xref: /netbsd-src/sys/kern/sched_4bsd.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: sched_4bsd.c,v 1.24 2008/10/07 09:48:27 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10  * Daniel Sieger.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*-
35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.24 2008/10/07 09:48:27 rmind Exp $");
72 
73 #include "opt_ddb.h"
74 #include "opt_lockdebug.h"
75 #include "opt_perfctrs.h"
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/callout.h>
80 #include <sys/cpu.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/signalvar.h>
84 #include <sys/resourcevar.h>
85 #include <sys/sched.h>
86 #include <sys/sysctl.h>
87 #include <sys/kauth.h>
88 #include <sys/lockdebug.h>
89 #include <sys/kmem.h>
90 #include <sys/intr.h>
91 
92 #include <uvm/uvm_extern.h>
93 
94 static void updatepri(struct lwp *);
95 static void resetpriority(struct lwp *);
96 
97 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
98 
99 /* Number of hardclock ticks per sched_tick() */
100 static int rrticks;
101 
102 /*
103  * Force switch among equal priority processes every 100ms.
104  * Called from hardclock every hz/10 == rrticks hardclock ticks.
105  *
106  * There's no need to lock anywhere in this routine, as it's
107  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
108  */
109 /* ARGSUSED */
110 void
111 sched_tick(struct cpu_info *ci)
112 {
113 	struct schedstate_percpu *spc = &ci->ci_schedstate;
114 	lwp_t *l;
115 
116 	spc->spc_ticks = rrticks;
117 
118 	if (CURCPU_IDLE_P()) {
119 		cpu_need_resched(ci, 0);
120 		return;
121 	}
122 	l = ci->ci_data.cpu_onproc;
123 	if (l == NULL) {
124 		return;
125 	}
126 	switch (l->l_class) {
127 	case SCHED_FIFO:
128 		/* No timeslicing for FIFO jobs. */
129 		break;
130 	case SCHED_RR:
131 		/* Force it into mi_switch() to look for other jobs to run. */
132 		cpu_need_resched(ci, RESCHED_KPREEMPT);
133 		break;
134 	default:
135 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
136 			/*
137 			 * Process is stuck in kernel somewhere, probably
138 			 * due to buggy or inefficient code.  Force a
139 			 * kernel preemption.
140 			 */
141 			cpu_need_resched(ci, RESCHED_KPREEMPT);
142 		} else if (spc->spc_flags & SPCF_SEENRR) {
143 			/*
144 			 * The process has already been through a roundrobin
145 			 * without switching and may be hogging the CPU.
146 			 * Indicate that the process should yield.
147 			 */
148 			spc->spc_flags |= SPCF_SHOULDYIELD;
149 			cpu_need_resched(ci, 0);
150 		} else {
151 			spc->spc_flags |= SPCF_SEENRR;
152 		}
153 		break;
154 	}
155 }
156 
157 /*
158  * Why PRIO_MAX - 2? From setpriority(2):
159  *
160  *	prio is a value in the range -20 to 20.  The default priority is
161  *	0; lower priorities cause more favorable scheduling.  A value of
162  *	19 or 20 will schedule a process only when nothing at priority <=
163  *	0 is runnable.
164  *
165  * This gives estcpu influence over 18 priority levels, and leaves nice
166  * with 40 levels.  One way to think about it is that nice has 20 levels
167  * either side of estcpu's 18.
168  */
169 #define	ESTCPU_SHIFT	11
170 #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
171 #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
172 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
173 
174 /*
175  * Constants for digital decay and forget:
176  *	90% of (l_estcpu) usage in 5 * loadav time
177  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
178  *          Note that, as ps(1) mentions, this can let percentages
179  *          total over 100% (I've seen 137.9% for 3 processes).
180  *
181  * Note that hardclock updates l_estcpu and l_cpticks independently.
182  *
183  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
184  * That is, the system wants to compute a value of decay such
185  * that the following for loop:
186  * 	for (i = 0; i < (5 * loadavg); i++)
187  * 		l_estcpu *= decay;
188  * will compute
189  * 	l_estcpu *= 0.1;
190  * for all values of loadavg:
191  *
192  * Mathematically this loop can be expressed by saying:
193  * 	decay ** (5 * loadavg) ~= .1
194  *
195  * The system computes decay as:
196  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
197  *
198  * We wish to prove that the system's computation of decay
199  * will always fulfill the equation:
200  * 	decay ** (5 * loadavg) ~= .1
201  *
202  * If we compute b as:
203  * 	b = 2 * loadavg
204  * then
205  * 	decay = b / (b + 1)
206  *
207  * We now need to prove two things:
208  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
209  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
210  *
211  * Facts:
212  *         For x close to zero, exp(x) =~ 1 + x, since
213  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
214  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
215  *         For x close to zero, ln(1+x) =~ x, since
216  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
217  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
218  *         ln(.1) =~ -2.30
219  *
220  * Proof of (1):
221  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
222  *	solving for factor,
223  *      ln(factor) =~ (-2.30/5*loadav), or
224  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
225  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
226  *
227  * Proof of (2):
228  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
229  *	solving for power,
230  *      power*ln(b/(b+1)) =~ -2.30, or
231  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
232  *
233  * Actual power values for the implemented algorithm are as follows:
234  *      loadav: 1       2       3       4
235  *      power:  5.68    10.32   14.94   19.55
236  */
237 
238 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
239 #define	loadfactor(loadav)	(2 * (loadav))
240 
241 static fixpt_t
242 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
243 {
244 
245 	if (estcpu == 0) {
246 		return 0;
247 	}
248 
249 #if !defined(_LP64)
250 	/* avoid 64bit arithmetics. */
251 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
252 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
253 		return estcpu * loadfac / (loadfac + FSCALE);
254 	}
255 #endif /* !defined(_LP64) */
256 
257 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
258 }
259 
260 /*
261  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
262  * sleeping for at least seven times the loadfactor will decay l_estcpu to
263  * less than (1 << ESTCPU_SHIFT).
264  *
265  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
266  */
267 static fixpt_t
268 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
269 {
270 
271 	if ((n << FSHIFT) >= 7 * loadfac) {
272 		return 0;
273 	}
274 
275 	while (estcpu != 0 && n > 1) {
276 		estcpu = decay_cpu(loadfac, estcpu);
277 		n--;
278 	}
279 
280 	return estcpu;
281 }
282 
283 /*
284  * sched_pstats_hook:
285  *
286  * Periodically called from sched_pstats(); used to recalculate priorities.
287  */
288 void
289 sched_pstats_hook(struct lwp *l, int batch)
290 {
291 
292 	/*
293 	 * If the LWP has slept an entire second, stop recalculating
294 	 * its priority until it wakes up.
295 	 */
296 	KASSERT(lwp_locked(l, NULL));
297 	if (l->l_slptime > 0) {
298 		fixpt_t loadfac = 2 * (averunnable.ldavg[0]);
299 		l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
300 		resetpriority(l);
301 	}
302 }
303 
304 /*
305  * Recalculate the priority of a process after it has slept for a while.
306  */
307 static void
308 updatepri(struct lwp *l)
309 {
310 	fixpt_t loadfac;
311 
312 	KASSERT(lwp_locked(l, NULL));
313 	KASSERT(l->l_slptime > 1);
314 
315 	loadfac = loadfactor(averunnable.ldavg[0]);
316 
317 	l->l_slptime--; /* the first time was done in sched_pstats */
318 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
319 	resetpriority(l);
320 }
321 
322 void
323 sched_rqinit(void)
324 {
325 
326 }
327 
328 void
329 sched_setrunnable(struct lwp *l)
330 {
331 
332  	if (l->l_slptime > 1)
333  		updatepri(l);
334 }
335 
336 void
337 sched_nice(struct proc *p, int n)
338 {
339 	struct lwp *l;
340 
341 	KASSERT(mutex_owned(p->p_lock));
342 
343 	p->p_nice = n;
344 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
345 		lwp_lock(l);
346 		resetpriority(l);
347 		lwp_unlock(l);
348 	}
349 }
350 
351 /*
352  * Recompute the priority of an LWP.  Arrange to reschedule if
353  * the resulting priority is better than that of the current LWP.
354  */
355 static void
356 resetpriority(struct lwp *l)
357 {
358 	pri_t pri;
359 	struct proc *p = l->l_proc;
360 
361 	KASSERT(lwp_locked(l, NULL));
362 
363 	if (l->l_class != SCHED_OTHER)
364 		return;
365 
366 	/* See comments above ESTCPU_SHIFT definition. */
367 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
368 	pri = imax(pri, 0);
369 	if (pri != l->l_priority)
370 		lwp_changepri(l, pri);
371 }
372 
373 /*
374  * We adjust the priority of the current process.  The priority of a process
375  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
376  * is increased here.  The formula for computing priorities (in kern_synch.c)
377  * will compute a different value each time l_estcpu increases. This can
378  * cause a switch, but unless the priority crosses a PPQ boundary the actual
379  * queue will not change.  The CPU usage estimator ramps up quite quickly
380  * when the process is running (linearly), and decays away exponentially, at
381  * a rate which is proportionally slower when the system is busy.  The basic
382  * principle is that the system will 90% forget that the process used a lot
383  * of CPU time in 5 * loadav seconds.  This causes the system to favor
384  * processes which haven't run much recently, and to round-robin among other
385  * processes.
386  */
387 
388 void
389 sched_schedclock(struct lwp *l)
390 {
391 
392 	if (l->l_class != SCHED_OTHER)
393 		return;
394 
395 	KASSERT(!CURCPU_IDLE_P());
396 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
397 	lwp_lock(l);
398 	resetpriority(l);
399 	lwp_unlock(l);
400 }
401 
402 /*
403  * sched_proc_fork:
404  *
405  *	Inherit the parent's scheduler history.
406  */
407 void
408 sched_proc_fork(struct proc *parent, struct proc *child)
409 {
410 	lwp_t *pl;
411 
412 	KASSERT(mutex_owned(parent->p_lock));
413 
414 	pl = LIST_FIRST(&parent->p_lwps);
415 	child->p_estcpu_inherited = pl->l_estcpu;
416 	child->p_forktime = sched_pstats_ticks;
417 }
418 
419 /*
420  * sched_proc_exit:
421  *
422  *	Chargeback parents for the sins of their children.
423  */
424 void
425 sched_proc_exit(struct proc *parent, struct proc *child)
426 {
427 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
428 	fixpt_t estcpu;
429 	lwp_t *pl, *cl;
430 
431 	/* XXX Only if parent != init?? */
432 
433 	mutex_enter(parent->p_lock);
434 	pl = LIST_FIRST(&parent->p_lwps);
435 	cl = LIST_FIRST(&child->p_lwps);
436 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
437 	    sched_pstats_ticks - child->p_forktime);
438 	if (cl->l_estcpu > estcpu) {
439 		lwp_lock(pl);
440 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
441 		lwp_unlock(pl);
442 	}
443 	mutex_exit(parent->p_lock);
444 }
445 
446 void
447 sched_wakeup(struct lwp *l)
448 {
449 
450 }
451 
452 void
453 sched_slept(struct lwp *l)
454 {
455 
456 }
457 
458 void
459 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
460 {
461 
462 	l2->l_estcpu = l1->l_estcpu;
463 }
464 
465 void
466 sched_lwp_collect(struct lwp *t)
467 {
468 	lwp_t *l;
469 
470 	/* Absorb estcpu value of collected LWP. */
471 	l = curlwp;
472 	lwp_lock(l);
473 	l->l_estcpu += t->l_estcpu;
474 	lwp_unlock(l);
475 }
476 
477 void
478 sched_oncpu(lwp_t *l)
479 {
480 
481 }
482 
483 void
484 sched_newts(lwp_t *l)
485 {
486 
487 }
488 
489 /*
490  * Sysctl nodes and initialization.
491  */
492 
493 static int
494 sysctl_sched_rtts(SYSCTLFN_ARGS)
495 {
496 	struct sysctlnode node;
497 	int rttsms = hztoms(rrticks);
498 
499 	node = *rnode;
500 	node.sysctl_data = &rttsms;
501 	return sysctl_lookup(SYSCTLFN_CALL(&node));
502 }
503 
504 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
505 {
506 	const struct sysctlnode *node = NULL;
507 
508 	sysctl_createv(clog, 0, NULL, NULL,
509 		CTLFLAG_PERMANENT,
510 		CTLTYPE_NODE, "kern", NULL,
511 		NULL, 0, NULL, 0,
512 		CTL_KERN, CTL_EOL);
513 	sysctl_createv(clog, 0, NULL, &node,
514 		CTLFLAG_PERMANENT,
515 		CTLTYPE_NODE, "sched",
516 		SYSCTL_DESCR("Scheduler options"),
517 		NULL, 0, NULL, 0,
518 		CTL_KERN, CTL_CREATE, CTL_EOL);
519 
520 	if (node == NULL)
521 		return;
522 
523 	rrticks = hz / 10;
524 
525 	sysctl_createv(NULL, 0, &node, NULL,
526 		CTLFLAG_PERMANENT,
527 		CTLTYPE_STRING, "name", NULL,
528 		NULL, 0, __UNCONST("4.4BSD"), 0,
529 		CTL_CREATE, CTL_EOL);
530 	sysctl_createv(NULL, 0, &node, NULL,
531 		CTLFLAG_PERMANENT,
532 		CTLTYPE_INT, "rtts",
533 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
534 		sysctl_sched_rtts, 0, NULL, 0,
535 		CTL_CREATE, CTL_EOL);
536 }
537