xref: /netbsd-src/sys/kern/kern_timeout.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /*	$NetBSD: kern_timeout.c,v 1.47 2013/09/14 20:53:48 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
34  * Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. The name of the author may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.47 2013/09/14 20:53:48 martin Exp $");
63 
64 /*
65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69  * a Timer Facility" by George Varghese and Tony Lauck.
70  *
71  * Some of the "math" in here is a bit tricky.  We have to beware of
72  * wrapping ints.
73  *
74  * We use the fact that any element added to the queue must be added with
75  * a positive time.  That means that any element `to' on the queue cannot
76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77  * be positive or negative so comparing it with anything is dangerous.
78  * The only way we can use the c->c_time value in any predictable way is
79  * when we calculate how far in the future `to' will timeout - "c->c_time
80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
81  * timeouts and 0 or negative for due timeouts.
82  */
83 
84 #define	_CALLOUT_PRIVATE
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99 
100 #ifdef DDB
101 #include <machine/db_machdep.h>
102 #include <ddb/db_interface.h>
103 #include <ddb/db_access.h>
104 #include <ddb/db_sym.h>
105 #include <ddb/db_output.h>
106 #endif
107 
108 #define BUCKETS		1024
109 #define WHEELSIZE	256
110 #define WHEELMASK	255
111 #define WHEELBITS	8
112 
113 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
114 
115 #define BUCKET(cc, rel, abs)						\
116     (((rel) <= (1 << (2*WHEELBITS)))					\
117     	? ((rel) <= (1 << WHEELBITS))					\
118             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
119             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
120         : ((rel) <= (1 << (3*WHEELBITS)))				\
121             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
122             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
123 
124 #define MOVEBUCKET(cc, wheel, time)					\
125     CIRCQ_APPEND(&(cc)->cc_todo,					\
126         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
127 
128 /*
129  * Circular queue definitions.
130  */
131 
132 #define CIRCQ_INIT(list)						\
133 do {									\
134         (list)->cq_next_l = (list);					\
135         (list)->cq_prev_l = (list);					\
136 } while (/*CONSTCOND*/0)
137 
138 #define CIRCQ_INSERT(elem, list)					\
139 do {									\
140         (elem)->cq_prev_e = (list)->cq_prev_e;				\
141         (elem)->cq_next_l = (list);					\
142         (list)->cq_prev_l->cq_next_l = (elem);				\
143         (list)->cq_prev_l = (elem);					\
144 } while (/*CONSTCOND*/0)
145 
146 #define CIRCQ_APPEND(fst, snd)						\
147 do {									\
148         if (!CIRCQ_EMPTY(snd)) {					\
149                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
150                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
151                 (snd)->cq_prev_l->cq_next_l = (fst);			\
152                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
153                 CIRCQ_INIT(snd);					\
154         }								\
155 } while (/*CONSTCOND*/0)
156 
157 #define CIRCQ_REMOVE(elem)						\
158 do {									\
159         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
160         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
161 } while (/*CONSTCOND*/0)
162 
163 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
164 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
165 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
166 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
167 
168 static void	callout_softclock(void *);
169 
170 struct callout_cpu {
171 	kmutex_t	*cc_lock;
172 	sleepq_t	cc_sleepq;
173 	u_int		cc_nwait;
174 	u_int		cc_ticks;
175 	lwp_t		*cc_lwp;
176 	callout_impl_t	*cc_active;
177 	callout_impl_t	*cc_cancel;
178 	struct evcnt	cc_ev_late;
179 	struct evcnt	cc_ev_block;
180 	struct callout_circq cc_todo;		/* Worklist */
181 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
182 	char		cc_name1[12];
183 	char		cc_name2[12];
184 };
185 
186 static struct callout_cpu callout_cpu0;
187 static void *callout_sih;
188 
189 static inline kmutex_t *
190 callout_lock(callout_impl_t *c)
191 {
192 	struct callout_cpu *cc;
193 	kmutex_t *lock;
194 
195 	for (;;) {
196 		cc = c->c_cpu;
197 		lock = cc->cc_lock;
198 		mutex_spin_enter(lock);
199 		if (__predict_true(cc == c->c_cpu))
200 			return lock;
201 		mutex_spin_exit(lock);
202 	}
203 }
204 
205 /*
206  * callout_startup:
207  *
208  *	Initialize the callout facility, called at system startup time.
209  *	Do just enough to allow callouts to be safely registered.
210  */
211 void
212 callout_startup(void)
213 {
214 	struct callout_cpu *cc;
215 	int b;
216 
217 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
218 
219 	cc = &callout_cpu0;
220 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
221 	CIRCQ_INIT(&cc->cc_todo);
222 	for (b = 0; b < BUCKETS; b++)
223 		CIRCQ_INIT(&cc->cc_wheel[b]);
224 	curcpu()->ci_data.cpu_callout = cc;
225 }
226 
227 /*
228  * callout_init_cpu:
229  *
230  *	Per-CPU initialization.
231  */
232 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
233 
234 void
235 callout_init_cpu(struct cpu_info *ci)
236 {
237 	struct callout_cpu *cc;
238 	int b;
239 
240 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
241 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
242 		if (cc == NULL)
243 			panic("callout_init_cpu (1)");
244 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
245 		CIRCQ_INIT(&cc->cc_todo);
246 		for (b = 0; b < BUCKETS; b++)
247 			CIRCQ_INIT(&cc->cc_wheel[b]);
248 	} else {
249 		/* Boot CPU, one time only. */
250 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
251 		    callout_softclock, NULL);
252 		if (callout_sih == NULL)
253 			panic("callout_init_cpu (2)");
254 	}
255 
256 	sleepq_init(&cc->cc_sleepq);
257 
258 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
259 	    cpu_index(ci));
260 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
261 	    NULL, "callout", cc->cc_name1);
262 
263 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
264 	    cpu_index(ci));
265 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
266 	    NULL, "callout", cc->cc_name2);
267 
268 	ci->ci_data.cpu_callout = cc;
269 }
270 
271 /*
272  * callout_init:
273  *
274  *	Initialize a callout structure.  This must be quick, so we fill
275  *	only the minimum number of fields.
276  */
277 void
278 callout_init(callout_t *cs, u_int flags)
279 {
280 	callout_impl_t *c = (callout_impl_t *)cs;
281 	struct callout_cpu *cc;
282 
283 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
284 
285 	cc = curcpu()->ci_data.cpu_callout;
286 	c->c_func = NULL;
287 	c->c_magic = CALLOUT_MAGIC;
288 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
289 		c->c_flags = flags;
290 		c->c_cpu = cc;
291 		return;
292 	}
293 	c->c_flags = flags | CALLOUT_BOUND;
294 	c->c_cpu = &callout_cpu0;
295 }
296 
297 /*
298  * callout_destroy:
299  *
300  *	Destroy a callout structure.  The callout must be stopped.
301  */
302 void
303 callout_destroy(callout_t *cs)
304 {
305 	callout_impl_t *c = (callout_impl_t *)cs;
306 
307 	/*
308 	 * It's not necessary to lock in order to see the correct value
309 	 * of c->c_flags.  If the callout could potentially have been
310 	 * running, the current thread should have stopped it.
311 	 */
312 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
313 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
314 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
315 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
316 	    c, c->c_magic, CALLOUT_MAGIC);
317 	c->c_magic = 0;
318 }
319 
320 /*
321  * callout_schedule_locked:
322  *
323  *	Schedule a callout to run.  The function and argument must
324  *	already be set in the callout structure.  Must be called with
325  *	callout_lock.
326  */
327 static void
328 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
329 {
330 	struct callout_cpu *cc, *occ;
331 	int old_time;
332 
333 	KASSERT(to_ticks >= 0);
334 	KASSERT(c->c_func != NULL);
335 
336 	/* Initialize the time here, it won't change. */
337 	occ = c->c_cpu;
338 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
339 
340 	/*
341 	 * If this timeout is already scheduled and now is moved
342 	 * earlier, reschedule it now.  Otherwise leave it in place
343 	 * and let it be rescheduled later.
344 	 */
345 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
346 		/* Leave on existing CPU. */
347 		old_time = c->c_time;
348 		c->c_time = to_ticks + occ->cc_ticks;
349 		if (c->c_time - old_time < 0) {
350 			CIRCQ_REMOVE(&c->c_list);
351 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
352 		}
353 		mutex_spin_exit(lock);
354 		return;
355 	}
356 
357 	cc = curcpu()->ci_data.cpu_callout;
358 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
359 	    !mutex_tryenter(cc->cc_lock)) {
360 		/* Leave on existing CPU. */
361 		c->c_time = to_ticks + occ->cc_ticks;
362 		c->c_flags |= CALLOUT_PENDING;
363 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
364 	} else {
365 		/* Move to this CPU. */
366 		c->c_cpu = cc;
367 		c->c_time = to_ticks + cc->cc_ticks;
368 		c->c_flags |= CALLOUT_PENDING;
369 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
370 		mutex_spin_exit(cc->cc_lock);
371 	}
372 	mutex_spin_exit(lock);
373 }
374 
375 /*
376  * callout_reset:
377  *
378  *	Reset a callout structure with a new function and argument, and
379  *	schedule it to run.
380  */
381 void
382 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
383 {
384 	callout_impl_t *c = (callout_impl_t *)cs;
385 	kmutex_t *lock;
386 
387 	KASSERT(c->c_magic == CALLOUT_MAGIC);
388 	KASSERT(func != NULL);
389 
390 	lock = callout_lock(c);
391 	c->c_func = func;
392 	c->c_arg = arg;
393 	callout_schedule_locked(c, lock, to_ticks);
394 }
395 
396 /*
397  * callout_schedule:
398  *
399  *	Schedule a callout to run.  The function and argument must
400  *	already be set in the callout structure.
401  */
402 void
403 callout_schedule(callout_t *cs, int to_ticks)
404 {
405 	callout_impl_t *c = (callout_impl_t *)cs;
406 	kmutex_t *lock;
407 
408 	KASSERT(c->c_magic == CALLOUT_MAGIC);
409 
410 	lock = callout_lock(c);
411 	callout_schedule_locked(c, lock, to_ticks);
412 }
413 
414 /*
415  * callout_stop:
416  *
417  *	Try to cancel a pending callout.  It may be too late: the callout
418  *	could be running on another CPU.  If called from interrupt context,
419  *	the callout could already be in progress at a lower priority.
420  */
421 bool
422 callout_stop(callout_t *cs)
423 {
424 	callout_impl_t *c = (callout_impl_t *)cs;
425 	struct callout_cpu *cc;
426 	kmutex_t *lock;
427 	bool expired;
428 
429 	KASSERT(c->c_magic == CALLOUT_MAGIC);
430 
431 	lock = callout_lock(c);
432 
433 	if ((c->c_flags & CALLOUT_PENDING) != 0)
434 		CIRCQ_REMOVE(&c->c_list);
435 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
436 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
437 
438 	cc = c->c_cpu;
439 	if (cc->cc_active == c) {
440 		/*
441 		 * This is for non-MPSAFE callouts only.  To synchronize
442 		 * effectively we must be called with kernel_lock held.
443 		 * It's also taken in callout_softclock.
444 		 */
445 		cc->cc_cancel = c;
446 	}
447 
448 	mutex_spin_exit(lock);
449 
450 	return expired;
451 }
452 
453 /*
454  * callout_halt:
455  *
456  *	Cancel a pending callout.  If in-flight, block until it completes.
457  *	May not be called from a hard interrupt handler.  If the callout
458  * 	can take locks, the caller of callout_halt() must not hold any of
459  *	those locks, otherwise the two could deadlock.  If 'interlock' is
460  *	non-NULL and we must wait for the callout to complete, it will be
461  *	released and re-acquired before returning.
462  */
463 bool
464 callout_halt(callout_t *cs, void *interlock)
465 {
466 	callout_impl_t *c = (callout_impl_t *)cs;
467 	struct callout_cpu *cc;
468 	struct lwp *l;
469 	kmutex_t *lock, *relock;
470 	bool expired;
471 
472 	KASSERT(c->c_magic == CALLOUT_MAGIC);
473 	KASSERT(!cpu_intr_p());
474 
475 	lock = callout_lock(c);
476 	relock = NULL;
477 
478 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
479 	if ((c->c_flags & CALLOUT_PENDING) != 0)
480 		CIRCQ_REMOVE(&c->c_list);
481 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
482 
483 	l = curlwp;
484 	for (;;) {
485 		cc = c->c_cpu;
486 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
487 			break;
488 		if (interlock != NULL) {
489 			/*
490 			 * Avoid potential scheduler lock order problems by
491 			 * dropping the interlock without the callout lock
492 			 * held.
493 			 */
494 			mutex_spin_exit(lock);
495 			mutex_exit(interlock);
496 			relock = interlock;
497 			interlock = NULL;
498 		} else {
499 			/* XXX Better to do priority inheritance. */
500 			KASSERT(l->l_wchan == NULL);
501 			cc->cc_nwait++;
502 			cc->cc_ev_block.ev_count++;
503 			l->l_kpriority = true;
504 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
505 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
506 			    &sleep_syncobj);
507 			sleepq_block(0, false);
508 		}
509 		lock = callout_lock(c);
510 	}
511 
512 	mutex_spin_exit(lock);
513 	if (__predict_false(relock != NULL))
514 		mutex_enter(relock);
515 
516 	return expired;
517 }
518 
519 #ifdef notyet
520 /*
521  * callout_bind:
522  *
523  *	Bind a callout so that it will only execute on one CPU.
524  *	The callout must be stopped, and must be MPSAFE.
525  *
526  *	XXX Disabled for now until it is decided how to handle
527  *	offlined CPUs.  We may want weak+strong binding.
528  */
529 void
530 callout_bind(callout_t *cs, struct cpu_info *ci)
531 {
532 	callout_impl_t *c = (callout_impl_t *)cs;
533 	struct callout_cpu *cc;
534 	kmutex_t *lock;
535 
536 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
537 	KASSERT(c->c_cpu->cc_active != c);
538 	KASSERT(c->c_magic == CALLOUT_MAGIC);
539 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
540 
541 	lock = callout_lock(c);
542 	cc = ci->ci_data.cpu_callout;
543 	c->c_flags |= CALLOUT_BOUND;
544 	if (c->c_cpu != cc) {
545 		/*
546 		 * Assigning c_cpu effectively unlocks the callout
547 		 * structure, as we don't hold the new CPU's lock.
548 		 * Issue memory barrier to prevent accesses being
549 		 * reordered.
550 		 */
551 		membar_exit();
552 		c->c_cpu = cc;
553 	}
554 	mutex_spin_exit(lock);
555 }
556 #endif
557 
558 void
559 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
560 {
561 	callout_impl_t *c = (callout_impl_t *)cs;
562 	kmutex_t *lock;
563 
564 	KASSERT(c->c_magic == CALLOUT_MAGIC);
565 	KASSERT(func != NULL);
566 
567 	lock = callout_lock(c);
568 	c->c_func = func;
569 	c->c_arg = arg;
570 	mutex_spin_exit(lock);
571 }
572 
573 bool
574 callout_expired(callout_t *cs)
575 {
576 	callout_impl_t *c = (callout_impl_t *)cs;
577 	kmutex_t *lock;
578 	bool rv;
579 
580 	KASSERT(c->c_magic == CALLOUT_MAGIC);
581 
582 	lock = callout_lock(c);
583 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
584 	mutex_spin_exit(lock);
585 
586 	return rv;
587 }
588 
589 bool
590 callout_active(callout_t *cs)
591 {
592 	callout_impl_t *c = (callout_impl_t *)cs;
593 	kmutex_t *lock;
594 	bool rv;
595 
596 	KASSERT(c->c_magic == CALLOUT_MAGIC);
597 
598 	lock = callout_lock(c);
599 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
600 	mutex_spin_exit(lock);
601 
602 	return rv;
603 }
604 
605 bool
606 callout_pending(callout_t *cs)
607 {
608 	callout_impl_t *c = (callout_impl_t *)cs;
609 	kmutex_t *lock;
610 	bool rv;
611 
612 	KASSERT(c->c_magic == CALLOUT_MAGIC);
613 
614 	lock = callout_lock(c);
615 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
616 	mutex_spin_exit(lock);
617 
618 	return rv;
619 }
620 
621 bool
622 callout_invoking(callout_t *cs)
623 {
624 	callout_impl_t *c = (callout_impl_t *)cs;
625 	kmutex_t *lock;
626 	bool rv;
627 
628 	KASSERT(c->c_magic == CALLOUT_MAGIC);
629 
630 	lock = callout_lock(c);
631 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
632 	mutex_spin_exit(lock);
633 
634 	return rv;
635 }
636 
637 void
638 callout_ack(callout_t *cs)
639 {
640 	callout_impl_t *c = (callout_impl_t *)cs;
641 	kmutex_t *lock;
642 
643 	KASSERT(c->c_magic == CALLOUT_MAGIC);
644 
645 	lock = callout_lock(c);
646 	c->c_flags &= ~CALLOUT_INVOKING;
647 	mutex_spin_exit(lock);
648 }
649 
650 /*
651  * callout_hardclock:
652  *
653  *	Called from hardclock() once every tick.  We schedule a soft
654  *	interrupt if there is work to be done.
655  */
656 void
657 callout_hardclock(void)
658 {
659 	struct callout_cpu *cc;
660 	int needsoftclock, ticks;
661 
662 	cc = curcpu()->ci_data.cpu_callout;
663 	mutex_spin_enter(cc->cc_lock);
664 
665 	ticks = ++cc->cc_ticks;
666 
667 	MOVEBUCKET(cc, 0, ticks);
668 	if (MASKWHEEL(0, ticks) == 0) {
669 		MOVEBUCKET(cc, 1, ticks);
670 		if (MASKWHEEL(1, ticks) == 0) {
671 			MOVEBUCKET(cc, 2, ticks);
672 			if (MASKWHEEL(2, ticks) == 0)
673 				MOVEBUCKET(cc, 3, ticks);
674 		}
675 	}
676 
677 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
678 	mutex_spin_exit(cc->cc_lock);
679 
680 	if (needsoftclock)
681 		softint_schedule(callout_sih);
682 }
683 
684 /*
685  * callout_softclock:
686  *
687  *	Soft interrupt handler, scheduled above if there is work to
688  * 	be done.  Callouts are made in soft interrupt context.
689  */
690 static void
691 callout_softclock(void *v)
692 {
693 	callout_impl_t *c;
694 	struct callout_cpu *cc;
695 	void (*func)(void *);
696 	void *arg;
697 	int mpsafe, count, ticks, delta;
698 	lwp_t *l;
699 
700 	l = curlwp;
701 	KASSERT(l->l_cpu == curcpu());
702 	cc = l->l_cpu->ci_data.cpu_callout;
703 
704 	mutex_spin_enter(cc->cc_lock);
705 	cc->cc_lwp = l;
706 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
707 		c = CIRCQ_FIRST(&cc->cc_todo);
708 		KASSERT(c->c_magic == CALLOUT_MAGIC);
709 		KASSERT(c->c_func != NULL);
710 		KASSERT(c->c_cpu == cc);
711 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
712 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
713 		CIRCQ_REMOVE(&c->c_list);
714 
715 		/* If due run it, otherwise insert it into the right bucket. */
716 		ticks = cc->cc_ticks;
717 		delta = c->c_time - ticks;
718 		if (delta > 0) {
719 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
720 			continue;
721 		}
722 		if (delta < 0)
723 			cc->cc_ev_late.ev_count++;
724 
725 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
726 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
727 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
728 		func = c->c_func;
729 		arg = c->c_arg;
730 		cc->cc_active = c;
731 
732 		mutex_spin_exit(cc->cc_lock);
733 		KASSERT(func != NULL);
734 		if (__predict_false(!mpsafe)) {
735 			KERNEL_LOCK(1, NULL);
736 			(*func)(arg);
737 			KERNEL_UNLOCK_ONE(NULL);
738 		} else
739 			(*func)(arg);
740 		mutex_spin_enter(cc->cc_lock);
741 
742 		/*
743 		 * We can't touch 'c' here because it might be
744 		 * freed already.  If LWPs waiting for callout
745 		 * to complete, awaken them.
746 		 */
747 		cc->cc_active = NULL;
748 		if ((count = cc->cc_nwait) != 0) {
749 			cc->cc_nwait = 0;
750 			/* sleepq_wake() drops the lock. */
751 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
752 			mutex_spin_enter(cc->cc_lock);
753 		}
754 	}
755 	cc->cc_lwp = NULL;
756 	mutex_spin_exit(cc->cc_lock);
757 }
758 
759 #ifdef DDB
760 static void
761 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
762 {
763 	callout_impl_t *c;
764 	db_expr_t offset;
765 	const char *name;
766 	static char question[] = "?";
767 	int b;
768 
769 	if (CIRCQ_EMPTY(bucket))
770 		return;
771 
772 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
773 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
774 		    &offset);
775 		name = name ? name : question;
776 		b = (bucket - cc->cc_wheel);
777 		if (b < 0)
778 			b = -WHEELSIZE;
779 		db_printf("%9d %2d/%-4d %16lx  %s\n",
780 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
781 		    (u_long)c->c_arg, name);
782 		if (CIRCQ_LAST(&c->c_list, bucket))
783 			break;
784 	}
785 }
786 
787 void
788 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
789 {
790 	CPU_INFO_ITERATOR cii;
791 	struct callout_cpu *cc;
792 	struct cpu_info *ci;
793 	int b;
794 
795 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
796 	db_printf("    ticks  wheel               arg  func\n");
797 
798 	/*
799 	 * Don't lock the callwheel; all the other CPUs are paused
800 	 * anyhow, and we might be called in a circumstance where
801 	 * some other CPU was paused while holding the lock.
802 	 */
803 	for (CPU_INFO_FOREACH(cii, ci)) {
804 		cc = ci->ci_data.cpu_callout;
805 		db_show_callout_bucket(cc, &cc->cc_todo);
806 	}
807 	for (b = 0; b < BUCKETS; b++) {
808 		for (CPU_INFO_FOREACH(cii, ci)) {
809 			cc = ci->ci_data.cpu_callout;
810 			db_show_callout_bucket(cc, &cc->cc_wheel[b]);
811 		}
812 	}
813 }
814 #endif /* DDB */
815