xref: /netbsd-src/sys/kern/kern_timeout.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: kern_timeout.c,v 1.56 2019/03/10 13:44:49 kre Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
34  * Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. The name of the author may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.56 2019/03/10 13:44:49 kre Exp $");
63 
64 /*
65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69  * a Timer Facility" by George Varghese and Tony Lauck.
70  *
71  * Some of the "math" in here is a bit tricky.  We have to beware of
72  * wrapping ints.
73  *
74  * We use the fact that any element added to the queue must be added with
75  * a positive time.  That means that any element `to' on the queue cannot
76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77  * be positive or negative so comparing it with anything is dangerous.
78  * The only way we can use the c->c_time value in any predictable way is
79  * when we calculate how far in the future `to' will timeout - "c->c_time
80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
81  * timeouts and 0 or negative for due timeouts.
82  */
83 
84 #define	_CALLOUT_PRIVATE
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99 
100 #ifdef DDB
101 #include <machine/db_machdep.h>
102 #include <ddb/db_interface.h>
103 #include <ddb/db_access.h>
104 #include <ddb/db_cpu.h>
105 #include <ddb/db_sym.h>
106 #include <ddb/db_output.h>
107 #endif
108 
109 #define BUCKETS		1024
110 #define WHEELSIZE	256
111 #define WHEELMASK	255
112 #define WHEELBITS	8
113 
114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
115 
116 #define BUCKET(cc, rel, abs)						\
117     (((rel) <= (1 << (2*WHEELBITS)))					\
118     	? ((rel) <= (1 << WHEELBITS))					\
119             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
120             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
121         : ((rel) <= (1 << (3*WHEELBITS)))				\
122             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
123             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
124 
125 #define MOVEBUCKET(cc, wheel, time)					\
126     CIRCQ_APPEND(&(cc)->cc_todo,					\
127         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
128 
129 /*
130  * Circular queue definitions.
131  */
132 
133 #define CIRCQ_INIT(list)						\
134 do {									\
135         (list)->cq_next_l = (list);					\
136         (list)->cq_prev_l = (list);					\
137 } while (/*CONSTCOND*/0)
138 
139 #define CIRCQ_INSERT(elem, list)					\
140 do {									\
141         (elem)->cq_prev_e = (list)->cq_prev_e;				\
142         (elem)->cq_next_l = (list);					\
143         (list)->cq_prev_l->cq_next_l = (elem);				\
144         (list)->cq_prev_l = (elem);					\
145 } while (/*CONSTCOND*/0)
146 
147 #define CIRCQ_APPEND(fst, snd)						\
148 do {									\
149         if (!CIRCQ_EMPTY(snd)) {					\
150                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
151                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
152                 (snd)->cq_prev_l->cq_next_l = (fst);			\
153                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
154                 CIRCQ_INIT(snd);					\
155         }								\
156 } while (/*CONSTCOND*/0)
157 
158 #define CIRCQ_REMOVE(elem)						\
159 do {									\
160         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
161         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
162 } while (/*CONSTCOND*/0)
163 
164 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
165 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
166 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
167 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
168 
169 struct callout_cpu {
170 	kmutex_t	*cc_lock;
171 	sleepq_t	cc_sleepq;
172 	u_int		cc_nwait;
173 	u_int		cc_ticks;
174 	lwp_t		*cc_lwp;
175 	callout_impl_t	*cc_active;
176 	callout_impl_t	*cc_cancel;
177 	struct evcnt	cc_ev_late;
178 	struct evcnt	cc_ev_block;
179 	struct callout_circq cc_todo;		/* Worklist */
180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
181 	char		cc_name1[12];
182 	char		cc_name2[12];
183 };
184 
185 #ifndef CRASH
186 
187 static void	callout_softclock(void *);
188 static struct callout_cpu callout_cpu0;
189 static void *callout_sih;
190 
191 static inline kmutex_t *
192 callout_lock(callout_impl_t *c)
193 {
194 	struct callout_cpu *cc;
195 	kmutex_t *lock;
196 
197 	for (;;) {
198 		cc = c->c_cpu;
199 		lock = cc->cc_lock;
200 		mutex_spin_enter(lock);
201 		if (__predict_true(cc == c->c_cpu))
202 			return lock;
203 		mutex_spin_exit(lock);
204 	}
205 }
206 
207 /*
208  * callout_startup:
209  *
210  *	Initialize the callout facility, called at system startup time.
211  *	Do just enough to allow callouts to be safely registered.
212  */
213 void
214 callout_startup(void)
215 {
216 	struct callout_cpu *cc;
217 	int b;
218 
219 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
220 
221 	cc = &callout_cpu0;
222 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
223 	CIRCQ_INIT(&cc->cc_todo);
224 	for (b = 0; b < BUCKETS; b++)
225 		CIRCQ_INIT(&cc->cc_wheel[b]);
226 	curcpu()->ci_data.cpu_callout = cc;
227 }
228 
229 /*
230  * callout_init_cpu:
231  *
232  *	Per-CPU initialization.
233  */
234 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
235 
236 void
237 callout_init_cpu(struct cpu_info *ci)
238 {
239 	struct callout_cpu *cc;
240 	int b;
241 
242 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
243 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
244 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
245 		CIRCQ_INIT(&cc->cc_todo);
246 		for (b = 0; b < BUCKETS; b++)
247 			CIRCQ_INIT(&cc->cc_wheel[b]);
248 	} else {
249 		/* Boot CPU, one time only. */
250 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
251 		    callout_softclock, NULL);
252 		if (callout_sih == NULL)
253 			panic("callout_init_cpu (2)");
254 	}
255 
256 	sleepq_init(&cc->cc_sleepq);
257 
258 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
259 	    cpu_index(ci));
260 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
261 	    NULL, "callout", cc->cc_name1);
262 
263 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
264 	    cpu_index(ci));
265 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
266 	    NULL, "callout", cc->cc_name2);
267 
268 	ci->ci_data.cpu_callout = cc;
269 }
270 
271 /*
272  * callout_init:
273  *
274  *	Initialize a callout structure.  This must be quick, so we fill
275  *	only the minimum number of fields.
276  */
277 void
278 callout_init(callout_t *cs, u_int flags)
279 {
280 	callout_impl_t *c = (callout_impl_t *)cs;
281 	struct callout_cpu *cc;
282 
283 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
284 
285 	cc = curcpu()->ci_data.cpu_callout;
286 	c->c_func = NULL;
287 	c->c_magic = CALLOUT_MAGIC;
288 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
289 		c->c_flags = flags;
290 		c->c_cpu = cc;
291 		return;
292 	}
293 	c->c_flags = flags | CALLOUT_BOUND;
294 	c->c_cpu = &callout_cpu0;
295 }
296 
297 /*
298  * callout_destroy:
299  *
300  *	Destroy a callout structure.  The callout must be stopped.
301  */
302 void
303 callout_destroy(callout_t *cs)
304 {
305 	callout_impl_t *c = (callout_impl_t *)cs;
306 
307 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
308 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
309 	    c, c->c_magic, CALLOUT_MAGIC);
310 	/*
311 	 * It's not necessary to lock in order to see the correct value
312 	 * of c->c_flags.  If the callout could potentially have been
313 	 * running, the current thread should have stopped it.
314 	 */
315 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
316 	    "callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
317 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
318 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
319 	c->c_magic = 0;
320 }
321 
322 /*
323  * callout_schedule_locked:
324  *
325  *	Schedule a callout to run.  The function and argument must
326  *	already be set in the callout structure.  Must be called with
327  *	callout_lock.
328  */
329 static void
330 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
331 {
332 	struct callout_cpu *cc, *occ;
333 	int old_time;
334 
335 	KASSERT(to_ticks >= 0);
336 	KASSERT(c->c_func != NULL);
337 
338 	/* Initialize the time here, it won't change. */
339 	occ = c->c_cpu;
340 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
341 
342 	/*
343 	 * If this timeout is already scheduled and now is moved
344 	 * earlier, reschedule it now.  Otherwise leave it in place
345 	 * and let it be rescheduled later.
346 	 */
347 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
348 		/* Leave on existing CPU. */
349 		old_time = c->c_time;
350 		c->c_time = to_ticks + occ->cc_ticks;
351 		if (c->c_time - old_time < 0) {
352 			CIRCQ_REMOVE(&c->c_list);
353 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
354 		}
355 		mutex_spin_exit(lock);
356 		return;
357 	}
358 
359 	cc = curcpu()->ci_data.cpu_callout;
360 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
361 	    !mutex_tryenter(cc->cc_lock)) {
362 		/* Leave on existing CPU. */
363 		c->c_time = to_ticks + occ->cc_ticks;
364 		c->c_flags |= CALLOUT_PENDING;
365 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
366 	} else {
367 		/* Move to this CPU. */
368 		c->c_cpu = cc;
369 		c->c_time = to_ticks + cc->cc_ticks;
370 		c->c_flags |= CALLOUT_PENDING;
371 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
372 		mutex_spin_exit(cc->cc_lock);
373 	}
374 	mutex_spin_exit(lock);
375 }
376 
377 /*
378  * callout_reset:
379  *
380  *	Reset a callout structure with a new function and argument, and
381  *	schedule it to run.
382  */
383 void
384 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
385 {
386 	callout_impl_t *c = (callout_impl_t *)cs;
387 	kmutex_t *lock;
388 
389 	KASSERT(c->c_magic == CALLOUT_MAGIC);
390 	KASSERT(func != NULL);
391 
392 	lock = callout_lock(c);
393 	c->c_func = func;
394 	c->c_arg = arg;
395 	callout_schedule_locked(c, lock, to_ticks);
396 }
397 
398 /*
399  * callout_schedule:
400  *
401  *	Schedule a callout to run.  The function and argument must
402  *	already be set in the callout structure.
403  */
404 void
405 callout_schedule(callout_t *cs, int to_ticks)
406 {
407 	callout_impl_t *c = (callout_impl_t *)cs;
408 	kmutex_t *lock;
409 
410 	KASSERT(c->c_magic == CALLOUT_MAGIC);
411 
412 	lock = callout_lock(c);
413 	callout_schedule_locked(c, lock, to_ticks);
414 }
415 
416 /*
417  * callout_stop:
418  *
419  *	Try to cancel a pending callout.  It may be too late: the callout
420  *	could be running on another CPU.  If called from interrupt context,
421  *	the callout could already be in progress at a lower priority.
422  */
423 bool
424 callout_stop(callout_t *cs)
425 {
426 	callout_impl_t *c = (callout_impl_t *)cs;
427 	struct callout_cpu *cc;
428 	kmutex_t *lock;
429 	bool expired;
430 
431 	KASSERT(c->c_magic == CALLOUT_MAGIC);
432 
433 	lock = callout_lock(c);
434 
435 	if ((c->c_flags & CALLOUT_PENDING) != 0)
436 		CIRCQ_REMOVE(&c->c_list);
437 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
438 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
439 
440 	cc = c->c_cpu;
441 	if (cc->cc_active == c) {
442 		/*
443 		 * This is for non-MPSAFE callouts only.  To synchronize
444 		 * effectively we must be called with kernel_lock held.
445 		 * It's also taken in callout_softclock.
446 		 */
447 		cc->cc_cancel = c;
448 	}
449 
450 	mutex_spin_exit(lock);
451 
452 	return expired;
453 }
454 
455 /*
456  * callout_halt:
457  *
458  *	Cancel a pending callout.  If in-flight, block until it completes.
459  *	May not be called from a hard interrupt handler.  If the callout
460  * 	can take locks, the caller of callout_halt() must not hold any of
461  *	those locks, otherwise the two could deadlock.  If 'interlock' is
462  *	non-NULL and we must wait for the callout to complete, it will be
463  *	released and re-acquired before returning.
464  */
465 bool
466 callout_halt(callout_t *cs, void *interlock)
467 {
468 	callout_impl_t *c = (callout_impl_t *)cs;
469 	struct callout_cpu *cc;
470 	struct lwp *l;
471 	kmutex_t *lock, *relock;
472 	bool expired;
473 
474 	KASSERT(c->c_magic == CALLOUT_MAGIC);
475 	KASSERT(!cpu_intr_p());
476 	KASSERT(interlock == NULL || mutex_owned(interlock));
477 
478 	lock = callout_lock(c);
479 	relock = NULL;
480 
481 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
482 	if ((c->c_flags & CALLOUT_PENDING) != 0)
483 		CIRCQ_REMOVE(&c->c_list);
484 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
485 
486 	l = curlwp;
487 	for (;;) {
488 		cc = c->c_cpu;
489 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
490 			break;
491 		if (interlock != NULL) {
492 			/*
493 			 * Avoid potential scheduler lock order problems by
494 			 * dropping the interlock without the callout lock
495 			 * held.
496 			 */
497 			mutex_spin_exit(lock);
498 			mutex_exit(interlock);
499 			relock = interlock;
500 			interlock = NULL;
501 		} else {
502 			/* XXX Better to do priority inheritance. */
503 			KASSERT(l->l_wchan == NULL);
504 			cc->cc_nwait++;
505 			cc->cc_ev_block.ev_count++;
506 			l->l_kpriority = true;
507 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
508 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
509 			    &sleep_syncobj);
510 			sleepq_block(0, false);
511 		}
512 		lock = callout_lock(c);
513 	}
514 
515 	mutex_spin_exit(lock);
516 	if (__predict_false(relock != NULL))
517 		mutex_enter(relock);
518 
519 	return expired;
520 }
521 
522 #ifdef notyet
523 /*
524  * callout_bind:
525  *
526  *	Bind a callout so that it will only execute on one CPU.
527  *	The callout must be stopped, and must be MPSAFE.
528  *
529  *	XXX Disabled for now until it is decided how to handle
530  *	offlined CPUs.  We may want weak+strong binding.
531  */
532 void
533 callout_bind(callout_t *cs, struct cpu_info *ci)
534 {
535 	callout_impl_t *c = (callout_impl_t *)cs;
536 	struct callout_cpu *cc;
537 	kmutex_t *lock;
538 
539 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
540 	KASSERT(c->c_cpu->cc_active != c);
541 	KASSERT(c->c_magic == CALLOUT_MAGIC);
542 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
543 
544 	lock = callout_lock(c);
545 	cc = ci->ci_data.cpu_callout;
546 	c->c_flags |= CALLOUT_BOUND;
547 	if (c->c_cpu != cc) {
548 		/*
549 		 * Assigning c_cpu effectively unlocks the callout
550 		 * structure, as we don't hold the new CPU's lock.
551 		 * Issue memory barrier to prevent accesses being
552 		 * reordered.
553 		 */
554 		membar_exit();
555 		c->c_cpu = cc;
556 	}
557 	mutex_spin_exit(lock);
558 }
559 #endif
560 
561 void
562 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
563 {
564 	callout_impl_t *c = (callout_impl_t *)cs;
565 	kmutex_t *lock;
566 
567 	KASSERT(c->c_magic == CALLOUT_MAGIC);
568 	KASSERT(func != NULL);
569 
570 	lock = callout_lock(c);
571 	c->c_func = func;
572 	c->c_arg = arg;
573 	mutex_spin_exit(lock);
574 }
575 
576 bool
577 callout_expired(callout_t *cs)
578 {
579 	callout_impl_t *c = (callout_impl_t *)cs;
580 	kmutex_t *lock;
581 	bool rv;
582 
583 	KASSERT(c->c_magic == CALLOUT_MAGIC);
584 
585 	lock = callout_lock(c);
586 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
587 	mutex_spin_exit(lock);
588 
589 	return rv;
590 }
591 
592 bool
593 callout_active(callout_t *cs)
594 {
595 	callout_impl_t *c = (callout_impl_t *)cs;
596 	kmutex_t *lock;
597 	bool rv;
598 
599 	KASSERT(c->c_magic == CALLOUT_MAGIC);
600 
601 	lock = callout_lock(c);
602 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
603 	mutex_spin_exit(lock);
604 
605 	return rv;
606 }
607 
608 bool
609 callout_pending(callout_t *cs)
610 {
611 	callout_impl_t *c = (callout_impl_t *)cs;
612 	kmutex_t *lock;
613 	bool rv;
614 
615 	KASSERT(c->c_magic == CALLOUT_MAGIC);
616 
617 	lock = callout_lock(c);
618 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
619 	mutex_spin_exit(lock);
620 
621 	return rv;
622 }
623 
624 bool
625 callout_invoking(callout_t *cs)
626 {
627 	callout_impl_t *c = (callout_impl_t *)cs;
628 	kmutex_t *lock;
629 	bool rv;
630 
631 	KASSERT(c->c_magic == CALLOUT_MAGIC);
632 
633 	lock = callout_lock(c);
634 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
635 	mutex_spin_exit(lock);
636 
637 	return rv;
638 }
639 
640 void
641 callout_ack(callout_t *cs)
642 {
643 	callout_impl_t *c = (callout_impl_t *)cs;
644 	kmutex_t *lock;
645 
646 	KASSERT(c->c_magic == CALLOUT_MAGIC);
647 
648 	lock = callout_lock(c);
649 	c->c_flags &= ~CALLOUT_INVOKING;
650 	mutex_spin_exit(lock);
651 }
652 
653 /*
654  * callout_hardclock:
655  *
656  *	Called from hardclock() once every tick.  We schedule a soft
657  *	interrupt if there is work to be done.
658  */
659 void
660 callout_hardclock(void)
661 {
662 	struct callout_cpu *cc;
663 	int needsoftclock, ticks;
664 
665 	cc = curcpu()->ci_data.cpu_callout;
666 	mutex_spin_enter(cc->cc_lock);
667 
668 	ticks = ++cc->cc_ticks;
669 
670 	MOVEBUCKET(cc, 0, ticks);
671 	if (MASKWHEEL(0, ticks) == 0) {
672 		MOVEBUCKET(cc, 1, ticks);
673 		if (MASKWHEEL(1, ticks) == 0) {
674 			MOVEBUCKET(cc, 2, ticks);
675 			if (MASKWHEEL(2, ticks) == 0)
676 				MOVEBUCKET(cc, 3, ticks);
677 		}
678 	}
679 
680 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
681 	mutex_spin_exit(cc->cc_lock);
682 
683 	if (needsoftclock)
684 		softint_schedule(callout_sih);
685 }
686 
687 /*
688  * callout_softclock:
689  *
690  *	Soft interrupt handler, scheduled above if there is work to
691  * 	be done.  Callouts are made in soft interrupt context.
692  */
693 static void
694 callout_softclock(void *v)
695 {
696 	callout_impl_t *c;
697 	struct callout_cpu *cc;
698 	void (*func)(void *);
699 	void *arg;
700 	int mpsafe, count, ticks, delta;
701 	lwp_t *l;
702 
703 	l = curlwp;
704 	KASSERT(l->l_cpu == curcpu());
705 	cc = l->l_cpu->ci_data.cpu_callout;
706 
707 	mutex_spin_enter(cc->cc_lock);
708 	cc->cc_lwp = l;
709 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
710 		c = CIRCQ_FIRST(&cc->cc_todo);
711 		KASSERT(c->c_magic == CALLOUT_MAGIC);
712 		KASSERT(c->c_func != NULL);
713 		KASSERT(c->c_cpu == cc);
714 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
715 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
716 		CIRCQ_REMOVE(&c->c_list);
717 
718 		/* If due run it, otherwise insert it into the right bucket. */
719 		ticks = cc->cc_ticks;
720 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
721 		if (delta > 0) {
722 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
723 			continue;
724 		}
725 		if (delta < 0)
726 			cc->cc_ev_late.ev_count++;
727 
728 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
729 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
730 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
731 		func = c->c_func;
732 		arg = c->c_arg;
733 		cc->cc_active = c;
734 
735 		mutex_spin_exit(cc->cc_lock);
736 		KASSERT(func != NULL);
737 		if (__predict_false(!mpsafe)) {
738 			KERNEL_LOCK(1, NULL);
739 			(*func)(arg);
740 			KERNEL_UNLOCK_ONE(NULL);
741 		} else
742 			(*func)(arg);
743 		mutex_spin_enter(cc->cc_lock);
744 
745 		/*
746 		 * We can't touch 'c' here because it might be
747 		 * freed already.  If LWPs waiting for callout
748 		 * to complete, awaken them.
749 		 */
750 		cc->cc_active = NULL;
751 		if ((count = cc->cc_nwait) != 0) {
752 			cc->cc_nwait = 0;
753 			/* sleepq_wake() drops the lock. */
754 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
755 			mutex_spin_enter(cc->cc_lock);
756 		}
757 	}
758 	cc->cc_lwp = NULL;
759 	mutex_spin_exit(cc->cc_lock);
760 }
761 #endif
762 
763 #ifdef DDB
764 static void
765 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
766     struct callout_circq *bucket)
767 {
768 	callout_impl_t *c, ci;
769 	db_expr_t offset;
770 	const char *name;
771 	static char question[] = "?";
772 	int b;
773 
774 	if (CIRCQ_LAST(bucket, kbucket))
775 		return;
776 
777 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
778 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
779 		c = &ci;
780 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
781 		    &offset);
782 		name = name ? name : question;
783 		b = (bucket - cc->cc_wheel);
784 		if (b < 0)
785 			b = -WHEELSIZE;
786 		db_printf("%9d %2d/%-4d %16lx  %s\n",
787 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
788 		    (u_long)c->c_arg, name);
789 		if (CIRCQ_LAST(&c->c_list, kbucket))
790 			break;
791 	}
792 }
793 
794 void
795 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
796 {
797 	struct callout_cpu *cc, ccb;
798 	struct cpu_info *ci, cib;
799 	int b;
800 
801 #ifndef CRASH
802 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
803 #endif
804 	db_printf("    ticks  wheel               arg  func\n");
805 
806 	/*
807 	 * Don't lock the callwheel; all the other CPUs are paused
808 	 * anyhow, and we might be called in a circumstance where
809 	 * some other CPU was paused while holding the lock.
810 	 */
811 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
812 		db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
813 		cc = cib.ci_data.cpu_callout;
814 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
815 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
816 	}
817 	for (b = 0; b < BUCKETS; b++) {
818 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
819 			db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
820 			cc = cib.ci_data.cpu_callout;
821 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
822 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
823 			    &ccb.cc_wheel[b]);
824 		}
825 	}
826 }
827 #endif /* DDB */
828