devunlink(dv, garbage); 1904 } 1905 KASSERT(mutex_owned(&alldevs_lock)); 1906 } 1907 1908 static void 1909 config_dump_garbage(struct devicelist *garbage) 1910 { 1911 device_t dv; 1912 1913 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1914 TAILQ_REMOVE(garbage, dv, dv_list); 1915 config_devdelete(dv); 1916 } 1917 } 1918 1919 static int 1920 config_detach_enter(device_t dev) 1921 { 1922 int error = 0; 1923 1924 mutex_enter(&config_misc_lock); 1925 1926 /* 1927 * Wait until attach has fully completed, and until any 1928 * concurrent detach (e.g., drvctl racing with USB event 1929 * thread) has completed. 1930 * 1931 * Caller must hold alldevs_nread or alldevs_nwrite (e.g., via 1932 * deviter) to ensure the winner of the race doesn't free the 1933 * device leading the loser of the race into use-after-free. 1934 * 1935 * XXX Not all callers do this! 1936 */ 1937 while (dev->dv_pending || dev->dv_detaching) { 1938 KASSERTMSG(dev->dv_detaching != curlwp, 1939 "recursively detaching %s", device_xname(dev)); 1940 error = cv_wait_sig(&config_misc_cv, &config_misc_lock); 1941 if (error) 1942 goto out; 1943 } 1944 1945 /* 1946 * Attach has completed, and no other concurrent detach is 1947 * running. Claim the device for detaching. This will cause 1948 * all new attempts to acquire references to block. 1949 */ 1950 KASSERT(dev->dv_attaching == NULL); 1951 KASSERT(dev->dv_detaching == NULL); 1952 dev->dv_detaching = curlwp; 1953 1954 out: mutex_exit(&config_misc_lock); 1955 return error; 1956 } 1957 1958 static void 1959 config_detach_exit(device_t dev) 1960 { 1961 1962 mutex_enter(&config_misc_lock); 1963 KASSERT(dev->dv_detaching == curlwp); 1964 dev->dv_detaching = NULL; 1965 cv_broadcast(&config_misc_cv); 1966 mutex_exit(&config_misc_lock); 1967 } 1968 1969 /* 1970 * Detach a device. Optionally forced (e.g. because of hardware 1971 * removal) and quiet. Returns zero if successful, non-zero 1972 * (an error code) otherwise. 1973 * 1974 * Note that this code wants to be run from a process context, so 1975 * that the detach can sleep to allow processes which have a device 1976 * open to run and unwind their stacks. 1977 */ 1978 int 1979 config_detach(device_t dev, int flags) 1980 { 1981 struct alldevs_foray af; 1982 struct cftable *ct; 1983 cfdata_t cf; 1984 const struct cfattach *ca; 1985 struct cfdriver *cd; 1986 device_t d __diagused; 1987 int rv = 0; 1988 1989 KERNEL_LOCK(1, NULL); 1990 1991 cf = dev->dv_cfdata; 1992 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND || 1993 cf->cf_fstate == FSTATE_STAR), 1994 "config_detach: %s: bad device fstate: %d", 1995 device_xname(dev), cf ? cf->cf_fstate : -1); 1996 1997 cd = dev->dv_cfdriver; 1998 KASSERT(cd != NULL); 1999 2000 ca = dev->dv_cfattach; 2001 KASSERT(ca != NULL); 2002 2003 /* 2004 * Only one detach at a time, please -- and not until fully 2005 * attached. 2006 */ 2007 rv = config_detach_enter(dev); 2008 if (rv) { 2009 KERNEL_UNLOCK_ONE(NULL); 2010 return rv; 2011 } 2012 2013 mutex_enter(&alldevs_lock); 2014 if (dev->dv_del_gen != 0) { 2015 mutex_exit(&alldevs_lock); 2016 #ifdef DIAGNOSTIC 2017 printf("%s: %s is already detached\n", __func__, 2018 device_xname(dev)); 2019 #endif /* DIAGNOSTIC */ 2020 config_detach_exit(dev); 2021 KERNEL_UNLOCK_ONE(NULL); 2022 return ENOENT; 2023 } 2024 alldevs_nwrite++; 2025 mutex_exit(&alldevs_lock); 2026 2027 /* 2028 * Call the driver's .ca_detach function, unless it has none or 2029 * we are skipping it because it's unforced shutdown time and 2030 * the driver didn't ask to detach on shutdown. 2031 */ 2032 if (!detachall && 2033 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 2034 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 2035 rv = EOPNOTSUPP; 2036 } else if (ca->ca_detach != NULL) { 2037 rv = (*ca->ca_detach)(dev, flags); 2038 } else 2039 rv = EOPNOTSUPP; 2040 2041 /* 2042 * If it was not possible to detach the device, then we either 2043 * panic() (for the forced but failed case), or return an error. 2044 */ 2045 if (rv) { 2046 /* 2047 * Detach failed -- likely EOPNOTSUPP or EBUSY. Driver 2048 * must not have called config_detach_commit. 2049 */ 2050 KASSERTMSG(!dev->dv_detached, 2051 "%s committed to detaching and then backed out", 2052 device_xname(dev)); 2053 if (flags & DETACH_FORCE) { 2054 panic("config_detach: forced detach of %s failed (%d)", 2055 device_xname(dev), rv); 2056 } 2057 goto out; 2058 } 2059 2060 /* 2061 * The device has now been successfully detached. 2062 */ 2063 2064 /* 2065 * If .ca_detach didn't commit to detach, then do that for it. 2066 * This wakes any pending device_lookup_acquire calls so they 2067 * will fail. 2068 */ 2069 config_detach_commit(dev); 2070 2071 /* 2072 * If it was possible to detach the device, ensure that the 2073 * device is deactivated. 2074 */ 2075 dev->dv_flags &= ~DVF_ACTIVE; /* XXXSMP */ 2076 2077 /* 2078 * Wait for all device_lookup_acquire references -- mostly, for 2079 * all attempts to open the device -- to drain. It is the 2080 * responsibility of .ca_detach to ensure anything with open 2081 * references will be interrupted and release them promptly, 2082 * not block indefinitely. All new attempts to acquire 2083 * references will fail, as config_detach_commit has arranged 2084 * by now. 2085 */ 2086 mutex_enter(&config_misc_lock); 2087 localcount_drain(dev->dv_localcount, 2088 &config_misc_cv, &config_misc_lock); 2089 mutex_exit(&config_misc_lock); 2090 2091 /* Let userland know */ 2092 devmon_report_device(dev, false); 2093 2094 #ifdef DIAGNOSTIC 2095 /* 2096 * Sanity: If you're successfully detached, you should have no 2097 * children. (Note that because children must be attached 2098 * after parents, we only need to search the latter part of 2099 * the list.) 2100 */ 2101 mutex_enter(&alldevs_lock); 2102 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 2103 d = TAILQ_NEXT(d, dv_list)) { 2104 if (d->dv_parent == dev && d->dv_del_gen == 0) { 2105 printf("config_detach: detached device %s" 2106 " has children %s\n", device_xname(dev), 2107 device_xname(d)); 2108 panic("config_detach"); 2109 } 2110 } 2111 mutex_exit(&alldevs_lock); 2112 #endif 2113 2114 /* notify the parent that the child is gone */ 2115 if (dev->dv_parent) { 2116 device_t p = dev->dv_parent; 2117 if (p->dv_cfattach->ca_childdetached) 2118 (*p->dv_cfattach->ca_childdetached)(p, dev); 2119 } 2120 2121 /* 2122 * Mark cfdata to show that the unit can be reused, if possible. 2123 */ 2124 TAILQ_FOREACH(ct, &allcftables, ct_list) { 2125 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 2126 if (STREQ(cf->cf_name, cd->cd_name)) { 2127 if (cf->cf_fstate == FSTATE_FOUND && 2128 cf->cf_unit == dev->dv_unit) 2129 cf->cf_fstate = FSTATE_NOTFOUND; 2130 } 2131 } 2132 } 2133 2134 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 2135 aprint_normal_dev(dev, "detached\n"); 2136 2137 out: 2138 config_detach_exit(dev); 2139 2140 config_alldevs_enter(&af); 2141 KASSERT(alldevs_nwrite != 0); 2142 --alldevs_nwrite; 2143 if (rv == 0 && dev->dv_del_gen == 0) { 2144 if (alldevs_nwrite == 0 && alldevs_nread == 0) 2145 config_devunlink(dev, &af.af_garbage); 2146 else { 2147 dev->dv_del_gen = alldevs_gen; 2148 alldevs_garbage = true; 2149 } 2150 } 2151 config_alldevs_exit(&af); 2152 2153 KERNEL_UNLOCK_ONE(NULL); 2154 2155 return rv; 2156 } 2157 2158 /* 2159 * config_detach_commit(dev) 2160 * 2161 * Issued by a driver's .ca_detach routine to notify anyone 2162 * waiting in device_lookup_acquire that the driver is committed 2163 * to detaching the device, which allows device_lookup_acquire to 2164 * wake up and fail immediately. 2165 * 2166 * Safe to call multiple times -- idempotent. Must be called 2167 * during config_detach_enter/exit. Safe to use with 2168 * device_lookup because the device is not actually removed from 2169 * the table until after config_detach_exit. 2170 */ 2171 void 2172 config_detach_commit(device_t dev) 2173 { 2174 2175 mutex_enter(&config_misc_lock); 2176 KASSERT(dev->dv_detaching == curlwp); 2177 dev->dv_detached = true; 2178 cv_broadcast(&config_misc_cv); 2179 mutex_exit(&config_misc_lock); 2180 } 2181 2182 int 2183 config_detach_children(device_t parent, int flags) 2184 { 2185 device_t dv; 2186 deviter_t di; 2187 int error = 0; 2188 2189 KASSERT(KERNEL_LOCKED_P()); 2190 2191 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 2192 dv = deviter_next(&di)) { 2193 if (device_parent(dv) != parent) 2194 continue; 2195 if ((error = config_detach(dv, flags)) != 0) 2196 break; 2197 } 2198 deviter_release(&di); 2199 return error; 2200 } 2201 2202 device_t 2203 shutdown_first(struct shutdown_state *s) 2204 { 2205 if (!s->initialized) { 2206 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 2207 s->initialized = true; 2208 } 2209 return shutdown_next(s); 2210 } 2211 2212 device_t 2213 shutdown_next(struct shutdown_state *s) 2214 { 2215 device_t dv; 2216 2217 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 2218 ; 2219 2220 if (dv == NULL) 2221 s->initialized = false; 2222 2223 return dv; 2224 } 2225 2226 bool 2227 config_detach_all(int how) 2228 { 2229 static struct shutdown_state s; 2230 device_t curdev; 2231 bool progress = false; 2232 int flags; 2233 2234 KERNEL_LOCK(1, NULL); 2235 2236 if ((how & (RB_NOSYNC|RB_DUMP)) != 0) 2237 goto out; 2238 2239 if ((how & RB_POWERDOWN) == RB_POWERDOWN) 2240 flags = DETACH_SHUTDOWN | DETACH_POWEROFF; 2241 else 2242 flags = DETACH_SHUTDOWN; 2243 2244 for (curdev = shutdown_first(&s); curdev != NULL; 2245 curdev = shutdown_next(&s)) { 2246 aprint_debug(" detaching %s, ", device_xname(curdev)); 2247 if (config_detach(curdev, flags) == 0) { 2248 progress = true; 2249 aprint_debug("success."); 2250 } else 2251 aprint_debug("failed."); 2252 } 2253 2254 out: KERNEL_UNLOCK_ONE(NULL); 2255 return progress; 2256 } 2257 2258 static bool 2259 device_is_ancestor_of(device_t ancestor, device_t descendant) 2260 { 2261 device_t dv; 2262 2263 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 2264 if (device_parent(dv) == ancestor) 2265 return true; 2266 } 2267 return false; 2268 } 2269 2270 int 2271 config_deactivate(device_t dev) 2272 { 2273 deviter_t di; 2274 const struct cfattach *ca; 2275 device_t descendant; 2276 int s, rv = 0, oflags; 2277 2278 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 2279 descendant != NULL; 2280 descendant = deviter_next(&di)) { 2281 if (dev != descendant && 2282 !device_is_ancestor_of(dev, descendant)) 2283 continue; 2284 2285 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 2286 continue; 2287 2288 ca = descendant->dv_cfattach; 2289 oflags = descendant->dv_flags; 2290 2291 descendant->dv_flags &= ~DVF_ACTIVE; 2292 if (ca->ca_activate == NULL) 2293 continue; 2294 s = splhigh(); 2295 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 2296 splx(s); 2297 if (rv != 0) 2298 descendant->dv_flags = oflags; 2299 } 2300 deviter_release(&di); 2301 return rv; 2302 } 2303 2304 /* 2305 * Defer the configuration of the specified device until all 2306 * of its parent's devices have been attached. 2307 */ 2308 void 2309 config_defer(device_t dev, void (*func)(device_t)) 2310 { 2311 struct deferred_config *dc; 2312 2313 if (dev->dv_parent == NULL) 2314 panic("config_defer: can't defer config of a root device"); 2315 2316 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2317 2318 config_pending_incr(dev); 2319 2320 mutex_enter(&config_misc_lock); 2321 #ifdef DIAGNOSTIC 2322 struct deferred_config *odc; 2323 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) { 2324 if (odc->dc_dev == dev) 2325 panic("config_defer: deferred twice"); 2326 } 2327 #endif 2328 dc->dc_dev = dev; 2329 dc->dc_func = func; 2330 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 2331 mutex_exit(&config_misc_lock); 2332 } 2333 2334 /* 2335 * Defer some autoconfiguration for a device until after interrupts 2336 * are enabled. 2337 */ 2338 void 2339 config_interrupts(device_t dev, void (*func)(device_t)) 2340 { 2341 struct deferred_config *dc; 2342 2343 /* 2344 * If interrupts are enabled, callback now. 2345 */ 2346 if (cold == 0) { 2347 (*func)(dev); 2348 return; 2349 } 2350 2351 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2352 2353 config_pending_incr(dev); 2354 2355 mutex_enter(&config_misc_lock); 2356 #ifdef DIAGNOSTIC 2357 struct deferred_config *odc; 2358 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) { 2359 if (odc->dc_dev == dev) 2360 panic("config_interrupts: deferred twice"); 2361 } 2362 #endif 2363 dc->dc_dev = dev; 2364 dc->dc_func = func; 2365 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 2366 mutex_exit(&config_misc_lock); 2367 } 2368 2369 /* 2370 * Defer some autoconfiguration for a device until after root file system 2371 * is mounted (to load firmware etc). 2372 */ 2373 void 2374 config_mountroot(device_t dev, void (*func)(device_t)) 2375 { 2376 struct deferred_config *dc; 2377 2378 /* 2379 * If root file system is mounted, callback now. 2380 */ 2381 if (root_is_mounted) { 2382 (*func)(dev); 2383 return; 2384 } 2385 2386 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2387 2388 mutex_enter(&config_misc_lock); 2389 #ifdef DIAGNOSTIC 2390 struct deferred_config *odc; 2391 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) { 2392 if (odc->dc_dev == dev) 2393 panic("%s: deferred twice", __func__); 2394 } 2395 #endif 2396 2397 dc->dc_dev = dev; 2398 dc->dc_func = func; 2399 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 2400 mutex_exit(&config_misc_lock); 2401 } 2402 2403 /* 2404 * Process a deferred configuration queue. 2405 */ 2406 static void 2407 config_process_deferred(struct deferred_config_head *queue, device_t parent) 2408 { 2409 struct deferred_config *dc; 2410 2411 KASSERT(KERNEL_LOCKED_P()); 2412 2413 mutex_enter(&config_misc_lock); 2414 dc = TAILQ_FIRST(queue); 2415 while (dc) { 2416 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2417 TAILQ_REMOVE(queue, dc, dc_queue); 2418 mutex_exit(&config_misc_lock); 2419 2420 (*dc->dc_func)(dc->dc_dev); 2421 config_pending_decr(dc->dc_dev); 2422 kmem_free(dc, sizeof(*dc)); 2423 2424 mutex_enter(&config_misc_lock); 2425 /* Restart, queue might have changed */ 2426 dc = TAILQ_FIRST(queue); 2427 } else { 2428 dc = TAILQ_NEXT(dc, dc_queue); 2429 } 2430 } 2431 mutex_exit(&config_misc_lock); 2432 } 2433 2434 /* 2435 * Manipulate the config_pending semaphore. 2436 */ 2437 void 2438 config_pending_incr(device_t dev) 2439 { 2440 2441 mutex_enter(&config_misc_lock); 2442 KASSERTMSG(dev->dv_pending < INT_MAX, 2443 "%s: excess config_pending_incr", device_xname(dev)); 2444 if (dev->dv_pending++ == 0) 2445 TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list); 2446 #ifdef DEBUG_AUTOCONF 2447 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending); 2448 #endif 2449 mutex_exit(&config_misc_lock); 2450 } 2451 2452 void 2453 config_pending_decr(device_t dev) 2454 { 2455 2456 mutex_enter(&config_misc_lock); 2457 KASSERTMSG(dev->dv_pending > 0, 2458 "%s: excess config_pending_decr", device_xname(dev)); 2459 if (--dev->dv_pending == 0) { 2460 TAILQ_REMOVE(&config_pending, dev, dv_pending_list); 2461 cv_broadcast(&config_misc_cv); 2462 } 2463 #ifdef DEBUG_AUTOCONF 2464 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending); 2465 #endif 2466 mutex_exit(&config_misc_lock); 2467 } 2468 2469 /* 2470 * Register a "finalization" routine. Finalization routines are 2471 * called iteratively once all real devices have been found during 2472 * autoconfiguration, for as long as any one finalizer has done 2473 * any work. 2474 */ 2475 int 2476 config_finalize_register(device_t dev, int (*fn)(device_t)) 2477 { 2478 struct finalize_hook *f; 2479 int error = 0; 2480 2481 KERNEL_LOCK(1, NULL); 2482 2483 /* 2484 * If finalization has already been done, invoke the 2485 * callback function now. 2486 */ 2487 if (config_finalize_done) { 2488 while ((*fn)(dev) != 0) 2489 /* loop */ ; 2490 goto out; 2491 } 2492 2493 /* Ensure this isn't already on the list. */ 2494 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2495 if (f->f_func == fn && f->f_dev == dev) { 2496 error = EEXIST; 2497 goto out; 2498 } 2499 } 2500 2501 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2502 f->f_func = fn; 2503 f->f_dev = dev; 2504 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2505 2506 /* Success! */ 2507 error = 0; 2508 2509 out: KERNEL_UNLOCK_ONE(NULL); 2510 return error; 2511 } 2512 2513 void 2514 config_finalize(void) 2515 { 2516 struct finalize_hook *f; 2517 struct pdevinit *pdev; 2518 extern struct pdevinit pdevinit[]; 2519 int errcnt, rv; 2520 2521 /* 2522 * Now that device driver threads have been created, wait for 2523 * them to finish any deferred autoconfiguration. 2524 */ 2525 mutex_enter(&config_misc_lock); 2526 while (!TAILQ_EMPTY(&config_pending)) { 2527 device_t dev; 2528 int error; 2529 2530 error = cv_timedwait(&config_misc_cv, &config_misc_lock, 2531 mstohz(1000)); 2532 if (error == EWOULDBLOCK) { 2533 aprint_debug("waiting for devices:"); 2534 TAILQ_FOREACH(dev, &config_pending, dv_pending_list) 2535 aprint_debug(" %s", device_xname(dev)); 2536 aprint_debug("\n"); 2537 } 2538 } 2539 mutex_exit(&config_misc_lock); 2540 2541 KERNEL_LOCK(1, NULL); 2542 2543 /* Attach pseudo-devices. */ 2544 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2545 (*pdev->pdev_attach)(pdev->pdev_count); 2546 2547 /* Run the hooks until none of them does any work. */ 2548 do { 2549 rv = 0; 2550 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2551 rv |= (*f->f_func)(f->f_dev); 2552 } while (rv != 0); 2553 2554 config_finalize_done = 1; 2555 2556 /* Now free all the hooks. */ 2557 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2558 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2559 kmem_free(f, sizeof(*f)); 2560 } 2561 2562 KERNEL_UNLOCK_ONE(NULL); 2563 2564 errcnt = aprint_get_error_count(); 2565 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2566 (boothowto & AB_VERBOSE) == 0) { 2567 mutex_enter(&config_misc_lock); 2568 if (config_do_twiddle) { 2569 config_do_twiddle = 0; 2570 printf_nolog(" done.\n"); 2571 } 2572 mutex_exit(&config_misc_lock); 2573 } 2574 if (errcnt != 0) { 2575 printf("WARNING: %d error%s while detecting hardware; " 2576 "check system log.\n", errcnt, 2577 errcnt == 1 ? "" : "s"); 2578 } 2579 } 2580 2581 void 2582 config_twiddle_init(void) 2583 { 2584 2585 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2586 config_do_twiddle = 1; 2587 } 2588 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2589 } 2590 2591 void 2592 config_twiddle_fn(void *cookie) 2593 { 2594 2595 mutex_enter(&config_misc_lock); 2596 if (config_do_twiddle) { 2597 twiddle(); 2598 callout_schedule(&config_twiddle_ch, mstohz(100)); 2599 } 2600 mutex_exit(&config_misc_lock); 2601 } 2602 2603 static void 2604 config_alldevs_enter(struct alldevs_foray *af) 2605 { 2606 TAILQ_INIT(&af->af_garbage); 2607 mutex_enter(&alldevs_lock); 2608 config_collect_garbage(&af->af_garbage); 2609 } 2610 2611 static void 2612 config_alldevs_exit(struct alldevs_foray *af) 2613 { 2614 mutex_exit(&alldevs_lock); 2615 config_dump_garbage(&af->af_garbage); 2616 } 2617 2618 /* 2619 * device_lookup: 2620 * 2621 * Look up a device instance for a given driver. 2622 * 2623 * Caller is responsible for ensuring the device's state is 2624 * stable, either by holding a reference already obtained with 2625 * device_lookup_acquire or by otherwise ensuring the device is 2626 * attached and can't be detached (e.g., holding an open device 2627 * node and ensuring *_detach calls vdevgone). 2628 * 2629 * XXX Find a way to assert this. 2630 * 2631 * Safe for use up to and including interrupt context at IPL_VM. 2632 * Never sleeps. 2633 */ 2634 device_t 2635 device_lookup(cfdriver_t cd, int unit) 2636 { 2637 device_t dv; 2638 2639 mutex_enter(&alldevs_lock); 2640 if (unit < 0 || unit >= cd->cd_ndevs) 2641 dv = NULL; 2642 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2643 dv = NULL; 2644 mutex_exit(&alldevs_lock); 2645 2646 return dv; 2647 } 2648 2649 /* 2650 * device_lookup_private: 2651 * 2652 * Look up a softc instance for a given driver. 2653 */ 2654 void * 2655 device_lookup_private(cfdriver_t cd, int unit) 2656 { 2657 2658 return device_private(device_lookup(cd, unit)); 2659 } 2660 2661 /* 2662 * device_lookup_acquire: 2663 * 2664 * Look up a device instance for a given driver, and return a 2665 * reference to it that must be released by device_release. 2666 * 2667 * => If the device is still attaching, blocks until *_attach has 2668 * returned. 2669 * 2670 * => If the device is detaching, blocks until *_detach has 2671 * returned. May succeed or fail in that case, depending on 2672 * whether *_detach has backed out (EBUSY) or committed to 2673 * detaching. 2674 * 2675 * May sleep. 2676 */ 2677 device_t 2678 device_lookup_acquire(cfdriver_t cd, int unit) 2679 { 2680 device_t dv; 2681 2682 ASSERT_SLEEPABLE(); 2683 2684 /* XXX This should have a pserialized fast path -- TBD. */ 2685 mutex_enter(&config_misc_lock); 2686 mutex_enter(&alldevs_lock); 2687 retry: if (unit < 0 || unit >= cd->cd_ndevs || 2688 (dv = cd->cd_devs[unit]) == NULL || 2689 dv->dv_del_gen != 0 || 2690 dv->dv_detached) { 2691 dv = NULL; 2692 } else { 2693 /* 2694 * Wait for the device to stabilize, if attaching or 2695 * detaching. Either way we must wait for *_attach or 2696 * *_detach to complete, and either way we must retry: 2697 * even if detaching, *_detach might fail (EBUSY) so 2698 * the device may still be there. 2699 */ 2700 if ((dv->dv_attaching != NULL && dv->dv_attaching != curlwp) || 2701 dv->dv_detaching != NULL) { 2702 mutex_exit(&alldevs_lock); 2703 cv_wait(&config_misc_cv, &config_misc_lock); 2704 mutex_enter(&alldevs_lock); 2705 goto retry; 2706 } 2707 localcount_acquire(dv->dv_localcount); 2708 } 2709 mutex_exit(&alldevs_lock); 2710 mutex_exit(&config_misc_lock); 2711 2712 return dv; 2713 } 2714 2715 /* 2716 * device_release: 2717 * 2718 * Release a reference to a device acquired with 2719 * device_lookup_acquire. 2720 */ 2721 void 2722 device_release(device_t dv) 2723 { 2724 2725 localcount_release(dv->dv_localcount, 2726 &config_misc_cv, &config_misc_lock); 2727 } 2728 2729 /* 2730 * device_find_by_xname: 2731 * 2732 * Returns the device of the given name or NULL if it doesn't exist. 2733 */ 2734 device_t 2735 device_find_by_xname(const char *name) 2736 { 2737 device_t dv; 2738 deviter_t di; 2739 2740 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2741 if (strcmp(device_xname(dv), name) == 0) 2742 break; 2743 } 2744 deviter_release(&di); 2745 2746 return dv; 2747 } 2748 2749 /* 2750 * device_find_by_driver_unit: 2751 * 2752 * Returns the device of the given driver name and unit or 2753 * NULL if it doesn't exist. 2754 */ 2755 device_t 2756 device_find_by_driver_unit(const char *name, int unit) 2757 { 2758 struct cfdriver *cd; 2759 2760 if ((cd = config_cfdriver_lookup(name)) == NULL) 2761 return NULL; 2762 return device_lookup(cd, unit); 2763 } 2764 2765 static bool 2766 match_strcmp(const char * const s1, const char * const s2) 2767 { 2768 return strcmp(s1, s2) == 0; 2769 } 2770 2771 static bool 2772 match_pmatch(const char * const s1, const char * const s2) 2773 { 2774 return pmatch(s1, s2, NULL) == 2; 2775 } 2776 2777 static bool 2778 strarray_match_internal(const char ** const strings, 2779 unsigned int const nstrings, const char * const str, 2780 unsigned int * const indexp, 2781 bool (*match_fn)(const char *, const char *)) 2782 { 2783 unsigned int i; 2784 2785 if (strings == NULL || nstrings == 0) { 2786 return false; 2787 } 2788 2789 for (i = 0; i < nstrings; i++) { 2790 if ((*match_fn)(strings[i], str)) { 2791 *indexp = i; 2792 return true; 2793 } 2794 } 2795 2796 return false; 2797 } 2798 2799 static int 2800 strarray_match(const char ** const strings, unsigned int const nstrings, 2801 const char * const str) 2802 { 2803 unsigned int idx; 2804 2805 if (strarray_match_internal(strings, nstrings, str, &idx, 2806 match_strcmp)) { 2807 return (int)(nstrings - idx); 2808 } 2809 return 0; 2810 } 2811 2812 static int 2813 strarray_pmatch(const char ** const strings, unsigned int const nstrings, 2814 const char * const pattern) 2815 { 2816 unsigned int idx; 2817 2818 if (strarray_match_internal(strings, nstrings, pattern, &idx, 2819 match_pmatch)) { 2820 return (int)(nstrings - idx); 2821 } 2822 return 0; 2823 } 2824 2825 static int 2826 device_compatible_match_strarray_internal( 2827 const char **device_compats, int ndevice_compats, 2828 const struct device_compatible_entry *driver_compats, 2829 const struct device_compatible_entry **matching_entryp, 2830 int (*match_fn)(const char **, unsigned int, const char *)) 2831 { 2832 const struct device_compatible_entry *dce = NULL; 2833 int rv; 2834 2835 if (ndevice_compats == 0 || device_compats == NULL || 2836 driver_compats == NULL) 2837 return 0; 2838 2839 for (dce = driver_compats; dce->compat != NULL; dce++) { 2840 rv = (*match_fn)(device_compats, ndevice_compats, dce->compat); 2841 if (rv != 0) { 2842 if (matching_entryp != NULL) { 2843 *matching_entryp = dce; 2844 } 2845 return rv; 2846 } 2847 } 2848 return 0; 2849 } 2850 2851 /* 2852 * device_compatible_match: 2853 * 2854 * Match a driver's "compatible" data against a device's 2855 * "compatible" strings. Returns resulted weighted by 2856 * which device "compatible" string was matched. 2857 */ 2858 int 2859 device_compatible_match(const char **device_compats, int ndevice_compats, 2860 const struct device_compatible_entry *driver_compats) 2861 { 2862 return device_compatible_match_strarray_internal(device_compats, 2863 ndevice_compats, driver_compats, NULL, strarray_match); 2864 } 2865 2866 /* 2867 * device_compatible_pmatch: 2868 * 2869 * Like device_compatible_match(), but uses pmatch(9) to compare 2870 * the device "compatible" strings against patterns in the 2871 * driver's "compatible" data. 2872 */ 2873 int 2874 device_compatible_pmatch(const char **device_compats, int ndevice_compats, 2875 const struct device_compatible_entry *driver_compats) 2876 { 2877 return device_compatible_match_strarray_internal(device_compats, 2878 ndevice_compats, driver_compats, NULL, strarray_pmatch); 2879 } 2880 2881 static int 2882 device_compatible_match_strlist_internal( 2883 const char * const device_compats, size_t const device_compatsize, 2884 const struct device_compatible_entry *driver_compats, 2885 const struct device_compatible_entry **matching_entryp, 2886 int (*match_fn)(const char *, size_t, const char *)) 2887 { 2888 const struct device_compatible_entry *dce = NULL; 2889 int rv; 2890 2891 if (device_compats == NULL || device_compatsize == 0 || 2892 driver_compats == NULL) 2893 return 0; 2894 2895 for (dce = driver_compats; dce->compat != NULL; dce++) { 2896 rv = (*match_fn)(device_compats, device_compatsize, 2897 dce->compat); 2898 if (rv != 0) { 2899 if (matching_entryp != NULL) { 2900 *matching_entryp = dce; 2901 } 2902 return rv; 2903 } 2904 } 2905 return 0; 2906 } 2907 2908 /* 2909 * device_compatible_match_strlist: 2910 * 2911 * Like device_compatible_match(), but take the device 2912 * "compatible" strings as an OpenFirmware-style string 2913 * list. 2914 */ 2915 int 2916 device_compatible_match_strlist( 2917 const char * const device_compats, size_t const device_compatsize, 2918 const struct device_compatible_entry *driver_compats) 2919 { 2920 return device_compatible_match_strlist_internal(device_compats, 2921 device_compatsize, driver_compats, NULL, strlist_match); 2922 } 2923 2924 /* 2925 * device_compatible_pmatch_strlist: 2926 * 2927 * Like device_compatible_pmatch(), but take the device 2928 * "compatible" strings as an OpenFirmware-style string 2929 * list. 2930 */ 2931 int 2932 device_compatible_pmatch_strlist( 2933 const char * const device_compats, size_t const device_compatsize, 2934 const struct device_compatible_entry *driver_compats) 2935 { 2936 return device_compatible_match_strlist_internal(device_compats, 2937 device_compatsize, driver_compats, NULL, strlist_pmatch); 2938 } 2939 2940 static int 2941 device_compatible_match_id_internal( 2942 uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id, 2943 const struct device_compatible_entry *driver_compats, 2944 const struct device_compatible_entry **matching_entryp) 2945 { 2946 const struct device_compatible_entry *dce = NULL; 2947 2948 if (mask == 0) 2949 return 0; 2950 2951 for (dce = driver_compats; dce->id != sentinel_id; dce++) { 2952 if ((id & mask) == dce->id) { 2953 if (matching_entryp != NULL) { 2954 *matching_entryp = dce; 2955 } 2956 return 1; 2957 } 2958 } 2959 return 0; 2960 } 2961 2962 /* 2963 * device_compatible_match_id: 2964 * 2965 * Like device_compatible_match(), but takes a single 2966 * unsigned integer device ID. 2967 */ 2968 int 2969 device_compatible_match_id( 2970 uintptr_t const id, uintptr_t const sentinel_id, 2971 const struct device_compatible_entry *driver_compats) 2972 { 2973 return device_compatible_match_id_internal(id, (uintptr_t)-1, 2974 sentinel_id, driver_compats, NULL); 2975 } 2976 2977 /* 2978 * device_compatible_lookup: 2979 * 2980 * Look up and return the device_compatible_entry, using the 2981 * same matching criteria used by device_compatible_match(). 2982 */ 2983 const struct device_compatible_entry * 2984 device_compatible_lookup(const char **device_compats, int ndevice_compats, 2985 const struct device_compatible_entry *driver_compats) 2986 { 2987 const struct device_compatible_entry *dce; 2988 2989 if (device_compatible_match_strarray_internal(device_compats, 2990 ndevice_compats, driver_compats, &dce, strarray_match)) { 2991 return dce; 2992 } 2993 return NULL; 2994 } 2995 2996 /* 2997 * device_compatible_plookup: 2998 * 2999 * Look up and return the device_compatible_entry, using the 3000 * same matching criteria used by device_compatible_pmatch(). 3001 */ 3002 const struct device_compatible_entry * 3003 device_compatible_plookup(const char **device_compats, int ndevice_compats, 3004 const struct device_compatible_entry *driver_compats) 3005 { 3006 const struct device_compatible_entry *dce; 3007 3008 if (device_compatible_match_strarray_internal(device_compats, 3009 ndevice_compats, driver_compats, &dce, strarray_pmatch)) { 3010 return dce; 3011 } 3012 return NULL; 3013 } 3014 3015 /* 3016 * device_compatible_lookup_strlist: 3017 * 3018 * Like device_compatible_lookup(), but take the device 3019 * "compatible" strings as an OpenFirmware-style string 3020 * list. 3021 */ 3022 const struct device_compatible_entry * 3023 device_compatible_lookup_strlist( 3024 const char * const device_compats, size_t const device_compatsize, 3025 const struct device_compatible_entry *driver_compats) 3026 { 3027 const struct device_compatible_entry *dce; 3028 3029 if (device_compatible_match_strlist_internal(device_compats, 3030 device_compatsize, driver_compats, &dce, strlist_match)) { 3031 return dce; 3032 } 3033 return NULL; 3034 } 3035 3036 /* 3037 * device_compatible_plookup_strlist: 3038 * 3039 * Like device_compatible_plookup(), but take the device 3040 * "compatible" strings as an OpenFirmware-style string 3041 * list. 3042 */ 3043 const struct device_compatible_entry * 3044 device_compatible_plookup_strlist( 3045 const char * const device_compats, size_t const device_compatsize, 3046 const struct device_compatible_entry *driver_compats) 3047 { 3048 const struct device_compatible_entry *dce; 3049 3050 if (device_compatible_match_strlist_internal(device_compats, 3051 device_compatsize, driver_compats, &dce, strlist_pmatch)) { 3052 return dce; 3053 } 3054 return NULL; 3055 } 3056 3057 /* 3058 * device_compatible_lookup_id: 3059 * 3060 * Like device_compatible_lookup(), but takes a single 3061 * unsigned integer device ID. 3062 */ 3063 const struct device_compatible_entry * 3064 device_compatible_lookup_id( 3065 uintptr_t const id, uintptr_t const sentinel_id, 3066 const struct device_compatible_entry *driver_compats) 3067 { 3068 const struct device_compatible_entry *dce; 3069 3070 if (device_compatible_match_id_internal(id, (uintptr_t)-1, 3071 sentinel_id, driver_compats, &dce)) { 3072 return dce; 3073 } 3074 return NULL; 3075 } 3076 3077 /* 3078 * Power management related functions. 3079 */ 3080 3081 bool 3082 device_pmf_is_registered(device_t dev) 3083 { 3084 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 3085 } 3086 3087 bool 3088 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 3089 { 3090 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 3091 return true; 3092 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 3093 return false; 3094 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 3095 dev->dv_driver_suspend != NULL && 3096 !(*dev->dv_driver_suspend)(dev, qual)) 3097 return false; 3098 3099 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 3100 return true; 3101 } 3102 3103 bool 3104 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 3105 { 3106 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 3107 return true; 3108 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 3109 return false; 3110 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 3111 dev->dv_driver_resume != NULL && 3112 !(*dev->dv_driver_resume)(dev, qual)) 3113 return false; 3114 3115 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 3116 return true; 3117 } 3118 3119 bool 3120 device_pmf_driver_shutdown(device_t dev, int how) 3121 { 3122 3123 if (*dev->dv_driver_shutdown != NULL && 3124 !(*dev->dv_driver_shutdown)(dev, how)) 3125 return false; 3126 return true; 3127 } 3128 3129 bool 3130 device_pmf_driver_register(device_t dev, 3131 bool (*suspend)(device_t, const pmf_qual_t *), 3132 bool (*resume)(device_t, const pmf_qual_t *), 3133 bool (*shutdown)(device_t, int)) 3134 { 3135 dev->dv_driver_suspend = suspend; 3136 dev->dv_driver_resume = resume; 3137 dev->dv_driver_shutdown = shutdown; 3138 dev->dv_flags |= DVF_POWER_HANDLERS; 3139 return true; 3140 } 3141 3142 void 3143 device_pmf_driver_deregister(device_t dev) 3144 { 3145 device_lock_t dvl = device_getlock(dev); 3146 3147 dev->dv_driver_suspend = NULL; 3148 dev->dv_driver_resume = NULL; 3149 3150 mutex_enter(&dvl->dvl_mtx); 3151 dev->dv_flags &= ~DVF_POWER_HANDLERS; 3152 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 3153 /* Wake a thread that waits for the lock. That 3154 * thread will fail to acquire the lock, and then 3155 * it will wake the next thread that waits for the 3156 * lock, or else it will wake us. 3157 */ 3158 cv_signal(&dvl->dvl_cv); 3159 pmflock_debug(dev, __func__, __LINE__); 3160 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 3161 pmflock_debug(dev, __func__, __LINE__); 3162 } 3163 mutex_exit(&dvl->dvl_mtx); 3164 } 3165 3166 bool 3167 device_pmf_driver_child_register(device_t dev) 3168 { 3169 device_t parent = device_parent(dev); 3170 3171 if (parent == NULL || parent->dv_driver_child_register == NULL) 3172 return true; 3173 return (*parent->dv_driver_child_register)(dev); 3174 } 3175 3176 void 3177 device_pmf_driver_set_child_register(device_t dev, 3178 bool (*child_register)(device_t)) 3179 { 3180 dev->dv_driver_child_register = child_register; 3181 } 3182 3183 static void 3184 pmflock_debug(device_t dev, const char *func, int line) 3185 { 3186 #ifdef PMFLOCK_DEBUG 3187 device_lock_t dvl = device_getlock(dev); 3188 const char *curlwp_name; 3189 3190 if (curlwp->l_name != NULL) 3191 curlwp_name = curlwp->l_name; 3192 else 3193 curlwp_name = curlwp->l_proc->p_comm; 3194 3195 aprint_debug_dev(dev, 3196 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line, 3197 curlwp_name, dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags); 3198 #endif /* PMFLOCK_DEBUG */ 3199 } 3200 3201 static bool 3202 device_pmf_lock1(device_t dev) 3203 { 3204 device_lock_t dvl = device_getlock(dev); 3205 3206 while (device_pmf_is_registered(dev) && 3207 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 3208 dvl->dvl_nwait++; 3209 pmflock_debug(dev, __func__, __LINE__); 3210 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 3211 pmflock_debug(dev, __func__, __LINE__); 3212 dvl->dvl_nwait--; 3213 } 3214 if (!device_pmf_is_registered(dev)) { 3215 pmflock_debug(dev, __func__, __LINE__); 3216 /* We could not acquire the lock, but some other thread may 3217 * wait for it, also. Wake that thread. 3218 */ 3219 cv_signal(&dvl->dvl_cv); 3220 return false; 3221 } 3222 dvl->dvl_nlock++; 3223 dvl->dvl_holder = curlwp; 3224 pmflock_debug(dev, __func__, __LINE__); 3225 return true; 3226 } 3227 3228 bool 3229 device_pmf_lock(device_t dev) 3230 { 3231 bool rc; 3232 device_lock_t dvl = device_getlock(dev); 3233 3234 mutex_enter(&dvl->dvl_mtx); 3235 rc = device_pmf_lock1(dev); 3236 mutex_exit(&dvl->dvl_mtx); 3237 3238 return rc; 3239 } 3240 3241 void 3242 device_pmf_unlock(device_t dev) 3243 { 3244 device_lock_t dvl = device_getlock(dev); 3245 3246 KASSERT(dvl->dvl_nlock > 0); 3247 mutex_enter(&dvl->dvl_mtx); 3248 if (--dvl->dvl_nlock == 0) 3249 dvl->dvl_holder = NULL; 3250 cv_signal(&dvl->dvl_cv); 3251 pmflock_debug(dev, __func__, __LINE__); 3252 mutex_exit(&dvl->dvl_mtx); 3253 } 3254 3255 device_lock_t 3256 device_getlock(device_t dev) 3257 { 3258 return &dev->dv_lock; 3259 } 3260 3261 void * 3262 device_pmf_bus_private(device_t dev) 3263 { 3264 return dev->dv_bus_private; 3265 } 3266 3267 bool 3268 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 3269 { 3270 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 3271 return true; 3272 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 3273 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 3274 return false; 3275 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 3276 dev->dv_bus_suspend != NULL && 3277 !(*dev->dv_bus_suspend)(dev, qual)) 3278 return false; 3279 3280 dev->dv_flags |= DVF_BUS_SUSPENDED; 3281 return true; 3282 } 3283 3284 bool 3285 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 3286 { 3287 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 3288 return true; 3289 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 3290 dev->dv_bus_resume != NULL && 3291 !(*dev->dv_bus_resume)(dev, qual)) 3292 return false; 3293 3294 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 3295 return true; 3296 } 3297 3298 bool 3299 device_pmf_bus_shutdown(device_t dev, int how) 3300 { 3301 3302 if (*dev->dv_bus_shutdown != NULL && 3303 !(*dev->dv_bus_shutdown)(dev, how)) 3304 return false; 3305 return true; 3306 } 3307 3308 void 3309 device_pmf_bus_register(device_t dev, void *priv, 3310 bool (*suspend)(device_t, const pmf_qual_t *), 3311 bool (*resume)(device_t, const pmf_qual_t *), 3312 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 3313 { 3314 dev->dv_bus_private = priv; 3315 dev->dv_bus_resume = resume; 3316 dev->dv_bus_suspend = suspend; 3317 dev->dv_bus_shutdown = shutdown; 3318 dev->dv_bus_deregister = deregister; 3319 } 3320 3321 void 3322 device_pmf_bus_deregister(device_t dev) 3323 { 3324 if (dev->dv_bus_deregister == NULL) 3325 return; 3326 (*dev->dv_bus_deregister)(dev); 3327 dev->dv_bus_private = NULL; 3328 dev->dv_bus_suspend = NULL; 3329 dev->dv_bus_resume = NULL; 3330 dev->dv_bus_deregister = NULL; 3331 } 3332 3333 void * 3334 device_pmf_class_private(device_t dev) 3335 { 3336 return dev->dv_class_private; 3337 } 3338 3339 bool 3340 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 3341 { 3342 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 3343 return true; 3344 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 3345 dev->dv_class_suspend != NULL && 3346 !(*dev->dv_class_suspend)(dev, qual)) 3347 return false; 3348 3349 dev->dv_flags |= DVF_CLASS_SUSPENDED; 3350 return true; 3351 } 3352 3353 bool 3354 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 3355 { 3356 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 3357 return true; 3358 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 3359 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 3360 return false; 3361 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 3362 dev->dv_class_resume != NULL && 3363 !(*dev->dv_class_resume)(dev, qual)) 3364 return false; 3365 3366 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 3367 return true; 3368 } 3369 3370 void 3371 device_pmf_class_register(device_t dev, void *priv, 3372 bool (*suspend)(device_t, const pmf_qual_t *), 3373 bool (*resume)(device_t, const pmf_qual_t *), 3374 void (*deregister)(device_t)) 3375 { 3376 dev->dv_class_private = priv; 3377 dev->dv_class_suspend = suspend; 3378 dev->dv_class_resume = resume; 3379 dev->dv_class_deregister = deregister; 3380 } 3381 3382 void 3383 device_pmf_class_deregister(device_t dev) 3384 { 3385 if (dev->dv_class_deregister == NULL) 3386 return; 3387 (*dev->dv_class_deregister)(dev); 3388 dev->dv_class_private = NULL; 3389 dev->dv_class_suspend = NULL; 3390 dev->dv_class_resume = NULL; 3391 dev->dv_class_deregister = NULL; 3392 } 3393 3394 bool 3395 device_active(device_t dev, devactive_t type) 3396 { 3397 size_t i; 3398 3399 if (dev->dv_activity_count == 0) 3400 return false; 3401 3402 for (i = 0; i < dev->dv_activity_count; ++i) { 3403 if (dev->dv_activity_handlers[i] == NULL) 3404 break; 3405 (*dev->dv_activity_handlers[i])(dev, type); 3406 } 3407 3408 return true; 3409 } 3410 3411 bool 3412 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 3413 { 3414 void (**new_handlers)(device_t, devactive_t); 3415 void (**old_handlers)(device_t, devactive_t); 3416 size_t i, old_size, new_size; 3417 int s; 3418 3419 old_handlers = dev->dv_activity_handlers; 3420 old_size = dev->dv_activity_count; 3421 3422 KASSERT(old_size == 0 || old_handlers != NULL); 3423 3424 for (i = 0; i < old_size; ++i) { 3425 KASSERT(old_handlers[i] != handler); 3426 if (old_handlers[i] == NULL) { 3427 old_handlers[i] = handler; 3428 return true; 3429 } 3430 } 3431 3432 new_size = old_size + 4; 3433 new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP); 3434 3435 for (i = 0; i < old_size; ++i) 3436 new_handlers[i] = old_handlers[i]; 3437 new_handlers[old_size] = handler; 3438 for (i = old_size+1; i < new_size; ++i) 3439 new_handlers[i] = NULL; 3440 3441 s = splhigh(); 3442 dev->dv_activity_count = new_size; 3443 dev->dv_activity_handlers = new_handlers; 3444 splx(s); 3445 3446 if (old_size > 0) 3447 kmem_free(old_handlers, sizeof(void *) * old_size); 3448 3449 return true; 3450 } 3451 3452 void 3453 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 3454 { 3455 void (**old_handlers)(device_t, devactive_t); 3456 size_t i, old_size; 3457 int s; 3458 3459 old_handlers = dev->dv_activity_handlers; 3460 old_size = dev->dv_activity_count; 3461 3462 for (i = 0; i < old_size; ++i) { 3463 if (old_handlers[i] == handler) 3464 break; 3465 if (old_handlers[i] == NULL) 3466 return; /* XXX panic? */ 3467 } 3468 3469 if (i == old_size) 3470 return; /* XXX panic? */ 3471 3472 for (; i < old_size - 1; ++i) { 3473 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 3474 continue; 3475 3476 if (i == 0) { 3477 s = splhigh(); 3478 dev->dv_activity_count = 0; 3479 dev->dv_activity_handlers = NULL; 3480 splx(s); 3481 kmem_free(old_handlers, sizeof(void *) * old_size); 3482 } 3483 return; 3484 } 3485 old_handlers[i] = NULL; 3486 } 3487 3488 /* Return true iff the device_t `dev' exists at generation `gen'. */ 3489 static bool 3490 device_exists_at(device_t dv, devgen_t gen) 3491 { 3492 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 3493 dv->dv_add_gen <= gen; 3494 } 3495 3496 static bool 3497 deviter_visits(const deviter_t *di, device_t dv) 3498 { 3499 return device_exists_at(dv, di->di_gen); 3500 } 3501 3502 /* 3503 * Device Iteration 3504 * 3505 * deviter_t: a device iterator. Holds state for a "walk" visiting 3506 * each device_t's in the device tree. 3507 * 3508 * deviter_init(di, flags): initialize the device iterator `di' 3509 * to "walk" the device tree. deviter_next(di) will return 3510 * the first device_t in the device tree, or NULL if there are 3511 * no devices. 3512 * 3513 * `flags' is one or more of DEVITER_F_RW, indicating that the 3514 * caller intends to modify the device tree by calling 3515 * config_detach(9) on devices in the order that the iterator 3516 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 3517 * nearest the "root" of the device tree to be returned, first; 3518 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 3519 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 3520 * indicating both that deviter_init() should not respect any 3521 * locks on the device tree, and that deviter_next(di) may run 3522 * in more than one LWP before the walk has finished. 3523 * 3524 * Only one DEVITER_F_RW iterator may be in the device tree at 3525 * once. 3526 * 3527 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 3528 * 3529 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 3530 * DEVITER_F_LEAVES_FIRST are used in combination. 3531 * 3532 * deviter_first(di, flags): initialize the device iterator `di' 3533 * and return the first device_t in the device tree, or NULL 3534 * if there are no devices. The statement 3535 * 3536 * dv = deviter_first(di); 3537 * 3538 * is shorthand for 3539 * 3540 * deviter_init(di); 3541 * dv = deviter_next(di); 3542 * 3543 * deviter_next(di): return the next device_t in the device tree, 3544 * or NULL if there are no more devices. deviter_next(di) 3545 * is undefined if `di' was not initialized with deviter_init() or 3546 * deviter_first(). 3547 * 3548 * deviter_release(di): stops iteration (subsequent calls to 3549 * deviter_next() will return NULL), releases any locks and 3550 * resources held by the device iterator. 3551 * 3552 * Device iteration does not return device_t's in any particular 3553 * order. An iterator will never return the same device_t twice. 3554 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 3555 * is called repeatedly on the same `di', it will eventually return 3556 * NULL. It is ok to attach/detach devices during device iteration. 3557 */ 3558 void 3559 deviter_init(deviter_t *di, deviter_flags_t flags) 3560 { 3561 device_t dv; 3562 3563 memset(di, 0, sizeof(*di)); 3564 3565 if ((flags & DEVITER_F_SHUTDOWN) != 0) 3566 flags |= DEVITER_F_RW; 3567 3568 mutex_enter(&alldevs_lock); 3569 if ((flags & DEVITER_F_RW) != 0) 3570 alldevs_nwrite++; 3571 else 3572 alldevs_nread++; 3573 di->di_gen = alldevs_gen++; 3574 di->di_flags = flags; 3575 3576 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 3577 case DEVITER_F_LEAVES_FIRST: 3578 TAILQ_FOREACH(dv, &alldevs, dv_list) { 3579 if (!deviter_visits(di, dv)) 3580 continue; 3581 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 3582 } 3583 break; 3584 case DEVITER_F_ROOT_FIRST: 3585 TAILQ_FOREACH(dv, &alldevs, dv_list) { 3586 if (!deviter_visits(di, dv)) 3587 continue; 3588 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 3589 } 3590 break; 3591 default: 3592 break; 3593 } 3594 3595 deviter_reinit(di); 3596 mutex_exit(&alldevs_lock); 3597 } 3598 3599 static void 3600 deviter_reinit(deviter_t *di) 3601 { 3602 3603 KASSERT(mutex_owned(&alldevs_lock)); 3604 if ((di->di_flags & DEVITER_F_RW) != 0) 3605 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 3606 else 3607 di->di_prev = TAILQ_FIRST(&alldevs); 3608 } 3609 3610 device_t 3611 deviter_first(deviter_t *di, deviter_flags_t flags) 3612 { 3613 3614 deviter_init(di, flags); 3615 return deviter_next(di); 3616 } 3617 3618 static device_t 3619 deviter_next2(deviter_t *di) 3620 { 3621 device_t dv; 3622 3623 KASSERT(mutex_owned(&alldevs_lock)); 3624 3625 dv = di->di_prev; 3626 3627 if (dv == NULL) 3628 return NULL; 3629 3630 if ((di->di_flags & DEVITER_F_RW) != 0) 3631 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 3632 else 3633 di->di_prev = TAILQ_NEXT(dv, dv_list); 3634 3635 return dv; 3636 } 3637 3638 static device_t 3639 deviter_next1(deviter_t *di) 3640 { 3641 device_t dv; 3642 3643 KASSERT(mutex_owned(&alldevs_lock)); 3644 3645 do { 3646 dv = deviter_next2(di); 3647 } while (dv != NULL && !deviter_visits(di, dv)); 3648 3649 return dv; 3650 } 3651 3652 device_t 3653 deviter_next(deviter_t *di) 3654 { 3655 device_t dv = NULL; 3656 3657 mutex_enter(&alldevs_lock); 3658 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 3659 case 0: 3660 dv = deviter_next1(di); 3661 break; 3662 case DEVITER_F_LEAVES_FIRST: 3663 while (di->di_curdepth >= 0) { 3664 if ((dv = deviter_next1(di)) == NULL) { 3665 di->di_curdepth--; 3666 deviter_reinit(di); 3667 } else if (dv->dv_depth == di->di_curdepth) 3668 break; 3669 } 3670 break; 3671 case DEVITER_F_ROOT_FIRST: 3672 while (di->di_curdepth <= di->di_maxdepth) { 3673 if ((dv = deviter_next1(di)) == NULL) { 3674 di->di_curdepth++; 3675 deviter_reinit(di); 3676 } else if (dv->dv_depth == di->di_curdepth) 3677 break; 3678 } 3679 break; 3680 default: 3681 break; 3682 } 3683 mutex_exit(&alldevs_lock); 3684 3685 return dv; 3686 } 3687 3688 void 3689 deviter_release(deviter_t *di) 3690 { 3691 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 3692 3693 mutex_enter(&alldevs_lock); 3694 if (rw) 3695 --alldevs_nwrite; 3696 else 3697 --alldevs_nread; 3698 /* XXX wake a garbage-collection thread */ 3699 mutex_exit(&alldevs_lock); 3700 } 3701 3702 const char * 3703 cfdata_ifattr(const struct cfdata *cf) 3704 { 3705 return cf->cf_pspec->cfp_iattr; 3706 } 3707 3708 bool 3709 ifattr_match(const char *snull, const char *t) 3710 { 3711 return (snull == NULL) || strcmp(snull, t) == 0; 3712 } 3713 3714 void 3715 null_childdetached(device_t self, device_t child) 3716 { 3717 /* do nothing */ 3718 } 3719 3720 static void 3721 sysctl_detach_setup(struct sysctllog **clog) 3722 { 3723 3724 sysctl_createv(clog, 0, NULL, NULL, 3725 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3726 CTLTYPE_BOOL, "detachall", 3727 SYSCTL_DESCR("Detach all devices at shutdown"), 3728 NULL, 0, &detachall, 0, 3729 CTL_KERN, CTL_CREATE, CTL_EOL); 3730 } 3731