xref: /netbsd-src/sys/kern/kern_timeout.c (revision b5677b36047b601b9addaaa494a58ceae82c2a6c)
1 /*	$NetBSD: kern_timeout.c,v 1.44 2009/03/21 13:11:14 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
34  * Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. The name of the author may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.44 2009/03/21 13:11:14 ad Exp $");
63 
64 /*
65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69  * a Timer Facility" by George Varghese and Tony Lauck.
70  *
71  * Some of the "math" in here is a bit tricky.  We have to beware of
72  * wrapping ints.
73  *
74  * We use the fact that any element added to the queue must be added with
75  * a positive time.  That means that any element `to' on the queue cannot
76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77  * be positive or negative so comparing it with anything is dangerous.
78  * The only way we can use the c->c_time value in any predictable way is
79  * when we calculate how far in the future `to' will timeout - "c->c_time
80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
81  * timeouts and 0 or negative for due timeouts.
82  */
83 
84 #define	_CALLOUT_PRIVATE
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/mutex.h>
91 #include <sys/proc.h>
92 #include <sys/sleepq.h>
93 #include <sys/syncobj.h>
94 #include <sys/evcnt.h>
95 #include <sys/intr.h>
96 #include <sys/cpu.h>
97 #include <sys/kmem.h>
98 
99 #ifdef DDB
100 #include <machine/db_machdep.h>
101 #include <ddb/db_interface.h>
102 #include <ddb/db_access.h>
103 #include <ddb/db_sym.h>
104 #include <ddb/db_output.h>
105 #endif
106 
107 #define BUCKETS		1024
108 #define WHEELSIZE	256
109 #define WHEELMASK	255
110 #define WHEELBITS	8
111 
112 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
113 
114 #define BUCKET(cc, rel, abs)						\
115     (((rel) <= (1 << (2*WHEELBITS)))					\
116     	? ((rel) <= (1 << WHEELBITS))					\
117             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
118             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
119         : ((rel) <= (1 << (3*WHEELBITS)))				\
120             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
121             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
122 
123 #define MOVEBUCKET(cc, wheel, time)					\
124     CIRCQ_APPEND(&(cc)->cc_todo,					\
125         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
126 
127 /*
128  * Circular queue definitions.
129  */
130 
131 #define CIRCQ_INIT(list)						\
132 do {									\
133         (list)->cq_next_l = (list);					\
134         (list)->cq_prev_l = (list);					\
135 } while (/*CONSTCOND*/0)
136 
137 #define CIRCQ_INSERT(elem, list)					\
138 do {									\
139         (elem)->cq_prev_e = (list)->cq_prev_e;				\
140         (elem)->cq_next_l = (list);					\
141         (list)->cq_prev_l->cq_next_l = (elem);				\
142         (list)->cq_prev_l = (elem);					\
143 } while (/*CONSTCOND*/0)
144 
145 #define CIRCQ_APPEND(fst, snd)						\
146 do {									\
147         if (!CIRCQ_EMPTY(snd)) {					\
148                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
149                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
150                 (snd)->cq_prev_l->cq_next_l = (fst);			\
151                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
152                 CIRCQ_INIT(snd);					\
153         }								\
154 } while (/*CONSTCOND*/0)
155 
156 #define CIRCQ_REMOVE(elem)						\
157 do {									\
158         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
159         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
160 } while (/*CONSTCOND*/0)
161 
162 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
163 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
164 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
165 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
166 
167 static void	callout_softclock(void *);
168 
169 struct callout_cpu {
170 	kmutex_t	*cc_lock;
171 	sleepq_t	cc_sleepq;
172 	u_int		cc_nwait;
173 	u_int		cc_ticks;
174 	lwp_t		*cc_lwp;
175 	callout_impl_t	*cc_active;
176 	callout_impl_t	*cc_cancel;
177 	struct evcnt	cc_ev_late;
178 	struct evcnt	cc_ev_block;
179 	struct callout_circq cc_todo;		/* Worklist */
180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
181 	char		cc_name1[12];
182 	char		cc_name2[12];
183 };
184 
185 static struct callout_cpu callout_cpu0;
186 static void *callout_sih;
187 
188 static inline kmutex_t *
189 callout_lock(callout_impl_t *c)
190 {
191 	struct callout_cpu *cc;
192 	kmutex_t *lock;
193 
194 	for (;;) {
195 		cc = c->c_cpu;
196 		lock = cc->cc_lock;
197 		mutex_spin_enter(lock);
198 		if (__predict_true(cc == c->c_cpu))
199 			return lock;
200 		mutex_spin_exit(lock);
201 	}
202 }
203 
204 /*
205  * callout_startup:
206  *
207  *	Initialize the callout facility, called at system startup time.
208  *	Do just enough to allow callouts to be safely registered.
209  */
210 void
211 callout_startup(void)
212 {
213 	struct callout_cpu *cc;
214 	int b;
215 
216 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
217 
218 	cc = &callout_cpu0;
219 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
220 	CIRCQ_INIT(&cc->cc_todo);
221 	for (b = 0; b < BUCKETS; b++)
222 		CIRCQ_INIT(&cc->cc_wheel[b]);
223 	curcpu()->ci_data.cpu_callout = cc;
224 }
225 
226 /*
227  * callout_init_cpu:
228  *
229  *	Per-CPU initialization.
230  */
231 void
232 callout_init_cpu(struct cpu_info *ci)
233 {
234 	struct callout_cpu *cc;
235 	int b;
236 
237 	CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
238 
239 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
240 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
241 		if (cc == NULL)
242 			panic("callout_init_cpu (1)");
243 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
244 		CIRCQ_INIT(&cc->cc_todo);
245 		for (b = 0; b < BUCKETS; b++)
246 			CIRCQ_INIT(&cc->cc_wheel[b]);
247 	} else {
248 		/* Boot CPU, one time only. */
249 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
250 		    callout_softclock, NULL);
251 		if (callout_sih == NULL)
252 			panic("callout_init_cpu (2)");
253 	}
254 
255 	sleepq_init(&cc->cc_sleepq);
256 
257 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
258 	    cpu_index(ci));
259 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
260 	    NULL, "callout", cc->cc_name1);
261 
262 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
263 	    cpu_index(ci));
264 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
265 	    NULL, "callout", cc->cc_name2);
266 
267 	ci->ci_data.cpu_callout = cc;
268 }
269 
270 /*
271  * callout_init:
272  *
273  *	Initialize a callout structure.  This must be quick, so we fill
274  *	only the minimum number of fields.
275  */
276 void
277 callout_init(callout_t *cs, u_int flags)
278 {
279 	callout_impl_t *c = (callout_impl_t *)cs;
280 	struct callout_cpu *cc;
281 
282 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
283 
284 	cc = curcpu()->ci_data.cpu_callout;
285 	c->c_func = NULL;
286 	c->c_magic = CALLOUT_MAGIC;
287 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
288 		c->c_flags = flags;
289 		c->c_cpu = cc;
290 		return;
291 	}
292 	c->c_flags = flags | CALLOUT_BOUND;
293 	c->c_cpu = &callout_cpu0;
294 }
295 
296 /*
297  * callout_destroy:
298  *
299  *	Destroy a callout structure.  The callout must be stopped.
300  */
301 void
302 callout_destroy(callout_t *cs)
303 {
304 	callout_impl_t *c = (callout_impl_t *)cs;
305 
306 	/*
307 	 * It's not necessary to lock in order to see the correct value
308 	 * of c->c_flags.  If the callout could potentially have been
309 	 * running, the current thread should have stopped it.
310 	 */
311 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
312 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
313 	KASSERT(c->c_magic == CALLOUT_MAGIC);
314 	c->c_magic = 0;
315 }
316 
317 /*
318  * callout_schedule_locked:
319  *
320  *	Schedule a callout to run.  The function and argument must
321  *	already be set in the callout structure.  Must be called with
322  *	callout_lock.
323  */
324 static void
325 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
326 {
327 	struct callout_cpu *cc, *occ;
328 	int old_time;
329 
330 	KASSERT(to_ticks >= 0);
331 	KASSERT(c->c_func != NULL);
332 
333 	/* Initialize the time here, it won't change. */
334 	occ = c->c_cpu;
335 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
336 
337 	/*
338 	 * If this timeout is already scheduled and now is moved
339 	 * earlier, reschedule it now.  Otherwise leave it in place
340 	 * and let it be rescheduled later.
341 	 */
342 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
343 		/* Leave on existing CPU. */
344 		old_time = c->c_time;
345 		c->c_time = to_ticks + occ->cc_ticks;
346 		if (c->c_time - old_time < 0) {
347 			CIRCQ_REMOVE(&c->c_list);
348 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
349 		}
350 		mutex_spin_exit(lock);
351 		return;
352 	}
353 
354 	cc = curcpu()->ci_data.cpu_callout;
355 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
356 	    !mutex_tryenter(cc->cc_lock)) {
357 		/* Leave on existing CPU. */
358 		c->c_time = to_ticks + occ->cc_ticks;
359 		c->c_flags |= CALLOUT_PENDING;
360 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
361 	} else {
362 		/* Move to this CPU. */
363 		c->c_cpu = cc;
364 		c->c_time = to_ticks + cc->cc_ticks;
365 		c->c_flags |= CALLOUT_PENDING;
366 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
367 		mutex_spin_exit(cc->cc_lock);
368 	}
369 	mutex_spin_exit(lock);
370 }
371 
372 /*
373  * callout_reset:
374  *
375  *	Reset a callout structure with a new function and argument, and
376  *	schedule it to run.
377  */
378 void
379 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
380 {
381 	callout_impl_t *c = (callout_impl_t *)cs;
382 	kmutex_t *lock;
383 
384 	KASSERT(c->c_magic == CALLOUT_MAGIC);
385 	KASSERT(func != NULL);
386 
387 	lock = callout_lock(c);
388 	c->c_func = func;
389 	c->c_arg = arg;
390 	callout_schedule_locked(c, lock, to_ticks);
391 }
392 
393 /*
394  * callout_schedule:
395  *
396  *	Schedule a callout to run.  The function and argument must
397  *	already be set in the callout structure.
398  */
399 void
400 callout_schedule(callout_t *cs, int to_ticks)
401 {
402 	callout_impl_t *c = (callout_impl_t *)cs;
403 	kmutex_t *lock;
404 
405 	KASSERT(c->c_magic == CALLOUT_MAGIC);
406 
407 	lock = callout_lock(c);
408 	callout_schedule_locked(c, lock, to_ticks);
409 }
410 
411 /*
412  * callout_stop:
413  *
414  *	Try to cancel a pending callout.  It may be too late: the callout
415  *	could be running on another CPU.  If called from interrupt context,
416  *	the callout could already be in progress at a lower priority.
417  */
418 bool
419 callout_stop(callout_t *cs)
420 {
421 	callout_impl_t *c = (callout_impl_t *)cs;
422 	struct callout_cpu *cc;
423 	kmutex_t *lock;
424 	bool expired;
425 
426 	KASSERT(c->c_magic == CALLOUT_MAGIC);
427 
428 	lock = callout_lock(c);
429 
430 	if ((c->c_flags & CALLOUT_PENDING) != 0)
431 		CIRCQ_REMOVE(&c->c_list);
432 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
433 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
434 
435 	cc = c->c_cpu;
436 	if (cc->cc_active == c) {
437 		/*
438 		 * This is for non-MPSAFE callouts only.  To synchronize
439 		 * effectively we must be called with kernel_lock held.
440 		 * It's also taken in callout_softclock.
441 		 */
442 		cc->cc_cancel = c;
443 	}
444 
445 	mutex_spin_exit(lock);
446 
447 	return expired;
448 }
449 
450 /*
451  * callout_halt:
452  *
453  *	Cancel a pending callout.  If in-flight, block until it completes.
454  *	May not be called from a hard interrupt handler.  If the callout
455  * 	can take locks, the caller of callout_halt() must not hold any of
456  *	those locks, otherwise the two could deadlock.  If 'interlock' is
457  *	non-NULL and we must wait for the callout to complete, it will be
458  *	released and re-acquired before returning.
459  */
460 bool
461 callout_halt(callout_t *cs, void *interlock)
462 {
463 	callout_impl_t *c = (callout_impl_t *)cs;
464 	struct callout_cpu *cc;
465 	struct lwp *l;
466 	kmutex_t *lock, *relock;
467 	bool expired;
468 
469 	KASSERT(c->c_magic == CALLOUT_MAGIC);
470 	KASSERT(!cpu_intr_p());
471 
472 	lock = callout_lock(c);
473 	relock = NULL;
474 
475 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
476 	if ((c->c_flags & CALLOUT_PENDING) != 0)
477 		CIRCQ_REMOVE(&c->c_list);
478 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
479 
480 	l = curlwp;
481 	for (;;) {
482 		cc = c->c_cpu;
483 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
484 			break;
485 		if (interlock != NULL) {
486 			/*
487 			 * Avoid potential scheduler lock order problems by
488 			 * dropping the interlock without the callout lock
489 			 * held.
490 			 */
491 			mutex_spin_exit(lock);
492 			mutex_exit(interlock);
493 			relock = interlock;
494 			interlock = NULL;
495 		} else {
496 			/* XXX Better to do priority inheritance. */
497 			KASSERT(l->l_wchan == NULL);
498 			cc->cc_nwait++;
499 			cc->cc_ev_block.ev_count++;
500 			l->l_kpriority = true;
501 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
502 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
503 			    &sleep_syncobj);
504 			sleepq_block(0, false);
505 		}
506 		lock = callout_lock(c);
507 	}
508 
509 	mutex_spin_exit(lock);
510 	if (__predict_false(relock != NULL))
511 		mutex_enter(relock);
512 
513 	return expired;
514 }
515 
516 #ifdef notyet
517 /*
518  * callout_bind:
519  *
520  *	Bind a callout so that it will only execute on one CPU.
521  *	The callout must be stopped, and must be MPSAFE.
522  *
523  *	XXX Disabled for now until it is decided how to handle
524  *	offlined CPUs.  We may want weak+strong binding.
525  */
526 void
527 callout_bind(callout_t *cs, struct cpu_info *ci)
528 {
529 	callout_impl_t *c = (callout_impl_t *)cs;
530 	struct callout_cpu *cc;
531 	kmutex_t *lock;
532 
533 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
534 	KASSERT(c->c_cpu->cc_active != c);
535 	KASSERT(c->c_magic == CALLOUT_MAGIC);
536 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
537 
538 	lock = callout_lock(c);
539 	cc = ci->ci_data.cpu_callout;
540 	c->c_flags |= CALLOUT_BOUND;
541 	if (c->c_cpu != cc) {
542 		/*
543 		 * Assigning c_cpu effectively unlocks the callout
544 		 * structure, as we don't hold the new CPU's lock.
545 		 * Issue memory barrier to prevent accesses being
546 		 * reordered.
547 		 */
548 		membar_exit();
549 		c->c_cpu = cc;
550 	}
551 	mutex_spin_exit(lock);
552 }
553 #endif
554 
555 void
556 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
557 {
558 	callout_impl_t *c = (callout_impl_t *)cs;
559 	kmutex_t *lock;
560 
561 	KASSERT(c->c_magic == CALLOUT_MAGIC);
562 	KASSERT(func != NULL);
563 
564 	lock = callout_lock(c);
565 	c->c_func = func;
566 	c->c_arg = arg;
567 	mutex_spin_exit(lock);
568 }
569 
570 bool
571 callout_expired(callout_t *cs)
572 {
573 	callout_impl_t *c = (callout_impl_t *)cs;
574 	kmutex_t *lock;
575 	bool rv;
576 
577 	KASSERT(c->c_magic == CALLOUT_MAGIC);
578 
579 	lock = callout_lock(c);
580 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
581 	mutex_spin_exit(lock);
582 
583 	return rv;
584 }
585 
586 bool
587 callout_active(callout_t *cs)
588 {
589 	callout_impl_t *c = (callout_impl_t *)cs;
590 	kmutex_t *lock;
591 	bool rv;
592 
593 	KASSERT(c->c_magic == CALLOUT_MAGIC);
594 
595 	lock = callout_lock(c);
596 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
597 	mutex_spin_exit(lock);
598 
599 	return rv;
600 }
601 
602 bool
603 callout_pending(callout_t *cs)
604 {
605 	callout_impl_t *c = (callout_impl_t *)cs;
606 	kmutex_t *lock;
607 	bool rv;
608 
609 	KASSERT(c->c_magic == CALLOUT_MAGIC);
610 
611 	lock = callout_lock(c);
612 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
613 	mutex_spin_exit(lock);
614 
615 	return rv;
616 }
617 
618 bool
619 callout_invoking(callout_t *cs)
620 {
621 	callout_impl_t *c = (callout_impl_t *)cs;
622 	kmutex_t *lock;
623 	bool rv;
624 
625 	KASSERT(c->c_magic == CALLOUT_MAGIC);
626 
627 	lock = callout_lock(c);
628 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
629 	mutex_spin_exit(lock);
630 
631 	return rv;
632 }
633 
634 void
635 callout_ack(callout_t *cs)
636 {
637 	callout_impl_t *c = (callout_impl_t *)cs;
638 	kmutex_t *lock;
639 
640 	KASSERT(c->c_magic == CALLOUT_MAGIC);
641 
642 	lock = callout_lock(c);
643 	c->c_flags &= ~CALLOUT_INVOKING;
644 	mutex_spin_exit(lock);
645 }
646 
647 /*
648  * callout_hardclock:
649  *
650  *	Called from hardclock() once every tick.  We schedule a soft
651  *	interrupt if there is work to be done.
652  */
653 void
654 callout_hardclock(void)
655 {
656 	struct callout_cpu *cc;
657 	int needsoftclock, ticks;
658 
659 	cc = curcpu()->ci_data.cpu_callout;
660 	mutex_spin_enter(cc->cc_lock);
661 
662 	ticks = ++cc->cc_ticks;
663 
664 	MOVEBUCKET(cc, 0, ticks);
665 	if (MASKWHEEL(0, ticks) == 0) {
666 		MOVEBUCKET(cc, 1, ticks);
667 		if (MASKWHEEL(1, ticks) == 0) {
668 			MOVEBUCKET(cc, 2, ticks);
669 			if (MASKWHEEL(2, ticks) == 0)
670 				MOVEBUCKET(cc, 3, ticks);
671 		}
672 	}
673 
674 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
675 	mutex_spin_exit(cc->cc_lock);
676 
677 	if (needsoftclock)
678 		softint_schedule(callout_sih);
679 }
680 
681 /*
682  * callout_softclock:
683  *
684  *	Soft interrupt handler, scheduled above if there is work to
685  * 	be done.  Callouts are made in soft interrupt context.
686  */
687 static void
688 callout_softclock(void *v)
689 {
690 	callout_impl_t *c;
691 	struct callout_cpu *cc;
692 	void (*func)(void *);
693 	void *arg;
694 	int mpsafe, count, ticks, delta;
695 	lwp_t *l;
696 
697 	l = curlwp;
698 	KASSERT(l->l_cpu == curcpu());
699 	cc = l->l_cpu->ci_data.cpu_callout;
700 
701 	mutex_spin_enter(cc->cc_lock);
702 	cc->cc_lwp = l;
703 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
704 		c = CIRCQ_FIRST(&cc->cc_todo);
705 		KASSERT(c->c_magic == CALLOUT_MAGIC);
706 		KASSERT(c->c_func != NULL);
707 		KASSERT(c->c_cpu == cc);
708 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
709 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
710 		CIRCQ_REMOVE(&c->c_list);
711 
712 		/* If due run it, otherwise insert it into the right bucket. */
713 		ticks = cc->cc_ticks;
714 		delta = c->c_time - ticks;
715 		if (delta > 0) {
716 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
717 			continue;
718 		}
719 		if (delta < 0)
720 			cc->cc_ev_late.ev_count++;
721 
722 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
723 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
724 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
725 		func = c->c_func;
726 		arg = c->c_arg;
727 		cc->cc_active = c;
728 
729 		mutex_spin_exit(cc->cc_lock);
730 		KASSERT(func != NULL);
731 		if (__predict_false(!mpsafe)) {
732 			KERNEL_LOCK(1, NULL);
733 			(*func)(arg);
734 			KERNEL_UNLOCK_ONE(NULL);
735 		} else
736 			(*func)(arg);
737 		mutex_spin_enter(cc->cc_lock);
738 
739 		/*
740 		 * We can't touch 'c' here because it might be
741 		 * freed already.  If LWPs waiting for callout
742 		 * to complete, awaken them.
743 		 */
744 		cc->cc_active = NULL;
745 		if ((count = cc->cc_nwait) != 0) {
746 			cc->cc_nwait = 0;
747 			/* sleepq_wake() drops the lock. */
748 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
749 			mutex_spin_enter(cc->cc_lock);
750 		}
751 	}
752 	cc->cc_lwp = NULL;
753 	mutex_spin_exit(cc->cc_lock);
754 }
755 
756 #ifdef DDB
757 static void
758 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
759 {
760 	callout_impl_t *c;
761 	db_expr_t offset;
762 	const char *name;
763 	static char question[] = "?";
764 	int b;
765 
766 	if (CIRCQ_EMPTY(bucket))
767 		return;
768 
769 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
770 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
771 		    &offset);
772 		name = name ? name : question;
773 		b = (bucket - cc->cc_wheel);
774 		if (b < 0)
775 			b = -WHEELSIZE;
776 		db_printf("%9d %2d/%-4d %16lx  %s\n",
777 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
778 		    (u_long)c->c_arg, name);
779 		if (CIRCQ_LAST(&c->c_list, bucket))
780 			break;
781 	}
782 }
783 
784 void
785 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
786 {
787 	CPU_INFO_ITERATOR cii;
788 	struct callout_cpu *cc;
789 	struct cpu_info *ci;
790 	int b;
791 
792 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
793 	db_printf("    ticks  wheel               arg  func\n");
794 
795 	/*
796 	 * Don't lock the callwheel; all the other CPUs are paused
797 	 * anyhow, and we might be called in a circumstance where
798 	 * some other CPU was paused while holding the lock.
799 	 */
800 	for (CPU_INFO_FOREACH(cii, ci)) {
801 		cc = ci->ci_data.cpu_callout;
802 		db_show_callout_bucket(cc, &cc->cc_todo);
803 	}
804 	for (b = 0; b < BUCKETS; b++) {
805 		for (CPU_INFO_FOREACH(cii, ci)) {
806 			cc = ci->ci_data.cpu_callout;
807 			db_show_callout_bucket(cc, &cc->cc_wheel[b]);
808 		}
809 	}
810 }
811 #endif /* DDB */
812