xref: /netbsd-src/sys/kern/kern_timeout.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: kern_timeout.c,v 1.45 2010/12/18 01:36:19 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
34  * Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. The name of the author may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.45 2010/12/18 01:36:19 rmind Exp $");
63 
64 /*
65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69  * a Timer Facility" by George Varghese and Tony Lauck.
70  *
71  * Some of the "math" in here is a bit tricky.  We have to beware of
72  * wrapping ints.
73  *
74  * We use the fact that any element added to the queue must be added with
75  * a positive time.  That means that any element `to' on the queue cannot
76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77  * be positive or negative so comparing it with anything is dangerous.
78  * The only way we can use the c->c_time value in any predictable way is
79  * when we calculate how far in the future `to' will timeout - "c->c_time
80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
81  * timeouts and 0 or negative for due timeouts.
82  */
83 
84 #define	_CALLOUT_PRIVATE
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99 
100 #ifdef DDB
101 #include <machine/db_machdep.h>
102 #include <ddb/db_interface.h>
103 #include <ddb/db_access.h>
104 #include <ddb/db_sym.h>
105 #include <ddb/db_output.h>
106 #endif
107 
108 #define BUCKETS		1024
109 #define WHEELSIZE	256
110 #define WHEELMASK	255
111 #define WHEELBITS	8
112 
113 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
114 
115 #define BUCKET(cc, rel, abs)						\
116     (((rel) <= (1 << (2*WHEELBITS)))					\
117     	? ((rel) <= (1 << WHEELBITS))					\
118             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
119             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
120         : ((rel) <= (1 << (3*WHEELBITS)))				\
121             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
122             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
123 
124 #define MOVEBUCKET(cc, wheel, time)					\
125     CIRCQ_APPEND(&(cc)->cc_todo,					\
126         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
127 
128 /*
129  * Circular queue definitions.
130  */
131 
132 #define CIRCQ_INIT(list)						\
133 do {									\
134         (list)->cq_next_l = (list);					\
135         (list)->cq_prev_l = (list);					\
136 } while (/*CONSTCOND*/0)
137 
138 #define CIRCQ_INSERT(elem, list)					\
139 do {									\
140         (elem)->cq_prev_e = (list)->cq_prev_e;				\
141         (elem)->cq_next_l = (list);					\
142         (list)->cq_prev_l->cq_next_l = (elem);				\
143         (list)->cq_prev_l = (elem);					\
144 } while (/*CONSTCOND*/0)
145 
146 #define CIRCQ_APPEND(fst, snd)						\
147 do {									\
148         if (!CIRCQ_EMPTY(snd)) {					\
149                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
150                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
151                 (snd)->cq_prev_l->cq_next_l = (fst);			\
152                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
153                 CIRCQ_INIT(snd);					\
154         }								\
155 } while (/*CONSTCOND*/0)
156 
157 #define CIRCQ_REMOVE(elem)						\
158 do {									\
159         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
160         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
161 } while (/*CONSTCOND*/0)
162 
163 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
164 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
165 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
166 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
167 
168 static void	callout_softclock(void *);
169 
170 struct callout_cpu {
171 	kmutex_t	*cc_lock;
172 	sleepq_t	cc_sleepq;
173 	u_int		cc_nwait;
174 	u_int		cc_ticks;
175 	lwp_t		*cc_lwp;
176 	callout_impl_t	*cc_active;
177 	callout_impl_t	*cc_cancel;
178 	struct evcnt	cc_ev_late;
179 	struct evcnt	cc_ev_block;
180 	struct callout_circq cc_todo;		/* Worklist */
181 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
182 	char		cc_name1[12];
183 	char		cc_name2[12];
184 };
185 
186 static struct callout_cpu callout_cpu0;
187 static void *callout_sih;
188 
189 static inline kmutex_t *
190 callout_lock(callout_impl_t *c)
191 {
192 	struct callout_cpu *cc;
193 	kmutex_t *lock;
194 
195 	for (;;) {
196 		cc = c->c_cpu;
197 		lock = cc->cc_lock;
198 		mutex_spin_enter(lock);
199 		if (__predict_true(cc == c->c_cpu))
200 			return lock;
201 		mutex_spin_exit(lock);
202 	}
203 }
204 
205 /*
206  * callout_startup:
207  *
208  *	Initialize the callout facility, called at system startup time.
209  *	Do just enough to allow callouts to be safely registered.
210  */
211 void
212 callout_startup(void)
213 {
214 	struct callout_cpu *cc;
215 	int b;
216 
217 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
218 
219 	cc = &callout_cpu0;
220 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
221 	CIRCQ_INIT(&cc->cc_todo);
222 	for (b = 0; b < BUCKETS; b++)
223 		CIRCQ_INIT(&cc->cc_wheel[b]);
224 	curcpu()->ci_data.cpu_callout = cc;
225 }
226 
227 /*
228  * callout_init_cpu:
229  *
230  *	Per-CPU initialization.
231  */
232 void
233 callout_init_cpu(struct cpu_info *ci)
234 {
235 	struct callout_cpu *cc;
236 	int b;
237 
238 	CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
239 
240 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
241 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
242 		if (cc == NULL)
243 			panic("callout_init_cpu (1)");
244 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
245 		CIRCQ_INIT(&cc->cc_todo);
246 		for (b = 0; b < BUCKETS; b++)
247 			CIRCQ_INIT(&cc->cc_wheel[b]);
248 	} else {
249 		/* Boot CPU, one time only. */
250 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
251 		    callout_softclock, NULL);
252 		if (callout_sih == NULL)
253 			panic("callout_init_cpu (2)");
254 	}
255 
256 	sleepq_init(&cc->cc_sleepq);
257 
258 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
259 	    cpu_index(ci));
260 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
261 	    NULL, "callout", cc->cc_name1);
262 
263 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
264 	    cpu_index(ci));
265 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
266 	    NULL, "callout", cc->cc_name2);
267 
268 	ci->ci_data.cpu_callout = cc;
269 }
270 
271 /*
272  * callout_init:
273  *
274  *	Initialize a callout structure.  This must be quick, so we fill
275  *	only the minimum number of fields.
276  */
277 void
278 callout_init(callout_t *cs, u_int flags)
279 {
280 	callout_impl_t *c = (callout_impl_t *)cs;
281 	struct callout_cpu *cc;
282 
283 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
284 
285 	cc = curcpu()->ci_data.cpu_callout;
286 	c->c_func = NULL;
287 	c->c_magic = CALLOUT_MAGIC;
288 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
289 		c->c_flags = flags;
290 		c->c_cpu = cc;
291 		return;
292 	}
293 	c->c_flags = flags | CALLOUT_BOUND;
294 	c->c_cpu = &callout_cpu0;
295 }
296 
297 /*
298  * callout_destroy:
299  *
300  *	Destroy a callout structure.  The callout must be stopped.
301  */
302 void
303 callout_destroy(callout_t *cs)
304 {
305 	callout_impl_t *c = (callout_impl_t *)cs;
306 
307 	/*
308 	 * It's not necessary to lock in order to see the correct value
309 	 * of c->c_flags.  If the callout could potentially have been
310 	 * running, the current thread should have stopped it.
311 	 */
312 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
313 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
314 	KASSERT(c->c_magic == CALLOUT_MAGIC);
315 	c->c_magic = 0;
316 }
317 
318 /*
319  * callout_schedule_locked:
320  *
321  *	Schedule a callout to run.  The function and argument must
322  *	already be set in the callout structure.  Must be called with
323  *	callout_lock.
324  */
325 static void
326 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
327 {
328 	struct callout_cpu *cc, *occ;
329 	int old_time;
330 
331 	KASSERT(to_ticks >= 0);
332 	KASSERT(c->c_func != NULL);
333 
334 	/* Initialize the time here, it won't change. */
335 	occ = c->c_cpu;
336 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
337 
338 	/*
339 	 * If this timeout is already scheduled and now is moved
340 	 * earlier, reschedule it now.  Otherwise leave it in place
341 	 * and let it be rescheduled later.
342 	 */
343 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
344 		/* Leave on existing CPU. */
345 		old_time = c->c_time;
346 		c->c_time = to_ticks + occ->cc_ticks;
347 		if (c->c_time - old_time < 0) {
348 			CIRCQ_REMOVE(&c->c_list);
349 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
350 		}
351 		mutex_spin_exit(lock);
352 		return;
353 	}
354 
355 	cc = curcpu()->ci_data.cpu_callout;
356 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
357 	    !mutex_tryenter(cc->cc_lock)) {
358 		/* Leave on existing CPU. */
359 		c->c_time = to_ticks + occ->cc_ticks;
360 		c->c_flags |= CALLOUT_PENDING;
361 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
362 	} else {
363 		/* Move to this CPU. */
364 		c->c_cpu = cc;
365 		c->c_time = to_ticks + cc->cc_ticks;
366 		c->c_flags |= CALLOUT_PENDING;
367 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
368 		mutex_spin_exit(cc->cc_lock);
369 	}
370 	mutex_spin_exit(lock);
371 }
372 
373 /*
374  * callout_reset:
375  *
376  *	Reset a callout structure with a new function and argument, and
377  *	schedule it to run.
378  */
379 void
380 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
381 {
382 	callout_impl_t *c = (callout_impl_t *)cs;
383 	kmutex_t *lock;
384 
385 	KASSERT(c->c_magic == CALLOUT_MAGIC);
386 	KASSERT(func != NULL);
387 
388 	lock = callout_lock(c);
389 	c->c_func = func;
390 	c->c_arg = arg;
391 	callout_schedule_locked(c, lock, to_ticks);
392 }
393 
394 /*
395  * callout_schedule:
396  *
397  *	Schedule a callout to run.  The function and argument must
398  *	already be set in the callout structure.
399  */
400 void
401 callout_schedule(callout_t *cs, int to_ticks)
402 {
403 	callout_impl_t *c = (callout_impl_t *)cs;
404 	kmutex_t *lock;
405 
406 	KASSERT(c->c_magic == CALLOUT_MAGIC);
407 
408 	lock = callout_lock(c);
409 	callout_schedule_locked(c, lock, to_ticks);
410 }
411 
412 /*
413  * callout_stop:
414  *
415  *	Try to cancel a pending callout.  It may be too late: the callout
416  *	could be running on another CPU.  If called from interrupt context,
417  *	the callout could already be in progress at a lower priority.
418  */
419 bool
420 callout_stop(callout_t *cs)
421 {
422 	callout_impl_t *c = (callout_impl_t *)cs;
423 	struct callout_cpu *cc;
424 	kmutex_t *lock;
425 	bool expired;
426 
427 	KASSERT(c->c_magic == CALLOUT_MAGIC);
428 
429 	lock = callout_lock(c);
430 
431 	if ((c->c_flags & CALLOUT_PENDING) != 0)
432 		CIRCQ_REMOVE(&c->c_list);
433 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
434 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
435 
436 	cc = c->c_cpu;
437 	if (cc->cc_active == c) {
438 		/*
439 		 * This is for non-MPSAFE callouts only.  To synchronize
440 		 * effectively we must be called with kernel_lock held.
441 		 * It's also taken in callout_softclock.
442 		 */
443 		cc->cc_cancel = c;
444 	}
445 
446 	mutex_spin_exit(lock);
447 
448 	return expired;
449 }
450 
451 /*
452  * callout_halt:
453  *
454  *	Cancel a pending callout.  If in-flight, block until it completes.
455  *	May not be called from a hard interrupt handler.  If the callout
456  * 	can take locks, the caller of callout_halt() must not hold any of
457  *	those locks, otherwise the two could deadlock.  If 'interlock' is
458  *	non-NULL and we must wait for the callout to complete, it will be
459  *	released and re-acquired before returning.
460  */
461 bool
462 callout_halt(callout_t *cs, void *interlock)
463 {
464 	callout_impl_t *c = (callout_impl_t *)cs;
465 	struct callout_cpu *cc;
466 	struct lwp *l;
467 	kmutex_t *lock, *relock;
468 	bool expired;
469 
470 	KASSERT(c->c_magic == CALLOUT_MAGIC);
471 	KASSERT(!cpu_intr_p());
472 
473 	lock = callout_lock(c);
474 	relock = NULL;
475 
476 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
477 	if ((c->c_flags & CALLOUT_PENDING) != 0)
478 		CIRCQ_REMOVE(&c->c_list);
479 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
480 
481 	l = curlwp;
482 	for (;;) {
483 		cc = c->c_cpu;
484 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
485 			break;
486 		if (interlock != NULL) {
487 			/*
488 			 * Avoid potential scheduler lock order problems by
489 			 * dropping the interlock without the callout lock
490 			 * held.
491 			 */
492 			mutex_spin_exit(lock);
493 			mutex_exit(interlock);
494 			relock = interlock;
495 			interlock = NULL;
496 		} else {
497 			/* XXX Better to do priority inheritance. */
498 			KASSERT(l->l_wchan == NULL);
499 			cc->cc_nwait++;
500 			cc->cc_ev_block.ev_count++;
501 			l->l_kpriority = true;
502 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
503 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
504 			    &sleep_syncobj);
505 			sleepq_block(0, false);
506 		}
507 		lock = callout_lock(c);
508 	}
509 
510 	mutex_spin_exit(lock);
511 	if (__predict_false(relock != NULL))
512 		mutex_enter(relock);
513 
514 	return expired;
515 }
516 
517 #ifdef notyet
518 /*
519  * callout_bind:
520  *
521  *	Bind a callout so that it will only execute on one CPU.
522  *	The callout must be stopped, and must be MPSAFE.
523  *
524  *	XXX Disabled for now until it is decided how to handle
525  *	offlined CPUs.  We may want weak+strong binding.
526  */
527 void
528 callout_bind(callout_t *cs, struct cpu_info *ci)
529 {
530 	callout_impl_t *c = (callout_impl_t *)cs;
531 	struct callout_cpu *cc;
532 	kmutex_t *lock;
533 
534 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
535 	KASSERT(c->c_cpu->cc_active != c);
536 	KASSERT(c->c_magic == CALLOUT_MAGIC);
537 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
538 
539 	lock = callout_lock(c);
540 	cc = ci->ci_data.cpu_callout;
541 	c->c_flags |= CALLOUT_BOUND;
542 	if (c->c_cpu != cc) {
543 		/*
544 		 * Assigning c_cpu effectively unlocks the callout
545 		 * structure, as we don't hold the new CPU's lock.
546 		 * Issue memory barrier to prevent accesses being
547 		 * reordered.
548 		 */
549 		membar_exit();
550 		c->c_cpu = cc;
551 	}
552 	mutex_spin_exit(lock);
553 }
554 #endif
555 
556 void
557 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
558 {
559 	callout_impl_t *c = (callout_impl_t *)cs;
560 	kmutex_t *lock;
561 
562 	KASSERT(c->c_magic == CALLOUT_MAGIC);
563 	KASSERT(func != NULL);
564 
565 	lock = callout_lock(c);
566 	c->c_func = func;
567 	c->c_arg = arg;
568 	mutex_spin_exit(lock);
569 }
570 
571 bool
572 callout_expired(callout_t *cs)
573 {
574 	callout_impl_t *c = (callout_impl_t *)cs;
575 	kmutex_t *lock;
576 	bool rv;
577 
578 	KASSERT(c->c_magic == CALLOUT_MAGIC);
579 
580 	lock = callout_lock(c);
581 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
582 	mutex_spin_exit(lock);
583 
584 	return rv;
585 }
586 
587 bool
588 callout_active(callout_t *cs)
589 {
590 	callout_impl_t *c = (callout_impl_t *)cs;
591 	kmutex_t *lock;
592 	bool rv;
593 
594 	KASSERT(c->c_magic == CALLOUT_MAGIC);
595 
596 	lock = callout_lock(c);
597 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
598 	mutex_spin_exit(lock);
599 
600 	return rv;
601 }
602 
603 bool
604 callout_pending(callout_t *cs)
605 {
606 	callout_impl_t *c = (callout_impl_t *)cs;
607 	kmutex_t *lock;
608 	bool rv;
609 
610 	KASSERT(c->c_magic == CALLOUT_MAGIC);
611 
612 	lock = callout_lock(c);
613 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
614 	mutex_spin_exit(lock);
615 
616 	return rv;
617 }
618 
619 bool
620 callout_invoking(callout_t *cs)
621 {
622 	callout_impl_t *c = (callout_impl_t *)cs;
623 	kmutex_t *lock;
624 	bool rv;
625 
626 	KASSERT(c->c_magic == CALLOUT_MAGIC);
627 
628 	lock = callout_lock(c);
629 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
630 	mutex_spin_exit(lock);
631 
632 	return rv;
633 }
634 
635 void
636 callout_ack(callout_t *cs)
637 {
638 	callout_impl_t *c = (callout_impl_t *)cs;
639 	kmutex_t *lock;
640 
641 	KASSERT(c->c_magic == CALLOUT_MAGIC);
642 
643 	lock = callout_lock(c);
644 	c->c_flags &= ~CALLOUT_INVOKING;
645 	mutex_spin_exit(lock);
646 }
647 
648 /*
649  * callout_hardclock:
650  *
651  *	Called from hardclock() once every tick.  We schedule a soft
652  *	interrupt if there is work to be done.
653  */
654 void
655 callout_hardclock(void)
656 {
657 	struct callout_cpu *cc;
658 	int needsoftclock, ticks;
659 
660 	cc = curcpu()->ci_data.cpu_callout;
661 	mutex_spin_enter(cc->cc_lock);
662 
663 	ticks = ++cc->cc_ticks;
664 
665 	MOVEBUCKET(cc, 0, ticks);
666 	if (MASKWHEEL(0, ticks) == 0) {
667 		MOVEBUCKET(cc, 1, ticks);
668 		if (MASKWHEEL(1, ticks) == 0) {
669 			MOVEBUCKET(cc, 2, ticks);
670 			if (MASKWHEEL(2, ticks) == 0)
671 				MOVEBUCKET(cc, 3, ticks);
672 		}
673 	}
674 
675 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
676 	mutex_spin_exit(cc->cc_lock);
677 
678 	if (needsoftclock)
679 		softint_schedule(callout_sih);
680 }
681 
682 /*
683  * callout_softclock:
684  *
685  *	Soft interrupt handler, scheduled above if there is work to
686  * 	be done.  Callouts are made in soft interrupt context.
687  */
688 static void
689 callout_softclock(void *v)
690 {
691 	callout_impl_t *c;
692 	struct callout_cpu *cc;
693 	void (*func)(void *);
694 	void *arg;
695 	int mpsafe, count, ticks, delta;
696 	lwp_t *l;
697 
698 	l = curlwp;
699 	KASSERT(l->l_cpu == curcpu());
700 	cc = l->l_cpu->ci_data.cpu_callout;
701 
702 	mutex_spin_enter(cc->cc_lock);
703 	cc->cc_lwp = l;
704 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
705 		c = CIRCQ_FIRST(&cc->cc_todo);
706 		KASSERT(c->c_magic == CALLOUT_MAGIC);
707 		KASSERT(c->c_func != NULL);
708 		KASSERT(c->c_cpu == cc);
709 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
710 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
711 		CIRCQ_REMOVE(&c->c_list);
712 
713 		/* If due run it, otherwise insert it into the right bucket. */
714 		ticks = cc->cc_ticks;
715 		delta = c->c_time - ticks;
716 		if (delta > 0) {
717 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
718 			continue;
719 		}
720 		if (delta < 0)
721 			cc->cc_ev_late.ev_count++;
722 
723 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
724 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
725 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
726 		func = c->c_func;
727 		arg = c->c_arg;
728 		cc->cc_active = c;
729 
730 		mutex_spin_exit(cc->cc_lock);
731 		KASSERT(func != NULL);
732 		if (__predict_false(!mpsafe)) {
733 			KERNEL_LOCK(1, NULL);
734 			(*func)(arg);
735 			KERNEL_UNLOCK_ONE(NULL);
736 		} else
737 			(*func)(arg);
738 		mutex_spin_enter(cc->cc_lock);
739 
740 		/*
741 		 * We can't touch 'c' here because it might be
742 		 * freed already.  If LWPs waiting for callout
743 		 * to complete, awaken them.
744 		 */
745 		cc->cc_active = NULL;
746 		if ((count = cc->cc_nwait) != 0) {
747 			cc->cc_nwait = 0;
748 			/* sleepq_wake() drops the lock. */
749 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
750 			mutex_spin_enter(cc->cc_lock);
751 		}
752 	}
753 	cc->cc_lwp = NULL;
754 	mutex_spin_exit(cc->cc_lock);
755 }
756 
757 #ifdef DDB
758 static void
759 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
760 {
761 	callout_impl_t *c;
762 	db_expr_t offset;
763 	const char *name;
764 	static char question[] = "?";
765 	int b;
766 
767 	if (CIRCQ_EMPTY(bucket))
768 		return;
769 
770 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
771 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
772 		    &offset);
773 		name = name ? name : question;
774 		b = (bucket - cc->cc_wheel);
775 		if (b < 0)
776 			b = -WHEELSIZE;
777 		db_printf("%9d %2d/%-4d %16lx  %s\n",
778 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
779 		    (u_long)c->c_arg, name);
780 		if (CIRCQ_LAST(&c->c_list, bucket))
781 			break;
782 	}
783 }
784 
785 void
786 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
787 {
788 	CPU_INFO_ITERATOR cii;
789 	struct callout_cpu *cc;
790 	struct cpu_info *ci;
791 	int b;
792 
793 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
794 	db_printf("    ticks  wheel               arg  func\n");
795 
796 	/*
797 	 * Don't lock the callwheel; all the other CPUs are paused
798 	 * anyhow, and we might be called in a circumstance where
799 	 * some other CPU was paused while holding the lock.
800 	 */
801 	for (CPU_INFO_FOREACH(cii, ci)) {
802 		cc = ci->ci_data.cpu_callout;
803 		db_show_callout_bucket(cc, &cc->cc_todo);
804 	}
805 	for (b = 0; b < BUCKETS; b++) {
806 		for (CPU_INFO_FOREACH(cii, ci)) {
807 			cc = ci->ci_data.cpu_callout;
808 			db_show_callout_bucket(cc, &cc->cc_wheel[b]);
809 		}
810 	}
811 }
812 #endif /* DDB */
813