xref: /netbsd-src/sys/kern/kern_time.c (revision e5d758f832e07a177fa24707c434b7ce26d0f762)
1 /*	$NetBSD: kern_time.c,v 1.207 2020/12/05 18:17:01 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.207 2020/12/05 18:17:01 thorpej Exp $");
66 
67 #include <sys/param.h>
68 #include <sys/resourcevar.h>
69 #include <sys/kernel.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/vnode.h>
73 #include <sys/signalvar.h>
74 #include <sys/syslog.h>
75 #include <sys/timetc.h>
76 #include <sys/timex.h>
77 #include <sys/kauth.h>
78 #include <sys/mount.h>
79 #include <sys/syscallargs.h>
80 #include <sys/cpu.h>
81 
82 static kmutex_t	itimer_mutex __cacheline_aligned;
83 static struct itlist itimer_realtime_changed_notify;
84 
85 static void	ptimer_intr(void *);
86 static void	*ptimer_sih __read_mostly;
87 static struct itqueue ptimer_queue;
88 
89 #define	CLOCK_VIRTUAL_P(clockid)	\
90 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
91 
92 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
93 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
94 CTASSERT(ITIMER_PROF == CLOCK_PROF);
95 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
96 
97 #define	DELAYTIMER_MAX	32
98 
99 /*
100  * Initialize timekeeping.
101  */
102 void
103 time_init(void)
104 {
105 
106 	mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
107 	LIST_INIT(&itimer_realtime_changed_notify);
108 
109 	TAILQ_INIT(&ptimer_queue);
110 	ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
111 	    ptimer_intr, NULL);
112 }
113 
114 /*
115  * Check if the time will wrap if set to ts.
116  *
117  * ts - timespec describing the new time
118  * delta - the delta between the current time and ts
119  */
120 bool
121 time_wraps(struct timespec *ts, struct timespec *delta)
122 {
123 
124 	/*
125 	 * Don't allow the time to be set forward so far it
126 	 * will wrap and become negative, thus allowing an
127 	 * attacker to bypass the next check below.  The
128 	 * cutoff is 1 year before rollover occurs, so even
129 	 * if the attacker uses adjtime(2) to move the time
130 	 * past the cutoff, it will take a very long time
131 	 * to get to the wrap point.
132 	 */
133 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
134 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  * itimer_lock:
142  *
143  *	Acquire the interval timer data lock.
144  */
145 void
146 itimer_lock(void)
147 {
148 	mutex_spin_enter(&itimer_mutex);
149 }
150 
151 /*
152  * itimer_unlock:
153  *
154  *	Release the interval timer data lock.
155  */
156 void
157 itimer_unlock(void)
158 {
159 	mutex_spin_exit(&itimer_mutex);
160 }
161 
162 /*
163  * itimer_lock_held:
164  *
165  *	Check that the interval timer lock is held for diagnostic
166  *	assertions.
167  */
168 static inline bool __diagused
169 itimer_lock_held(void)
170 {
171 	return mutex_owned(&itimer_mutex);
172 }
173 
174 /*
175  * Time of day and interval timer support.
176  *
177  * These routines provide the kernel entry points to get and set
178  * the time-of-day and per-process interval timers.  Subroutines
179  * here provide support for adding and subtracting timeval structures
180  * and decrementing interval timers, optionally reloading the interval
181  * timers when they expire.
182  */
183 
184 /* This function is used by clock_settime and settimeofday */
185 static int
186 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
187 {
188 	struct timespec delta, now;
189 
190 	/*
191 	 * The time being set to an unreasonable value will cause
192 	 * unreasonable system behaviour.
193 	 */
194 	if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
195 		return (EINVAL);
196 
197 	nanotime(&now);
198 	timespecsub(ts, &now, &delta);
199 
200 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
201 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
202 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
203 		return (EPERM);
204 	}
205 
206 #ifdef notyet
207 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
208 		return (EPERM);
209 	}
210 #endif
211 
212 	tc_setclock(ts);
213 
214 	resettodr();
215 
216 	/*
217 	 * Notify pending CLOCK_REALTIME timers about the real time change.
218 	 * There may be inactive timers on this list, but this happens
219 	 * comparatively less often than timers firing, and so it's better
220 	 * to put the extra checks here than to complicate the other code
221 	 * path.
222 	 */
223 	struct itimer *it;
224 	itimer_lock();
225 	LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
226 		KASSERT(it->it_ops->ito_realtime_changed != NULL);
227 		if (timespecisset(&it->it_time.it_value)) {
228 			(*it->it_ops->ito_realtime_changed)(it);
229 		}
230 	}
231 	itimer_unlock();
232 
233 	return (0);
234 }
235 
236 int
237 settime(struct proc *p, struct timespec *ts)
238 {
239 	return (settime1(p, ts, true));
240 }
241 
242 /* ARGSUSED */
243 int
244 sys___clock_gettime50(struct lwp *l,
245     const struct sys___clock_gettime50_args *uap, register_t *retval)
246 {
247 	/* {
248 		syscallarg(clockid_t) clock_id;
249 		syscallarg(struct timespec *) tp;
250 	} */
251 	int error;
252 	struct timespec ats;
253 
254 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
255 	if (error != 0)
256 		return error;
257 
258 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
259 }
260 
261 /* ARGSUSED */
262 int
263 sys___clock_settime50(struct lwp *l,
264     const struct sys___clock_settime50_args *uap, register_t *retval)
265 {
266 	/* {
267 		syscallarg(clockid_t) clock_id;
268 		syscallarg(const struct timespec *) tp;
269 	} */
270 	int error;
271 	struct timespec ats;
272 
273 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
274 		return error;
275 
276 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
277 }
278 
279 
280 int
281 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
282     bool check_kauth)
283 {
284 	int error;
285 
286 	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
287 		return EINVAL;
288 
289 	switch (clock_id) {
290 	case CLOCK_REALTIME:
291 		if ((error = settime1(p, tp, check_kauth)) != 0)
292 			return (error);
293 		break;
294 	case CLOCK_MONOTONIC:
295 		return (EINVAL);	/* read-only clock */
296 	default:
297 		return (EINVAL);
298 	}
299 
300 	return 0;
301 }
302 
303 int
304 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
305     register_t *retval)
306 {
307 	/* {
308 		syscallarg(clockid_t) clock_id;
309 		syscallarg(struct timespec *) tp;
310 	} */
311 	struct timespec ts;
312 	int error;
313 
314 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
315 		return error;
316 
317 	if (SCARG(uap, tp))
318 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
319 
320 	return error;
321 }
322 
323 int
324 clock_getres1(clockid_t clock_id, struct timespec *ts)
325 {
326 
327 	switch (clock_id) {
328 	case CLOCK_REALTIME:
329 	case CLOCK_MONOTONIC:
330 		ts->tv_sec = 0;
331 		if (tc_getfrequency() > 1000000000)
332 			ts->tv_nsec = 1;
333 		else
334 			ts->tv_nsec = 1000000000 / tc_getfrequency();
335 		break;
336 	default:
337 		return EINVAL;
338 	}
339 
340 	return 0;
341 }
342 
343 /* ARGSUSED */
344 int
345 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
346     register_t *retval)
347 {
348 	/* {
349 		syscallarg(struct timespec *) rqtp;
350 		syscallarg(struct timespec *) rmtp;
351 	} */
352 	struct timespec rmt, rqt;
353 	int error, error1;
354 
355 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
356 	if (error)
357 		return (error);
358 
359 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
360 	    SCARG(uap, rmtp) ? &rmt : NULL);
361 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
362 		return error;
363 
364 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
365 	return error1 ? error1 : error;
366 }
367 
368 /* ARGSUSED */
369 int
370 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
371     register_t *retval)
372 {
373 	/* {
374 		syscallarg(clockid_t) clock_id;
375 		syscallarg(int) flags;
376 		syscallarg(struct timespec *) rqtp;
377 		syscallarg(struct timespec *) rmtp;
378 	} */
379 	struct timespec rmt, rqt;
380 	int error, error1;
381 
382 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
383 	if (error)
384 		goto out;
385 
386 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
387 	    SCARG(uap, rmtp) ? &rmt : NULL);
388 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
389 		goto out;
390 
391 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
392 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
393 		error = error1;
394 out:
395 	*retval = error;
396 	return 0;
397 }
398 
399 int
400 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
401     struct timespec *rmt)
402 {
403 	struct timespec rmtstart;
404 	int error, timo;
405 
406 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
407 		if (error == ETIMEDOUT) {
408 			error = 0;
409 			if (rmt != NULL)
410 				rmt->tv_sec = rmt->tv_nsec = 0;
411 		}
412 		return error;
413 	}
414 
415 	/*
416 	 * Avoid inadvertently sleeping forever
417 	 */
418 	if (timo == 0)
419 		timo = 1;
420 again:
421 	error = kpause("nanoslp", true, timo, NULL);
422 	if (error == EWOULDBLOCK)
423 		error = 0;
424 	if (rmt != NULL || error == 0) {
425 		struct timespec rmtend;
426 		struct timespec t0;
427 		struct timespec *t;
428 		int err;
429 
430 		err = clock_gettime1(clock_id, &rmtend);
431 		if (err != 0)
432 			return err;
433 
434 		t = (rmt != NULL) ? rmt : &t0;
435 		if (flags & TIMER_ABSTIME) {
436 			timespecsub(rqt, &rmtend, t);
437 		} else {
438 			timespecsub(&rmtend, &rmtstart, t);
439 			timespecsub(rqt, t, t);
440 		}
441 		if (t->tv_sec < 0)
442 			timespecclear(t);
443 		if (error == 0) {
444 			timo = tstohz(t);
445 			if (timo > 0)
446 				goto again;
447 		}
448 	}
449 
450 	if (error == ERESTART)
451 		error = EINTR;
452 
453 	return error;
454 }
455 
456 int
457 sys_clock_getcpuclockid2(struct lwp *l,
458     const struct sys_clock_getcpuclockid2_args *uap,
459     register_t *retval)
460 {
461 	/* {
462 		syscallarg(idtype_t idtype;
463 		syscallarg(id_t id);
464 		syscallarg(clockid_t *)clock_id;
465 	} */
466 	pid_t pid;
467 	lwpid_t lid;
468 	clockid_t clock_id;
469 	id_t id = SCARG(uap, id);
470 
471 	switch (SCARG(uap, idtype)) {
472 	case P_PID:
473 		pid = id == 0 ? l->l_proc->p_pid : id;
474 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
475 		break;
476 	case P_LWPID:
477 		lid = id == 0 ? l->l_lid : id;
478 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
479 		break;
480 	default:
481 		return EINVAL;
482 	}
483 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
484 }
485 
486 /* ARGSUSED */
487 int
488 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
489     register_t *retval)
490 {
491 	/* {
492 		syscallarg(struct timeval *) tp;
493 		syscallarg(void *) tzp;		really "struct timezone *";
494 	} */
495 	struct timeval atv;
496 	int error = 0;
497 	struct timezone tzfake;
498 
499 	if (SCARG(uap, tp)) {
500 		memset(&atv, 0, sizeof(atv));
501 		microtime(&atv);
502 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
503 		if (error)
504 			return (error);
505 	}
506 	if (SCARG(uap, tzp)) {
507 		/*
508 		 * NetBSD has no kernel notion of time zone, so we just
509 		 * fake up a timezone struct and return it if demanded.
510 		 */
511 		tzfake.tz_minuteswest = 0;
512 		tzfake.tz_dsttime = 0;
513 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
514 	}
515 	return (error);
516 }
517 
518 /* ARGSUSED */
519 int
520 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
521     register_t *retval)
522 {
523 	/* {
524 		syscallarg(const struct timeval *) tv;
525 		syscallarg(const void *) tzp; really "const struct timezone *";
526 	} */
527 
528 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
529 }
530 
531 int
532 settimeofday1(const struct timeval *utv, bool userspace,
533     const void *utzp, struct lwp *l, bool check_kauth)
534 {
535 	struct timeval atv;
536 	struct timespec ts;
537 	int error;
538 
539 	/* Verify all parameters before changing time. */
540 
541 	/*
542 	 * NetBSD has no kernel notion of time zone, and only an
543 	 * obsolete program would try to set it, so we log a warning.
544 	 */
545 	if (utzp)
546 		log(LOG_WARNING, "pid %d attempted to set the "
547 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
548 
549 	if (utv == NULL)
550 		return 0;
551 
552 	if (userspace) {
553 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
554 			return error;
555 		utv = &atv;
556 	}
557 
558 	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
559 		return EINVAL;
560 
561 	TIMEVAL_TO_TIMESPEC(utv, &ts);
562 	return settime1(l->l_proc, &ts, check_kauth);
563 }
564 
565 int	time_adjusted;			/* set if an adjustment is made */
566 
567 /* ARGSUSED */
568 int
569 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
570     register_t *retval)
571 {
572 	/* {
573 		syscallarg(const struct timeval *) delta;
574 		syscallarg(struct timeval *) olddelta;
575 	} */
576 	int error;
577 	struct timeval atv, oldatv;
578 
579 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
580 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
581 		return error;
582 
583 	if (SCARG(uap, delta)) {
584 		error = copyin(SCARG(uap, delta), &atv,
585 		    sizeof(*SCARG(uap, delta)));
586 		if (error)
587 			return (error);
588 	}
589 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
590 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
591 	if (SCARG(uap, olddelta))
592 		error = copyout(&oldatv, SCARG(uap, olddelta),
593 		    sizeof(*SCARG(uap, olddelta)));
594 	return error;
595 }
596 
597 void
598 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
599 {
600 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
601 
602 	if (olddelta) {
603 		memset(olddelta, 0, sizeof(*olddelta));
604 		mutex_spin_enter(&timecounter_lock);
605 		olddelta->tv_sec = time_adjtime / 1000000;
606 		olddelta->tv_usec = time_adjtime % 1000000;
607 		if (olddelta->tv_usec < 0) {
608 			olddelta->tv_usec += 1000000;
609 			olddelta->tv_sec--;
610 		}
611 		mutex_spin_exit(&timecounter_lock);
612 	}
613 
614 	if (delta) {
615 		mutex_spin_enter(&timecounter_lock);
616 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
617 
618 		if (time_adjtime) {
619 			/* We need to save the system time during shutdown */
620 			time_adjusted |= 1;
621 		}
622 		mutex_spin_exit(&timecounter_lock);
623 	}
624 }
625 
626 /*
627  * Interval timer support.
628  *
629  * The itimer_*() routines provide generic support for interval timers,
630  * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
631  * CLOCK_PROF).
632  *
633  * Real timers keep their deadline as an absolute time, and are fired
634  * by a callout.  Virtual timers are kept as a linked-list of deltas,
635  * and are processed by hardclock().
636  *
637  * Because the real time timer callout may be delayed in real time due
638  * to interrupt processing on the system, it is possible for the real
639  * time timeout routine (itimer_callout()) run past after its deadline.
640  * It does not suffice, therefore, to reload the real timer .it_value
641  * from the timer's .it_interval.  Rather, we compute the next deadline
642  * in absolute time based on the current time and the .it_interval value,
643  * and report any overruns.
644  *
645  * Note that while the virtual timers are supported in a generic fashion
646  * here, they only (currently) make sense as per-process timers, and thus
647  * only really work for that case.
648  */
649 
650 /*
651  * itimer_init:
652  *
653  *	Initialize the common data for an interval timer.
654  */
655 static void
656 itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
657     clockid_t const id, struct itlist * const itl)
658 {
659 
660 	KASSERT(itimer_lock_held());
661 	KASSERT(ops != NULL);
662 
663 	timespecclear(&it->it_time.it_value);
664 	it->it_ops = ops;
665 	it->it_clockid = id;
666 	it->it_overruns = 0;
667 	it->it_queued = false;
668 	it->it_dying = false;
669 	if (!CLOCK_VIRTUAL_P(id)) {
670 		KASSERT(itl == NULL);
671 		callout_init(&it->it_ch, CALLOUT_MPSAFE);
672 		if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
673 			LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
674 			    it, it_rtchgq);
675 		}
676 	} else {
677 		KASSERT(itl != NULL);
678 		it->it_vlist = itl;
679 		it->it_active = false;
680 	}
681 }
682 
683 /*
684  * itimer_fini:
685  *
686  *	Release resources used by an interval timer.
687  *
688  *	N.B. itimer_lock must be held on entry, and is released on exit.
689  */
690 static void
691 itimer_fini(struct itimer * const it)
692 {
693 
694 	KASSERT(itimer_lock_held());
695 
696 	it->it_dying = true;
697 
698 	/*
699 	 * For non-virtual timers, stop the callout, or wait for it to
700 	 * run if it has already fired.  It cannot restart again after
701 	 * this point: the callout won't restart itself when dying, no
702 	 * other users holding the lock can restart it, and any other
703 	 * users waiting for callout_halt concurrently (itimer_settime)
704 	 * will restart from the top.
705 	 */
706 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
707 		callout_halt(&it->it_ch, &itimer_mutex);
708 		if (it->it_clockid == CLOCK_REALTIME &&
709 		    it->it_ops->ito_realtime_changed != NULL) {
710 			LIST_REMOVE(it, it_rtchgq);
711 		}
712 	}
713 
714 	/* Remove it from the queue to be signalled.  */
715 	if (it->it_queued) {
716 		TAILQ_REMOVE(it->it_ops->ito_queue, it, it_chain);
717 		it->it_queued = false;
718 	}
719 
720 	/* All done with the global state.  */
721 	itimer_unlock();
722 
723 	/* Destroy the callout, if needed. */
724 	if (!CLOCK_VIRTUAL_P(it->it_clockid))
725 		callout_destroy(&it->it_ch);
726 }
727 
728 /*
729  * itimer_decr:
730  *
731  *	Decrement an interval timer by a specified number of nanoseconds,
732  *	which must be less than a second, i.e. < 1000000000.  If the timer
733  *	expires, then reload it.  In this case, carry over (nsec - old value)
734  *	to reduce the value reloaded into the timer so that the timer does
735  *	not drift.  This routine assumes that it is called in a context where
736  *	the timers on which it is operating cannot change in value.
737  *
738  *	Returns true if the timer has expired.
739  */
740 static bool
741 itimer_decr(struct itimer *it, int nsec)
742 {
743 	struct itimerspec *itp;
744 	int error __diagused;
745 
746 	KASSERT(itimer_lock_held());
747 	KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
748 
749 	itp = &it->it_time;
750 	if (itp->it_value.tv_nsec < nsec) {
751 		if (itp->it_value.tv_sec == 0) {
752 			/* expired, and already in next interval */
753 			nsec -= itp->it_value.tv_nsec;
754 			goto expire;
755 		}
756 		itp->it_value.tv_nsec += 1000000000;
757 		itp->it_value.tv_sec--;
758 	}
759 	itp->it_value.tv_nsec -= nsec;
760 	nsec = 0;
761 	if (timespecisset(&itp->it_value))
762 		return false;
763 	/* expired, exactly at end of interval */
764  expire:
765 	if (timespecisset(&itp->it_interval)) {
766 		itp->it_value = itp->it_interval;
767 		itp->it_value.tv_nsec -= nsec;
768 		if (itp->it_value.tv_nsec < 0) {
769 			itp->it_value.tv_nsec += 1000000000;
770 			itp->it_value.tv_sec--;
771 		}
772 		error = itimer_settime(it);
773 		KASSERT(error == 0); /* virtual, never fails */
774 	} else
775 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
776 	return true;
777 }
778 
779 /*
780  * itimer_fire:
781  *
782  *	An interval timer has fired.  Enqueue it for processing, if
783  *	needed.
784  */
785 void
786 itimer_fire(struct itimer * const it)
787 {
788 
789 	KASSERT(itimer_lock_held());
790 
791 	if (!it->it_queued) {
792 		TAILQ_INSERT_TAIL(it->it_ops->ito_queue, it, it_chain);
793 		it->it_queued = true;
794 		softint_schedule(*it->it_ops->ito_sihp);
795 	}
796 }
797 
798 static void itimer_callout(void *);
799 
800 /*
801  * itimer_arm_real:
802  *
803  *	Arm a non-virtual timer.
804  */
805 static void
806 itimer_arm_real(struct itimer * const it)
807 {
808 	/*
809 	 * Don't need to check tshzto() return value, here.
810 	 * callout_reset() does it for us.
811 	 */
812 	callout_reset(&it->it_ch,
813 	    (it->it_clockid == CLOCK_MONOTONIC
814 		? tshztoup(&it->it_time.it_value)
815 		: tshzto(&it->it_time.it_value)),
816 	    itimer_callout, it);
817 }
818 
819 /*
820  * itimer_callout:
821  *
822  *	Callout to expire a non-virtual timer.  Queue it up for processing,
823  *	and then reload, if it is configured to do so.
824  *
825  *	N.B. A delay in processing this callout causes multiple
826  *	SIGALRM calls to be compressed into one.
827  */
828 static void
829 itimer_callout(void *arg)
830 {
831 	uint64_t last_val, next_val, interval, now_ns;
832 	struct timespec now, next;
833 	struct itimer * const it = arg;
834 	int backwards;
835 
836 	itimer_lock();
837 	(*it->it_ops->ito_fire)(it);
838 
839 	if (!timespecisset(&it->it_time.it_interval)) {
840 		timespecclear(&it->it_time.it_value);
841 		itimer_unlock();
842 		return;
843 	}
844 
845 	if (it->it_clockid == CLOCK_MONOTONIC) {
846 		getnanouptime(&now);
847 	} else {
848 		getnanotime(&now);
849 	}
850 	backwards = (timespeccmp(&it->it_time.it_value, &now, >));
851 	timespecadd(&it->it_time.it_value, &it->it_time.it_interval, &next);
852 	/* Handle the easy case of non-overflown timers first. */
853 	if (!backwards && timespeccmp(&next, &now, >)) {
854 		it->it_time.it_value = next;
855 	} else {
856 		now_ns = timespec2ns(&now);
857 		last_val = timespec2ns(&it->it_time.it_value);
858 		interval = timespec2ns(&it->it_time.it_interval);
859 
860 		next_val = now_ns +
861 		    (now_ns - last_val + interval - 1) % interval;
862 
863 		if (backwards)
864 			next_val += interval;
865 		else
866 			it->it_overruns += (now_ns - last_val) / interval;
867 
868 		it->it_time.it_value.tv_sec = next_val / 1000000000;
869 		it->it_time.it_value.tv_nsec = next_val % 1000000000;
870 	}
871 
872 	/*
873 	 * Reset the callout, if it's not going away.
874 	 */
875 	if (!it->it_dying)
876 		itimer_arm_real(it);
877 	itimer_unlock();
878 }
879 
880 /*
881  * itimer_settime:
882  *
883  *	Set up the given interval timer. The value in it->it_time.it_value
884  *	is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
885  *	timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
886  *
887  *	If the callout had already fired but not yet run, fails with
888  *	ERESTART -- caller must restart from the top to look up a timer.
889  */
890 int
891 itimer_settime(struct itimer *it)
892 {
893 	struct itimer *itn, *pitn;
894 	struct itlist *itl;
895 
896 	KASSERT(itimer_lock_held());
897 
898 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
899 		/*
900 		 * Try to stop the callout.  However, if it had already
901 		 * fired, we have to drop the lock to wait for it, so
902 		 * the world may have changed and pt may not be there
903 		 * any more.  In that case, tell the caller to start
904 		 * over from the top.
905 		 */
906 		if (callout_halt(&it->it_ch, &itimer_mutex))
907 			return ERESTART;
908 
909 		/* Now we can touch it and start it up again. */
910 		if (timespecisset(&it->it_time.it_value))
911 			itimer_arm_real(it);
912 	} else {
913 		if (it->it_active) {
914 			itn = LIST_NEXT(it, it_list);
915 			LIST_REMOVE(it, it_list);
916 			for ( ; itn; itn = LIST_NEXT(itn, it_list))
917 				timespecadd(&it->it_time.it_value,
918 				    &itn->it_time.it_value,
919 				    &itn->it_time.it_value);
920 		}
921 		if (timespecisset(&it->it_time.it_value)) {
922 			itl = it->it_vlist;
923 			for (itn = LIST_FIRST(itl), pitn = NULL;
924 			     itn && timespeccmp(&it->it_time.it_value,
925 				 &itn->it_time.it_value, >);
926 			     pitn = itn, itn = LIST_NEXT(itn, it_list))
927 				timespecsub(&it->it_time.it_value,
928 				    &itn->it_time.it_value,
929 				    &it->it_time.it_value);
930 
931 			if (pitn)
932 				LIST_INSERT_AFTER(pitn, it, it_list);
933 			else
934 				LIST_INSERT_HEAD(itl, it, it_list);
935 
936 			for ( ; itn ; itn = LIST_NEXT(itn, it_list))
937 				timespecsub(&itn->it_time.it_value,
938 				    &it->it_time.it_value,
939 				    &itn->it_time.it_value);
940 
941 			it->it_active = true;
942 		} else {
943 			it->it_active = false;
944 		}
945 	}
946 
947 	/* Success!  */
948 	return 0;
949 }
950 
951 /*
952  * itimer_gettime:
953  *
954  *	Return the remaining time of an interval timer.
955  */
956 void
957 itimer_gettime(const struct itimer *it, struct itimerspec *aits)
958 {
959 	struct timespec now;
960 	struct itimer *itn;
961 
962 	KASSERT(itimer_lock_held());
963 
964 	*aits = it->it_time;
965 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
966 		/*
967 		 * Convert from absolute to relative time in .it_value
968 		 * part of real time timer.  If time for real time
969 		 * timer has passed return 0, else return difference
970 		 * between current time and time for the timer to go
971 		 * off.
972 		 */
973 		if (timespecisset(&aits->it_value)) {
974 			if (it->it_clockid == CLOCK_REALTIME) {
975 				getnanotime(&now);
976 			} else { /* CLOCK_MONOTONIC */
977 				getnanouptime(&now);
978 			}
979 			if (timespeccmp(&aits->it_value, &now, <))
980 				timespecclear(&aits->it_value);
981 			else
982 				timespecsub(&aits->it_value, &now,
983 				    &aits->it_value);
984 		}
985 	} else if (it->it_active) {
986 		for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
987 		     itn = LIST_NEXT(itn, it_list))
988 			timespecadd(&aits->it_value,
989 			    &itn->it_time.it_value, &aits->it_value);
990 		KASSERT(itn != NULL); /* it should be findable on the list */
991 	} else
992 		timespecclear(&aits->it_value);
993 }
994 
995 /*
996  * Per-process timer support.
997  *
998  * Both the BSD getitimer() family and the POSIX timer_*() family of
999  * routines are supported.
1000  *
1001  * All timers are kept in an array pointed to by p_timers, which is
1002  * allocated on demand - many processes don't use timers at all. The
1003  * first four elements in this array are reserved for the BSD timers:
1004  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1005  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1006  * allocated by the timer_create() syscall.
1007  *
1008  * These timers are a "sub-class" of interval timer.
1009  */
1010 
1011 /*
1012  * ptimer_free:
1013  *
1014  *	Free the per-process timer at the specified index.
1015  */
1016 static void
1017 ptimer_free(struct ptimers *pts, int index)
1018 {
1019 	struct itimer *it;
1020 	struct ptimer *pt;
1021 
1022 	KASSERT(itimer_lock_held());
1023 
1024 	it = pts->pts_timers[index];
1025 	pt = container_of(it, struct ptimer, pt_itimer);
1026 	pts->pts_timers[index] = NULL;
1027 	itimer_fini(it);	/* releases itimer_lock */
1028 	kmem_free(pt, sizeof(*pt));
1029 }
1030 
1031 /*
1032  * ptimers_alloc:
1033  *
1034  *	Allocate a ptimers for the specified process.
1035  */
1036 static struct ptimers *
1037 ptimers_alloc(struct proc *p)
1038 {
1039 	struct ptimers *pts;
1040 	int i;
1041 
1042 	pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1043 	LIST_INIT(&pts->pts_virtual);
1044 	LIST_INIT(&pts->pts_prof);
1045 	for (i = 0; i < TIMER_MAX; i++)
1046 		pts->pts_timers[i] = NULL;
1047 	itimer_lock();
1048 	if (p->p_timers == NULL) {
1049 		p->p_timers = pts;
1050 		itimer_unlock();
1051 		return pts;
1052 	}
1053 	itimer_unlock();
1054 	kmem_free(pts, sizeof(*pts));
1055 	return p->p_timers;
1056 }
1057 
1058 /*
1059  * ptimers_free:
1060  *
1061  *	Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1062  *	then clean up all timers and free all the data structures. If
1063  *	"which" is set to TIMERS_POSIX, only clean up the timers allocated
1064  *	by timer_create(), not the BSD setitimer() timers, and only free the
1065  *	structure if none of those remain.
1066  *
1067  *	This function is exported because it is needed in the exec and
1068  *	exit code paths.
1069  */
1070 void
1071 ptimers_free(struct proc *p, int which)
1072 {
1073 	struct ptimers *pts;
1074 	struct itimer *itn;
1075 	struct timespec ts;
1076 	int i;
1077 
1078 	if (p->p_timers == NULL)
1079 		return;
1080 
1081 	pts = p->p_timers;
1082 	itimer_lock();
1083 	if (which == TIMERS_ALL) {
1084 		p->p_timers = NULL;
1085 		i = 0;
1086 	} else {
1087 		timespecclear(&ts);
1088 		for (itn = LIST_FIRST(&pts->pts_virtual);
1089 		     itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1090 		     itn = LIST_NEXT(itn, it_list)) {
1091 			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1092 			timespecadd(&ts, &itn->it_time.it_value, &ts);
1093 		}
1094 		LIST_FIRST(&pts->pts_virtual) = NULL;
1095 		if (itn) {
1096 			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1097 			timespecadd(&ts, &itn->it_time.it_value,
1098 			    &itn->it_time.it_value);
1099 			LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1100 		}
1101 		timespecclear(&ts);
1102 		for (itn = LIST_FIRST(&pts->pts_prof);
1103 		     itn && itn != pts->pts_timers[ITIMER_PROF];
1104 		     itn = LIST_NEXT(itn, it_list)) {
1105 			KASSERT(itn->it_clockid == CLOCK_PROF);
1106 			timespecadd(&ts, &itn->it_time.it_value, &ts);
1107 		}
1108 		LIST_FIRST(&pts->pts_prof) = NULL;
1109 		if (itn) {
1110 			KASSERT(itn->it_clockid == CLOCK_PROF);
1111 			timespecadd(&ts, &itn->it_time.it_value,
1112 			    &itn->it_time.it_value);
1113 			LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1114 		}
1115 		i = TIMER_MIN;
1116 	}
1117 	for ( ; i < TIMER_MAX; i++) {
1118 		if (pts->pts_timers[i] != NULL) {
1119 			/* Free the timer and release the lock.  */
1120 			ptimer_free(pts, i);
1121 			/* Reacquire the lock for the next one.  */
1122 			itimer_lock();
1123 		}
1124 	}
1125 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1126 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1127 		p->p_timers = NULL;
1128 		itimer_unlock();
1129 		kmem_free(pts, sizeof(*pts));
1130 	} else
1131 		itimer_unlock();
1132 }
1133 
1134 /*
1135  * ptimer_fire:
1136  *
1137  *	Fire a per-process timer.
1138  */
1139 static void
1140 ptimer_fire(struct itimer *it)
1141 {
1142 	struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1143 
1144 	KASSERT(itimer_lock_held());
1145 
1146 	/*
1147 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1148 	 * XXX Relying on the clock interrupt is stupid.
1149 	 */
1150 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1151 		return;
1152 	}
1153 	itimer_fire(it);
1154 }
1155 
1156 /*
1157  * Operations vector for per-process timers (BSD and POSIX).
1158  */
1159 static const struct itimer_ops ptimer_itimer_ops = {
1160 	.ito_queue = &ptimer_queue,
1161 	.ito_sihp = &ptimer_sih,
1162 	.ito_fire = &ptimer_fire,
1163 };
1164 
1165 /*
1166  * sys_timer_create:
1167  *
1168  *	System call to create a POSIX timer.
1169  */
1170 int
1171 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1172     register_t *retval)
1173 {
1174 	/* {
1175 		syscallarg(clockid_t) clock_id;
1176 		syscallarg(struct sigevent *) evp;
1177 		syscallarg(timer_t *) timerid;
1178 	} */
1179 
1180 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1181 	    SCARG(uap, evp), copyin, l);
1182 }
1183 
1184 int
1185 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1186     copyin_t fetch_event, struct lwp *l)
1187 {
1188 	int error;
1189 	timer_t timerid;
1190 	struct itlist *itl;
1191 	struct ptimers *pts;
1192 	struct ptimer *pt;
1193 	struct proc *p;
1194 
1195 	p = l->l_proc;
1196 
1197 	if ((u_int)id > CLOCK_MONOTONIC)
1198 		return (EINVAL);
1199 
1200 	if ((pts = p->p_timers) == NULL)
1201 		pts = ptimers_alloc(p);
1202 
1203 	pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1204 	if (evp != NULL) {
1205 		if (((error =
1206 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1207 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1208 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1209 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1210 			 (pt->pt_ev.sigev_signo <= 0 ||
1211 			  pt->pt_ev.sigev_signo >= NSIG))) {
1212 			kmem_free(pt, sizeof(*pt));
1213 			return (error ? error : EINVAL);
1214 		}
1215 	}
1216 
1217 	/* Find a free timer slot, skipping those reserved for setitimer(). */
1218 	itimer_lock();
1219 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1220 		if (pts->pts_timers[timerid] == NULL)
1221 			break;
1222 	if (timerid == TIMER_MAX) {
1223 		itimer_unlock();
1224 		kmem_free(pt, sizeof(*pt));
1225 		return EAGAIN;
1226 	}
1227 	if (evp == NULL) {
1228 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1229 		switch (id) {
1230 		case CLOCK_REALTIME:
1231 		case CLOCK_MONOTONIC:
1232 			pt->pt_ev.sigev_signo = SIGALRM;
1233 			break;
1234 		case CLOCK_VIRTUAL:
1235 			pt->pt_ev.sigev_signo = SIGVTALRM;
1236 			break;
1237 		case CLOCK_PROF:
1238 			pt->pt_ev.sigev_signo = SIGPROF;
1239 			break;
1240 		}
1241 		pt->pt_ev.sigev_value.sival_int = timerid;
1242 	}
1243 
1244 	switch (id) {
1245 	case CLOCK_VIRTUAL:
1246 		itl = &pt->pt_proc->p_timers->pts_virtual;
1247 		break;
1248 	case CLOCK_PROF:
1249 		itl = &pt->pt_proc->p_timers->pts_prof;
1250 		break;
1251 	default:
1252 		itl = NULL;
1253 	}
1254 
1255 	itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1256 	pt->pt_proc = p;
1257 	pt->pt_poverruns = 0;
1258 	pt->pt_entry = timerid;
1259 
1260 	pts->pts_timers[timerid] = &pt->pt_itimer;
1261 	itimer_unlock();
1262 
1263 	return copyout(&timerid, tid, sizeof(timerid));
1264 }
1265 
1266 /*
1267  * sys_timer_delete:
1268  *
1269  *	System call to delete a POSIX timer.
1270  */
1271 int
1272 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1273     register_t *retval)
1274 {
1275 	/* {
1276 		syscallarg(timer_t) timerid;
1277 	} */
1278 	struct proc *p = l->l_proc;
1279 	timer_t timerid;
1280 	struct ptimers *pts;
1281 	struct itimer *it, *itn;
1282 
1283 	timerid = SCARG(uap, timerid);
1284 	pts = p->p_timers;
1285 
1286 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1287 		return (EINVAL);
1288 
1289 	itimer_lock();
1290 	if ((it = pts->pts_timers[timerid]) == NULL) {
1291 		itimer_unlock();
1292 		return (EINVAL);
1293 	}
1294 
1295 	if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1296 		if (it->it_active) {
1297 			itn = LIST_NEXT(it, it_list);
1298 			LIST_REMOVE(it, it_list);
1299 			for ( ; itn; itn = LIST_NEXT(itn, it_list))
1300 				timespecadd(&it->it_time.it_value,
1301 				    &itn->it_time.it_value,
1302 				    &itn->it_time.it_value);
1303 			it->it_active = false;
1304 		}
1305 	}
1306 
1307 	/* Free the timer and release the lock.  */
1308 	ptimer_free(pts, timerid);
1309 
1310 	return (0);
1311 }
1312 
1313 /*
1314  * sys___timer_settime50:
1315  *
1316  *	System call to set/arm a POSIX timer.
1317  */
1318 int
1319 sys___timer_settime50(struct lwp *l,
1320     const struct sys___timer_settime50_args *uap,
1321     register_t *retval)
1322 {
1323 	/* {
1324 		syscallarg(timer_t) timerid;
1325 		syscallarg(int) flags;
1326 		syscallarg(const struct itimerspec *) value;
1327 		syscallarg(struct itimerspec *) ovalue;
1328 	} */
1329 	int error;
1330 	struct itimerspec value, ovalue, *ovp = NULL;
1331 
1332 	if ((error = copyin(SCARG(uap, value), &value,
1333 	    sizeof(struct itimerspec))) != 0)
1334 		return (error);
1335 
1336 	if (SCARG(uap, ovalue))
1337 		ovp = &ovalue;
1338 
1339 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1340 	    SCARG(uap, flags), l->l_proc)) != 0)
1341 		return error;
1342 
1343 	if (ovp)
1344 		return copyout(&ovalue, SCARG(uap, ovalue),
1345 		    sizeof(struct itimerspec));
1346 	return 0;
1347 }
1348 
1349 int
1350 dotimer_settime(int timerid, struct itimerspec *value,
1351     struct itimerspec *ovalue, int flags, struct proc *p)
1352 {
1353 	struct timespec now;
1354 	struct itimerspec val, oval;
1355 	struct ptimers *pts;
1356 	struct itimer *it;
1357 	int error;
1358 
1359 	pts = p->p_timers;
1360 
1361 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1362 		return EINVAL;
1363 	val = *value;
1364 	if ((error = itimespecfix(&val.it_value)) != 0 ||
1365 	    (error = itimespecfix(&val.it_interval)) != 0)
1366 		return error;
1367 
1368 	itimer_lock();
1369  restart:
1370 	if ((it = pts->pts_timers[timerid]) == NULL) {
1371 		itimer_unlock();
1372 		return EINVAL;
1373 	}
1374 
1375 	oval = it->it_time;
1376 	it->it_time = val;
1377 
1378 	/*
1379 	 * If we've been passed a relative time for a realtime timer,
1380 	 * convert it to absolute; if an absolute time for a virtual
1381 	 * timer, convert it to relative and make sure we don't set it
1382 	 * to zero, which would cancel the timer, or let it go
1383 	 * negative, which would confuse the comparison tests.
1384 	 */
1385 	if (timespecisset(&it->it_time.it_value)) {
1386 		if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1387 			if ((flags & TIMER_ABSTIME) == 0) {
1388 				if (it->it_clockid == CLOCK_REALTIME) {
1389 					getnanotime(&now);
1390 				} else { /* CLOCK_MONOTONIC */
1391 					getnanouptime(&now);
1392 				}
1393 				timespecadd(&it->it_time.it_value, &now,
1394 				    &it->it_time.it_value);
1395 			}
1396 		} else {
1397 			if ((flags & TIMER_ABSTIME) != 0) {
1398 				getnanotime(&now);
1399 				timespecsub(&it->it_time.it_value, &now,
1400 				    &it->it_time.it_value);
1401 				if (!timespecisset(&it->it_time.it_value) ||
1402 				    it->it_time.it_value.tv_sec < 0) {
1403 					it->it_time.it_value.tv_sec = 0;
1404 					it->it_time.it_value.tv_nsec = 1;
1405 				}
1406 			}
1407 		}
1408 	}
1409 
1410 	error = itimer_settime(it);
1411 	if (error == ERESTART) {
1412 		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1413 		goto restart;
1414 	}
1415 	KASSERT(error == 0);
1416 	itimer_unlock();
1417 
1418 	if (ovalue)
1419 		*ovalue = oval;
1420 
1421 	return (0);
1422 }
1423 
1424 /*
1425  * sys___timer_gettime50:
1426  *
1427  *	System call to return the time remaining until a POSIX timer fires.
1428  */
1429 int
1430 sys___timer_gettime50(struct lwp *l,
1431     const struct sys___timer_gettime50_args *uap, register_t *retval)
1432 {
1433 	/* {
1434 		syscallarg(timer_t) timerid;
1435 		syscallarg(struct itimerspec *) value;
1436 	} */
1437 	struct itimerspec its;
1438 	int error;
1439 
1440 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1441 	    &its)) != 0)
1442 		return error;
1443 
1444 	return copyout(&its, SCARG(uap, value), sizeof(its));
1445 }
1446 
1447 int
1448 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1449 {
1450 	struct itimer *it;
1451 	struct ptimers *pts;
1452 
1453 	pts = p->p_timers;
1454 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1455 		return (EINVAL);
1456 	itimer_lock();
1457 	if ((it = pts->pts_timers[timerid]) == NULL) {
1458 		itimer_unlock();
1459 		return (EINVAL);
1460 	}
1461 	itimer_gettime(it, its);
1462 	itimer_unlock();
1463 
1464 	return 0;
1465 }
1466 
1467 /*
1468  * sys_timer_getoverrun:
1469  *
1470  *	System call to return the number of times a POSIX timer has
1471  *	expired while a notification was already pending.  The counter
1472  *	is reset when a timer expires and a notification can be posted.
1473  */
1474 int
1475 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1476     register_t *retval)
1477 {
1478 	/* {
1479 		syscallarg(timer_t) timerid;
1480 	} */
1481 	struct proc *p = l->l_proc;
1482 	struct ptimers *pts;
1483 	int timerid;
1484 	struct itimer *it;
1485 	struct ptimer *pt;
1486 
1487 	timerid = SCARG(uap, timerid);
1488 
1489 	pts = p->p_timers;
1490 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1491 		return (EINVAL);
1492 	itimer_lock();
1493 	if ((it = pts->pts_timers[timerid]) == NULL) {
1494 		itimer_unlock();
1495 		return (EINVAL);
1496 	}
1497 	pt = container_of(it, struct ptimer, pt_itimer);
1498 	*retval = pt->pt_poverruns;
1499 	if (*retval >= DELAYTIMER_MAX)
1500 		*retval = DELAYTIMER_MAX;
1501 	itimer_unlock();
1502 
1503 	return (0);
1504 }
1505 
1506 /*
1507  * sys___getitimer50:
1508  *
1509  *	System call to get the time remaining before a BSD timer fires.
1510  */
1511 int
1512 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1513     register_t *retval)
1514 {
1515 	/* {
1516 		syscallarg(int) which;
1517 		syscallarg(struct itimerval *) itv;
1518 	} */
1519 	struct proc *p = l->l_proc;
1520 	struct itimerval aitv;
1521 	int error;
1522 
1523 	memset(&aitv, 0, sizeof(aitv));
1524 	error = dogetitimer(p, SCARG(uap, which), &aitv);
1525 	if (error)
1526 		return error;
1527 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1528 }
1529 
1530 int
1531 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1532 {
1533 	struct ptimers *pts;
1534 	struct itimer *it;
1535 	struct itimerspec its;
1536 
1537 	if ((u_int)which > ITIMER_MONOTONIC)
1538 		return (EINVAL);
1539 
1540 	itimer_lock();
1541 	pts = p->p_timers;
1542 	if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1543 		timerclear(&itvp->it_value);
1544 		timerclear(&itvp->it_interval);
1545 	} else {
1546 		itimer_gettime(it, &its);
1547 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1548 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1549 	}
1550 	itimer_unlock();
1551 
1552 	return 0;
1553 }
1554 
1555 /*
1556  * sys___setitimer50:
1557  *
1558  *	System call to set/arm a BSD timer.
1559  */
1560 int
1561 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1562     register_t *retval)
1563 {
1564 	/* {
1565 		syscallarg(int) which;
1566 		syscallarg(const struct itimerval *) itv;
1567 		syscallarg(struct itimerval *) oitv;
1568 	} */
1569 	struct proc *p = l->l_proc;
1570 	int which = SCARG(uap, which);
1571 	struct sys___getitimer50_args getargs;
1572 	const struct itimerval *itvp;
1573 	struct itimerval aitv;
1574 	int error;
1575 
1576 	if ((u_int)which > ITIMER_MONOTONIC)
1577 		return (EINVAL);
1578 	itvp = SCARG(uap, itv);
1579 	if (itvp &&
1580 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1581 		return (error);
1582 	if (SCARG(uap, oitv) != NULL) {
1583 		SCARG(&getargs, which) = which;
1584 		SCARG(&getargs, itv) = SCARG(uap, oitv);
1585 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1586 			return (error);
1587 	}
1588 	if (itvp == 0)
1589 		return (0);
1590 
1591 	return dosetitimer(p, which, &aitv);
1592 }
1593 
1594 int
1595 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1596 {
1597 	struct timespec now;
1598 	struct ptimers *pts;
1599 	struct ptimer *spare;
1600 	struct itimer *it;
1601 	struct itlist *itl;
1602 	int error;
1603 
1604 	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1605 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1606 		return (EINVAL);
1607 
1608 	/*
1609 	 * Don't bother allocating data structures if the process just
1610 	 * wants to clear the timer.
1611 	 */
1612 	spare = NULL;
1613 	pts = p->p_timers;
1614  retry:
1615 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1616 	    pts->pts_timers[which] == NULL))
1617 		return (0);
1618 	if (pts == NULL)
1619 		pts = ptimers_alloc(p);
1620 	itimer_lock();
1621  restart:
1622 	it = pts->pts_timers[which];
1623 	if (it == NULL) {
1624 		struct ptimer *pt;
1625 
1626 		if (spare == NULL) {
1627 			itimer_unlock();
1628 			spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1629 			goto retry;
1630 		}
1631 		pt = spare;
1632 		spare = NULL;
1633 
1634 		it = &pt->pt_itimer;
1635 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1636 		pt->pt_ev.sigev_value.sival_int = which;
1637 
1638 		switch (which) {
1639 		case ITIMER_REAL:
1640 		case ITIMER_MONOTONIC:
1641 			itl = NULL;
1642 			pt->pt_ev.sigev_signo = SIGALRM;
1643 			break;
1644 		case ITIMER_VIRTUAL:
1645 			itl = &pt->pt_proc->p_timers->pts_virtual;
1646 			pt->pt_ev.sigev_signo = SIGVTALRM;
1647 			break;
1648 		case ITIMER_PROF:
1649 			itl = &pt->pt_proc->p_timers->pts_prof;
1650 			pt->pt_ev.sigev_signo = SIGPROF;
1651 			break;
1652 		}
1653 		itimer_init(it, &ptimer_itimer_ops, which, itl);
1654 		pt->pt_proc = p;
1655 		pt->pt_entry = which;
1656 
1657 		pts->pts_timers[which] = it;
1658 	}
1659 
1660 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1661 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1662 
1663 	if (timespecisset(&it->it_time.it_value)) {
1664 		/* Convert to absolute time */
1665 		/* XXX need to wrap in splclock for timecounters case? */
1666 		switch (which) {
1667 		case ITIMER_REAL:
1668 			getnanotime(&now);
1669 			timespecadd(&it->it_time.it_value, &now,
1670 			    &it->it_time.it_value);
1671 			break;
1672 		case ITIMER_MONOTONIC:
1673 			getnanouptime(&now);
1674 			timespecadd(&it->it_time.it_value, &now,
1675 			    &it->it_time.it_value);
1676 			break;
1677 		default:
1678 			break;
1679 		}
1680 	}
1681 	error = itimer_settime(it);
1682 	if (error == ERESTART) {
1683 		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1684 		goto restart;
1685 	}
1686 	KASSERT(error == 0);
1687 	itimer_unlock();
1688 	if (spare != NULL)
1689 		kmem_free(spare, sizeof(*spare));
1690 
1691 	return (0);
1692 }
1693 
1694 /*
1695  * ptimer_tick:
1696  *
1697  *	Called from hardclock() to decrement per-process virtual timers.
1698  */
1699 void
1700 ptimer_tick(lwp_t *l, bool user)
1701 {
1702 	struct ptimers *pts;
1703 	struct itimer *it;
1704 	proc_t *p;
1705 
1706 	p = l->l_proc;
1707 	if (p->p_timers == NULL)
1708 		return;
1709 
1710 	itimer_lock();
1711 	if ((pts = l->l_proc->p_timers) != NULL) {
1712 		/*
1713 		 * Run current process's virtual and profile time, as needed.
1714 		 */
1715 		if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1716 			if (itimer_decr(it, tick * 1000))
1717 				(*it->it_ops->ito_fire)(it);
1718 		if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1719 			if (itimer_decr(it, tick * 1000))
1720 				(*it->it_ops->ito_fire)(it);
1721 	}
1722 	itimer_unlock();
1723 }
1724 
1725 /*
1726  * ptimer_intr:
1727  *
1728  *	Software interrupt handler for processing per-process
1729  *	timer expiration.
1730  */
1731 static void
1732 ptimer_intr(void *cookie)
1733 {
1734 	ksiginfo_t ksi;
1735 	struct itimer *it;
1736 	struct ptimer *pt;
1737 	proc_t *p;
1738 
1739 	mutex_enter(&proc_lock);
1740 	itimer_lock();
1741 	while ((it = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1742 		TAILQ_REMOVE(&ptimer_queue, it, it_chain);
1743 		KASSERT(it->it_ops->ito_queue == &ptimer_queue);
1744 		KASSERT(it->it_queued);
1745 		it->it_queued = false;
1746 
1747 		pt = container_of(it, struct ptimer, pt_itimer);
1748 
1749 		p = pt->pt_proc;
1750 		if (p->p_timers == NULL) {
1751 			/* Process is dying. */
1752 			continue;
1753 		}
1754 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1755 			continue;
1756 		}
1757 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1758 			it->it_overruns++;
1759 			continue;
1760 		}
1761 
1762 		KSI_INIT(&ksi);
1763 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1764 		ksi.ksi_code = SI_TIMER;
1765 		ksi.ksi_value = pt->pt_ev.sigev_value;
1766 		pt->pt_poverruns = it->it_overruns;
1767 		it->it_overruns = 0;
1768 		itimer_unlock();
1769 		kpsignal(p, &ksi, NULL);
1770 		itimer_lock();
1771 	}
1772 	itimer_unlock();
1773 	mutex_exit(&proc_lock);
1774 }
1775