1 /* $NetBSD: subr_autoconf.c,v 1.189 2009/11/29 15:17:30 pooka Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.189 2009/11/29 15:17:30 pooka Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/device.h> 88 #include <sys/disklabel.h> 89 #include <sys/conf.h> 90 #include <sys/kauth.h> 91 #include <sys/malloc.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/vnode.h> 102 #include <sys/mount.h> 103 #include <sys/namei.h> 104 #include <sys/unistd.h> 105 #include <sys/fcntl.h> 106 #include <sys/lockf.h> 107 #include <sys/callout.h> 108 #include <sys/devmon.h> 109 #include <sys/cpu.h> 110 #include <sys/sysctl.h> 111 112 #include <sys/disk.h> 113 114 #include <machine/limits.h> 115 116 #if defined(__i386__) && defined(_KERNEL_OPT) 117 #include "opt_splash.h" 118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 119 #include <dev/splash/splash.h> 120 extern struct splash_progress *splash_progress_state; 121 #endif 122 #endif 123 124 /* 125 * Autoconfiguration subroutines. 126 */ 127 128 /* 129 * ioconf.c exports exactly two names: cfdata and cfroots. All system 130 * devices and drivers are found via these tables. 131 */ 132 extern struct cfdata cfdata[]; 133 extern const short cfroots[]; 134 135 /* 136 * List of all cfdriver structures. We use this to detect duplicates 137 * when other cfdrivers are loaded. 138 */ 139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 140 extern struct cfdriver * const cfdriver_list_initial[]; 141 142 /* 143 * Initial list of cfattach's. 144 */ 145 extern const struct cfattachinit cfattachinit[]; 146 147 /* 148 * List of cfdata tables. We always have one such list -- the one 149 * built statically when the kernel was configured. 150 */ 151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 152 static struct cftable initcftable; 153 154 #define ROOT ((device_t)NULL) 155 156 struct matchinfo { 157 cfsubmatch_t fn; 158 struct device *parent; 159 const int *locs; 160 void *aux; 161 struct cfdata *match; 162 int pri; 163 }; 164 165 static char *number(char *, int); 166 static void mapply(struct matchinfo *, cfdata_t); 167 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 168 static void config_devdelete(device_t); 169 static void config_makeroom(int, struct cfdriver *); 170 static void config_devlink(device_t); 171 static void config_alldevs_unlock(int); 172 static int config_alldevs_lock(void); 173 174 static void config_collect_garbage(void); 175 176 static void pmflock_debug(device_t, const char *, int); 177 178 static device_t deviter_next1(deviter_t *); 179 static void deviter_reinit(deviter_t *); 180 181 struct deferred_config { 182 TAILQ_ENTRY(deferred_config) dc_queue; 183 device_t dc_dev; 184 void (*dc_func)(device_t); 185 }; 186 187 TAILQ_HEAD(deferred_config_head, deferred_config); 188 189 struct deferred_config_head deferred_config_queue = 190 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 191 struct deferred_config_head interrupt_config_queue = 192 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 193 int interrupt_config_threads = 8; 194 195 static void config_process_deferred(struct deferred_config_head *, device_t); 196 197 /* Hooks to finalize configuration once all real devices have been found. */ 198 struct finalize_hook { 199 TAILQ_ENTRY(finalize_hook) f_list; 200 int (*f_func)(device_t); 201 device_t f_dev; 202 }; 203 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 204 TAILQ_HEAD_INITIALIZER(config_finalize_list); 205 static int config_finalize_done; 206 207 /* list of all devices */ 208 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 209 static kmutex_t alldevs_mtx; 210 static volatile bool alldevs_garbage = false; 211 static volatile devgen_t alldevs_gen = 1; 212 static volatile int alldevs_nread = 0; 213 static volatile int alldevs_nwrite = 0; 214 215 static int config_pending; /* semaphore for mountroot */ 216 static kmutex_t config_misc_lock; 217 static kcondvar_t config_misc_cv; 218 219 static int detachall = 0; 220 221 #define STREQ(s1, s2) \ 222 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 223 224 static bool config_initialized = false; /* config_init() has been called. */ 225 226 static int config_do_twiddle; 227 static callout_t config_twiddle_ch; 228 229 static void sysctl_detach_setup(struct sysctllog **); 230 231 /* 232 * Initialize the autoconfiguration data structures. Normally this 233 * is done by configure(), but some platforms need to do this very 234 * early (to e.g. initialize the console). 235 */ 236 void 237 config_init(void) 238 { 239 const struct cfattachinit *cfai; 240 int i, j; 241 242 KASSERT(config_initialized == false); 243 244 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_HIGH); 245 246 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 247 cv_init(&config_misc_cv, "cfgmisc"); 248 249 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 250 251 /* allcfdrivers is statically initialized. */ 252 for (i = 0; cfdriver_list_initial[i] != NULL; i++) { 253 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) 254 panic("configure: duplicate `%s' drivers", 255 cfdriver_list_initial[i]->cd_name); 256 } 257 258 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { 259 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 260 if (config_cfattach_attach(cfai->cfai_name, 261 cfai->cfai_list[j]) != 0) 262 panic("configure: duplicate `%s' attachment " 263 "of `%s' driver", 264 cfai->cfai_list[j]->ca_name, 265 cfai->cfai_name); 266 } 267 } 268 269 initcftable.ct_cfdata = cfdata; 270 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 271 272 config_initialized = true; 273 } 274 275 void 276 config_init_mi(void) 277 { 278 279 if (!config_initialized) 280 config_init(); 281 282 sysctl_detach_setup(NULL); 283 } 284 285 void 286 config_deferred(device_t dev) 287 { 288 config_process_deferred(&deferred_config_queue, dev); 289 config_process_deferred(&interrupt_config_queue, dev); 290 } 291 292 static void 293 config_interrupts_thread(void *cookie) 294 { 295 struct deferred_config *dc; 296 297 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 298 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 299 (*dc->dc_func)(dc->dc_dev); 300 kmem_free(dc, sizeof(*dc)); 301 config_pending_decr(); 302 } 303 kthread_exit(0); 304 } 305 306 void 307 config_create_interruptthreads() 308 { 309 int i; 310 311 for (i = 0; i < interrupt_config_threads; i++) { 312 (void)kthread_create(PRI_NONE, 0, NULL, 313 config_interrupts_thread, NULL, NULL, "config"); 314 } 315 } 316 317 /* 318 * Announce device attach/detach to userland listeners. 319 */ 320 static void 321 devmon_report_device(device_t dev, bool isattach) 322 { 323 #if NDRVCTL > 0 324 prop_dictionary_t ev; 325 const char *parent; 326 const char *what; 327 device_t pdev = device_parent(dev); 328 329 ev = prop_dictionary_create(); 330 if (ev == NULL) 331 return; 332 333 what = (isattach ? "device-attach" : "device-detach"); 334 parent = (pdev == NULL ? "root" : device_xname(pdev)); 335 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 336 !prop_dictionary_set_cstring(ev, "parent", parent)) { 337 prop_object_release(ev); 338 return; 339 } 340 341 devmon_insert(what, ev); 342 #endif 343 } 344 345 /* 346 * Add a cfdriver to the system. 347 */ 348 int 349 config_cfdriver_attach(struct cfdriver *cd) 350 { 351 struct cfdriver *lcd; 352 353 /* Make sure this driver isn't already in the system. */ 354 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 355 if (STREQ(lcd->cd_name, cd->cd_name)) 356 return EEXIST; 357 } 358 359 LIST_INIT(&cd->cd_attach); 360 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 361 362 return 0; 363 } 364 365 /* 366 * Remove a cfdriver from the system. 367 */ 368 int 369 config_cfdriver_detach(struct cfdriver *cd) 370 { 371 int i, rc = 0, s; 372 373 s = config_alldevs_lock(); 374 config_collect_garbage(); 375 /* Make sure there are no active instances. */ 376 for (i = 0; i < cd->cd_ndevs; i++) { 377 if (cd->cd_devs[i] != NULL) { 378 rc = EBUSY; 379 break; 380 } 381 } 382 config_alldevs_unlock(s); 383 384 if (rc != 0) 385 return rc; 386 387 /* ...and no attachments loaded. */ 388 if (LIST_EMPTY(&cd->cd_attach) == 0) 389 return EBUSY; 390 391 LIST_REMOVE(cd, cd_list); 392 393 KASSERT(cd->cd_devs == NULL); 394 395 return 0; 396 } 397 398 /* 399 * Look up a cfdriver by name. 400 */ 401 struct cfdriver * 402 config_cfdriver_lookup(const char *name) 403 { 404 struct cfdriver *cd; 405 406 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 407 if (STREQ(cd->cd_name, name)) 408 return cd; 409 } 410 411 return NULL; 412 } 413 414 /* 415 * Add a cfattach to the specified driver. 416 */ 417 int 418 config_cfattach_attach(const char *driver, struct cfattach *ca) 419 { 420 struct cfattach *lca; 421 struct cfdriver *cd; 422 423 cd = config_cfdriver_lookup(driver); 424 if (cd == NULL) 425 return ESRCH; 426 427 /* Make sure this attachment isn't already on this driver. */ 428 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 429 if (STREQ(lca->ca_name, ca->ca_name)) 430 return EEXIST; 431 } 432 433 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 434 435 return 0; 436 } 437 438 /* 439 * Remove a cfattach from the specified driver. 440 */ 441 int 442 config_cfattach_detach(const char *driver, struct cfattach *ca) 443 { 444 struct cfdriver *cd; 445 device_t dev; 446 int i, rc = 0, s; 447 448 cd = config_cfdriver_lookup(driver); 449 if (cd == NULL) 450 return ESRCH; 451 452 s = config_alldevs_lock(); 453 config_collect_garbage(); 454 /* Make sure there are no active instances. */ 455 for (i = 0; i < cd->cd_ndevs; i++) { 456 if ((dev = cd->cd_devs[i]) == NULL) 457 continue; 458 if (dev->dv_cfattach == ca) { 459 rc = EBUSY; 460 break; 461 } 462 } 463 config_alldevs_unlock(s); 464 465 if (rc != 0) 466 return rc; 467 468 LIST_REMOVE(ca, ca_list); 469 470 return 0; 471 } 472 473 /* 474 * Look up a cfattach by name. 475 */ 476 static struct cfattach * 477 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 478 { 479 struct cfattach *ca; 480 481 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 482 if (STREQ(ca->ca_name, atname)) 483 return ca; 484 } 485 486 return NULL; 487 } 488 489 /* 490 * Look up a cfattach by driver/attachment name. 491 */ 492 struct cfattach * 493 config_cfattach_lookup(const char *name, const char *atname) 494 { 495 struct cfdriver *cd; 496 497 cd = config_cfdriver_lookup(name); 498 if (cd == NULL) 499 return NULL; 500 501 return config_cfattach_lookup_cd(cd, atname); 502 } 503 504 /* 505 * Apply the matching function and choose the best. This is used 506 * a few times and we want to keep the code small. 507 */ 508 static void 509 mapply(struct matchinfo *m, cfdata_t cf) 510 { 511 int pri; 512 513 if (m->fn != NULL) { 514 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 515 } else { 516 pri = config_match(m->parent, cf, m->aux); 517 } 518 if (pri > m->pri) { 519 m->match = cf; 520 m->pri = pri; 521 } 522 } 523 524 int 525 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 526 { 527 const struct cfiattrdata *ci; 528 const struct cflocdesc *cl; 529 int nlocs, i; 530 531 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver); 532 KASSERT(ci); 533 nlocs = ci->ci_loclen; 534 KASSERT(!nlocs || locs); 535 for (i = 0; i < nlocs; i++) { 536 cl = &ci->ci_locdesc[i]; 537 /* !cld_defaultstr means no default value */ 538 if ((!(cl->cld_defaultstr) 539 || (cf->cf_loc[i] != cl->cld_default)) 540 && cf->cf_loc[i] != locs[i]) 541 return 0; 542 } 543 544 return config_match(parent, cf, aux); 545 } 546 547 /* 548 * Helper function: check whether the driver supports the interface attribute 549 * and return its descriptor structure. 550 */ 551 static const struct cfiattrdata * 552 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 553 { 554 const struct cfiattrdata * const *cpp; 555 556 if (cd->cd_attrs == NULL) 557 return 0; 558 559 for (cpp = cd->cd_attrs; *cpp; cpp++) { 560 if (STREQ((*cpp)->ci_name, ia)) { 561 /* Match. */ 562 return *cpp; 563 } 564 } 565 return 0; 566 } 567 568 /* 569 * Lookup an interface attribute description by name. 570 * If the driver is given, consider only its supported attributes. 571 */ 572 const struct cfiattrdata * 573 cfiattr_lookup(const char *name, const struct cfdriver *cd) 574 { 575 const struct cfdriver *d; 576 const struct cfiattrdata *ia; 577 578 if (cd) 579 return cfdriver_get_iattr(cd, name); 580 581 LIST_FOREACH(d, &allcfdrivers, cd_list) { 582 ia = cfdriver_get_iattr(d, name); 583 if (ia) 584 return ia; 585 } 586 return 0; 587 } 588 589 /* 590 * Determine if `parent' is a potential parent for a device spec based 591 * on `cfp'. 592 */ 593 static int 594 cfparent_match(const device_t parent, const struct cfparent *cfp) 595 { 596 struct cfdriver *pcd; 597 598 /* We don't match root nodes here. */ 599 if (cfp == NULL) 600 return 0; 601 602 pcd = parent->dv_cfdriver; 603 KASSERT(pcd != NULL); 604 605 /* 606 * First, ensure this parent has the correct interface 607 * attribute. 608 */ 609 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 610 return 0; 611 612 /* 613 * If no specific parent device instance was specified (i.e. 614 * we're attaching to the attribute only), we're done! 615 */ 616 if (cfp->cfp_parent == NULL) 617 return 1; 618 619 /* 620 * Check the parent device's name. 621 */ 622 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 623 return 0; /* not the same parent */ 624 625 /* 626 * Make sure the unit number matches. 627 */ 628 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 629 cfp->cfp_unit == parent->dv_unit) 630 return 1; 631 632 /* Unit numbers don't match. */ 633 return 0; 634 } 635 636 /* 637 * Helper for config_cfdata_attach(): check all devices whether it could be 638 * parent any attachment in the config data table passed, and rescan. 639 */ 640 static void 641 rescan_with_cfdata(const struct cfdata *cf) 642 { 643 device_t d; 644 const struct cfdata *cf1; 645 deviter_t di; 646 647 648 /* 649 * "alldevs" is likely longer than a modules's cfdata, so make it 650 * the outer loop. 651 */ 652 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 653 654 if (!(d->dv_cfattach->ca_rescan)) 655 continue; 656 657 for (cf1 = cf; cf1->cf_name; cf1++) { 658 659 if (!cfparent_match(d, cf1->cf_pspec)) 660 continue; 661 662 (*d->dv_cfattach->ca_rescan)(d, 663 cf1->cf_pspec->cfp_iattr, cf1->cf_loc); 664 } 665 } 666 deviter_release(&di); 667 } 668 669 /* 670 * Attach a supplemental config data table and rescan potential 671 * parent devices if required. 672 */ 673 int 674 config_cfdata_attach(cfdata_t cf, int scannow) 675 { 676 struct cftable *ct; 677 678 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 679 ct->ct_cfdata = cf; 680 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 681 682 if (scannow) 683 rescan_with_cfdata(cf); 684 685 return 0; 686 } 687 688 /* 689 * Helper for config_cfdata_detach: check whether a device is 690 * found through any attachment in the config data table. 691 */ 692 static int 693 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 694 { 695 const struct cfdata *cf1; 696 697 for (cf1 = cf; cf1->cf_name; cf1++) 698 if (d->dv_cfdata == cf1) 699 return 1; 700 701 return 0; 702 } 703 704 /* 705 * Detach a supplemental config data table. Detach all devices found 706 * through that table (and thus keeping references to it) before. 707 */ 708 int 709 config_cfdata_detach(cfdata_t cf) 710 { 711 device_t d; 712 int error = 0; 713 struct cftable *ct; 714 deviter_t di; 715 716 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 717 d = deviter_next(&di)) { 718 if (!dev_in_cfdata(d, cf)) 719 continue; 720 if ((error = config_detach(d, 0)) != 0) 721 break; 722 } 723 deviter_release(&di); 724 if (error) { 725 aprint_error_dev(d, "unable to detach instance\n"); 726 return error; 727 } 728 729 TAILQ_FOREACH(ct, &allcftables, ct_list) { 730 if (ct->ct_cfdata == cf) { 731 TAILQ_REMOVE(&allcftables, ct, ct_list); 732 kmem_free(ct, sizeof(*ct)); 733 return 0; 734 } 735 } 736 737 /* not found -- shouldn't happen */ 738 return EINVAL; 739 } 740 741 /* 742 * Invoke the "match" routine for a cfdata entry on behalf of 743 * an external caller, usually a "submatch" routine. 744 */ 745 int 746 config_match(device_t parent, cfdata_t cf, void *aux) 747 { 748 struct cfattach *ca; 749 750 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 751 if (ca == NULL) { 752 /* No attachment for this entry, oh well. */ 753 return 0; 754 } 755 756 return (*ca->ca_match)(parent, cf, aux); 757 } 758 759 /* 760 * Iterate over all potential children of some device, calling the given 761 * function (default being the child's match function) for each one. 762 * Nonzero returns are matches; the highest value returned is considered 763 * the best match. Return the `found child' if we got a match, or NULL 764 * otherwise. The `aux' pointer is simply passed on through. 765 * 766 * Note that this function is designed so that it can be used to apply 767 * an arbitrary function to all potential children (its return value 768 * can be ignored). 769 */ 770 cfdata_t 771 config_search_loc(cfsubmatch_t fn, device_t parent, 772 const char *ifattr, const int *locs, void *aux) 773 { 774 struct cftable *ct; 775 cfdata_t cf; 776 struct matchinfo m; 777 778 KASSERT(config_initialized); 779 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 780 781 m.fn = fn; 782 m.parent = parent; 783 m.locs = locs; 784 m.aux = aux; 785 m.match = NULL; 786 m.pri = 0; 787 788 TAILQ_FOREACH(ct, &allcftables, ct_list) { 789 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 790 791 /* We don't match root nodes here. */ 792 if (!cf->cf_pspec) 793 continue; 794 795 /* 796 * Skip cf if no longer eligible, otherwise scan 797 * through parents for one matching `parent', and 798 * try match function. 799 */ 800 if (cf->cf_fstate == FSTATE_FOUND) 801 continue; 802 if (cf->cf_fstate == FSTATE_DNOTFOUND || 803 cf->cf_fstate == FSTATE_DSTAR) 804 continue; 805 806 /* 807 * If an interface attribute was specified, 808 * consider only children which attach to 809 * that attribute. 810 */ 811 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr)) 812 continue; 813 814 if (cfparent_match(parent, cf->cf_pspec)) 815 mapply(&m, cf); 816 } 817 } 818 return m.match; 819 } 820 821 cfdata_t 822 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 823 void *aux) 824 { 825 826 return config_search_loc(fn, parent, ifattr, NULL, aux); 827 } 828 829 /* 830 * Find the given root device. 831 * This is much like config_search, but there is no parent. 832 * Don't bother with multiple cfdata tables; the root node 833 * must always be in the initial table. 834 */ 835 cfdata_t 836 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 837 { 838 cfdata_t cf; 839 const short *p; 840 struct matchinfo m; 841 842 m.fn = fn; 843 m.parent = ROOT; 844 m.aux = aux; 845 m.match = NULL; 846 m.pri = 0; 847 m.locs = 0; 848 /* 849 * Look at root entries for matching name. We do not bother 850 * with found-state here since only one root should ever be 851 * searched (and it must be done first). 852 */ 853 for (p = cfroots; *p >= 0; p++) { 854 cf = &cfdata[*p]; 855 if (strcmp(cf->cf_name, rootname) == 0) 856 mapply(&m, cf); 857 } 858 return m.match; 859 } 860 861 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 862 863 /* 864 * The given `aux' argument describes a device that has been found 865 * on the given parent, but not necessarily configured. Locate the 866 * configuration data for that device (using the submatch function 867 * provided, or using candidates' cd_match configuration driver 868 * functions) and attach it, and return true. If the device was 869 * not configured, call the given `print' function and return 0. 870 */ 871 device_t 872 config_found_sm_loc(device_t parent, 873 const char *ifattr, const int *locs, void *aux, 874 cfprint_t print, cfsubmatch_t submatch) 875 { 876 cfdata_t cf; 877 878 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 879 if (splash_progress_state) 880 splash_progress_update(splash_progress_state); 881 #endif 882 883 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 884 return(config_attach_loc(parent, cf, locs, aux, print)); 885 if (print) { 886 if (config_do_twiddle && cold) 887 twiddle(); 888 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 889 } 890 891 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 892 if (splash_progress_state) 893 splash_progress_update(splash_progress_state); 894 #endif 895 896 return NULL; 897 } 898 899 device_t 900 config_found_ia(device_t parent, const char *ifattr, void *aux, 901 cfprint_t print) 902 { 903 904 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 905 } 906 907 device_t 908 config_found(device_t parent, void *aux, cfprint_t print) 909 { 910 911 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 912 } 913 914 /* 915 * As above, but for root devices. 916 */ 917 device_t 918 config_rootfound(const char *rootname, void *aux) 919 { 920 cfdata_t cf; 921 922 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 923 return config_attach(ROOT, cf, aux, (cfprint_t)NULL); 924 aprint_error("root device %s not configured\n", rootname); 925 return NULL; 926 } 927 928 /* just like sprintf(buf, "%d") except that it works from the end */ 929 static char * 930 number(char *ep, int n) 931 { 932 933 *--ep = 0; 934 while (n >= 10) { 935 *--ep = (n % 10) + '0'; 936 n /= 10; 937 } 938 *--ep = n + '0'; 939 return ep; 940 } 941 942 /* 943 * Expand the size of the cd_devs array if necessary. 944 * 945 * The caller must hold alldevs_mtx. config_makeroom() may release and 946 * re-acquire alldevs_mtx, so callers should re-check conditions such 947 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 948 * returns. 949 */ 950 static void 951 config_makeroom(int n, struct cfdriver *cd) 952 { 953 int old, new; 954 device_t *nsp; 955 956 alldevs_nwrite++; 957 mutex_exit(&alldevs_mtx); 958 959 if (n < cd->cd_ndevs) 960 goto out; 961 962 /* 963 * Need to expand the array. 964 */ 965 old = cd->cd_ndevs; 966 if (old == 0) 967 new = 4; 968 else 969 new = old * 2; 970 while (new <= n) 971 new *= 2; 972 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP); 973 if (nsp == NULL) 974 panic("config_attach: %sing dev array", 975 old != 0 ? "expand" : "creat"); 976 memset(nsp + old, 0, sizeof(device_t [new - old])); 977 if (old != 0) { 978 memcpy(nsp, cd->cd_devs, sizeof(device_t [old])); 979 kmem_free(cd->cd_devs, sizeof(device_t [old])); 980 } 981 cd->cd_ndevs = new; 982 cd->cd_devs = nsp; 983 out: 984 mutex_enter(&alldevs_mtx); 985 alldevs_nwrite--; 986 } 987 988 static void 989 config_devlink(device_t dev) 990 { 991 struct cfdriver *cd = dev->dv_cfdriver; 992 int s; 993 994 /* put this device in the devices array */ 995 s = config_alldevs_lock(); 996 config_makeroom(dev->dv_unit, cd); 997 if (cd->cd_devs[dev->dv_unit]) 998 panic("config_attach: duplicate %s", device_xname(dev)); 999 cd->cd_devs[dev->dv_unit] = dev; 1000 1001 /* It is safe to add a device to the tail of the list while 1002 * readers and writers are in the list. 1003 */ 1004 dev->dv_add_gen = alldevs_gen; 1005 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */ 1006 config_alldevs_unlock(s); 1007 } 1008 1009 /* 1010 * Caller must hold alldevs_mtx. config_devdelete() may release and 1011 * re-acquire alldevs_mtx, so callers should re-check conditions such as 1012 * alldevs_nwrite == 0 && alldevs_nread == 0 after config_devdelete() 1013 * returns. 1014 */ 1015 static void 1016 config_devdelete(device_t dev) 1017 { 1018 device_lock_t dvl = device_getlock(dev); 1019 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1020 struct cfdriver *cd = dev->dv_cfdriver; 1021 device_t *devs = NULL; 1022 int i, ndevs = 0; 1023 1024 KASSERT(mutex_owned(&alldevs_mtx)); 1025 1026 /* Unlink from device list. */ 1027 TAILQ_REMOVE(&alldevs, dev, dv_list); 1028 1029 /* Remove from cfdriver's array. */ 1030 cd->cd_devs[dev->dv_unit] = NULL; 1031 1032 /* 1033 * If the device now has no units in use, deallocate its softc array. 1034 */ 1035 for (i = 0; i < cd->cd_ndevs; i++) { 1036 if (cd->cd_devs[i] != NULL) 1037 break; 1038 } 1039 /* nothing found. unlink, now. deallocate below. */ 1040 if (i == cd->cd_ndevs) { 1041 ndevs = cd->cd_ndevs; 1042 devs = cd->cd_devs; 1043 cd->cd_devs = NULL; 1044 cd->cd_ndevs = 0; 1045 } 1046 1047 mutex_exit(&alldevs_mtx); 1048 1049 KASSERT(!mutex_owned(&alldevs_mtx)); 1050 1051 if (devs != NULL) 1052 kmem_free(devs, sizeof(device_t [ndevs])); 1053 1054 cv_destroy(&dvl->dvl_cv); 1055 mutex_destroy(&dvl->dvl_mtx); 1056 1057 KASSERT(dev->dv_properties != NULL); 1058 prop_object_release(dev->dv_properties); 1059 1060 if (dev->dv_activity_handlers) 1061 panic("%s with registered handlers", __func__); 1062 1063 if (dev->dv_locators) { 1064 size_t amount = *--dev->dv_locators; 1065 kmem_free(dev->dv_locators, amount); 1066 } 1067 1068 if (dev->dv_cfattach->ca_devsize > 0) 1069 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1070 if (priv) 1071 kmem_free(dev, sizeof(*dev)); 1072 1073 KASSERT(!mutex_owned(&alldevs_mtx)); 1074 1075 mutex_enter(&alldevs_mtx); 1076 } 1077 1078 static device_t 1079 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1080 { 1081 struct cfdriver *cd; 1082 struct cfattach *ca; 1083 size_t lname, lunit; 1084 const char *xunit; 1085 int myunit; 1086 char num[10]; 1087 device_t dev; 1088 void *dev_private; 1089 const struct cfiattrdata *ia; 1090 device_lock_t dvl; 1091 #ifndef __BROKEN_CONFIG_UNIT_USAGE 1092 int s; 1093 #endif 1094 1095 cd = config_cfdriver_lookup(cf->cf_name); 1096 if (cd == NULL) 1097 return NULL; 1098 1099 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1100 if (ca == NULL) 1101 return NULL; 1102 1103 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1104 ca->ca_devsize < sizeof(struct device)) 1105 panic("config_devalloc: %s", cf->cf_atname); 1106 1107 #ifndef __BROKEN_CONFIG_UNIT_USAGE 1108 s = config_alldevs_lock(); 1109 config_collect_garbage(); 1110 if (cf->cf_fstate == FSTATE_STAR) { 1111 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++) 1112 if (cd->cd_devs[myunit] == NULL) 1113 break; 1114 /* 1115 * myunit is now the unit of the first NULL device pointer, 1116 * or max(cd->cd_ndevs,cf->cf_unit). 1117 */ 1118 } else { 1119 myunit = cf->cf_unit; 1120 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL) 1121 myunit = -1; 1122 } 1123 config_alldevs_unlock(s); 1124 if (myunit == -1) 1125 return NULL; 1126 #else 1127 myunit = cf->cf_unit; 1128 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */ 1129 1130 /* compute length of name and decimal expansion of unit number */ 1131 lname = strlen(cd->cd_name); 1132 xunit = number(&num[sizeof(num)], myunit); 1133 lunit = &num[sizeof(num)] - xunit; 1134 if (lname + lunit > sizeof(dev->dv_xname)) 1135 panic("config_devalloc: device name too long"); 1136 1137 /* get memory for all device vars */ 1138 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1139 if (ca->ca_devsize > 0) { 1140 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1141 if (dev_private == NULL) 1142 panic("config_devalloc: memory allocation for device softc failed"); 1143 } else { 1144 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1145 dev_private = NULL; 1146 } 1147 1148 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1149 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1150 } else { 1151 dev = dev_private; 1152 } 1153 if (dev == NULL) 1154 panic("config_devalloc: memory allocation for device_t failed"); 1155 1156 dvl = device_getlock(dev); 1157 1158 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1159 cv_init(&dvl->dvl_cv, "pmfsusp"); 1160 1161 dev->dv_class = cd->cd_class; 1162 dev->dv_cfdata = cf; 1163 dev->dv_cfdriver = cd; 1164 dev->dv_cfattach = ca; 1165 dev->dv_unit = myunit; 1166 dev->dv_activity_count = 0; 1167 dev->dv_activity_handlers = NULL; 1168 dev->dv_private = dev_private; 1169 memcpy(dev->dv_xname, cd->cd_name, lname); 1170 memcpy(dev->dv_xname + lname, xunit, lunit); 1171 dev->dv_parent = parent; 1172 if (parent != NULL) 1173 dev->dv_depth = parent->dv_depth + 1; 1174 else 1175 dev->dv_depth = 0; 1176 dev->dv_flags = DVF_ACTIVE; /* always initially active */ 1177 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */ 1178 if (locs) { 1179 KASSERT(parent); /* no locators at root */ 1180 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr, 1181 parent->dv_cfdriver); 1182 dev->dv_locators = 1183 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1184 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1185 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1186 } 1187 dev->dv_properties = prop_dictionary_create(); 1188 KASSERT(dev->dv_properties != NULL); 1189 1190 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1191 "device-driver", dev->dv_cfdriver->cd_name); 1192 prop_dictionary_set_uint16(dev->dv_properties, 1193 "device-unit", dev->dv_unit); 1194 1195 return dev; 1196 } 1197 1198 /* 1199 * Attach a found device. 1200 */ 1201 device_t 1202 config_attach_loc(device_t parent, cfdata_t cf, 1203 const int *locs, void *aux, cfprint_t print) 1204 { 1205 device_t dev; 1206 struct cftable *ct; 1207 const char *drvname; 1208 1209 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1210 if (splash_progress_state) 1211 splash_progress_update(splash_progress_state); 1212 #endif 1213 1214 dev = config_devalloc(parent, cf, locs); 1215 if (!dev) 1216 panic("config_attach: allocation of device softc failed"); 1217 1218 /* XXX redundant - see below? */ 1219 if (cf->cf_fstate != FSTATE_STAR) { 1220 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1221 cf->cf_fstate = FSTATE_FOUND; 1222 } 1223 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1224 else 1225 cf->cf_unit++; 1226 #endif 1227 1228 config_devlink(dev); 1229 1230 if (config_do_twiddle && cold) 1231 twiddle(); 1232 else 1233 aprint_naive("Found "); 1234 /* 1235 * We want the next two printfs for normal, verbose, and quiet, 1236 * but not silent (in which case, we're twiddling, instead). 1237 */ 1238 if (parent == ROOT) { 1239 aprint_naive("%s (root)", device_xname(dev)); 1240 aprint_normal("%s (root)", device_xname(dev)); 1241 } else { 1242 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1243 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1244 if (print) 1245 (void) (*print)(aux, NULL); 1246 } 1247 1248 /* 1249 * Before attaching, clobber any unfound devices that are 1250 * otherwise identical. 1251 * XXX code above is redundant? 1252 */ 1253 drvname = dev->dv_cfdriver->cd_name; 1254 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1255 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1256 if (STREQ(cf->cf_name, drvname) && 1257 cf->cf_unit == dev->dv_unit) { 1258 if (cf->cf_fstate == FSTATE_NOTFOUND) 1259 cf->cf_fstate = FSTATE_FOUND; 1260 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1261 /* 1262 * Bump the unit number on all starred cfdata 1263 * entries for this device. 1264 */ 1265 if (cf->cf_fstate == FSTATE_STAR) 1266 cf->cf_unit++; 1267 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1268 } 1269 } 1270 } 1271 #ifdef __HAVE_DEVICE_REGISTER 1272 device_register(dev, aux); 1273 #endif 1274 1275 /* Let userland know */ 1276 devmon_report_device(dev, true); 1277 1278 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1279 if (splash_progress_state) 1280 splash_progress_update(splash_progress_state); 1281 #endif 1282 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1283 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1284 if (splash_progress_state) 1285 splash_progress_update(splash_progress_state); 1286 #endif 1287 1288 if (!device_pmf_is_registered(dev)) 1289 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1290 1291 config_process_deferred(&deferred_config_queue, dev); 1292 return dev; 1293 } 1294 1295 device_t 1296 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1297 { 1298 1299 return config_attach_loc(parent, cf, NULL, aux, print); 1300 } 1301 1302 /* 1303 * As above, but for pseudo-devices. Pseudo-devices attached in this 1304 * way are silently inserted into the device tree, and their children 1305 * attached. 1306 * 1307 * Note that because pseudo-devices are attached silently, any information 1308 * the attach routine wishes to print should be prefixed with the device 1309 * name by the attach routine. 1310 */ 1311 device_t 1312 config_attach_pseudo(cfdata_t cf) 1313 { 1314 device_t dev; 1315 1316 dev = config_devalloc(ROOT, cf, NULL); 1317 if (!dev) 1318 return NULL; 1319 1320 /* XXX mark busy in cfdata */ 1321 1322 if (cf->cf_fstate != FSTATE_STAR) { 1323 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1324 cf->cf_fstate = FSTATE_FOUND; 1325 } 1326 1327 config_devlink(dev); 1328 1329 #if 0 /* XXXJRT not yet */ 1330 #ifdef __HAVE_DEVICE_REGISTER 1331 device_register(dev, NULL); /* like a root node */ 1332 #endif 1333 #endif 1334 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1335 config_process_deferred(&deferred_config_queue, dev); 1336 return dev; 1337 } 1338 1339 /* 1340 * Caller must hold alldevs_mtx. config_collect_garbage() may 1341 * release and re-acquire alldevs_mtx, so callers should re-check 1342 * conditions such as alldevs_nwrite == 0 && alldevs_nread == 0 after 1343 * config_collect_garbage() returns. 1344 */ 1345 static void 1346 config_collect_garbage(void) 1347 { 1348 device_t dv; 1349 1350 KASSERT(mutex_owned(&alldevs_mtx)); 1351 1352 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1353 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1354 if (dv->dv_del_gen != 0) 1355 break; 1356 } 1357 if (dv == NULL) { 1358 alldevs_garbage = false; 1359 break; 1360 } 1361 config_devdelete(dv); 1362 } 1363 KASSERT(mutex_owned(&alldevs_mtx)); 1364 } 1365 1366 /* 1367 * Detach a device. Optionally forced (e.g. because of hardware 1368 * removal) and quiet. Returns zero if successful, non-zero 1369 * (an error code) otherwise. 1370 * 1371 * Note that this code wants to be run from a process context, so 1372 * that the detach can sleep to allow processes which have a device 1373 * open to run and unwind their stacks. 1374 */ 1375 int 1376 config_detach(device_t dev, int flags) 1377 { 1378 struct cftable *ct; 1379 cfdata_t cf; 1380 const struct cfattach *ca; 1381 struct cfdriver *cd; 1382 #ifdef DIAGNOSTIC 1383 device_t d; 1384 #endif 1385 int rv = 0, s; 1386 1387 #ifdef DIAGNOSTIC 1388 cf = dev->dv_cfdata; 1389 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1390 cf->cf_fstate != FSTATE_STAR) 1391 panic("config_detach: %s: bad device fstate %d", 1392 device_xname(dev), cf ? cf->cf_fstate : -1); 1393 #endif 1394 cd = dev->dv_cfdriver; 1395 KASSERT(cd != NULL); 1396 1397 ca = dev->dv_cfattach; 1398 KASSERT(ca != NULL); 1399 1400 s = config_alldevs_lock(); 1401 if (dev->dv_del_gen != 0) { 1402 config_alldevs_unlock(s); 1403 #ifdef DIAGNOSTIC 1404 printf("%s: %s is already detached\n", __func__, 1405 device_xname(dev)); 1406 #endif /* DIAGNOSTIC */ 1407 return ENOENT; 1408 } 1409 alldevs_nwrite++; 1410 config_alldevs_unlock(s); 1411 1412 if (!detachall && 1413 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1414 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1415 rv = EOPNOTSUPP; 1416 } else if (ca->ca_detach != NULL) { 1417 rv = (*ca->ca_detach)(dev, flags); 1418 } else 1419 rv = EOPNOTSUPP; 1420 1421 /* 1422 * If it was not possible to detach the device, then we either 1423 * panic() (for the forced but failed case), or return an error. 1424 * 1425 * If it was possible to detach the device, ensure that the 1426 * device is deactivated. 1427 */ 1428 if (rv == 0) 1429 dev->dv_flags &= ~DVF_ACTIVE; 1430 else if ((flags & DETACH_FORCE) == 0) 1431 goto out; 1432 else { 1433 panic("config_detach: forced detach of %s failed (%d)", 1434 device_xname(dev), rv); 1435 } 1436 1437 /* 1438 * The device has now been successfully detached. 1439 */ 1440 1441 /* Let userland know */ 1442 devmon_report_device(dev, false); 1443 1444 #ifdef DIAGNOSTIC 1445 /* 1446 * Sanity: If you're successfully detached, you should have no 1447 * children. (Note that because children must be attached 1448 * after parents, we only need to search the latter part of 1449 * the list.) 1450 */ 1451 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1452 d = TAILQ_NEXT(d, dv_list)) { 1453 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1454 printf("config_detach: detached device %s" 1455 " has children %s\n", device_xname(dev), device_xname(d)); 1456 panic("config_detach"); 1457 } 1458 } 1459 #endif 1460 1461 /* notify the parent that the child is gone */ 1462 if (dev->dv_parent) { 1463 device_t p = dev->dv_parent; 1464 if (p->dv_cfattach->ca_childdetached) 1465 (*p->dv_cfattach->ca_childdetached)(p, dev); 1466 } 1467 1468 /* 1469 * Mark cfdata to show that the unit can be reused, if possible. 1470 */ 1471 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1472 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1473 if (STREQ(cf->cf_name, cd->cd_name)) { 1474 if (cf->cf_fstate == FSTATE_FOUND && 1475 cf->cf_unit == dev->dv_unit) 1476 cf->cf_fstate = FSTATE_NOTFOUND; 1477 #ifdef __BROKEN_CONFIG_UNIT_USAGE 1478 /* 1479 * Note that we can only re-use a starred 1480 * unit number if the unit being detached 1481 * had the last assigned unit number. 1482 */ 1483 if (cf->cf_fstate == FSTATE_STAR && 1484 cf->cf_unit == dev->dv_unit + 1) 1485 cf->cf_unit--; 1486 #endif /* __BROKEN_CONFIG_UNIT_USAGE */ 1487 } 1488 } 1489 } 1490 1491 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1492 aprint_normal_dev(dev, "detached\n"); 1493 1494 out: 1495 s = config_alldevs_lock(); 1496 KASSERT(alldevs_nwrite != 0); 1497 --alldevs_nwrite; 1498 if (rv != 0) 1499 ; 1500 else if (dev->dv_del_gen != 0) 1501 ; 1502 else { 1503 dev->dv_del_gen = alldevs_gen; 1504 alldevs_garbage = true; 1505 } 1506 config_collect_garbage(); 1507 config_alldevs_unlock(s); 1508 1509 return rv; 1510 } 1511 1512 int 1513 config_detach_children(device_t parent, int flags) 1514 { 1515 device_t dv; 1516 deviter_t di; 1517 int error = 0; 1518 1519 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1520 dv = deviter_next(&di)) { 1521 if (device_parent(dv) != parent) 1522 continue; 1523 if ((error = config_detach(dv, flags)) != 0) 1524 break; 1525 } 1526 deviter_release(&di); 1527 return error; 1528 } 1529 1530 device_t 1531 shutdown_first(struct shutdown_state *s) 1532 { 1533 if (!s->initialized) { 1534 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1535 s->initialized = true; 1536 } 1537 return shutdown_next(s); 1538 } 1539 1540 device_t 1541 shutdown_next(struct shutdown_state *s) 1542 { 1543 device_t dv; 1544 1545 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1546 ; 1547 1548 if (dv == NULL) 1549 s->initialized = false; 1550 1551 return dv; 1552 } 1553 1554 bool 1555 config_detach_all(int how) 1556 { 1557 static struct shutdown_state s; 1558 device_t curdev; 1559 bool progress = false; 1560 1561 if ((how & RB_NOSYNC) != 0) 1562 return false; 1563 1564 for (curdev = shutdown_first(&s); curdev != NULL; 1565 curdev = shutdown_next(&s)) { 1566 aprint_debug(" detaching %s, ", device_xname(curdev)); 1567 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1568 progress = true; 1569 aprint_debug("success."); 1570 } else 1571 aprint_debug("failed."); 1572 } 1573 return progress; 1574 } 1575 1576 static bool 1577 device_is_ancestor_of(device_t ancestor, device_t descendant) 1578 { 1579 device_t dv; 1580 1581 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1582 if (device_parent(dv) == ancestor) 1583 return true; 1584 } 1585 return false; 1586 } 1587 1588 int 1589 config_deactivate(device_t dev) 1590 { 1591 deviter_t di; 1592 const struct cfattach *ca; 1593 device_t descendant; 1594 int s, rv = 0, oflags; 1595 1596 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1597 descendant != NULL; 1598 descendant = deviter_next(&di)) { 1599 if (dev != descendant && 1600 !device_is_ancestor_of(dev, descendant)) 1601 continue; 1602 1603 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1604 continue; 1605 1606 ca = descendant->dv_cfattach; 1607 oflags = descendant->dv_flags; 1608 1609 descendant->dv_flags &= ~DVF_ACTIVE; 1610 if (ca->ca_activate == NULL) 1611 continue; 1612 s = splhigh(); 1613 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1614 splx(s); 1615 if (rv != 0) 1616 descendant->dv_flags = oflags; 1617 } 1618 deviter_release(&di); 1619 return rv; 1620 } 1621 1622 /* 1623 * Defer the configuration of the specified device until all 1624 * of its parent's devices have been attached. 1625 */ 1626 void 1627 config_defer(device_t dev, void (*func)(device_t)) 1628 { 1629 struct deferred_config *dc; 1630 1631 if (dev->dv_parent == NULL) 1632 panic("config_defer: can't defer config of a root device"); 1633 1634 #ifdef DIAGNOSTIC 1635 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1636 if (dc->dc_dev == dev) 1637 panic("config_defer: deferred twice"); 1638 } 1639 #endif 1640 1641 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1642 if (dc == NULL) 1643 panic("config_defer: unable to allocate callback"); 1644 1645 dc->dc_dev = dev; 1646 dc->dc_func = func; 1647 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1648 config_pending_incr(); 1649 } 1650 1651 /* 1652 * Defer some autoconfiguration for a device until after interrupts 1653 * are enabled. 1654 */ 1655 void 1656 config_interrupts(device_t dev, void (*func)(device_t)) 1657 { 1658 struct deferred_config *dc; 1659 1660 /* 1661 * If interrupts are enabled, callback now. 1662 */ 1663 if (cold == 0) { 1664 (*func)(dev); 1665 return; 1666 } 1667 1668 #ifdef DIAGNOSTIC 1669 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1670 if (dc->dc_dev == dev) 1671 panic("config_interrupts: deferred twice"); 1672 } 1673 #endif 1674 1675 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1676 if (dc == NULL) 1677 panic("config_interrupts: unable to allocate callback"); 1678 1679 dc->dc_dev = dev; 1680 dc->dc_func = func; 1681 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1682 config_pending_incr(); 1683 } 1684 1685 /* 1686 * Process a deferred configuration queue. 1687 */ 1688 static void 1689 config_process_deferred(struct deferred_config_head *queue, 1690 device_t parent) 1691 { 1692 struct deferred_config *dc, *ndc; 1693 1694 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1695 ndc = TAILQ_NEXT(dc, dc_queue); 1696 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1697 TAILQ_REMOVE(queue, dc, dc_queue); 1698 (*dc->dc_func)(dc->dc_dev); 1699 kmem_free(dc, sizeof(*dc)); 1700 config_pending_decr(); 1701 } 1702 } 1703 } 1704 1705 /* 1706 * Manipulate the config_pending semaphore. 1707 */ 1708 void 1709 config_pending_incr(void) 1710 { 1711 1712 mutex_enter(&config_misc_lock); 1713 config_pending++; 1714 mutex_exit(&config_misc_lock); 1715 } 1716 1717 void 1718 config_pending_decr(void) 1719 { 1720 1721 #ifdef DIAGNOSTIC 1722 if (config_pending == 0) 1723 panic("config_pending_decr: config_pending == 0"); 1724 #endif 1725 mutex_enter(&config_misc_lock); 1726 config_pending--; 1727 if (config_pending == 0) 1728 cv_broadcast(&config_misc_cv); 1729 mutex_exit(&config_misc_lock); 1730 } 1731 1732 /* 1733 * Register a "finalization" routine. Finalization routines are 1734 * called iteratively once all real devices have been found during 1735 * autoconfiguration, for as long as any one finalizer has done 1736 * any work. 1737 */ 1738 int 1739 config_finalize_register(device_t dev, int (*fn)(device_t)) 1740 { 1741 struct finalize_hook *f; 1742 1743 /* 1744 * If finalization has already been done, invoke the 1745 * callback function now. 1746 */ 1747 if (config_finalize_done) { 1748 while ((*fn)(dev) != 0) 1749 /* loop */ ; 1750 } 1751 1752 /* Ensure this isn't already on the list. */ 1753 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1754 if (f->f_func == fn && f->f_dev == dev) 1755 return EEXIST; 1756 } 1757 1758 f = kmem_alloc(sizeof(*f), KM_SLEEP); 1759 f->f_func = fn; 1760 f->f_dev = dev; 1761 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1762 1763 return 0; 1764 } 1765 1766 void 1767 config_finalize(void) 1768 { 1769 struct finalize_hook *f; 1770 struct pdevinit *pdev; 1771 extern struct pdevinit pdevinit[]; 1772 int errcnt, rv; 1773 1774 /* 1775 * Now that device driver threads have been created, wait for 1776 * them to finish any deferred autoconfiguration. 1777 */ 1778 mutex_enter(&config_misc_lock); 1779 while (config_pending != 0) 1780 cv_wait(&config_misc_cv, &config_misc_lock); 1781 mutex_exit(&config_misc_lock); 1782 1783 KERNEL_LOCK(1, NULL); 1784 1785 /* Attach pseudo-devices. */ 1786 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 1787 (*pdev->pdev_attach)(pdev->pdev_count); 1788 1789 /* Run the hooks until none of them does any work. */ 1790 do { 1791 rv = 0; 1792 TAILQ_FOREACH(f, &config_finalize_list, f_list) 1793 rv |= (*f->f_func)(f->f_dev); 1794 } while (rv != 0); 1795 1796 config_finalize_done = 1; 1797 1798 /* Now free all the hooks. */ 1799 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 1800 TAILQ_REMOVE(&config_finalize_list, f, f_list); 1801 kmem_free(f, sizeof(*f)); 1802 } 1803 1804 KERNEL_UNLOCK_ONE(NULL); 1805 1806 errcnt = aprint_get_error_count(); 1807 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 1808 (boothowto & AB_VERBOSE) == 0) { 1809 mutex_enter(&config_misc_lock); 1810 if (config_do_twiddle) { 1811 config_do_twiddle = 0; 1812 printf_nolog(" done.\n"); 1813 } 1814 mutex_exit(&config_misc_lock); 1815 if (errcnt != 0) { 1816 printf("WARNING: %d error%s while detecting hardware; " 1817 "check system log.\n", errcnt, 1818 errcnt == 1 ? "" : "s"); 1819 } 1820 } 1821 } 1822 1823 void 1824 config_twiddle_init() 1825 { 1826 1827 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 1828 config_do_twiddle = 1; 1829 } 1830 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 1831 } 1832 1833 void 1834 config_twiddle_fn(void *cookie) 1835 { 1836 1837 mutex_enter(&config_misc_lock); 1838 if (config_do_twiddle) { 1839 twiddle(); 1840 callout_schedule(&config_twiddle_ch, mstohz(100)); 1841 } 1842 mutex_exit(&config_misc_lock); 1843 } 1844 1845 static int 1846 config_alldevs_lock(void) 1847 { 1848 int s; 1849 1850 s = splhigh(); 1851 mutex_enter(&alldevs_mtx); 1852 return s; 1853 } 1854 1855 static void 1856 config_alldevs_unlock(int s) 1857 { 1858 mutex_exit(&alldevs_mtx); 1859 splx(s); 1860 } 1861 1862 /* 1863 * device_lookup: 1864 * 1865 * Look up a device instance for a given driver. 1866 */ 1867 device_t 1868 device_lookup(cfdriver_t cd, int unit) 1869 { 1870 device_t dv; 1871 int s; 1872 1873 s = config_alldevs_lock(); 1874 config_collect_garbage(); 1875 KASSERT(mutex_owned(&alldevs_mtx)); 1876 if (unit < 0 || unit >= cd->cd_ndevs) 1877 dv = NULL; 1878 else 1879 dv = cd->cd_devs[unit]; 1880 config_alldevs_unlock(s); 1881 1882 KASSERT(!mutex_owned(&alldevs_mtx)); 1883 return dv; 1884 } 1885 1886 /* 1887 * device_lookup: 1888 * 1889 * Look up a device instance for a given driver. 1890 */ 1891 void * 1892 device_lookup_private(cfdriver_t cd, int unit) 1893 { 1894 device_t dv; 1895 int s; 1896 void *priv; 1897 1898 s = config_alldevs_lock(); 1899 config_collect_garbage(); 1900 KASSERT(mutex_owned(&alldevs_mtx)); 1901 if (unit < 0 || unit >= cd->cd_ndevs) 1902 priv = NULL; 1903 else if ((dv = cd->cd_devs[unit]) == NULL) 1904 priv = NULL; 1905 else 1906 priv = dv->dv_private; 1907 config_alldevs_unlock(s); 1908 1909 KASSERT(!mutex_owned(&alldevs_mtx)); 1910 return priv; 1911 } 1912 1913 /* 1914 * Accessor functions for the device_t type. 1915 */ 1916 devclass_t 1917 device_class(device_t dev) 1918 { 1919 1920 return dev->dv_class; 1921 } 1922 1923 cfdata_t 1924 device_cfdata(device_t dev) 1925 { 1926 1927 return dev->dv_cfdata; 1928 } 1929 1930 cfdriver_t 1931 device_cfdriver(device_t dev) 1932 { 1933 1934 return dev->dv_cfdriver; 1935 } 1936 1937 cfattach_t 1938 device_cfattach(device_t dev) 1939 { 1940 1941 return dev->dv_cfattach; 1942 } 1943 1944 int 1945 device_unit(device_t dev) 1946 { 1947 1948 return dev->dv_unit; 1949 } 1950 1951 const char * 1952 device_xname(device_t dev) 1953 { 1954 1955 return dev->dv_xname; 1956 } 1957 1958 device_t 1959 device_parent(device_t dev) 1960 { 1961 1962 return dev->dv_parent; 1963 } 1964 1965 bool 1966 device_activation(device_t dev, devact_level_t level) 1967 { 1968 int active_flags; 1969 1970 active_flags = DVF_ACTIVE; 1971 switch (level) { 1972 case DEVACT_LEVEL_FULL: 1973 active_flags |= DVF_CLASS_SUSPENDED; 1974 /*FALLTHROUGH*/ 1975 case DEVACT_LEVEL_DRIVER: 1976 active_flags |= DVF_DRIVER_SUSPENDED; 1977 /*FALLTHROUGH*/ 1978 case DEVACT_LEVEL_BUS: 1979 active_flags |= DVF_BUS_SUSPENDED; 1980 break; 1981 } 1982 1983 return (dev->dv_flags & active_flags) == DVF_ACTIVE; 1984 } 1985 1986 bool 1987 device_is_active(device_t dev) 1988 { 1989 int active_flags; 1990 1991 active_flags = DVF_ACTIVE; 1992 active_flags |= DVF_CLASS_SUSPENDED; 1993 active_flags |= DVF_DRIVER_SUSPENDED; 1994 active_flags |= DVF_BUS_SUSPENDED; 1995 1996 return (dev->dv_flags & active_flags) == DVF_ACTIVE; 1997 } 1998 1999 bool 2000 device_is_enabled(device_t dev) 2001 { 2002 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE; 2003 } 2004 2005 bool 2006 device_has_power(device_t dev) 2007 { 2008 int active_flags; 2009 2010 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED; 2011 2012 return (dev->dv_flags & active_flags) == DVF_ACTIVE; 2013 } 2014 2015 int 2016 device_locator(device_t dev, u_int locnum) 2017 { 2018 2019 KASSERT(dev->dv_locators != NULL); 2020 return dev->dv_locators[locnum]; 2021 } 2022 2023 void * 2024 device_private(device_t dev) 2025 { 2026 2027 /* 2028 * The reason why device_private(NULL) is allowed is to simplify the 2029 * work of a lot of userspace request handlers (i.e., c/bdev 2030 * handlers) which grab cfdriver_t->cd_units[n]. 2031 * It avoids having them test for it to be NULL and only then calling 2032 * device_private. 2033 */ 2034 return dev == NULL ? NULL : dev->dv_private; 2035 } 2036 2037 prop_dictionary_t 2038 device_properties(device_t dev) 2039 { 2040 2041 return dev->dv_properties; 2042 } 2043 2044 /* 2045 * device_is_a: 2046 * 2047 * Returns true if the device is an instance of the specified 2048 * driver. 2049 */ 2050 bool 2051 device_is_a(device_t dev, const char *dname) 2052 { 2053 2054 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0; 2055 } 2056 2057 /* 2058 * device_find_by_xname: 2059 * 2060 * Returns the device of the given name or NULL if it doesn't exist. 2061 */ 2062 device_t 2063 device_find_by_xname(const char *name) 2064 { 2065 device_t dv; 2066 deviter_t di; 2067 2068 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2069 if (strcmp(device_xname(dv), name) == 0) 2070 break; 2071 } 2072 deviter_release(&di); 2073 2074 return dv; 2075 } 2076 2077 /* 2078 * device_find_by_driver_unit: 2079 * 2080 * Returns the device of the given driver name and unit or 2081 * NULL if it doesn't exist. 2082 */ 2083 device_t 2084 device_find_by_driver_unit(const char *name, int unit) 2085 { 2086 struct cfdriver *cd; 2087 2088 if ((cd = config_cfdriver_lookup(name)) == NULL) 2089 return NULL; 2090 return device_lookup(cd, unit); 2091 } 2092 2093 /* 2094 * Power management related functions. 2095 */ 2096 2097 bool 2098 device_pmf_is_registered(device_t dev) 2099 { 2100 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2101 } 2102 2103 bool 2104 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS) 2105 { 2106 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2107 return true; 2108 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2109 return false; 2110 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER && 2111 dev->dv_driver_suspend != NULL && 2112 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL)) 2113 return false; 2114 2115 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2116 return true; 2117 } 2118 2119 bool 2120 device_pmf_driver_resume(device_t dev PMF_FN_ARGS) 2121 { 2122 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2123 return true; 2124 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2125 return false; 2126 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER && 2127 dev->dv_driver_resume != NULL && 2128 !(*dev->dv_driver_resume)(dev PMF_FN_CALL)) 2129 return false; 2130 2131 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2132 return true; 2133 } 2134 2135 bool 2136 device_pmf_driver_shutdown(device_t dev, int how) 2137 { 2138 2139 if (*dev->dv_driver_shutdown != NULL && 2140 !(*dev->dv_driver_shutdown)(dev, how)) 2141 return false; 2142 return true; 2143 } 2144 2145 bool 2146 device_pmf_driver_register(device_t dev, 2147 bool (*suspend)(device_t PMF_FN_PROTO), 2148 bool (*resume)(device_t PMF_FN_PROTO), 2149 bool (*shutdown)(device_t, int)) 2150 { 2151 dev->dv_driver_suspend = suspend; 2152 dev->dv_driver_resume = resume; 2153 dev->dv_driver_shutdown = shutdown; 2154 dev->dv_flags |= DVF_POWER_HANDLERS; 2155 return true; 2156 } 2157 2158 static const char * 2159 curlwp_name(void) 2160 { 2161 if (curlwp->l_name != NULL) 2162 return curlwp->l_name; 2163 else 2164 return curlwp->l_proc->p_comm; 2165 } 2166 2167 void 2168 device_pmf_driver_deregister(device_t dev) 2169 { 2170 device_lock_t dvl = device_getlock(dev); 2171 2172 dev->dv_driver_suspend = NULL; 2173 dev->dv_driver_resume = NULL; 2174 2175 mutex_enter(&dvl->dvl_mtx); 2176 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2177 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2178 /* Wake a thread that waits for the lock. That 2179 * thread will fail to acquire the lock, and then 2180 * it will wake the next thread that waits for the 2181 * lock, or else it will wake us. 2182 */ 2183 cv_signal(&dvl->dvl_cv); 2184 pmflock_debug(dev, __func__, __LINE__); 2185 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2186 pmflock_debug(dev, __func__, __LINE__); 2187 } 2188 mutex_exit(&dvl->dvl_mtx); 2189 } 2190 2191 bool 2192 device_pmf_driver_child_register(device_t dev) 2193 { 2194 device_t parent = device_parent(dev); 2195 2196 if (parent == NULL || parent->dv_driver_child_register == NULL) 2197 return true; 2198 return (*parent->dv_driver_child_register)(dev); 2199 } 2200 2201 void 2202 device_pmf_driver_set_child_register(device_t dev, 2203 bool (*child_register)(device_t)) 2204 { 2205 dev->dv_driver_child_register = child_register; 2206 } 2207 2208 static void 2209 pmflock_debug(device_t dev, const char *func, int line) 2210 { 2211 device_lock_t dvl = device_getlock(dev); 2212 2213 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2214 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2215 dev->dv_flags); 2216 } 2217 2218 static bool 2219 device_pmf_lock1(device_t dev) 2220 { 2221 device_lock_t dvl = device_getlock(dev); 2222 2223 while (device_pmf_is_registered(dev) && 2224 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2225 dvl->dvl_nwait++; 2226 pmflock_debug(dev, __func__, __LINE__); 2227 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2228 pmflock_debug(dev, __func__, __LINE__); 2229 dvl->dvl_nwait--; 2230 } 2231 if (!device_pmf_is_registered(dev)) { 2232 pmflock_debug(dev, __func__, __LINE__); 2233 /* We could not acquire the lock, but some other thread may 2234 * wait for it, also. Wake that thread. 2235 */ 2236 cv_signal(&dvl->dvl_cv); 2237 return false; 2238 } 2239 dvl->dvl_nlock++; 2240 dvl->dvl_holder = curlwp; 2241 pmflock_debug(dev, __func__, __LINE__); 2242 return true; 2243 } 2244 2245 bool 2246 device_pmf_lock(device_t dev) 2247 { 2248 bool rc; 2249 device_lock_t dvl = device_getlock(dev); 2250 2251 mutex_enter(&dvl->dvl_mtx); 2252 rc = device_pmf_lock1(dev); 2253 mutex_exit(&dvl->dvl_mtx); 2254 2255 return rc; 2256 } 2257 2258 void 2259 device_pmf_unlock(device_t dev) 2260 { 2261 device_lock_t dvl = device_getlock(dev); 2262 2263 KASSERT(dvl->dvl_nlock > 0); 2264 mutex_enter(&dvl->dvl_mtx); 2265 if (--dvl->dvl_nlock == 0) 2266 dvl->dvl_holder = NULL; 2267 cv_signal(&dvl->dvl_cv); 2268 pmflock_debug(dev, __func__, __LINE__); 2269 mutex_exit(&dvl->dvl_mtx); 2270 } 2271 2272 device_lock_t 2273 device_getlock(device_t dev) 2274 { 2275 return &dev->dv_lock; 2276 } 2277 2278 void * 2279 device_pmf_bus_private(device_t dev) 2280 { 2281 return dev->dv_bus_private; 2282 } 2283 2284 bool 2285 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS) 2286 { 2287 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2288 return true; 2289 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2290 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2291 return false; 2292 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS && 2293 dev->dv_bus_suspend != NULL && 2294 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL)) 2295 return false; 2296 2297 dev->dv_flags |= DVF_BUS_SUSPENDED; 2298 return true; 2299 } 2300 2301 bool 2302 device_pmf_bus_resume(device_t dev PMF_FN_ARGS) 2303 { 2304 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2305 return true; 2306 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS && 2307 dev->dv_bus_resume != NULL && 2308 !(*dev->dv_bus_resume)(dev PMF_FN_CALL)) 2309 return false; 2310 2311 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2312 return true; 2313 } 2314 2315 bool 2316 device_pmf_bus_shutdown(device_t dev, int how) 2317 { 2318 2319 if (*dev->dv_bus_shutdown != NULL && 2320 !(*dev->dv_bus_shutdown)(dev, how)) 2321 return false; 2322 return true; 2323 } 2324 2325 void 2326 device_pmf_bus_register(device_t dev, void *priv, 2327 bool (*suspend)(device_t PMF_FN_PROTO), 2328 bool (*resume)(device_t PMF_FN_PROTO), 2329 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2330 { 2331 dev->dv_bus_private = priv; 2332 dev->dv_bus_resume = resume; 2333 dev->dv_bus_suspend = suspend; 2334 dev->dv_bus_shutdown = shutdown; 2335 dev->dv_bus_deregister = deregister; 2336 } 2337 2338 void 2339 device_pmf_bus_deregister(device_t dev) 2340 { 2341 if (dev->dv_bus_deregister == NULL) 2342 return; 2343 (*dev->dv_bus_deregister)(dev); 2344 dev->dv_bus_private = NULL; 2345 dev->dv_bus_suspend = NULL; 2346 dev->dv_bus_resume = NULL; 2347 dev->dv_bus_deregister = NULL; 2348 } 2349 2350 void * 2351 device_pmf_class_private(device_t dev) 2352 { 2353 return dev->dv_class_private; 2354 } 2355 2356 bool 2357 device_pmf_class_suspend(device_t dev PMF_FN_ARGS) 2358 { 2359 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2360 return true; 2361 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS && 2362 dev->dv_class_suspend != NULL && 2363 !(*dev->dv_class_suspend)(dev PMF_FN_CALL)) 2364 return false; 2365 2366 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2367 return true; 2368 } 2369 2370 bool 2371 device_pmf_class_resume(device_t dev PMF_FN_ARGS) 2372 { 2373 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2374 return true; 2375 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2376 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2377 return false; 2378 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS && 2379 dev->dv_class_resume != NULL && 2380 !(*dev->dv_class_resume)(dev PMF_FN_CALL)) 2381 return false; 2382 2383 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2384 return true; 2385 } 2386 2387 void 2388 device_pmf_class_register(device_t dev, void *priv, 2389 bool (*suspend)(device_t PMF_FN_PROTO), 2390 bool (*resume)(device_t PMF_FN_PROTO), 2391 void (*deregister)(device_t)) 2392 { 2393 dev->dv_class_private = priv; 2394 dev->dv_class_suspend = suspend; 2395 dev->dv_class_resume = resume; 2396 dev->dv_class_deregister = deregister; 2397 } 2398 2399 void 2400 device_pmf_class_deregister(device_t dev) 2401 { 2402 if (dev->dv_class_deregister == NULL) 2403 return; 2404 (*dev->dv_class_deregister)(dev); 2405 dev->dv_class_private = NULL; 2406 dev->dv_class_suspend = NULL; 2407 dev->dv_class_resume = NULL; 2408 dev->dv_class_deregister = NULL; 2409 } 2410 2411 bool 2412 device_active(device_t dev, devactive_t type) 2413 { 2414 size_t i; 2415 2416 if (dev->dv_activity_count == 0) 2417 return false; 2418 2419 for (i = 0; i < dev->dv_activity_count; ++i) { 2420 if (dev->dv_activity_handlers[i] == NULL) 2421 break; 2422 (*dev->dv_activity_handlers[i])(dev, type); 2423 } 2424 2425 return true; 2426 } 2427 2428 bool 2429 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2430 { 2431 void (**new_handlers)(device_t, devactive_t); 2432 void (**old_handlers)(device_t, devactive_t); 2433 size_t i, old_size, new_size; 2434 int s; 2435 2436 old_handlers = dev->dv_activity_handlers; 2437 old_size = dev->dv_activity_count; 2438 2439 for (i = 0; i < old_size; ++i) { 2440 KASSERT(old_handlers[i] != handler); 2441 if (old_handlers[i] == NULL) { 2442 old_handlers[i] = handler; 2443 return true; 2444 } 2445 } 2446 2447 new_size = old_size + 4; 2448 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2449 2450 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2451 new_handlers[old_size] = handler; 2452 memset(new_handlers + old_size + 1, 0, 2453 sizeof(int [new_size - (old_size+1)])); 2454 2455 s = splhigh(); 2456 dev->dv_activity_count = new_size; 2457 dev->dv_activity_handlers = new_handlers; 2458 splx(s); 2459 2460 if (old_handlers != NULL) 2461 kmem_free(old_handlers, sizeof(void * [old_size])); 2462 2463 return true; 2464 } 2465 2466 void 2467 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2468 { 2469 void (**old_handlers)(device_t, devactive_t); 2470 size_t i, old_size; 2471 int s; 2472 2473 old_handlers = dev->dv_activity_handlers; 2474 old_size = dev->dv_activity_count; 2475 2476 for (i = 0; i < old_size; ++i) { 2477 if (old_handlers[i] == handler) 2478 break; 2479 if (old_handlers[i] == NULL) 2480 return; /* XXX panic? */ 2481 } 2482 2483 if (i == old_size) 2484 return; /* XXX panic? */ 2485 2486 for (; i < old_size - 1; ++i) { 2487 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2488 continue; 2489 2490 if (i == 0) { 2491 s = splhigh(); 2492 dev->dv_activity_count = 0; 2493 dev->dv_activity_handlers = NULL; 2494 splx(s); 2495 kmem_free(old_handlers, sizeof(void *[old_size])); 2496 } 2497 return; 2498 } 2499 old_handlers[i] = NULL; 2500 } 2501 2502 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2503 static bool 2504 device_exists_at(device_t dv, devgen_t gen) 2505 { 2506 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2507 dv->dv_add_gen <= gen; 2508 } 2509 2510 static bool 2511 deviter_visits(const deviter_t *di, device_t dv) 2512 { 2513 return device_exists_at(dv, di->di_gen); 2514 } 2515 2516 /* 2517 * Device Iteration 2518 * 2519 * deviter_t: a device iterator. Holds state for a "walk" visiting 2520 * each device_t's in the device tree. 2521 * 2522 * deviter_init(di, flags): initialize the device iterator `di' 2523 * to "walk" the device tree. deviter_next(di) will return 2524 * the first device_t in the device tree, or NULL if there are 2525 * no devices. 2526 * 2527 * `flags' is one or more of DEVITER_F_RW, indicating that the 2528 * caller intends to modify the device tree by calling 2529 * config_detach(9) on devices in the order that the iterator 2530 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2531 * nearest the "root" of the device tree to be returned, first; 2532 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2533 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2534 * indicating both that deviter_init() should not respect any 2535 * locks on the device tree, and that deviter_next(di) may run 2536 * in more than one LWP before the walk has finished. 2537 * 2538 * Only one DEVITER_F_RW iterator may be in the device tree at 2539 * once. 2540 * 2541 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2542 * 2543 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2544 * DEVITER_F_LEAVES_FIRST are used in combination. 2545 * 2546 * deviter_first(di, flags): initialize the device iterator `di' 2547 * and return the first device_t in the device tree, or NULL 2548 * if there are no devices. The statement 2549 * 2550 * dv = deviter_first(di); 2551 * 2552 * is shorthand for 2553 * 2554 * deviter_init(di); 2555 * dv = deviter_next(di); 2556 * 2557 * deviter_next(di): return the next device_t in the device tree, 2558 * or NULL if there are no more devices. deviter_next(di) 2559 * is undefined if `di' was not initialized with deviter_init() or 2560 * deviter_first(). 2561 * 2562 * deviter_release(di): stops iteration (subsequent calls to 2563 * deviter_next() will return NULL), releases any locks and 2564 * resources held by the device iterator. 2565 * 2566 * Device iteration does not return device_t's in any particular 2567 * order. An iterator will never return the same device_t twice. 2568 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2569 * is called repeatedly on the same `di', it will eventually return 2570 * NULL. It is ok to attach/detach devices during device iteration. 2571 */ 2572 void 2573 deviter_init(deviter_t *di, deviter_flags_t flags) 2574 { 2575 device_t dv; 2576 int s; 2577 2578 memset(di, 0, sizeof(*di)); 2579 2580 s = config_alldevs_lock(); 2581 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2582 flags |= DEVITER_F_RW; 2583 2584 if ((flags & DEVITER_F_RW) != 0) 2585 alldevs_nwrite++; 2586 else 2587 alldevs_nread++; 2588 di->di_gen = alldevs_gen++; 2589 config_alldevs_unlock(s); 2590 2591 di->di_flags = flags; 2592 2593 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2594 case DEVITER_F_LEAVES_FIRST: 2595 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2596 if (!deviter_visits(di, dv)) 2597 continue; 2598 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2599 } 2600 break; 2601 case DEVITER_F_ROOT_FIRST: 2602 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2603 if (!deviter_visits(di, dv)) 2604 continue; 2605 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2606 } 2607 break; 2608 default: 2609 break; 2610 } 2611 2612 deviter_reinit(di); 2613 } 2614 2615 static void 2616 deviter_reinit(deviter_t *di) 2617 { 2618 if ((di->di_flags & DEVITER_F_RW) != 0) 2619 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2620 else 2621 di->di_prev = TAILQ_FIRST(&alldevs); 2622 } 2623 2624 device_t 2625 deviter_first(deviter_t *di, deviter_flags_t flags) 2626 { 2627 deviter_init(di, flags); 2628 return deviter_next(di); 2629 } 2630 2631 static device_t 2632 deviter_next2(deviter_t *di) 2633 { 2634 device_t dv; 2635 2636 dv = di->di_prev; 2637 2638 if (dv == NULL) 2639 ; 2640 else if ((di->di_flags & DEVITER_F_RW) != 0) 2641 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2642 else 2643 di->di_prev = TAILQ_NEXT(dv, dv_list); 2644 2645 return dv; 2646 } 2647 2648 static device_t 2649 deviter_next1(deviter_t *di) 2650 { 2651 device_t dv; 2652 2653 do { 2654 dv = deviter_next2(di); 2655 } while (dv != NULL && !deviter_visits(di, dv)); 2656 2657 return dv; 2658 } 2659 2660 device_t 2661 deviter_next(deviter_t *di) 2662 { 2663 device_t dv = NULL; 2664 2665 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2666 case 0: 2667 return deviter_next1(di); 2668 case DEVITER_F_LEAVES_FIRST: 2669 while (di->di_curdepth >= 0) { 2670 if ((dv = deviter_next1(di)) == NULL) { 2671 di->di_curdepth--; 2672 deviter_reinit(di); 2673 } else if (dv->dv_depth == di->di_curdepth) 2674 break; 2675 } 2676 return dv; 2677 case DEVITER_F_ROOT_FIRST: 2678 while (di->di_curdepth <= di->di_maxdepth) { 2679 if ((dv = deviter_next1(di)) == NULL) { 2680 di->di_curdepth++; 2681 deviter_reinit(di); 2682 } else if (dv->dv_depth == di->di_curdepth) 2683 break; 2684 } 2685 return dv; 2686 default: 2687 return NULL; 2688 } 2689 } 2690 2691 void 2692 deviter_release(deviter_t *di) 2693 { 2694 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2695 int s; 2696 2697 s = config_alldevs_lock(); 2698 if (rw) 2699 --alldevs_nwrite; 2700 else 2701 --alldevs_nread; 2702 /* XXX wake a garbage-collection thread */ 2703 config_alldevs_unlock(s); 2704 } 2705 2706 static void 2707 sysctl_detach_setup(struct sysctllog **clog) 2708 { 2709 const struct sysctlnode *node = NULL; 2710 2711 sysctl_createv(clog, 0, NULL, &node, 2712 CTLFLAG_PERMANENT, 2713 CTLTYPE_NODE, "kern", NULL, 2714 NULL, 0, NULL, 0, 2715 CTL_KERN, CTL_EOL); 2716 2717 if (node == NULL) 2718 return; 2719 2720 sysctl_createv(clog, 0, &node, NULL, 2721 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2722 CTLTYPE_INT, "detachall", 2723 SYSCTL_DESCR("Detach all devices at shutdown"), 2724 NULL, 0, &detachall, 0, 2725 CTL_CREATE, CTL_EOL); 2726 } 2727