1 /* $NetBSD: kern_timeout.c,v 1.51 2015/11/24 15:48:23 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org> 34 * Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org> 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. The name of the author may not be used to endorse or promote products 47 * derived from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, 50 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 51 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 52 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 53 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.51 2015/11/24 15:48:23 christos Exp $"); 63 64 /* 65 * Timeouts are kept in a hierarchical timing wheel. The c_time is the 66 * value of c_cpu->cc_ticks when the timeout should be called. There are 67 * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and 68 * Hierarchical Timing Wheels: Efficient Data Structures for Implementing 69 * a Timer Facility" by George Varghese and Tony Lauck. 70 * 71 * Some of the "math" in here is a bit tricky. We have to beware of 72 * wrapping ints. 73 * 74 * We use the fact that any element added to the queue must be added with 75 * a positive time. That means that any element `to' on the queue cannot 76 * be scheduled to timeout further in time than INT_MAX, but c->c_time can 77 * be positive or negative so comparing it with anything is dangerous. 78 * The only way we can use the c->c_time value in any predictable way is 79 * when we calculate how far in the future `to' will timeout - "c->c_time 80 * - c->c_cpu->cc_ticks". The result will always be positive for future 81 * timeouts and 0 or negative for due timeouts. 82 */ 83 84 #define _CALLOUT_PRIVATE 85 86 #include <sys/param.h> 87 #include <sys/systm.h> 88 #include <sys/kernel.h> 89 #include <sys/callout.h> 90 #include <sys/lwp.h> 91 #include <sys/mutex.h> 92 #include <sys/proc.h> 93 #include <sys/sleepq.h> 94 #include <sys/syncobj.h> 95 #include <sys/evcnt.h> 96 #include <sys/intr.h> 97 #include <sys/cpu.h> 98 #include <sys/kmem.h> 99 100 #ifdef DDB 101 #include <machine/db_machdep.h> 102 #include <ddb/db_interface.h> 103 #include <ddb/db_access.h> 104 #include <ddb/db_cpu.h> 105 #include <ddb/db_sym.h> 106 #include <ddb/db_output.h> 107 #endif 108 109 #define BUCKETS 1024 110 #define WHEELSIZE 256 111 #define WHEELMASK 255 112 #define WHEELBITS 8 113 114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK) 115 116 #define BUCKET(cc, rel, abs) \ 117 (((rel) <= (1 << (2*WHEELBITS))) \ 118 ? ((rel) <= (1 << WHEELBITS)) \ 119 ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \ 120 : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \ 121 : ((rel) <= (1 << (3*WHEELBITS))) \ 122 ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \ 123 : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE]) 124 125 #define MOVEBUCKET(cc, wheel, time) \ 126 CIRCQ_APPEND(&(cc)->cc_todo, \ 127 &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE]) 128 129 /* 130 * Circular queue definitions. 131 */ 132 133 #define CIRCQ_INIT(list) \ 134 do { \ 135 (list)->cq_next_l = (list); \ 136 (list)->cq_prev_l = (list); \ 137 } while (/*CONSTCOND*/0) 138 139 #define CIRCQ_INSERT(elem, list) \ 140 do { \ 141 (elem)->cq_prev_e = (list)->cq_prev_e; \ 142 (elem)->cq_next_l = (list); \ 143 (list)->cq_prev_l->cq_next_l = (elem); \ 144 (list)->cq_prev_l = (elem); \ 145 } while (/*CONSTCOND*/0) 146 147 #define CIRCQ_APPEND(fst, snd) \ 148 do { \ 149 if (!CIRCQ_EMPTY(snd)) { \ 150 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \ 151 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \ 152 (snd)->cq_prev_l->cq_next_l = (fst); \ 153 (fst)->cq_prev_l = (snd)->cq_prev_l; \ 154 CIRCQ_INIT(snd); \ 155 } \ 156 } while (/*CONSTCOND*/0) 157 158 #define CIRCQ_REMOVE(elem) \ 159 do { \ 160 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \ 161 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \ 162 } while (/*CONSTCOND*/0) 163 164 #define CIRCQ_FIRST(list) ((list)->cq_next_e) 165 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e) 166 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list)) 167 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list)) 168 169 struct callout_cpu { 170 kmutex_t *cc_lock; 171 sleepq_t cc_sleepq; 172 u_int cc_nwait; 173 u_int cc_ticks; 174 lwp_t *cc_lwp; 175 callout_impl_t *cc_active; 176 callout_impl_t *cc_cancel; 177 struct evcnt cc_ev_late; 178 struct evcnt cc_ev_block; 179 struct callout_circq cc_todo; /* Worklist */ 180 struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */ 181 char cc_name1[12]; 182 char cc_name2[12]; 183 }; 184 185 #ifndef CRASH 186 187 static void callout_softclock(void *); 188 static struct callout_cpu callout_cpu0; 189 static void *callout_sih; 190 191 static inline kmutex_t * 192 callout_lock(callout_impl_t *c) 193 { 194 struct callout_cpu *cc; 195 kmutex_t *lock; 196 197 for (;;) { 198 cc = c->c_cpu; 199 lock = cc->cc_lock; 200 mutex_spin_enter(lock); 201 if (__predict_true(cc == c->c_cpu)) 202 return lock; 203 mutex_spin_exit(lock); 204 } 205 } 206 207 /* 208 * callout_startup: 209 * 210 * Initialize the callout facility, called at system startup time. 211 * Do just enough to allow callouts to be safely registered. 212 */ 213 void 214 callout_startup(void) 215 { 216 struct callout_cpu *cc; 217 int b; 218 219 KASSERT(curcpu()->ci_data.cpu_callout == NULL); 220 221 cc = &callout_cpu0; 222 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED); 223 CIRCQ_INIT(&cc->cc_todo); 224 for (b = 0; b < BUCKETS; b++) 225 CIRCQ_INIT(&cc->cc_wheel[b]); 226 curcpu()->ci_data.cpu_callout = cc; 227 } 228 229 /* 230 * callout_init_cpu: 231 * 232 * Per-CPU initialization. 233 */ 234 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t)); 235 236 void 237 callout_init_cpu(struct cpu_info *ci) 238 { 239 struct callout_cpu *cc; 240 int b; 241 242 if ((cc = ci->ci_data.cpu_callout) == NULL) { 243 cc = kmem_zalloc(sizeof(*cc), KM_SLEEP); 244 if (cc == NULL) 245 panic("callout_init_cpu (1)"); 246 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED); 247 CIRCQ_INIT(&cc->cc_todo); 248 for (b = 0; b < BUCKETS; b++) 249 CIRCQ_INIT(&cc->cc_wheel[b]); 250 } else { 251 /* Boot CPU, one time only. */ 252 callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, 253 callout_softclock, NULL); 254 if (callout_sih == NULL) 255 panic("callout_init_cpu (2)"); 256 } 257 258 sleepq_init(&cc->cc_sleepq); 259 260 snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u", 261 cpu_index(ci)); 262 evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC, 263 NULL, "callout", cc->cc_name1); 264 265 snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u", 266 cpu_index(ci)); 267 evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC, 268 NULL, "callout", cc->cc_name2); 269 270 ci->ci_data.cpu_callout = cc; 271 } 272 273 /* 274 * callout_init: 275 * 276 * Initialize a callout structure. This must be quick, so we fill 277 * only the minimum number of fields. 278 */ 279 void 280 callout_init(callout_t *cs, u_int flags) 281 { 282 callout_impl_t *c = (callout_impl_t *)cs; 283 struct callout_cpu *cc; 284 285 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0); 286 287 cc = curcpu()->ci_data.cpu_callout; 288 c->c_func = NULL; 289 c->c_magic = CALLOUT_MAGIC; 290 if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) { 291 c->c_flags = flags; 292 c->c_cpu = cc; 293 return; 294 } 295 c->c_flags = flags | CALLOUT_BOUND; 296 c->c_cpu = &callout_cpu0; 297 } 298 299 /* 300 * callout_destroy: 301 * 302 * Destroy a callout structure. The callout must be stopped. 303 */ 304 void 305 callout_destroy(callout_t *cs) 306 { 307 callout_impl_t *c = (callout_impl_t *)cs; 308 309 /* 310 * It's not necessary to lock in order to see the correct value 311 * of c->c_flags. If the callout could potentially have been 312 * running, the current thread should have stopped it. 313 */ 314 KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0, 315 "callout %p: c_func (%p) c_flags (%#x) destroyed from %p", 316 c, c->c_func, c->c_flags, __builtin_return_address(0)); 317 KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c); 318 KASSERTMSG(c->c_magic == CALLOUT_MAGIC, 319 "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)", 320 c, c->c_magic, CALLOUT_MAGIC); 321 c->c_magic = 0; 322 } 323 324 /* 325 * callout_schedule_locked: 326 * 327 * Schedule a callout to run. The function and argument must 328 * already be set in the callout structure. Must be called with 329 * callout_lock. 330 */ 331 static void 332 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks) 333 { 334 struct callout_cpu *cc, *occ; 335 int old_time; 336 337 KASSERT(to_ticks >= 0); 338 KASSERT(c->c_func != NULL); 339 340 /* Initialize the time here, it won't change. */ 341 occ = c->c_cpu; 342 c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING); 343 344 /* 345 * If this timeout is already scheduled and now is moved 346 * earlier, reschedule it now. Otherwise leave it in place 347 * and let it be rescheduled later. 348 */ 349 if ((c->c_flags & CALLOUT_PENDING) != 0) { 350 /* Leave on existing CPU. */ 351 old_time = c->c_time; 352 c->c_time = to_ticks + occ->cc_ticks; 353 if (c->c_time - old_time < 0) { 354 CIRCQ_REMOVE(&c->c_list); 355 CIRCQ_INSERT(&c->c_list, &occ->cc_todo); 356 } 357 mutex_spin_exit(lock); 358 return; 359 } 360 361 cc = curcpu()->ci_data.cpu_callout; 362 if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ || 363 !mutex_tryenter(cc->cc_lock)) { 364 /* Leave on existing CPU. */ 365 c->c_time = to_ticks + occ->cc_ticks; 366 c->c_flags |= CALLOUT_PENDING; 367 CIRCQ_INSERT(&c->c_list, &occ->cc_todo); 368 } else { 369 /* Move to this CPU. */ 370 c->c_cpu = cc; 371 c->c_time = to_ticks + cc->cc_ticks; 372 c->c_flags |= CALLOUT_PENDING; 373 CIRCQ_INSERT(&c->c_list, &cc->cc_todo); 374 mutex_spin_exit(cc->cc_lock); 375 } 376 mutex_spin_exit(lock); 377 } 378 379 /* 380 * callout_reset: 381 * 382 * Reset a callout structure with a new function and argument, and 383 * schedule it to run. 384 */ 385 void 386 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg) 387 { 388 callout_impl_t *c = (callout_impl_t *)cs; 389 kmutex_t *lock; 390 391 KASSERT(c->c_magic == CALLOUT_MAGIC); 392 KASSERT(func != NULL); 393 394 lock = callout_lock(c); 395 c->c_func = func; 396 c->c_arg = arg; 397 callout_schedule_locked(c, lock, to_ticks); 398 } 399 400 /* 401 * callout_schedule: 402 * 403 * Schedule a callout to run. The function and argument must 404 * already be set in the callout structure. 405 */ 406 void 407 callout_schedule(callout_t *cs, int to_ticks) 408 { 409 callout_impl_t *c = (callout_impl_t *)cs; 410 kmutex_t *lock; 411 412 KASSERT(c->c_magic == CALLOUT_MAGIC); 413 414 lock = callout_lock(c); 415 callout_schedule_locked(c, lock, to_ticks); 416 } 417 418 /* 419 * callout_stop: 420 * 421 * Try to cancel a pending callout. It may be too late: the callout 422 * could be running on another CPU. If called from interrupt context, 423 * the callout could already be in progress at a lower priority. 424 */ 425 bool 426 callout_stop(callout_t *cs) 427 { 428 callout_impl_t *c = (callout_impl_t *)cs; 429 struct callout_cpu *cc; 430 kmutex_t *lock; 431 bool expired; 432 433 KASSERT(c->c_magic == CALLOUT_MAGIC); 434 435 lock = callout_lock(c); 436 437 if ((c->c_flags & CALLOUT_PENDING) != 0) 438 CIRCQ_REMOVE(&c->c_list); 439 expired = ((c->c_flags & CALLOUT_FIRED) != 0); 440 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED); 441 442 cc = c->c_cpu; 443 if (cc->cc_active == c) { 444 /* 445 * This is for non-MPSAFE callouts only. To synchronize 446 * effectively we must be called with kernel_lock held. 447 * It's also taken in callout_softclock. 448 */ 449 cc->cc_cancel = c; 450 } 451 452 mutex_spin_exit(lock); 453 454 return expired; 455 } 456 457 /* 458 * callout_halt: 459 * 460 * Cancel a pending callout. If in-flight, block until it completes. 461 * May not be called from a hard interrupt handler. If the callout 462 * can take locks, the caller of callout_halt() must not hold any of 463 * those locks, otherwise the two could deadlock. If 'interlock' is 464 * non-NULL and we must wait for the callout to complete, it will be 465 * released and re-acquired before returning. 466 */ 467 bool 468 callout_halt(callout_t *cs, void *interlock) 469 { 470 callout_impl_t *c = (callout_impl_t *)cs; 471 struct callout_cpu *cc; 472 struct lwp *l; 473 kmutex_t *lock, *relock; 474 bool expired; 475 476 KASSERT(c->c_magic == CALLOUT_MAGIC); 477 KASSERT(!cpu_intr_p()); 478 479 lock = callout_lock(c); 480 relock = NULL; 481 482 expired = ((c->c_flags & CALLOUT_FIRED) != 0); 483 if ((c->c_flags & CALLOUT_PENDING) != 0) 484 CIRCQ_REMOVE(&c->c_list); 485 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED); 486 487 l = curlwp; 488 for (;;) { 489 cc = c->c_cpu; 490 if (__predict_true(cc->cc_active != c || cc->cc_lwp == l)) 491 break; 492 if (interlock != NULL) { 493 /* 494 * Avoid potential scheduler lock order problems by 495 * dropping the interlock without the callout lock 496 * held. 497 */ 498 mutex_spin_exit(lock); 499 mutex_exit(interlock); 500 relock = interlock; 501 interlock = NULL; 502 } else { 503 /* XXX Better to do priority inheritance. */ 504 KASSERT(l->l_wchan == NULL); 505 cc->cc_nwait++; 506 cc->cc_ev_block.ev_count++; 507 l->l_kpriority = true; 508 sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock); 509 sleepq_enqueue(&cc->cc_sleepq, cc, "callout", 510 &sleep_syncobj); 511 sleepq_block(0, false); 512 } 513 lock = callout_lock(c); 514 } 515 516 mutex_spin_exit(lock); 517 if (__predict_false(relock != NULL)) 518 mutex_enter(relock); 519 520 return expired; 521 } 522 523 #ifdef notyet 524 /* 525 * callout_bind: 526 * 527 * Bind a callout so that it will only execute on one CPU. 528 * The callout must be stopped, and must be MPSAFE. 529 * 530 * XXX Disabled for now until it is decided how to handle 531 * offlined CPUs. We may want weak+strong binding. 532 */ 533 void 534 callout_bind(callout_t *cs, struct cpu_info *ci) 535 { 536 callout_impl_t *c = (callout_impl_t *)cs; 537 struct callout_cpu *cc; 538 kmutex_t *lock; 539 540 KASSERT((c->c_flags & CALLOUT_PENDING) == 0); 541 KASSERT(c->c_cpu->cc_active != c); 542 KASSERT(c->c_magic == CALLOUT_MAGIC); 543 KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0); 544 545 lock = callout_lock(c); 546 cc = ci->ci_data.cpu_callout; 547 c->c_flags |= CALLOUT_BOUND; 548 if (c->c_cpu != cc) { 549 /* 550 * Assigning c_cpu effectively unlocks the callout 551 * structure, as we don't hold the new CPU's lock. 552 * Issue memory barrier to prevent accesses being 553 * reordered. 554 */ 555 membar_exit(); 556 c->c_cpu = cc; 557 } 558 mutex_spin_exit(lock); 559 } 560 #endif 561 562 void 563 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg) 564 { 565 callout_impl_t *c = (callout_impl_t *)cs; 566 kmutex_t *lock; 567 568 KASSERT(c->c_magic == CALLOUT_MAGIC); 569 KASSERT(func != NULL); 570 571 lock = callout_lock(c); 572 c->c_func = func; 573 c->c_arg = arg; 574 mutex_spin_exit(lock); 575 } 576 577 bool 578 callout_expired(callout_t *cs) 579 { 580 callout_impl_t *c = (callout_impl_t *)cs; 581 kmutex_t *lock; 582 bool rv; 583 584 KASSERT(c->c_magic == CALLOUT_MAGIC); 585 586 lock = callout_lock(c); 587 rv = ((c->c_flags & CALLOUT_FIRED) != 0); 588 mutex_spin_exit(lock); 589 590 return rv; 591 } 592 593 bool 594 callout_active(callout_t *cs) 595 { 596 callout_impl_t *c = (callout_impl_t *)cs; 597 kmutex_t *lock; 598 bool rv; 599 600 KASSERT(c->c_magic == CALLOUT_MAGIC); 601 602 lock = callout_lock(c); 603 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0); 604 mutex_spin_exit(lock); 605 606 return rv; 607 } 608 609 bool 610 callout_pending(callout_t *cs) 611 { 612 callout_impl_t *c = (callout_impl_t *)cs; 613 kmutex_t *lock; 614 bool rv; 615 616 KASSERT(c->c_magic == CALLOUT_MAGIC); 617 618 lock = callout_lock(c); 619 rv = ((c->c_flags & CALLOUT_PENDING) != 0); 620 mutex_spin_exit(lock); 621 622 return rv; 623 } 624 625 bool 626 callout_invoking(callout_t *cs) 627 { 628 callout_impl_t *c = (callout_impl_t *)cs; 629 kmutex_t *lock; 630 bool rv; 631 632 KASSERT(c->c_magic == CALLOUT_MAGIC); 633 634 lock = callout_lock(c); 635 rv = ((c->c_flags & CALLOUT_INVOKING) != 0); 636 mutex_spin_exit(lock); 637 638 return rv; 639 } 640 641 void 642 callout_ack(callout_t *cs) 643 { 644 callout_impl_t *c = (callout_impl_t *)cs; 645 kmutex_t *lock; 646 647 KASSERT(c->c_magic == CALLOUT_MAGIC); 648 649 lock = callout_lock(c); 650 c->c_flags &= ~CALLOUT_INVOKING; 651 mutex_spin_exit(lock); 652 } 653 654 /* 655 * callout_hardclock: 656 * 657 * Called from hardclock() once every tick. We schedule a soft 658 * interrupt if there is work to be done. 659 */ 660 void 661 callout_hardclock(void) 662 { 663 struct callout_cpu *cc; 664 int needsoftclock, ticks; 665 666 cc = curcpu()->ci_data.cpu_callout; 667 mutex_spin_enter(cc->cc_lock); 668 669 ticks = ++cc->cc_ticks; 670 671 MOVEBUCKET(cc, 0, ticks); 672 if (MASKWHEEL(0, ticks) == 0) { 673 MOVEBUCKET(cc, 1, ticks); 674 if (MASKWHEEL(1, ticks) == 0) { 675 MOVEBUCKET(cc, 2, ticks); 676 if (MASKWHEEL(2, ticks) == 0) 677 MOVEBUCKET(cc, 3, ticks); 678 } 679 } 680 681 needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo); 682 mutex_spin_exit(cc->cc_lock); 683 684 if (needsoftclock) 685 softint_schedule(callout_sih); 686 } 687 688 /* 689 * callout_softclock: 690 * 691 * Soft interrupt handler, scheduled above if there is work to 692 * be done. Callouts are made in soft interrupt context. 693 */ 694 static void 695 callout_softclock(void *v) 696 { 697 callout_impl_t *c; 698 struct callout_cpu *cc; 699 void (*func)(void *); 700 void *arg; 701 int mpsafe, count, ticks, delta; 702 lwp_t *l; 703 704 l = curlwp; 705 KASSERT(l->l_cpu == curcpu()); 706 cc = l->l_cpu->ci_data.cpu_callout; 707 708 mutex_spin_enter(cc->cc_lock); 709 cc->cc_lwp = l; 710 while (!CIRCQ_EMPTY(&cc->cc_todo)) { 711 c = CIRCQ_FIRST(&cc->cc_todo); 712 KASSERT(c->c_magic == CALLOUT_MAGIC); 713 KASSERT(c->c_func != NULL); 714 KASSERT(c->c_cpu == cc); 715 KASSERT((c->c_flags & CALLOUT_PENDING) != 0); 716 KASSERT((c->c_flags & CALLOUT_FIRED) == 0); 717 CIRCQ_REMOVE(&c->c_list); 718 719 /* If due run it, otherwise insert it into the right bucket. */ 720 ticks = cc->cc_ticks; 721 delta = c->c_time - ticks; 722 if (delta > 0) { 723 CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time)); 724 continue; 725 } 726 if (delta < 0) 727 cc->cc_ev_late.ev_count++; 728 729 c->c_flags = (c->c_flags & ~CALLOUT_PENDING) | 730 (CALLOUT_FIRED | CALLOUT_INVOKING); 731 mpsafe = (c->c_flags & CALLOUT_MPSAFE); 732 func = c->c_func; 733 arg = c->c_arg; 734 cc->cc_active = c; 735 736 mutex_spin_exit(cc->cc_lock); 737 KASSERT(func != NULL); 738 if (__predict_false(!mpsafe)) { 739 KERNEL_LOCK(1, NULL); 740 (*func)(arg); 741 KERNEL_UNLOCK_ONE(NULL); 742 } else 743 (*func)(arg); 744 mutex_spin_enter(cc->cc_lock); 745 746 /* 747 * We can't touch 'c' here because it might be 748 * freed already. If LWPs waiting for callout 749 * to complete, awaken them. 750 */ 751 cc->cc_active = NULL; 752 if ((count = cc->cc_nwait) != 0) { 753 cc->cc_nwait = 0; 754 /* sleepq_wake() drops the lock. */ 755 sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock); 756 mutex_spin_enter(cc->cc_lock); 757 } 758 } 759 cc->cc_lwp = NULL; 760 mutex_spin_exit(cc->cc_lock); 761 } 762 #endif 763 764 #ifdef DDB 765 static void 766 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket, 767 struct callout_circq *bucket) 768 { 769 callout_impl_t *c, ci; 770 db_expr_t offset; 771 const char *name; 772 static char question[] = "?"; 773 int b; 774 775 if (CIRCQ_LAST(bucket, kbucket)) 776 return; 777 778 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) { 779 db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci); 780 c = &ci; 781 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name, 782 &offset); 783 name = name ? name : question; 784 b = (bucket - cc->cc_wheel); 785 if (b < 0) 786 b = -WHEELSIZE; 787 db_printf("%9d %2d/%-4d %16lx %s\n", 788 c->c_time - cc->cc_ticks, b / WHEELSIZE, b, 789 (u_long)c->c_arg, name); 790 if (CIRCQ_LAST(&c->c_list, kbucket)) 791 break; 792 } 793 } 794 795 void 796 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif) 797 { 798 struct callout_cpu *cc, ccb; 799 struct cpu_info *ci, cib; 800 int b; 801 802 #ifndef CRASH 803 db_printf("hardclock_ticks now: %d\n", hardclock_ticks); 804 #endif 805 db_printf(" ticks wheel arg func\n"); 806 807 /* 808 * Don't lock the callwheel; all the other CPUs are paused 809 * anyhow, and we might be called in a circumstance where 810 * some other CPU was paused while holding the lock. 811 */ 812 for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) { 813 db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib); 814 cc = cib.ci_data.cpu_callout; 815 db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb); 816 db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo); 817 } 818 for (b = 0; b < BUCKETS; b++) { 819 for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) { 820 db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib); 821 cc = cib.ci_data.cpu_callout; 822 db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb); 823 db_show_callout_bucket(&ccb, &cc->cc_wheel[b], 824 &ccb.cc_wheel[b]); 825 } 826 } 827 } 828 #endif /* DDB */ 829