1 /* $NetBSD: subr_autoconf.c,v 1.201 2010/02/15 20:20:34 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.201 2010/02/15 20:20:34 dyoung Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/device.h> 88 #include <sys/disklabel.h> 89 #include <sys/conf.h> 90 #include <sys/kauth.h> 91 #include <sys/malloc.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/vnode.h> 102 #include <sys/mount.h> 103 #include <sys/namei.h> 104 #include <sys/unistd.h> 105 #include <sys/fcntl.h> 106 #include <sys/lockf.h> 107 #include <sys/callout.h> 108 #include <sys/devmon.h> 109 #include <sys/cpu.h> 110 #include <sys/sysctl.h> 111 112 #include <sys/disk.h> 113 114 #include <machine/limits.h> 115 116 #if defined(__i386__) && defined(_KERNEL_OPT) 117 #include "opt_splash.h" 118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 119 #include <dev/splash/splash.h> 120 extern struct splash_progress *splash_progress_state; 121 #endif 122 #endif 123 124 /* 125 * Autoconfiguration subroutines. 126 */ 127 128 /* 129 * ioconf.c exports exactly two names: cfdata and cfroots. All system 130 * devices and drivers are found via these tables. 131 */ 132 extern struct cfdata cfdata[]; 133 extern const short cfroots[]; 134 135 /* 136 * List of all cfdriver structures. We use this to detect duplicates 137 * when other cfdrivers are loaded. 138 */ 139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 140 extern struct cfdriver * const cfdriver_list_initial[]; 141 142 /* 143 * Initial list of cfattach's. 144 */ 145 extern const struct cfattachinit cfattachinit[]; 146 147 /* 148 * List of cfdata tables. We always have one such list -- the one 149 * built statically when the kernel was configured. 150 */ 151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 152 static struct cftable initcftable; 153 154 #define ROOT ((device_t)NULL) 155 156 struct matchinfo { 157 cfsubmatch_t fn; 158 struct device *parent; 159 const int *locs; 160 void *aux; 161 struct cfdata *match; 162 int pri; 163 }; 164 165 struct alldevs_foray { 166 int af_s; 167 struct devicelist af_garbage; 168 }; 169 170 static char *number(char *, int); 171 static void mapply(struct matchinfo *, cfdata_t); 172 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 173 static void config_devdelete(device_t); 174 static void config_devunlink(device_t, struct devicelist *); 175 static void config_makeroom(int, struct cfdriver *); 176 static void config_devlink(device_t); 177 static void config_alldevs_unlock(int); 178 static int config_alldevs_lock(void); 179 static void config_alldevs_enter(struct alldevs_foray *); 180 static void config_alldevs_exit(struct alldevs_foray *); 181 182 static void config_collect_garbage(struct devicelist *); 183 static void config_dump_garbage(struct devicelist *); 184 185 static void pmflock_debug(device_t, const char *, int); 186 187 static device_t deviter_next1(deviter_t *); 188 static void deviter_reinit(deviter_t *); 189 190 struct deferred_config { 191 TAILQ_ENTRY(deferred_config) dc_queue; 192 device_t dc_dev; 193 void (*dc_func)(device_t); 194 }; 195 196 TAILQ_HEAD(deferred_config_head, deferred_config); 197 198 struct deferred_config_head deferred_config_queue = 199 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 200 struct deferred_config_head interrupt_config_queue = 201 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 202 int interrupt_config_threads = 8; 203 204 static void config_process_deferred(struct deferred_config_head *, device_t); 205 206 /* Hooks to finalize configuration once all real devices have been found. */ 207 struct finalize_hook { 208 TAILQ_ENTRY(finalize_hook) f_list; 209 int (*f_func)(device_t); 210 device_t f_dev; 211 }; 212 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 213 TAILQ_HEAD_INITIALIZER(config_finalize_list); 214 static int config_finalize_done; 215 216 /* list of all devices */ 217 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 218 static kmutex_t alldevs_mtx; 219 static volatile bool alldevs_garbage = false; 220 static volatile devgen_t alldevs_gen = 1; 221 static volatile int alldevs_nread = 0; 222 static volatile int alldevs_nwrite = 0; 223 224 static int config_pending; /* semaphore for mountroot */ 225 static kmutex_t config_misc_lock; 226 static kcondvar_t config_misc_cv; 227 228 static int detachall = 0; 229 230 #define STREQ(s1, s2) \ 231 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 232 233 static bool config_initialized = false; /* config_init() has been called. */ 234 235 static int config_do_twiddle; 236 static callout_t config_twiddle_ch; 237 238 static void sysctl_detach_setup(struct sysctllog **); 239 240 /* 241 * Initialize the autoconfiguration data structures. Normally this 242 * is done by configure(), but some platforms need to do this very 243 * early (to e.g. initialize the console). 244 */ 245 void 246 config_init(void) 247 { 248 const struct cfattachinit *cfai; 249 int i, j; 250 251 KASSERT(config_initialized == false); 252 253 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM); 254 255 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 256 cv_init(&config_misc_cv, "cfgmisc"); 257 258 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 259 260 /* allcfdrivers is statically initialized. */ 261 for (i = 0; cfdriver_list_initial[i] != NULL; i++) { 262 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) 263 panic("configure: duplicate `%s' drivers", 264 cfdriver_list_initial[i]->cd_name); 265 } 266 267 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { 268 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 269 if (config_cfattach_attach(cfai->cfai_name, 270 cfai->cfai_list[j]) != 0) 271 panic("configure: duplicate `%s' attachment " 272 "of `%s' driver", 273 cfai->cfai_list[j]->ca_name, 274 cfai->cfai_name); 275 } 276 } 277 278 initcftable.ct_cfdata = cfdata; 279 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 280 281 config_initialized = true; 282 } 283 284 void 285 config_init_mi(void) 286 { 287 288 if (!config_initialized) 289 config_init(); 290 291 sysctl_detach_setup(NULL); 292 } 293 294 void 295 config_deferred(device_t dev) 296 { 297 config_process_deferred(&deferred_config_queue, dev); 298 config_process_deferred(&interrupt_config_queue, dev); 299 } 300 301 static void 302 config_interrupts_thread(void *cookie) 303 { 304 struct deferred_config *dc; 305 306 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 307 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 308 (*dc->dc_func)(dc->dc_dev); 309 kmem_free(dc, sizeof(*dc)); 310 config_pending_decr(); 311 } 312 kthread_exit(0); 313 } 314 315 void 316 config_create_interruptthreads() 317 { 318 int i; 319 320 for (i = 0; i < interrupt_config_threads; i++) { 321 (void)kthread_create(PRI_NONE, 0, NULL, 322 config_interrupts_thread, NULL, NULL, "config"); 323 } 324 } 325 326 /* 327 * Announce device attach/detach to userland listeners. 328 */ 329 static void 330 devmon_report_device(device_t dev, bool isattach) 331 { 332 #if NDRVCTL > 0 333 prop_dictionary_t ev; 334 const char *parent; 335 const char *what; 336 device_t pdev = device_parent(dev); 337 338 ev = prop_dictionary_create(); 339 if (ev == NULL) 340 return; 341 342 what = (isattach ? "device-attach" : "device-detach"); 343 parent = (pdev == NULL ? "root" : device_xname(pdev)); 344 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 345 !prop_dictionary_set_cstring(ev, "parent", parent)) { 346 prop_object_release(ev); 347 return; 348 } 349 350 devmon_insert(what, ev); 351 #endif 352 } 353 354 /* 355 * Add a cfdriver to the system. 356 */ 357 int 358 config_cfdriver_attach(struct cfdriver *cd) 359 { 360 struct cfdriver *lcd; 361 362 /* Make sure this driver isn't already in the system. */ 363 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 364 if (STREQ(lcd->cd_name, cd->cd_name)) 365 return EEXIST; 366 } 367 368 LIST_INIT(&cd->cd_attach); 369 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 370 371 return 0; 372 } 373 374 /* 375 * Remove a cfdriver from the system. 376 */ 377 int 378 config_cfdriver_detach(struct cfdriver *cd) 379 { 380 struct alldevs_foray af; 381 int i, rc = 0; 382 383 config_alldevs_enter(&af); 384 /* Make sure there are no active instances. */ 385 for (i = 0; i < cd->cd_ndevs; i++) { 386 if (cd->cd_devs[i] != NULL) { 387 rc = EBUSY; 388 break; 389 } 390 } 391 config_alldevs_exit(&af); 392 393 if (rc != 0) 394 return rc; 395 396 /* ...and no attachments loaded. */ 397 if (LIST_EMPTY(&cd->cd_attach) == 0) 398 return EBUSY; 399 400 LIST_REMOVE(cd, cd_list); 401 402 KASSERT(cd->cd_devs == NULL); 403 404 return 0; 405 } 406 407 /* 408 * Look up a cfdriver by name. 409 */ 410 struct cfdriver * 411 config_cfdriver_lookup(const char *name) 412 { 413 struct cfdriver *cd; 414 415 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 416 if (STREQ(cd->cd_name, name)) 417 return cd; 418 } 419 420 return NULL; 421 } 422 423 /* 424 * Add a cfattach to the specified driver. 425 */ 426 int 427 config_cfattach_attach(const char *driver, struct cfattach *ca) 428 { 429 struct cfattach *lca; 430 struct cfdriver *cd; 431 432 cd = config_cfdriver_lookup(driver); 433 if (cd == NULL) 434 return ESRCH; 435 436 /* Make sure this attachment isn't already on this driver. */ 437 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 438 if (STREQ(lca->ca_name, ca->ca_name)) 439 return EEXIST; 440 } 441 442 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 443 444 return 0; 445 } 446 447 /* 448 * Remove a cfattach from the specified driver. 449 */ 450 int 451 config_cfattach_detach(const char *driver, struct cfattach *ca) 452 { 453 struct alldevs_foray af; 454 struct cfdriver *cd; 455 device_t dev; 456 int i, rc = 0; 457 458 cd = config_cfdriver_lookup(driver); 459 if (cd == NULL) 460 return ESRCH; 461 462 config_alldevs_enter(&af); 463 /* Make sure there are no active instances. */ 464 for (i = 0; i < cd->cd_ndevs; i++) { 465 if ((dev = cd->cd_devs[i]) == NULL) 466 continue; 467 if (dev->dv_cfattach == ca) { 468 rc = EBUSY; 469 break; 470 } 471 } 472 config_alldevs_exit(&af); 473 474 if (rc != 0) 475 return rc; 476 477 LIST_REMOVE(ca, ca_list); 478 479 return 0; 480 } 481 482 /* 483 * Look up a cfattach by name. 484 */ 485 static struct cfattach * 486 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 487 { 488 struct cfattach *ca; 489 490 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 491 if (STREQ(ca->ca_name, atname)) 492 return ca; 493 } 494 495 return NULL; 496 } 497 498 /* 499 * Look up a cfattach by driver/attachment name. 500 */ 501 struct cfattach * 502 config_cfattach_lookup(const char *name, const char *atname) 503 { 504 struct cfdriver *cd; 505 506 cd = config_cfdriver_lookup(name); 507 if (cd == NULL) 508 return NULL; 509 510 return config_cfattach_lookup_cd(cd, atname); 511 } 512 513 /* 514 * Apply the matching function and choose the best. This is used 515 * a few times and we want to keep the code small. 516 */ 517 static void 518 mapply(struct matchinfo *m, cfdata_t cf) 519 { 520 int pri; 521 522 if (m->fn != NULL) { 523 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 524 } else { 525 pri = config_match(m->parent, cf, m->aux); 526 } 527 if (pri > m->pri) { 528 m->match = cf; 529 m->pri = pri; 530 } 531 } 532 533 int 534 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 535 { 536 const struct cfiattrdata *ci; 537 const struct cflocdesc *cl; 538 int nlocs, i; 539 540 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 541 KASSERT(ci); 542 nlocs = ci->ci_loclen; 543 KASSERT(!nlocs || locs); 544 for (i = 0; i < nlocs; i++) { 545 cl = &ci->ci_locdesc[i]; 546 /* !cld_defaultstr means no default value */ 547 if ((!(cl->cld_defaultstr) 548 || (cf->cf_loc[i] != cl->cld_default)) 549 && cf->cf_loc[i] != locs[i]) 550 return 0; 551 } 552 553 return config_match(parent, cf, aux); 554 } 555 556 /* 557 * Helper function: check whether the driver supports the interface attribute 558 * and return its descriptor structure. 559 */ 560 static const struct cfiattrdata * 561 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 562 { 563 const struct cfiattrdata * const *cpp; 564 565 if (cd->cd_attrs == NULL) 566 return 0; 567 568 for (cpp = cd->cd_attrs; *cpp; cpp++) { 569 if (STREQ((*cpp)->ci_name, ia)) { 570 /* Match. */ 571 return *cpp; 572 } 573 } 574 return 0; 575 } 576 577 /* 578 * Lookup an interface attribute description by name. 579 * If the driver is given, consider only its supported attributes. 580 */ 581 const struct cfiattrdata * 582 cfiattr_lookup(const char *name, const struct cfdriver *cd) 583 { 584 const struct cfdriver *d; 585 const struct cfiattrdata *ia; 586 587 if (cd) 588 return cfdriver_get_iattr(cd, name); 589 590 LIST_FOREACH(d, &allcfdrivers, cd_list) { 591 ia = cfdriver_get_iattr(d, name); 592 if (ia) 593 return ia; 594 } 595 return 0; 596 } 597 598 /* 599 * Determine if `parent' is a potential parent for a device spec based 600 * on `cfp'. 601 */ 602 static int 603 cfparent_match(const device_t parent, const struct cfparent *cfp) 604 { 605 struct cfdriver *pcd; 606 607 /* We don't match root nodes here. */ 608 if (cfp == NULL) 609 return 0; 610 611 pcd = parent->dv_cfdriver; 612 KASSERT(pcd != NULL); 613 614 /* 615 * First, ensure this parent has the correct interface 616 * attribute. 617 */ 618 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 619 return 0; 620 621 /* 622 * If no specific parent device instance was specified (i.e. 623 * we're attaching to the attribute only), we're done! 624 */ 625 if (cfp->cfp_parent == NULL) 626 return 1; 627 628 /* 629 * Check the parent device's name. 630 */ 631 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 632 return 0; /* not the same parent */ 633 634 /* 635 * Make sure the unit number matches. 636 */ 637 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 638 cfp->cfp_unit == parent->dv_unit) 639 return 1; 640 641 /* Unit numbers don't match. */ 642 return 0; 643 } 644 645 /* 646 * Helper for config_cfdata_attach(): check all devices whether it could be 647 * parent any attachment in the config data table passed, and rescan. 648 */ 649 static void 650 rescan_with_cfdata(const struct cfdata *cf) 651 { 652 device_t d; 653 const struct cfdata *cf1; 654 deviter_t di; 655 656 657 /* 658 * "alldevs" is likely longer than a modules's cfdata, so make it 659 * the outer loop. 660 */ 661 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 662 663 if (!(d->dv_cfattach->ca_rescan)) 664 continue; 665 666 for (cf1 = cf; cf1->cf_name; cf1++) { 667 668 if (!cfparent_match(d, cf1->cf_pspec)) 669 continue; 670 671 (*d->dv_cfattach->ca_rescan)(d, 672 cfdata_ifattr(cf1), cf1->cf_loc); 673 } 674 } 675 deviter_release(&di); 676 } 677 678 /* 679 * Attach a supplemental config data table and rescan potential 680 * parent devices if required. 681 */ 682 int 683 config_cfdata_attach(cfdata_t cf, int scannow) 684 { 685 struct cftable *ct; 686 687 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 688 ct->ct_cfdata = cf; 689 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 690 691 if (scannow) 692 rescan_with_cfdata(cf); 693 694 return 0; 695 } 696 697 /* 698 * Helper for config_cfdata_detach: check whether a device is 699 * found through any attachment in the config data table. 700 */ 701 static int 702 dev_in_cfdata(const struct device *d, const struct cfdata *cf) 703 { 704 const struct cfdata *cf1; 705 706 for (cf1 = cf; cf1->cf_name; cf1++) 707 if (d->dv_cfdata == cf1) 708 return 1; 709 710 return 0; 711 } 712 713 /* 714 * Detach a supplemental config data table. Detach all devices found 715 * through that table (and thus keeping references to it) before. 716 */ 717 int 718 config_cfdata_detach(cfdata_t cf) 719 { 720 device_t d; 721 int error = 0; 722 struct cftable *ct; 723 deviter_t di; 724 725 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 726 d = deviter_next(&di)) { 727 if (!dev_in_cfdata(d, cf)) 728 continue; 729 if ((error = config_detach(d, 0)) != 0) 730 break; 731 } 732 deviter_release(&di); 733 if (error) { 734 aprint_error_dev(d, "unable to detach instance\n"); 735 return error; 736 } 737 738 TAILQ_FOREACH(ct, &allcftables, ct_list) { 739 if (ct->ct_cfdata == cf) { 740 TAILQ_REMOVE(&allcftables, ct, ct_list); 741 kmem_free(ct, sizeof(*ct)); 742 return 0; 743 } 744 } 745 746 /* not found -- shouldn't happen */ 747 return EINVAL; 748 } 749 750 /* 751 * Invoke the "match" routine for a cfdata entry on behalf of 752 * an external caller, usually a "submatch" routine. 753 */ 754 int 755 config_match(device_t parent, cfdata_t cf, void *aux) 756 { 757 struct cfattach *ca; 758 759 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 760 if (ca == NULL) { 761 /* No attachment for this entry, oh well. */ 762 return 0; 763 } 764 765 return (*ca->ca_match)(parent, cf, aux); 766 } 767 768 /* 769 * Iterate over all potential children of some device, calling the given 770 * function (default being the child's match function) for each one. 771 * Nonzero returns are matches; the highest value returned is considered 772 * the best match. Return the `found child' if we got a match, or NULL 773 * otherwise. The `aux' pointer is simply passed on through. 774 * 775 * Note that this function is designed so that it can be used to apply 776 * an arbitrary function to all potential children (its return value 777 * can be ignored). 778 */ 779 cfdata_t 780 config_search_loc(cfsubmatch_t fn, device_t parent, 781 const char *ifattr, const int *locs, void *aux) 782 { 783 struct cftable *ct; 784 cfdata_t cf; 785 struct matchinfo m; 786 787 KASSERT(config_initialized); 788 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 789 790 m.fn = fn; 791 m.parent = parent; 792 m.locs = locs; 793 m.aux = aux; 794 m.match = NULL; 795 m.pri = 0; 796 797 TAILQ_FOREACH(ct, &allcftables, ct_list) { 798 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 799 800 /* We don't match root nodes here. */ 801 if (!cf->cf_pspec) 802 continue; 803 804 /* 805 * Skip cf if no longer eligible, otherwise scan 806 * through parents for one matching `parent', and 807 * try match function. 808 */ 809 if (cf->cf_fstate == FSTATE_FOUND) 810 continue; 811 if (cf->cf_fstate == FSTATE_DNOTFOUND || 812 cf->cf_fstate == FSTATE_DSTAR) 813 continue; 814 815 /* 816 * If an interface attribute was specified, 817 * consider only children which attach to 818 * that attribute. 819 */ 820 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 821 continue; 822 823 if (cfparent_match(parent, cf->cf_pspec)) 824 mapply(&m, cf); 825 } 826 } 827 return m.match; 828 } 829 830 cfdata_t 831 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 832 void *aux) 833 { 834 835 return config_search_loc(fn, parent, ifattr, NULL, aux); 836 } 837 838 /* 839 * Find the given root device. 840 * This is much like config_search, but there is no parent. 841 * Don't bother with multiple cfdata tables; the root node 842 * must always be in the initial table. 843 */ 844 cfdata_t 845 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 846 { 847 cfdata_t cf; 848 const short *p; 849 struct matchinfo m; 850 851 m.fn = fn; 852 m.parent = ROOT; 853 m.aux = aux; 854 m.match = NULL; 855 m.pri = 0; 856 m.locs = 0; 857 /* 858 * Look at root entries for matching name. We do not bother 859 * with found-state here since only one root should ever be 860 * searched (and it must be done first). 861 */ 862 for (p = cfroots; *p >= 0; p++) { 863 cf = &cfdata[*p]; 864 if (strcmp(cf->cf_name, rootname) == 0) 865 mapply(&m, cf); 866 } 867 return m.match; 868 } 869 870 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 871 872 /* 873 * The given `aux' argument describes a device that has been found 874 * on the given parent, but not necessarily configured. Locate the 875 * configuration data for that device (using the submatch function 876 * provided, or using candidates' cd_match configuration driver 877 * functions) and attach it, and return true. If the device was 878 * not configured, call the given `print' function and return 0. 879 */ 880 device_t 881 config_found_sm_loc(device_t parent, 882 const char *ifattr, const int *locs, void *aux, 883 cfprint_t print, cfsubmatch_t submatch) 884 { 885 cfdata_t cf; 886 887 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 888 if (splash_progress_state) 889 splash_progress_update(splash_progress_state); 890 #endif 891 892 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 893 return(config_attach_loc(parent, cf, locs, aux, print)); 894 if (print) { 895 if (config_do_twiddle && cold) 896 twiddle(); 897 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 898 } 899 900 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 901 if (splash_progress_state) 902 splash_progress_update(splash_progress_state); 903 #endif 904 905 return NULL; 906 } 907 908 device_t 909 config_found_ia(device_t parent, const char *ifattr, void *aux, 910 cfprint_t print) 911 { 912 913 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 914 } 915 916 device_t 917 config_found(device_t parent, void *aux, cfprint_t print) 918 { 919 920 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 921 } 922 923 /* 924 * As above, but for root devices. 925 */ 926 device_t 927 config_rootfound(const char *rootname, void *aux) 928 { 929 cfdata_t cf; 930 931 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) 932 return config_attach(ROOT, cf, aux, (cfprint_t)NULL); 933 aprint_error("root device %s not configured\n", rootname); 934 return NULL; 935 } 936 937 /* just like sprintf(buf, "%d") except that it works from the end */ 938 static char * 939 number(char *ep, int n) 940 { 941 942 *--ep = 0; 943 while (n >= 10) { 944 *--ep = (n % 10) + '0'; 945 n /= 10; 946 } 947 *--ep = n + '0'; 948 return ep; 949 } 950 951 /* 952 * Expand the size of the cd_devs array if necessary. 953 * 954 * The caller must hold alldevs_mtx. config_makeroom() may release and 955 * re-acquire alldevs_mtx, so callers should re-check conditions such 956 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 957 * returns. 958 */ 959 static void 960 config_makeroom(int n, struct cfdriver *cd) 961 { 962 int old, new; 963 device_t *osp, *nsp; 964 965 alldevs_nwrite++; 966 967 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new) 968 ; 969 970 while (n >= cd->cd_ndevs) { 971 /* 972 * Need to expand the array. 973 */ 974 old = cd->cd_ndevs; 975 osp = cd->cd_devs; 976 977 /* Release alldevs_mtx around allocation, which may 978 * sleep. 979 */ 980 mutex_exit(&alldevs_mtx); 981 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP); 982 if (nsp == NULL) 983 panic("%s: could not expand cd_devs", __func__); 984 mutex_enter(&alldevs_mtx); 985 986 /* If another thread moved the array while we did 987 * not hold alldevs_mtx, try again. 988 */ 989 if (cd->cd_devs != osp) { 990 kmem_free(nsp, sizeof(device_t[new])); 991 continue; 992 } 993 994 memset(nsp + old, 0, sizeof(device_t[new - old])); 995 if (old != 0) 996 memcpy(nsp, cd->cd_devs, sizeof(device_t[old])); 997 998 cd->cd_ndevs = new; 999 cd->cd_devs = nsp; 1000 if (old != 0) 1001 kmem_free(osp, sizeof(device_t[old])); 1002 } 1003 alldevs_nwrite--; 1004 } 1005 1006 /* 1007 * Put dev into the devices list. 1008 */ 1009 static void 1010 config_devlink(device_t dev) 1011 { 1012 int s; 1013 1014 s = config_alldevs_lock(); 1015 1016 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1017 1018 dev->dv_add_gen = alldevs_gen; 1019 /* It is safe to add a device to the tail of the list while 1020 * readers and writers are in the list. 1021 */ 1022 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1023 config_alldevs_unlock(s); 1024 } 1025 1026 static void 1027 config_devfree(device_t dev) 1028 { 1029 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1030 1031 if (dev->dv_cfattach->ca_devsize > 0) 1032 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1033 if (priv) 1034 kmem_free(dev, sizeof(*dev)); 1035 } 1036 1037 /* 1038 * Caller must hold alldevs_mtx. 1039 */ 1040 static void 1041 config_devunlink(device_t dev, struct devicelist *garbage) 1042 { 1043 struct device_garbage *dg = &dev->dv_garbage; 1044 cfdriver_t cd = device_cfdriver(dev); 1045 int i; 1046 1047 KASSERT(mutex_owned(&alldevs_mtx)); 1048 1049 /* Unlink from device list. Link to garbage list. */ 1050 TAILQ_REMOVE(&alldevs, dev, dv_list); 1051 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1052 1053 /* Remove from cfdriver's array. */ 1054 cd->cd_devs[dev->dv_unit] = NULL; 1055 1056 /* 1057 * If the device now has no units in use, unlink its softc array. 1058 */ 1059 for (i = 0; i < cd->cd_ndevs; i++) { 1060 if (cd->cd_devs[i] != NULL) 1061 break; 1062 } 1063 /* Nothing found. Unlink, now. Deallocate, later. */ 1064 if (i == cd->cd_ndevs) { 1065 dg->dg_ndevs = cd->cd_ndevs; 1066 dg->dg_devs = cd->cd_devs; 1067 cd->cd_devs = NULL; 1068 cd->cd_ndevs = 0; 1069 } 1070 } 1071 1072 static void 1073 config_devdelete(device_t dev) 1074 { 1075 struct device_garbage *dg = &dev->dv_garbage; 1076 device_lock_t dvl = device_getlock(dev); 1077 1078 if (dg->dg_devs != NULL) 1079 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1080 1081 cv_destroy(&dvl->dvl_cv); 1082 mutex_destroy(&dvl->dvl_mtx); 1083 1084 KASSERT(dev->dv_properties != NULL); 1085 prop_object_release(dev->dv_properties); 1086 1087 if (dev->dv_activity_handlers) 1088 panic("%s with registered handlers", __func__); 1089 1090 if (dev->dv_locators) { 1091 size_t amount = *--dev->dv_locators; 1092 kmem_free(dev->dv_locators, amount); 1093 } 1094 1095 config_devfree(dev); 1096 } 1097 1098 static int 1099 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1100 { 1101 int unit; 1102 1103 if (cf->cf_fstate == FSTATE_STAR) { 1104 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1105 if (cd->cd_devs[unit] == NULL) 1106 break; 1107 /* 1108 * unit is now the unit of the first NULL device pointer, 1109 * or max(cd->cd_ndevs,cf->cf_unit). 1110 */ 1111 } else { 1112 unit = cf->cf_unit; 1113 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1114 unit = -1; 1115 } 1116 return unit; 1117 } 1118 1119 static int 1120 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1121 { 1122 struct alldevs_foray af; 1123 int unit; 1124 1125 config_alldevs_enter(&af); 1126 for (;;) { 1127 unit = config_unit_nextfree(cd, cf); 1128 if (unit == -1) 1129 break; 1130 if (unit < cd->cd_ndevs) { 1131 cd->cd_devs[unit] = dev; 1132 dev->dv_unit = unit; 1133 break; 1134 } 1135 config_makeroom(unit, cd); 1136 } 1137 config_alldevs_exit(&af); 1138 1139 return unit; 1140 } 1141 1142 static device_t 1143 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1144 { 1145 cfdriver_t cd; 1146 cfattach_t ca; 1147 size_t lname, lunit; 1148 const char *xunit; 1149 int myunit; 1150 char num[10]; 1151 device_t dev; 1152 void *dev_private; 1153 const struct cfiattrdata *ia; 1154 device_lock_t dvl; 1155 1156 cd = config_cfdriver_lookup(cf->cf_name); 1157 if (cd == NULL) 1158 return NULL; 1159 1160 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1161 if (ca == NULL) 1162 return NULL; 1163 1164 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1165 ca->ca_devsize < sizeof(struct device)) 1166 panic("config_devalloc: %s", cf->cf_atname); 1167 1168 /* get memory for all device vars */ 1169 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1170 if (ca->ca_devsize > 0) { 1171 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1172 if (dev_private == NULL) 1173 panic("config_devalloc: memory allocation for device softc failed"); 1174 } else { 1175 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1176 dev_private = NULL; 1177 } 1178 1179 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1180 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1181 } else { 1182 dev = dev_private; 1183 } 1184 if (dev == NULL) 1185 panic("config_devalloc: memory allocation for device_t failed"); 1186 1187 myunit = config_unit_alloc(dev, cd, cf); 1188 if (myunit == -1) { 1189 config_devfree(dev); 1190 return NULL; 1191 } 1192 1193 /* compute length of name and decimal expansion of unit number */ 1194 lname = strlen(cd->cd_name); 1195 xunit = number(&num[sizeof(num)], myunit); 1196 lunit = &num[sizeof(num)] - xunit; 1197 if (lname + lunit > sizeof(dev->dv_xname)) 1198 panic("config_devalloc: device name too long"); 1199 1200 dvl = device_getlock(dev); 1201 1202 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1203 cv_init(&dvl->dvl_cv, "pmfsusp"); 1204 1205 dev->dv_class = cd->cd_class; 1206 dev->dv_cfdata = cf; 1207 dev->dv_cfdriver = cd; 1208 dev->dv_cfattach = ca; 1209 dev->dv_activity_count = 0; 1210 dev->dv_activity_handlers = NULL; 1211 dev->dv_private = dev_private; 1212 memcpy(dev->dv_xname, cd->cd_name, lname); 1213 memcpy(dev->dv_xname + lname, xunit, lunit); 1214 dev->dv_parent = parent; 1215 if (parent != NULL) 1216 dev->dv_depth = parent->dv_depth + 1; 1217 else 1218 dev->dv_depth = 0; 1219 dev->dv_flags = DVF_ACTIVE; /* always initially active */ 1220 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */ 1221 if (locs) { 1222 KASSERT(parent); /* no locators at root */ 1223 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1224 dev->dv_locators = 1225 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1226 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1227 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1228 } 1229 dev->dv_properties = prop_dictionary_create(); 1230 KASSERT(dev->dv_properties != NULL); 1231 1232 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1233 "device-driver", dev->dv_cfdriver->cd_name); 1234 prop_dictionary_set_uint16(dev->dv_properties, 1235 "device-unit", dev->dv_unit); 1236 1237 return dev; 1238 } 1239 1240 /* 1241 * Attach a found device. 1242 */ 1243 device_t 1244 config_attach_loc(device_t parent, cfdata_t cf, 1245 const int *locs, void *aux, cfprint_t print) 1246 { 1247 device_t dev; 1248 struct cftable *ct; 1249 const char *drvname; 1250 1251 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1252 if (splash_progress_state) 1253 splash_progress_update(splash_progress_state); 1254 #endif 1255 1256 dev = config_devalloc(parent, cf, locs); 1257 if (!dev) 1258 panic("config_attach: allocation of device softc failed"); 1259 1260 /* XXX redundant - see below? */ 1261 if (cf->cf_fstate != FSTATE_STAR) { 1262 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1263 cf->cf_fstate = FSTATE_FOUND; 1264 } 1265 1266 config_devlink(dev); 1267 1268 if (config_do_twiddle && cold) 1269 twiddle(); 1270 else 1271 aprint_naive("Found "); 1272 /* 1273 * We want the next two printfs for normal, verbose, and quiet, 1274 * but not silent (in which case, we're twiddling, instead). 1275 */ 1276 if (parent == ROOT) { 1277 aprint_naive("%s (root)", device_xname(dev)); 1278 aprint_normal("%s (root)", device_xname(dev)); 1279 } else { 1280 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1281 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1282 if (print) 1283 (void) (*print)(aux, NULL); 1284 } 1285 1286 /* 1287 * Before attaching, clobber any unfound devices that are 1288 * otherwise identical. 1289 * XXX code above is redundant? 1290 */ 1291 drvname = dev->dv_cfdriver->cd_name; 1292 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1293 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1294 if (STREQ(cf->cf_name, drvname) && 1295 cf->cf_unit == dev->dv_unit) { 1296 if (cf->cf_fstate == FSTATE_NOTFOUND) 1297 cf->cf_fstate = FSTATE_FOUND; 1298 } 1299 } 1300 } 1301 #ifdef __HAVE_DEVICE_REGISTER 1302 device_register(dev, aux); 1303 #endif 1304 1305 /* Let userland know */ 1306 devmon_report_device(dev, true); 1307 1308 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1309 if (splash_progress_state) 1310 splash_progress_update(splash_progress_state); 1311 #endif 1312 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1313 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) 1314 if (splash_progress_state) 1315 splash_progress_update(splash_progress_state); 1316 #endif 1317 1318 if (!device_pmf_is_registered(dev)) 1319 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1320 1321 config_process_deferred(&deferred_config_queue, dev); 1322 1323 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG 1324 device_register_post_config(dev, aux); 1325 #endif 1326 return dev; 1327 } 1328 1329 device_t 1330 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1331 { 1332 1333 return config_attach_loc(parent, cf, NULL, aux, print); 1334 } 1335 1336 /* 1337 * As above, but for pseudo-devices. Pseudo-devices attached in this 1338 * way are silently inserted into the device tree, and their children 1339 * attached. 1340 * 1341 * Note that because pseudo-devices are attached silently, any information 1342 * the attach routine wishes to print should be prefixed with the device 1343 * name by the attach routine. 1344 */ 1345 device_t 1346 config_attach_pseudo(cfdata_t cf) 1347 { 1348 device_t dev; 1349 1350 dev = config_devalloc(ROOT, cf, NULL); 1351 if (!dev) 1352 return NULL; 1353 1354 /* XXX mark busy in cfdata */ 1355 1356 if (cf->cf_fstate != FSTATE_STAR) { 1357 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1358 cf->cf_fstate = FSTATE_FOUND; 1359 } 1360 1361 config_devlink(dev); 1362 1363 #if 0 /* XXXJRT not yet */ 1364 #ifdef __HAVE_DEVICE_REGISTER 1365 device_register(dev, NULL); /* like a root node */ 1366 #endif 1367 #endif 1368 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1369 config_process_deferred(&deferred_config_queue, dev); 1370 return dev; 1371 } 1372 1373 /* 1374 * Caller must hold alldevs_mtx. 1375 */ 1376 static void 1377 config_collect_garbage(struct devicelist *garbage) 1378 { 1379 device_t dv; 1380 1381 KASSERT(!cpu_intr_p()); 1382 KASSERT(!cpu_softintr_p()); 1383 KASSERT(mutex_owned(&alldevs_mtx)); 1384 1385 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1386 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1387 if (dv->dv_del_gen != 0) 1388 break; 1389 } 1390 if (dv == NULL) { 1391 alldevs_garbage = false; 1392 break; 1393 } 1394 config_devunlink(dv, garbage); 1395 } 1396 KASSERT(mutex_owned(&alldevs_mtx)); 1397 } 1398 1399 static void 1400 config_dump_garbage(struct devicelist *garbage) 1401 { 1402 device_t dv; 1403 1404 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1405 TAILQ_REMOVE(garbage, dv, dv_list); 1406 config_devdelete(dv); 1407 } 1408 } 1409 1410 /* 1411 * Detach a device. Optionally forced (e.g. because of hardware 1412 * removal) and quiet. Returns zero if successful, non-zero 1413 * (an error code) otherwise. 1414 * 1415 * Note that this code wants to be run from a process context, so 1416 * that the detach can sleep to allow processes which have a device 1417 * open to run and unwind their stacks. 1418 */ 1419 int 1420 config_detach(device_t dev, int flags) 1421 { 1422 struct alldevs_foray af; 1423 struct cftable *ct; 1424 cfdata_t cf; 1425 const struct cfattach *ca; 1426 struct cfdriver *cd; 1427 #ifdef DIAGNOSTIC 1428 device_t d; 1429 #endif 1430 int rv = 0, s; 1431 1432 #ifdef DIAGNOSTIC 1433 cf = dev->dv_cfdata; 1434 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1435 cf->cf_fstate != FSTATE_STAR) 1436 panic("config_detach: %s: bad device fstate %d", 1437 device_xname(dev), cf ? cf->cf_fstate : -1); 1438 #endif 1439 cd = dev->dv_cfdriver; 1440 KASSERT(cd != NULL); 1441 1442 ca = dev->dv_cfattach; 1443 KASSERT(ca != NULL); 1444 1445 s = config_alldevs_lock(); 1446 if (dev->dv_del_gen != 0) { 1447 config_alldevs_unlock(s); 1448 #ifdef DIAGNOSTIC 1449 printf("%s: %s is already detached\n", __func__, 1450 device_xname(dev)); 1451 #endif /* DIAGNOSTIC */ 1452 return ENOENT; 1453 } 1454 alldevs_nwrite++; 1455 config_alldevs_unlock(s); 1456 1457 if (!detachall && 1458 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1459 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1460 rv = EOPNOTSUPP; 1461 } else if (ca->ca_detach != NULL) { 1462 rv = (*ca->ca_detach)(dev, flags); 1463 } else 1464 rv = EOPNOTSUPP; 1465 1466 /* 1467 * If it was not possible to detach the device, then we either 1468 * panic() (for the forced but failed case), or return an error. 1469 * 1470 * If it was possible to detach the device, ensure that the 1471 * device is deactivated. 1472 */ 1473 if (rv == 0) 1474 dev->dv_flags &= ~DVF_ACTIVE; 1475 else if ((flags & DETACH_FORCE) == 0) 1476 goto out; 1477 else { 1478 panic("config_detach: forced detach of %s failed (%d)", 1479 device_xname(dev), rv); 1480 } 1481 1482 /* 1483 * The device has now been successfully detached. 1484 */ 1485 1486 /* Let userland know */ 1487 devmon_report_device(dev, false); 1488 1489 #ifdef DIAGNOSTIC 1490 /* 1491 * Sanity: If you're successfully detached, you should have no 1492 * children. (Note that because children must be attached 1493 * after parents, we only need to search the latter part of 1494 * the list.) 1495 */ 1496 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1497 d = TAILQ_NEXT(d, dv_list)) { 1498 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1499 printf("config_detach: detached device %s" 1500 " has children %s\n", device_xname(dev), device_xname(d)); 1501 panic("config_detach"); 1502 } 1503 } 1504 #endif 1505 1506 /* notify the parent that the child is gone */ 1507 if (dev->dv_parent) { 1508 device_t p = dev->dv_parent; 1509 if (p->dv_cfattach->ca_childdetached) 1510 (*p->dv_cfattach->ca_childdetached)(p, dev); 1511 } 1512 1513 /* 1514 * Mark cfdata to show that the unit can be reused, if possible. 1515 */ 1516 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1517 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1518 if (STREQ(cf->cf_name, cd->cd_name)) { 1519 if (cf->cf_fstate == FSTATE_FOUND && 1520 cf->cf_unit == dev->dv_unit) 1521 cf->cf_fstate = FSTATE_NOTFOUND; 1522 } 1523 } 1524 } 1525 1526 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1527 aprint_normal_dev(dev, "detached\n"); 1528 1529 out: 1530 config_alldevs_enter(&af); 1531 KASSERT(alldevs_nwrite != 0); 1532 --alldevs_nwrite; 1533 if (rv == 0 && dev->dv_del_gen == 0) 1534 config_devunlink(dev, &af.af_garbage); 1535 config_alldevs_exit(&af); 1536 1537 return rv; 1538 } 1539 1540 int 1541 config_detach_children(device_t parent, int flags) 1542 { 1543 device_t dv; 1544 deviter_t di; 1545 int error = 0; 1546 1547 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1548 dv = deviter_next(&di)) { 1549 if (device_parent(dv) != parent) 1550 continue; 1551 if ((error = config_detach(dv, flags)) != 0) 1552 break; 1553 } 1554 deviter_release(&di); 1555 return error; 1556 } 1557 1558 device_t 1559 shutdown_first(struct shutdown_state *s) 1560 { 1561 if (!s->initialized) { 1562 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1563 s->initialized = true; 1564 } 1565 return shutdown_next(s); 1566 } 1567 1568 device_t 1569 shutdown_next(struct shutdown_state *s) 1570 { 1571 device_t dv; 1572 1573 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1574 ; 1575 1576 if (dv == NULL) 1577 s->initialized = false; 1578 1579 return dv; 1580 } 1581 1582 bool 1583 config_detach_all(int how) 1584 { 1585 static struct shutdown_state s; 1586 device_t curdev; 1587 bool progress = false; 1588 1589 if ((how & RB_NOSYNC) != 0) 1590 return false; 1591 1592 for (curdev = shutdown_first(&s); curdev != NULL; 1593 curdev = shutdown_next(&s)) { 1594 aprint_debug(" detaching %s, ", device_xname(curdev)); 1595 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1596 progress = true; 1597 aprint_debug("success."); 1598 } else 1599 aprint_debug("failed."); 1600 } 1601 return progress; 1602 } 1603 1604 static bool 1605 device_is_ancestor_of(device_t ancestor, device_t descendant) 1606 { 1607 device_t dv; 1608 1609 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1610 if (device_parent(dv) == ancestor) 1611 return true; 1612 } 1613 return false; 1614 } 1615 1616 int 1617 config_deactivate(device_t dev) 1618 { 1619 deviter_t di; 1620 const struct cfattach *ca; 1621 device_t descendant; 1622 int s, rv = 0, oflags; 1623 1624 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1625 descendant != NULL; 1626 descendant = deviter_next(&di)) { 1627 if (dev != descendant && 1628 !device_is_ancestor_of(dev, descendant)) 1629 continue; 1630 1631 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1632 continue; 1633 1634 ca = descendant->dv_cfattach; 1635 oflags = descendant->dv_flags; 1636 1637 descendant->dv_flags &= ~DVF_ACTIVE; 1638 if (ca->ca_activate == NULL) 1639 continue; 1640 s = splhigh(); 1641 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1642 splx(s); 1643 if (rv != 0) 1644 descendant->dv_flags = oflags; 1645 } 1646 deviter_release(&di); 1647 return rv; 1648 } 1649 1650 /* 1651 * Defer the configuration of the specified device until all 1652 * of its parent's devices have been attached. 1653 */ 1654 void 1655 config_defer(device_t dev, void (*func)(device_t)) 1656 { 1657 struct deferred_config *dc; 1658 1659 if (dev->dv_parent == NULL) 1660 panic("config_defer: can't defer config of a root device"); 1661 1662 #ifdef DIAGNOSTIC 1663 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1664 if (dc->dc_dev == dev) 1665 panic("config_defer: deferred twice"); 1666 } 1667 #endif 1668 1669 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1670 if (dc == NULL) 1671 panic("config_defer: unable to allocate callback"); 1672 1673 dc->dc_dev = dev; 1674 dc->dc_func = func; 1675 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1676 config_pending_incr(); 1677 } 1678 1679 /* 1680 * Defer some autoconfiguration for a device until after interrupts 1681 * are enabled. 1682 */ 1683 void 1684 config_interrupts(device_t dev, void (*func)(device_t)) 1685 { 1686 struct deferred_config *dc; 1687 1688 /* 1689 * If interrupts are enabled, callback now. 1690 */ 1691 if (cold == 0) { 1692 (*func)(dev); 1693 return; 1694 } 1695 1696 #ifdef DIAGNOSTIC 1697 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1698 if (dc->dc_dev == dev) 1699 panic("config_interrupts: deferred twice"); 1700 } 1701 #endif 1702 1703 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1704 if (dc == NULL) 1705 panic("config_interrupts: unable to allocate callback"); 1706 1707 dc->dc_dev = dev; 1708 dc->dc_func = func; 1709 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1710 config_pending_incr(); 1711 } 1712 1713 /* 1714 * Process a deferred configuration queue. 1715 */ 1716 static void 1717 config_process_deferred(struct deferred_config_head *queue, 1718 device_t parent) 1719 { 1720 struct deferred_config *dc, *ndc; 1721 1722 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 1723 ndc = TAILQ_NEXT(dc, dc_queue); 1724 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 1725 TAILQ_REMOVE(queue, dc, dc_queue); 1726 (*dc->dc_func)(dc->dc_dev); 1727 kmem_free(dc, sizeof(*dc)); 1728 config_pending_decr(); 1729 } 1730 } 1731 } 1732 1733 /* 1734 * Manipulate the config_pending semaphore. 1735 */ 1736 void 1737 config_pending_incr(void) 1738 { 1739 1740 mutex_enter(&config_misc_lock); 1741 config_pending++; 1742 mutex_exit(&config_misc_lock); 1743 } 1744 1745 void 1746 config_pending_decr(void) 1747 { 1748 1749 #ifdef DIAGNOSTIC 1750 if (config_pending == 0) 1751 panic("config_pending_decr: config_pending == 0"); 1752 #endif 1753 mutex_enter(&config_misc_lock); 1754 config_pending--; 1755 if (config_pending == 0) 1756 cv_broadcast(&config_misc_cv); 1757 mutex_exit(&config_misc_lock); 1758 } 1759 1760 /* 1761 * Register a "finalization" routine. Finalization routines are 1762 * called iteratively once all real devices have been found during 1763 * autoconfiguration, for as long as any one finalizer has done 1764 * any work. 1765 */ 1766 int 1767 config_finalize_register(device_t dev, int (*fn)(device_t)) 1768 { 1769 struct finalize_hook *f; 1770 1771 /* 1772 * If finalization has already been done, invoke the 1773 * callback function now. 1774 */ 1775 if (config_finalize_done) { 1776 while ((*fn)(dev) != 0) 1777 /* loop */ ; 1778 } 1779 1780 /* Ensure this isn't already on the list. */ 1781 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 1782 if (f->f_func == fn && f->f_dev == dev) 1783 return EEXIST; 1784 } 1785 1786 f = kmem_alloc(sizeof(*f), KM_SLEEP); 1787 f->f_func = fn; 1788 f->f_dev = dev; 1789 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 1790 1791 return 0; 1792 } 1793 1794 void 1795 config_finalize(void) 1796 { 1797 struct finalize_hook *f; 1798 struct pdevinit *pdev; 1799 extern struct pdevinit pdevinit[]; 1800 int errcnt, rv; 1801 1802 /* 1803 * Now that device driver threads have been created, wait for 1804 * them to finish any deferred autoconfiguration. 1805 */ 1806 mutex_enter(&config_misc_lock); 1807 while (config_pending != 0) 1808 cv_wait(&config_misc_cv, &config_misc_lock); 1809 mutex_exit(&config_misc_lock); 1810 1811 KERNEL_LOCK(1, NULL); 1812 1813 /* Attach pseudo-devices. */ 1814 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 1815 (*pdev->pdev_attach)(pdev->pdev_count); 1816 1817 /* Run the hooks until none of them does any work. */ 1818 do { 1819 rv = 0; 1820 TAILQ_FOREACH(f, &config_finalize_list, f_list) 1821 rv |= (*f->f_func)(f->f_dev); 1822 } while (rv != 0); 1823 1824 config_finalize_done = 1; 1825 1826 /* Now free all the hooks. */ 1827 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 1828 TAILQ_REMOVE(&config_finalize_list, f, f_list); 1829 kmem_free(f, sizeof(*f)); 1830 } 1831 1832 KERNEL_UNLOCK_ONE(NULL); 1833 1834 errcnt = aprint_get_error_count(); 1835 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 1836 (boothowto & AB_VERBOSE) == 0) { 1837 mutex_enter(&config_misc_lock); 1838 if (config_do_twiddle) { 1839 config_do_twiddle = 0; 1840 printf_nolog(" done.\n"); 1841 } 1842 mutex_exit(&config_misc_lock); 1843 if (errcnt != 0) { 1844 printf("WARNING: %d error%s while detecting hardware; " 1845 "check system log.\n", errcnt, 1846 errcnt == 1 ? "" : "s"); 1847 } 1848 } 1849 } 1850 1851 void 1852 config_twiddle_init() 1853 { 1854 1855 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 1856 config_do_twiddle = 1; 1857 } 1858 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 1859 } 1860 1861 void 1862 config_twiddle_fn(void *cookie) 1863 { 1864 1865 mutex_enter(&config_misc_lock); 1866 if (config_do_twiddle) { 1867 twiddle(); 1868 callout_schedule(&config_twiddle_ch, mstohz(100)); 1869 } 1870 mutex_exit(&config_misc_lock); 1871 } 1872 1873 static int 1874 config_alldevs_lock(void) 1875 { 1876 int s; 1877 1878 s = splhigh(); 1879 mutex_enter(&alldevs_mtx); 1880 return s; 1881 } 1882 1883 static void 1884 config_alldevs_enter(struct alldevs_foray *af) 1885 { 1886 TAILQ_INIT(&af->af_garbage); 1887 af->af_s = config_alldevs_lock(); 1888 config_collect_garbage(&af->af_garbage); 1889 } 1890 1891 static void 1892 config_alldevs_exit(struct alldevs_foray *af) 1893 { 1894 config_alldevs_unlock(af->af_s); 1895 config_dump_garbage(&af->af_garbage); 1896 } 1897 1898 static void 1899 config_alldevs_unlock(int s) 1900 { 1901 mutex_exit(&alldevs_mtx); 1902 splx(s); 1903 } 1904 1905 /* 1906 * device_lookup: 1907 * 1908 * Look up a device instance for a given driver. 1909 */ 1910 device_t 1911 device_lookup(cfdriver_t cd, int unit) 1912 { 1913 device_t dv; 1914 int s; 1915 1916 s = config_alldevs_lock(); 1917 KASSERT(mutex_owned(&alldevs_mtx)); 1918 if (unit < 0 || unit >= cd->cd_ndevs) 1919 dv = NULL; 1920 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 1921 dv = NULL; 1922 config_alldevs_unlock(s); 1923 1924 return dv; 1925 } 1926 1927 /* 1928 * device_lookup_private: 1929 * 1930 * Look up a softc instance for a given driver. 1931 */ 1932 void * 1933 device_lookup_private(cfdriver_t cd, int unit) 1934 { 1935 1936 return device_private(device_lookup(cd, unit)); 1937 } 1938 1939 /* 1940 * device_find_by_xname: 1941 * 1942 * Returns the device of the given name or NULL if it doesn't exist. 1943 */ 1944 device_t 1945 device_find_by_xname(const char *name) 1946 { 1947 device_t dv; 1948 deviter_t di; 1949 1950 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 1951 if (strcmp(device_xname(dv), name) == 0) 1952 break; 1953 } 1954 deviter_release(&di); 1955 1956 return dv; 1957 } 1958 1959 /* 1960 * device_find_by_driver_unit: 1961 * 1962 * Returns the device of the given driver name and unit or 1963 * NULL if it doesn't exist. 1964 */ 1965 device_t 1966 device_find_by_driver_unit(const char *name, int unit) 1967 { 1968 struct cfdriver *cd; 1969 1970 if ((cd = config_cfdriver_lookup(name)) == NULL) 1971 return NULL; 1972 return device_lookup(cd, unit); 1973 } 1974 1975 /* 1976 * Power management related functions. 1977 */ 1978 1979 bool 1980 device_pmf_is_registered(device_t dev) 1981 { 1982 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 1983 } 1984 1985 bool 1986 device_pmf_driver_suspend(device_t dev, pmf_qual_t qual) 1987 { 1988 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 1989 return true; 1990 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 1991 return false; 1992 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 1993 dev->dv_driver_suspend != NULL && 1994 !(*dev->dv_driver_suspend)(dev, qual)) 1995 return false; 1996 1997 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 1998 return true; 1999 } 2000 2001 bool 2002 device_pmf_driver_resume(device_t dev, pmf_qual_t qual) 2003 { 2004 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2005 return true; 2006 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2007 return false; 2008 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2009 dev->dv_driver_resume != NULL && 2010 !(*dev->dv_driver_resume)(dev, qual)) 2011 return false; 2012 2013 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2014 return true; 2015 } 2016 2017 bool 2018 device_pmf_driver_shutdown(device_t dev, int how) 2019 { 2020 2021 if (*dev->dv_driver_shutdown != NULL && 2022 !(*dev->dv_driver_shutdown)(dev, how)) 2023 return false; 2024 return true; 2025 } 2026 2027 bool 2028 device_pmf_driver_register(device_t dev, 2029 bool (*suspend)(device_t, pmf_qual_t), 2030 bool (*resume)(device_t, pmf_qual_t), 2031 bool (*shutdown)(device_t, int)) 2032 { 2033 dev->dv_driver_suspend = suspend; 2034 dev->dv_driver_resume = resume; 2035 dev->dv_driver_shutdown = shutdown; 2036 dev->dv_flags |= DVF_POWER_HANDLERS; 2037 return true; 2038 } 2039 2040 static const char * 2041 curlwp_name(void) 2042 { 2043 if (curlwp->l_name != NULL) 2044 return curlwp->l_name; 2045 else 2046 return curlwp->l_proc->p_comm; 2047 } 2048 2049 void 2050 device_pmf_driver_deregister(device_t dev) 2051 { 2052 device_lock_t dvl = device_getlock(dev); 2053 2054 dev->dv_driver_suspend = NULL; 2055 dev->dv_driver_resume = NULL; 2056 2057 mutex_enter(&dvl->dvl_mtx); 2058 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2059 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2060 /* Wake a thread that waits for the lock. That 2061 * thread will fail to acquire the lock, and then 2062 * it will wake the next thread that waits for the 2063 * lock, or else it will wake us. 2064 */ 2065 cv_signal(&dvl->dvl_cv); 2066 pmflock_debug(dev, __func__, __LINE__); 2067 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2068 pmflock_debug(dev, __func__, __LINE__); 2069 } 2070 mutex_exit(&dvl->dvl_mtx); 2071 } 2072 2073 bool 2074 device_pmf_driver_child_register(device_t dev) 2075 { 2076 device_t parent = device_parent(dev); 2077 2078 if (parent == NULL || parent->dv_driver_child_register == NULL) 2079 return true; 2080 return (*parent->dv_driver_child_register)(dev); 2081 } 2082 2083 void 2084 device_pmf_driver_set_child_register(device_t dev, 2085 bool (*child_register)(device_t)) 2086 { 2087 dev->dv_driver_child_register = child_register; 2088 } 2089 2090 static void 2091 pmflock_debug(device_t dev, const char *func, int line) 2092 { 2093 device_lock_t dvl = device_getlock(dev); 2094 2095 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2096 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2097 dev->dv_flags); 2098 } 2099 2100 static bool 2101 device_pmf_lock1(device_t dev) 2102 { 2103 device_lock_t dvl = device_getlock(dev); 2104 2105 while (device_pmf_is_registered(dev) && 2106 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2107 dvl->dvl_nwait++; 2108 pmflock_debug(dev, __func__, __LINE__); 2109 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2110 pmflock_debug(dev, __func__, __LINE__); 2111 dvl->dvl_nwait--; 2112 } 2113 if (!device_pmf_is_registered(dev)) { 2114 pmflock_debug(dev, __func__, __LINE__); 2115 /* We could not acquire the lock, but some other thread may 2116 * wait for it, also. Wake that thread. 2117 */ 2118 cv_signal(&dvl->dvl_cv); 2119 return false; 2120 } 2121 dvl->dvl_nlock++; 2122 dvl->dvl_holder = curlwp; 2123 pmflock_debug(dev, __func__, __LINE__); 2124 return true; 2125 } 2126 2127 bool 2128 device_pmf_lock(device_t dev) 2129 { 2130 bool rc; 2131 device_lock_t dvl = device_getlock(dev); 2132 2133 mutex_enter(&dvl->dvl_mtx); 2134 rc = device_pmf_lock1(dev); 2135 mutex_exit(&dvl->dvl_mtx); 2136 2137 return rc; 2138 } 2139 2140 void 2141 device_pmf_unlock(device_t dev) 2142 { 2143 device_lock_t dvl = device_getlock(dev); 2144 2145 KASSERT(dvl->dvl_nlock > 0); 2146 mutex_enter(&dvl->dvl_mtx); 2147 if (--dvl->dvl_nlock == 0) 2148 dvl->dvl_holder = NULL; 2149 cv_signal(&dvl->dvl_cv); 2150 pmflock_debug(dev, __func__, __LINE__); 2151 mutex_exit(&dvl->dvl_mtx); 2152 } 2153 2154 device_lock_t 2155 device_getlock(device_t dev) 2156 { 2157 return &dev->dv_lock; 2158 } 2159 2160 void * 2161 device_pmf_bus_private(device_t dev) 2162 { 2163 return dev->dv_bus_private; 2164 } 2165 2166 bool 2167 device_pmf_bus_suspend(device_t dev, pmf_qual_t qual) 2168 { 2169 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2170 return true; 2171 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2172 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2173 return false; 2174 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2175 dev->dv_bus_suspend != NULL && 2176 !(*dev->dv_bus_suspend)(dev, qual)) 2177 return false; 2178 2179 dev->dv_flags |= DVF_BUS_SUSPENDED; 2180 return true; 2181 } 2182 2183 bool 2184 device_pmf_bus_resume(device_t dev, pmf_qual_t qual) 2185 { 2186 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2187 return true; 2188 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2189 dev->dv_bus_resume != NULL && 2190 !(*dev->dv_bus_resume)(dev, qual)) 2191 return false; 2192 2193 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2194 return true; 2195 } 2196 2197 bool 2198 device_pmf_bus_shutdown(device_t dev, int how) 2199 { 2200 2201 if (*dev->dv_bus_shutdown != NULL && 2202 !(*dev->dv_bus_shutdown)(dev, how)) 2203 return false; 2204 return true; 2205 } 2206 2207 void 2208 device_pmf_bus_register(device_t dev, void *priv, 2209 bool (*suspend)(device_t, pmf_qual_t), 2210 bool (*resume)(device_t, pmf_qual_t), 2211 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2212 { 2213 dev->dv_bus_private = priv; 2214 dev->dv_bus_resume = resume; 2215 dev->dv_bus_suspend = suspend; 2216 dev->dv_bus_shutdown = shutdown; 2217 dev->dv_bus_deregister = deregister; 2218 } 2219 2220 void 2221 device_pmf_bus_deregister(device_t dev) 2222 { 2223 if (dev->dv_bus_deregister == NULL) 2224 return; 2225 (*dev->dv_bus_deregister)(dev); 2226 dev->dv_bus_private = NULL; 2227 dev->dv_bus_suspend = NULL; 2228 dev->dv_bus_resume = NULL; 2229 dev->dv_bus_deregister = NULL; 2230 } 2231 2232 void * 2233 device_pmf_class_private(device_t dev) 2234 { 2235 return dev->dv_class_private; 2236 } 2237 2238 bool 2239 device_pmf_class_suspend(device_t dev, pmf_qual_t qual) 2240 { 2241 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2242 return true; 2243 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2244 dev->dv_class_suspend != NULL && 2245 !(*dev->dv_class_suspend)(dev, qual)) 2246 return false; 2247 2248 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2249 return true; 2250 } 2251 2252 bool 2253 device_pmf_class_resume(device_t dev, pmf_qual_t qual) 2254 { 2255 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2256 return true; 2257 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2258 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2259 return false; 2260 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2261 dev->dv_class_resume != NULL && 2262 !(*dev->dv_class_resume)(dev, qual)) 2263 return false; 2264 2265 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2266 return true; 2267 } 2268 2269 void 2270 device_pmf_class_register(device_t dev, void *priv, 2271 bool (*suspend)(device_t, pmf_qual_t), 2272 bool (*resume)(device_t, pmf_qual_t), 2273 void (*deregister)(device_t)) 2274 { 2275 dev->dv_class_private = priv; 2276 dev->dv_class_suspend = suspend; 2277 dev->dv_class_resume = resume; 2278 dev->dv_class_deregister = deregister; 2279 } 2280 2281 void 2282 device_pmf_class_deregister(device_t dev) 2283 { 2284 if (dev->dv_class_deregister == NULL) 2285 return; 2286 (*dev->dv_class_deregister)(dev); 2287 dev->dv_class_private = NULL; 2288 dev->dv_class_suspend = NULL; 2289 dev->dv_class_resume = NULL; 2290 dev->dv_class_deregister = NULL; 2291 } 2292 2293 bool 2294 device_active(device_t dev, devactive_t type) 2295 { 2296 size_t i; 2297 2298 if (dev->dv_activity_count == 0) 2299 return false; 2300 2301 for (i = 0; i < dev->dv_activity_count; ++i) { 2302 if (dev->dv_activity_handlers[i] == NULL) 2303 break; 2304 (*dev->dv_activity_handlers[i])(dev, type); 2305 } 2306 2307 return true; 2308 } 2309 2310 bool 2311 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2312 { 2313 void (**new_handlers)(device_t, devactive_t); 2314 void (**old_handlers)(device_t, devactive_t); 2315 size_t i, old_size, new_size; 2316 int s; 2317 2318 old_handlers = dev->dv_activity_handlers; 2319 old_size = dev->dv_activity_count; 2320 2321 for (i = 0; i < old_size; ++i) { 2322 KASSERT(old_handlers[i] != handler); 2323 if (old_handlers[i] == NULL) { 2324 old_handlers[i] = handler; 2325 return true; 2326 } 2327 } 2328 2329 new_size = old_size + 4; 2330 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2331 2332 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2333 new_handlers[old_size] = handler; 2334 memset(new_handlers + old_size + 1, 0, 2335 sizeof(int [new_size - (old_size+1)])); 2336 2337 s = splhigh(); 2338 dev->dv_activity_count = new_size; 2339 dev->dv_activity_handlers = new_handlers; 2340 splx(s); 2341 2342 if (old_handlers != NULL) 2343 kmem_free(old_handlers, sizeof(void * [old_size])); 2344 2345 return true; 2346 } 2347 2348 void 2349 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2350 { 2351 void (**old_handlers)(device_t, devactive_t); 2352 size_t i, old_size; 2353 int s; 2354 2355 old_handlers = dev->dv_activity_handlers; 2356 old_size = dev->dv_activity_count; 2357 2358 for (i = 0; i < old_size; ++i) { 2359 if (old_handlers[i] == handler) 2360 break; 2361 if (old_handlers[i] == NULL) 2362 return; /* XXX panic? */ 2363 } 2364 2365 if (i == old_size) 2366 return; /* XXX panic? */ 2367 2368 for (; i < old_size - 1; ++i) { 2369 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2370 continue; 2371 2372 if (i == 0) { 2373 s = splhigh(); 2374 dev->dv_activity_count = 0; 2375 dev->dv_activity_handlers = NULL; 2376 splx(s); 2377 kmem_free(old_handlers, sizeof(void *[old_size])); 2378 } 2379 return; 2380 } 2381 old_handlers[i] = NULL; 2382 } 2383 2384 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2385 static bool 2386 device_exists_at(device_t dv, devgen_t gen) 2387 { 2388 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2389 dv->dv_add_gen <= gen; 2390 } 2391 2392 static bool 2393 deviter_visits(const deviter_t *di, device_t dv) 2394 { 2395 return device_exists_at(dv, di->di_gen); 2396 } 2397 2398 /* 2399 * Device Iteration 2400 * 2401 * deviter_t: a device iterator. Holds state for a "walk" visiting 2402 * each device_t's in the device tree. 2403 * 2404 * deviter_init(di, flags): initialize the device iterator `di' 2405 * to "walk" the device tree. deviter_next(di) will return 2406 * the first device_t in the device tree, or NULL if there are 2407 * no devices. 2408 * 2409 * `flags' is one or more of DEVITER_F_RW, indicating that the 2410 * caller intends to modify the device tree by calling 2411 * config_detach(9) on devices in the order that the iterator 2412 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2413 * nearest the "root" of the device tree to be returned, first; 2414 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2415 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2416 * indicating both that deviter_init() should not respect any 2417 * locks on the device tree, and that deviter_next(di) may run 2418 * in more than one LWP before the walk has finished. 2419 * 2420 * Only one DEVITER_F_RW iterator may be in the device tree at 2421 * once. 2422 * 2423 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2424 * 2425 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2426 * DEVITER_F_LEAVES_FIRST are used in combination. 2427 * 2428 * deviter_first(di, flags): initialize the device iterator `di' 2429 * and return the first device_t in the device tree, or NULL 2430 * if there are no devices. The statement 2431 * 2432 * dv = deviter_first(di); 2433 * 2434 * is shorthand for 2435 * 2436 * deviter_init(di); 2437 * dv = deviter_next(di); 2438 * 2439 * deviter_next(di): return the next device_t in the device tree, 2440 * or NULL if there are no more devices. deviter_next(di) 2441 * is undefined if `di' was not initialized with deviter_init() or 2442 * deviter_first(). 2443 * 2444 * deviter_release(di): stops iteration (subsequent calls to 2445 * deviter_next() will return NULL), releases any locks and 2446 * resources held by the device iterator. 2447 * 2448 * Device iteration does not return device_t's in any particular 2449 * order. An iterator will never return the same device_t twice. 2450 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2451 * is called repeatedly on the same `di', it will eventually return 2452 * NULL. It is ok to attach/detach devices during device iteration. 2453 */ 2454 void 2455 deviter_init(deviter_t *di, deviter_flags_t flags) 2456 { 2457 device_t dv; 2458 int s; 2459 2460 memset(di, 0, sizeof(*di)); 2461 2462 s = config_alldevs_lock(); 2463 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2464 flags |= DEVITER_F_RW; 2465 2466 if ((flags & DEVITER_F_RW) != 0) 2467 alldevs_nwrite++; 2468 else 2469 alldevs_nread++; 2470 di->di_gen = alldevs_gen++; 2471 config_alldevs_unlock(s); 2472 2473 di->di_flags = flags; 2474 2475 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2476 case DEVITER_F_LEAVES_FIRST: 2477 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2478 if (!deviter_visits(di, dv)) 2479 continue; 2480 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2481 } 2482 break; 2483 case DEVITER_F_ROOT_FIRST: 2484 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2485 if (!deviter_visits(di, dv)) 2486 continue; 2487 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2488 } 2489 break; 2490 default: 2491 break; 2492 } 2493 2494 deviter_reinit(di); 2495 } 2496 2497 static void 2498 deviter_reinit(deviter_t *di) 2499 { 2500 if ((di->di_flags & DEVITER_F_RW) != 0) 2501 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2502 else 2503 di->di_prev = TAILQ_FIRST(&alldevs); 2504 } 2505 2506 device_t 2507 deviter_first(deviter_t *di, deviter_flags_t flags) 2508 { 2509 deviter_init(di, flags); 2510 return deviter_next(di); 2511 } 2512 2513 static device_t 2514 deviter_next2(deviter_t *di) 2515 { 2516 device_t dv; 2517 2518 dv = di->di_prev; 2519 2520 if (dv == NULL) 2521 return NULL; 2522 2523 if ((di->di_flags & DEVITER_F_RW) != 0) 2524 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2525 else 2526 di->di_prev = TAILQ_NEXT(dv, dv_list); 2527 2528 return dv; 2529 } 2530 2531 static device_t 2532 deviter_next1(deviter_t *di) 2533 { 2534 device_t dv; 2535 2536 do { 2537 dv = deviter_next2(di); 2538 } while (dv != NULL && !deviter_visits(di, dv)); 2539 2540 return dv; 2541 } 2542 2543 device_t 2544 deviter_next(deviter_t *di) 2545 { 2546 device_t dv = NULL; 2547 2548 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2549 case 0: 2550 return deviter_next1(di); 2551 case DEVITER_F_LEAVES_FIRST: 2552 while (di->di_curdepth >= 0) { 2553 if ((dv = deviter_next1(di)) == NULL) { 2554 di->di_curdepth--; 2555 deviter_reinit(di); 2556 } else if (dv->dv_depth == di->di_curdepth) 2557 break; 2558 } 2559 return dv; 2560 case DEVITER_F_ROOT_FIRST: 2561 while (di->di_curdepth <= di->di_maxdepth) { 2562 if ((dv = deviter_next1(di)) == NULL) { 2563 di->di_curdepth++; 2564 deviter_reinit(di); 2565 } else if (dv->dv_depth == di->di_curdepth) 2566 break; 2567 } 2568 return dv; 2569 default: 2570 return NULL; 2571 } 2572 } 2573 2574 void 2575 deviter_release(deviter_t *di) 2576 { 2577 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2578 int s; 2579 2580 s = config_alldevs_lock(); 2581 if (rw) 2582 --alldevs_nwrite; 2583 else 2584 --alldevs_nread; 2585 /* XXX wake a garbage-collection thread */ 2586 config_alldevs_unlock(s); 2587 } 2588 2589 const char * 2590 cfdata_ifattr(const struct cfdata *cf) 2591 { 2592 return cf->cf_pspec->cfp_iattr; 2593 } 2594 2595 bool 2596 ifattr_match(const char *snull, const char *t) 2597 { 2598 return (snull == NULL) || strcmp(snull, t) == 0; 2599 } 2600 2601 void 2602 null_childdetached(device_t self, device_t child) 2603 { 2604 /* do nothing */ 2605 } 2606 2607 static void 2608 sysctl_detach_setup(struct sysctllog **clog) 2609 { 2610 const struct sysctlnode *node = NULL; 2611 2612 sysctl_createv(clog, 0, NULL, &node, 2613 CTLFLAG_PERMANENT, 2614 CTLTYPE_NODE, "kern", NULL, 2615 NULL, 0, NULL, 0, 2616 CTL_KERN, CTL_EOL); 2617 2618 if (node == NULL) 2619 return; 2620 2621 sysctl_createv(clog, 0, &node, NULL, 2622 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2623 CTLTYPE_INT, "detachall", 2624 SYSCTL_DESCR("Detach all devices at shutdown"), 2625 NULL, 0, &detachall, 0, 2626 CTL_CREATE, CTL_EOL); 2627 } 2628