1 /* $NetBSD: kern_time.c,v 1.171 2011/12/18 22:30:25 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Christopher G. Demetriou, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.171 2011/12/18 22:30:25 christos Exp $"); 65 66 #include <sys/param.h> 67 #include <sys/resourcevar.h> 68 #include <sys/kernel.h> 69 #include <sys/systm.h> 70 #include <sys/proc.h> 71 #include <sys/vnode.h> 72 #include <sys/signalvar.h> 73 #include <sys/syslog.h> 74 #include <sys/timetc.h> 75 #include <sys/timex.h> 76 #include <sys/kauth.h> 77 #include <sys/mount.h> 78 #include <sys/sa.h> 79 #include <sys/savar.h> 80 #include <sys/syscallargs.h> 81 #include <sys/cpu.h> 82 83 #include "opt_sa.h" 84 85 static void timer_intr(void *); 86 static void itimerfire(struct ptimer *); 87 static void itimerfree(struct ptimers *, int); 88 89 kmutex_t timer_lock; 90 91 static void *timer_sih; 92 static TAILQ_HEAD(, ptimer) timer_queue; 93 94 struct pool ptimer_pool, ptimers_pool; 95 96 #define CLOCK_VIRTUAL_P(clockid) \ 97 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF) 98 99 CTASSERT(ITIMER_REAL == CLOCK_REALTIME); 100 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL); 101 CTASSERT(ITIMER_PROF == CLOCK_PROF); 102 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC); 103 104 /* 105 * Initialize timekeeping. 106 */ 107 void 108 time_init(void) 109 { 110 111 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl", 112 &pool_allocator_nointr, IPL_NONE); 113 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl", 114 &pool_allocator_nointr, IPL_NONE); 115 } 116 117 void 118 time_init2(void) 119 { 120 121 TAILQ_INIT(&timer_queue); 122 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED); 123 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, 124 timer_intr, NULL); 125 } 126 127 /* Time of day and interval timer support. 128 * 129 * These routines provide the kernel entry points to get and set 130 * the time-of-day and per-process interval timers. Subroutines 131 * here provide support for adding and subtracting timeval structures 132 * and decrementing interval timers, optionally reloading the interval 133 * timers when they expire. 134 */ 135 136 /* This function is used by clock_settime and settimeofday */ 137 static int 138 settime1(struct proc *p, const struct timespec *ts, bool check_kauth) 139 { 140 struct timespec delta, now; 141 int s; 142 143 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ 144 s = splclock(); 145 nanotime(&now); 146 timespecsub(ts, &now, &delta); 147 148 if (check_kauth && kauth_authorize_system(kauth_cred_get(), 149 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts), 150 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) { 151 splx(s); 152 return (EPERM); 153 } 154 155 #ifdef notyet 156 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */ 157 splx(s); 158 return (EPERM); 159 } 160 #endif 161 162 tc_setclock(ts); 163 164 timespecadd(&boottime, &delta, &boottime); 165 166 resettodr(); 167 splx(s); 168 169 return (0); 170 } 171 172 int 173 settime(struct proc *p, struct timespec *ts) 174 { 175 return (settime1(p, ts, true)); 176 } 177 178 /* ARGSUSED */ 179 int 180 sys___clock_gettime50(struct lwp *l, 181 const struct sys___clock_gettime50_args *uap, register_t *retval) 182 { 183 /* { 184 syscallarg(clockid_t) clock_id; 185 syscallarg(struct timespec *) tp; 186 } */ 187 int error; 188 struct timespec ats; 189 190 error = clock_gettime1(SCARG(uap, clock_id), &ats); 191 if (error != 0) 192 return error; 193 194 return copyout(&ats, SCARG(uap, tp), sizeof(ats)); 195 } 196 197 int 198 clock_gettime1(clockid_t clock_id, struct timespec *ts) 199 { 200 201 switch (clock_id) { 202 case CLOCK_REALTIME: 203 nanotime(ts); 204 break; 205 case CLOCK_MONOTONIC: 206 nanouptime(ts); 207 break; 208 default: 209 return EINVAL; 210 } 211 212 return 0; 213 } 214 215 /* ARGSUSED */ 216 int 217 sys___clock_settime50(struct lwp *l, 218 const struct sys___clock_settime50_args *uap, register_t *retval) 219 { 220 /* { 221 syscallarg(clockid_t) clock_id; 222 syscallarg(const struct timespec *) tp; 223 } */ 224 int error; 225 struct timespec ats; 226 227 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) 228 return error; 229 230 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true); 231 } 232 233 234 int 235 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp, 236 bool check_kauth) 237 { 238 int error; 239 240 switch (clock_id) { 241 case CLOCK_REALTIME: 242 if ((error = settime1(p, tp, check_kauth)) != 0) 243 return (error); 244 break; 245 case CLOCK_MONOTONIC: 246 return (EINVAL); /* read-only clock */ 247 default: 248 return (EINVAL); 249 } 250 251 return 0; 252 } 253 254 int 255 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap, 256 register_t *retval) 257 { 258 /* { 259 syscallarg(clockid_t) clock_id; 260 syscallarg(struct timespec *) tp; 261 } */ 262 struct timespec ts; 263 int error = 0; 264 265 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0) 266 return error; 267 268 if (SCARG(uap, tp)) 269 error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); 270 271 return error; 272 } 273 274 int 275 clock_getres1(clockid_t clock_id, struct timespec *ts) 276 { 277 278 switch (clock_id) { 279 case CLOCK_REALTIME: 280 case CLOCK_MONOTONIC: 281 ts->tv_sec = 0; 282 if (tc_getfrequency() > 1000000000) 283 ts->tv_nsec = 1; 284 else 285 ts->tv_nsec = 1000000000 / tc_getfrequency(); 286 break; 287 default: 288 return EINVAL; 289 } 290 291 return 0; 292 } 293 294 /* ARGSUSED */ 295 int 296 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap, 297 register_t *retval) 298 { 299 /* { 300 syscallarg(struct timespec *) rqtp; 301 syscallarg(struct timespec *) rmtp; 302 } */ 303 struct timespec rmt, rqt; 304 int error, error1; 305 306 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec)); 307 if (error) 308 return (error); 309 310 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL); 311 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR)) 312 return error; 313 314 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt)); 315 return error1 ? error1 : error; 316 } 317 318 int 319 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt) 320 { 321 struct timespec rmtstart; 322 int error, timo; 323 324 if ((error = itimespecfix(rqt)) != 0) 325 return error; 326 327 timo = tstohz(rqt); 328 /* 329 * Avoid inadvertantly sleeping forever 330 */ 331 if (timo == 0) 332 timo = 1; 333 getnanouptime(&rmtstart); 334 again: 335 error = kpause("nanoslp", true, timo, NULL); 336 if (rmt != NULL || error == 0) { 337 struct timespec rmtend; 338 struct timespec t0; 339 struct timespec *t; 340 341 getnanouptime(&rmtend); 342 t = (rmt != NULL) ? rmt : &t0; 343 timespecsub(&rmtend, &rmtstart, t); 344 timespecsub(rqt, t, t); 345 if (t->tv_sec < 0) 346 timespecclear(t); 347 if (error == 0) { 348 timo = tstohz(t); 349 if (timo > 0) 350 goto again; 351 } 352 } 353 354 if (error == ERESTART) 355 error = EINTR; 356 if (error == EWOULDBLOCK) 357 error = 0; 358 359 return error; 360 } 361 362 /* ARGSUSED */ 363 int 364 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap, 365 register_t *retval) 366 { 367 /* { 368 syscallarg(struct timeval *) tp; 369 syscallarg(void *) tzp; really "struct timezone *"; 370 } */ 371 struct timeval atv; 372 int error = 0; 373 struct timezone tzfake; 374 375 if (SCARG(uap, tp)) { 376 microtime(&atv); 377 error = copyout(&atv, SCARG(uap, tp), sizeof(atv)); 378 if (error) 379 return (error); 380 } 381 if (SCARG(uap, tzp)) { 382 /* 383 * NetBSD has no kernel notion of time zone, so we just 384 * fake up a timezone struct and return it if demanded. 385 */ 386 tzfake.tz_minuteswest = 0; 387 tzfake.tz_dsttime = 0; 388 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake)); 389 } 390 return (error); 391 } 392 393 /* ARGSUSED */ 394 int 395 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap, 396 register_t *retval) 397 { 398 /* { 399 syscallarg(const struct timeval *) tv; 400 syscallarg(const void *) tzp; really "const struct timezone *"; 401 } */ 402 403 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true); 404 } 405 406 int 407 settimeofday1(const struct timeval *utv, bool userspace, 408 const void *utzp, struct lwp *l, bool check_kauth) 409 { 410 struct timeval atv; 411 struct timespec ts; 412 int error; 413 414 /* Verify all parameters before changing time. */ 415 416 /* 417 * NetBSD has no kernel notion of time zone, and only an 418 * obsolete program would try to set it, so we log a warning. 419 */ 420 if (utzp) 421 log(LOG_WARNING, "pid %d attempted to set the " 422 "(obsolete) kernel time zone\n", l->l_proc->p_pid); 423 424 if (utv == NULL) 425 return 0; 426 427 if (userspace) { 428 if ((error = copyin(utv, &atv, sizeof(atv))) != 0) 429 return error; 430 utv = &atv; 431 } 432 433 TIMEVAL_TO_TIMESPEC(utv, &ts); 434 return settime1(l->l_proc, &ts, check_kauth); 435 } 436 437 int time_adjusted; /* set if an adjustment is made */ 438 439 /* ARGSUSED */ 440 int 441 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap, 442 register_t *retval) 443 { 444 /* { 445 syscallarg(const struct timeval *) delta; 446 syscallarg(struct timeval *) olddelta; 447 } */ 448 int error = 0; 449 struct timeval atv, oldatv; 450 451 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME, 452 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0) 453 return error; 454 455 if (SCARG(uap, delta)) { 456 error = copyin(SCARG(uap, delta), &atv, 457 sizeof(*SCARG(uap, delta))); 458 if (error) 459 return (error); 460 } 461 adjtime1(SCARG(uap, delta) ? &atv : NULL, 462 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc); 463 if (SCARG(uap, olddelta)) 464 error = copyout(&oldatv, SCARG(uap, olddelta), 465 sizeof(*SCARG(uap, olddelta))); 466 return error; 467 } 468 469 void 470 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p) 471 { 472 extern int64_t time_adjtime; /* in kern_ntptime.c */ 473 474 if (olddelta) { 475 mutex_spin_enter(&timecounter_lock); 476 olddelta->tv_sec = time_adjtime / 1000000; 477 olddelta->tv_usec = time_adjtime % 1000000; 478 if (olddelta->tv_usec < 0) { 479 olddelta->tv_usec += 1000000; 480 olddelta->tv_sec--; 481 } 482 mutex_spin_exit(&timecounter_lock); 483 } 484 485 if (delta) { 486 mutex_spin_enter(&timecounter_lock); 487 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec; 488 489 if (time_adjtime) { 490 /* We need to save the system time during shutdown */ 491 time_adjusted |= 1; 492 } 493 mutex_spin_exit(&timecounter_lock); 494 } 495 } 496 497 /* 498 * Interval timer support. Both the BSD getitimer() family and the POSIX 499 * timer_*() family of routines are supported. 500 * 501 * All timers are kept in an array pointed to by p_timers, which is 502 * allocated on demand - many processes don't use timers at all. The 503 * first three elements in this array are reserved for the BSD timers: 504 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element 505 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be 506 * allocated by the timer_create() syscall. 507 * 508 * Realtime timers are kept in the ptimer structure as an absolute 509 * time; virtual time timers are kept as a linked list of deltas. 510 * Virtual time timers are processed in the hardclock() routine of 511 * kern_clock.c. The real time timer is processed by a callout 512 * routine, called from the softclock() routine. Since a callout may 513 * be delayed in real time due to interrupt processing in the system, 514 * it is possible for the real time timeout routine (realtimeexpire, 515 * given below), to be delayed in real time past when it is supposed 516 * to occur. It does not suffice, therefore, to reload the real timer 517 * .it_value from the real time timers .it_interval. Rather, we 518 * compute the next time in absolute time the timer should go off. */ 519 520 /* Allocate a POSIX realtime timer. */ 521 int 522 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, 523 register_t *retval) 524 { 525 /* { 526 syscallarg(clockid_t) clock_id; 527 syscallarg(struct sigevent *) evp; 528 syscallarg(timer_t *) timerid; 529 } */ 530 531 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id), 532 SCARG(uap, evp), copyin, l); 533 } 534 535 int 536 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp, 537 copyin_t fetch_event, struct lwp *l) 538 { 539 int error; 540 timer_t timerid; 541 struct ptimers *pts; 542 struct ptimer *pt; 543 struct proc *p; 544 545 p = l->l_proc; 546 547 if ((u_int)id > CLOCK_MONOTONIC) 548 return (EINVAL); 549 550 if ((pts = p->p_timers) == NULL) 551 pts = timers_alloc(p); 552 553 pt = pool_get(&ptimer_pool, PR_WAITOK); 554 if (evp != NULL) { 555 if (((error = 556 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) || 557 ((pt->pt_ev.sigev_notify < SIGEV_NONE) || 558 (pt->pt_ev.sigev_notify > SIGEV_SA)) || 559 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL && 560 (pt->pt_ev.sigev_signo <= 0 || 561 pt->pt_ev.sigev_signo >= NSIG))) { 562 pool_put(&ptimer_pool, pt); 563 return (error ? error : EINVAL); 564 } 565 } 566 567 /* Find a free timer slot, skipping those reserved for setitimer(). */ 568 mutex_spin_enter(&timer_lock); 569 for (timerid = 3; timerid < TIMER_MAX; timerid++) 570 if (pts->pts_timers[timerid] == NULL) 571 break; 572 if (timerid == TIMER_MAX) { 573 mutex_spin_exit(&timer_lock); 574 pool_put(&ptimer_pool, pt); 575 return EAGAIN; 576 } 577 if (evp == NULL) { 578 pt->pt_ev.sigev_notify = SIGEV_SIGNAL; 579 switch (id) { 580 case CLOCK_REALTIME: 581 case CLOCK_MONOTONIC: 582 pt->pt_ev.sigev_signo = SIGALRM; 583 break; 584 case CLOCK_VIRTUAL: 585 pt->pt_ev.sigev_signo = SIGVTALRM; 586 break; 587 case CLOCK_PROF: 588 pt->pt_ev.sigev_signo = SIGPROF; 589 break; 590 } 591 pt->pt_ev.sigev_value.sival_int = timerid; 592 } 593 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo; 594 pt->pt_info.ksi_errno = 0; 595 pt->pt_info.ksi_code = 0; 596 pt->pt_info.ksi_pid = p->p_pid; 597 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred); 598 pt->pt_info.ksi_value = pt->pt_ev.sigev_value; 599 pt->pt_type = id; 600 pt->pt_proc = p; 601 pt->pt_overruns = 0; 602 pt->pt_poverruns = 0; 603 pt->pt_entry = timerid; 604 pt->pt_queued = false; 605 timespecclear(&pt->pt_time.it_value); 606 if (!CLOCK_VIRTUAL_P(id)) 607 callout_init(&pt->pt_ch, CALLOUT_MPSAFE); 608 else 609 pt->pt_active = 0; 610 611 pts->pts_timers[timerid] = pt; 612 mutex_spin_exit(&timer_lock); 613 614 return copyout(&timerid, tid, sizeof(timerid)); 615 } 616 617 /* Delete a POSIX realtime timer */ 618 int 619 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, 620 register_t *retval) 621 { 622 /* { 623 syscallarg(timer_t) timerid; 624 } */ 625 struct proc *p = l->l_proc; 626 timer_t timerid; 627 struct ptimers *pts; 628 struct ptimer *pt, *ptn; 629 630 timerid = SCARG(uap, timerid); 631 pts = p->p_timers; 632 633 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 634 return (EINVAL); 635 636 mutex_spin_enter(&timer_lock); 637 if ((pt = pts->pts_timers[timerid]) == NULL) { 638 mutex_spin_exit(&timer_lock); 639 return (EINVAL); 640 } 641 if (CLOCK_VIRTUAL_P(pt->pt_type)) { 642 if (pt->pt_active) { 643 ptn = LIST_NEXT(pt, pt_list); 644 LIST_REMOVE(pt, pt_list); 645 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) 646 timespecadd(&pt->pt_time.it_value, 647 &ptn->pt_time.it_value, 648 &ptn->pt_time.it_value); 649 pt->pt_active = 0; 650 } 651 } 652 itimerfree(pts, timerid); 653 654 return (0); 655 } 656 657 /* 658 * Set up the given timer. The value in pt->pt_time.it_value is taken 659 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and 660 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers. 661 */ 662 void 663 timer_settime(struct ptimer *pt) 664 { 665 struct ptimer *ptn, *pptn; 666 struct ptlist *ptl; 667 668 KASSERT(mutex_owned(&timer_lock)); 669 670 if (!CLOCK_VIRTUAL_P(pt->pt_type)) { 671 callout_halt(&pt->pt_ch, &timer_lock); 672 if (timespecisset(&pt->pt_time.it_value)) { 673 /* 674 * Don't need to check tshzto() return value, here. 675 * callout_reset() does it for us. 676 */ 677 callout_reset(&pt->pt_ch, 678 pt->pt_type == CLOCK_MONOTONIC ? 679 tshztoup(&pt->pt_time.it_value) : 680 tshzto(&pt->pt_time.it_value), 681 realtimerexpire, pt); 682 } 683 } else { 684 if (pt->pt_active) { 685 ptn = LIST_NEXT(pt, pt_list); 686 LIST_REMOVE(pt, pt_list); 687 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) 688 timespecadd(&pt->pt_time.it_value, 689 &ptn->pt_time.it_value, 690 &ptn->pt_time.it_value); 691 } 692 if (timespecisset(&pt->pt_time.it_value)) { 693 if (pt->pt_type == CLOCK_VIRTUAL) 694 ptl = &pt->pt_proc->p_timers->pts_virtual; 695 else 696 ptl = &pt->pt_proc->p_timers->pts_prof; 697 698 for (ptn = LIST_FIRST(ptl), pptn = NULL; 699 ptn && timespeccmp(&pt->pt_time.it_value, 700 &ptn->pt_time.it_value, >); 701 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list)) 702 timespecsub(&pt->pt_time.it_value, 703 &ptn->pt_time.it_value, 704 &pt->pt_time.it_value); 705 706 if (pptn) 707 LIST_INSERT_AFTER(pptn, pt, pt_list); 708 else 709 LIST_INSERT_HEAD(ptl, pt, pt_list); 710 711 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list)) 712 timespecsub(&ptn->pt_time.it_value, 713 &pt->pt_time.it_value, 714 &ptn->pt_time.it_value); 715 716 pt->pt_active = 1; 717 } else 718 pt->pt_active = 0; 719 } 720 } 721 722 void 723 timer_gettime(struct ptimer *pt, struct itimerspec *aits) 724 { 725 struct timespec now; 726 struct ptimer *ptn; 727 728 KASSERT(mutex_owned(&timer_lock)); 729 730 *aits = pt->pt_time; 731 if (!CLOCK_VIRTUAL_P(pt->pt_type)) { 732 /* 733 * Convert from absolute to relative time in .it_value 734 * part of real time timer. If time for real time 735 * timer has passed return 0, else return difference 736 * between current time and time for the timer to go 737 * off. 738 */ 739 if (timespecisset(&aits->it_value)) { 740 if (pt->pt_type == CLOCK_REALTIME) { 741 getnanotime(&now); 742 } else { /* CLOCK_MONOTONIC */ 743 getnanouptime(&now); 744 } 745 if (timespeccmp(&aits->it_value, &now, <)) 746 timespecclear(&aits->it_value); 747 else 748 timespecsub(&aits->it_value, &now, 749 &aits->it_value); 750 } 751 } else if (pt->pt_active) { 752 if (pt->pt_type == CLOCK_VIRTUAL) 753 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual); 754 else 755 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof); 756 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list)) 757 timespecadd(&aits->it_value, 758 &ptn->pt_time.it_value, &aits->it_value); 759 KASSERT(ptn != NULL); /* pt should be findable on the list */ 760 } else 761 timespecclear(&aits->it_value); 762 } 763 764 765 766 /* Set and arm a POSIX realtime timer */ 767 int 768 sys___timer_settime50(struct lwp *l, 769 const struct sys___timer_settime50_args *uap, 770 register_t *retval) 771 { 772 /* { 773 syscallarg(timer_t) timerid; 774 syscallarg(int) flags; 775 syscallarg(const struct itimerspec *) value; 776 syscallarg(struct itimerspec *) ovalue; 777 } */ 778 int error; 779 struct itimerspec value, ovalue, *ovp = NULL; 780 781 if ((error = copyin(SCARG(uap, value), &value, 782 sizeof(struct itimerspec))) != 0) 783 return (error); 784 785 if (SCARG(uap, ovalue)) 786 ovp = &ovalue; 787 788 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp, 789 SCARG(uap, flags), l->l_proc)) != 0) 790 return error; 791 792 if (ovp) 793 return copyout(&ovalue, SCARG(uap, ovalue), 794 sizeof(struct itimerspec)); 795 return 0; 796 } 797 798 int 799 dotimer_settime(int timerid, struct itimerspec *value, 800 struct itimerspec *ovalue, int flags, struct proc *p) 801 { 802 struct timespec now; 803 struct itimerspec val, oval; 804 struct ptimers *pts; 805 struct ptimer *pt; 806 int error; 807 808 pts = p->p_timers; 809 810 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 811 return EINVAL; 812 val = *value; 813 if ((error = itimespecfix(&val.it_value)) != 0 || 814 (error = itimespecfix(&val.it_interval)) != 0) 815 return error; 816 817 mutex_spin_enter(&timer_lock); 818 if ((pt = pts->pts_timers[timerid]) == NULL) { 819 mutex_spin_exit(&timer_lock); 820 return EINVAL; 821 } 822 823 oval = pt->pt_time; 824 pt->pt_time = val; 825 826 /* 827 * If we've been passed a relative time for a realtime timer, 828 * convert it to absolute; if an absolute time for a virtual 829 * timer, convert it to relative and make sure we don't set it 830 * to zero, which would cancel the timer, or let it go 831 * negative, which would confuse the comparison tests. 832 */ 833 if (timespecisset(&pt->pt_time.it_value)) { 834 if (!CLOCK_VIRTUAL_P(pt->pt_type)) { 835 if ((flags & TIMER_ABSTIME) == 0) { 836 if (pt->pt_type == CLOCK_REALTIME) { 837 getnanotime(&now); 838 } else { /* CLOCK_MONOTONIC */ 839 getnanouptime(&now); 840 } 841 timespecadd(&pt->pt_time.it_value, &now, 842 &pt->pt_time.it_value); 843 } 844 } else { 845 if ((flags & TIMER_ABSTIME) != 0) { 846 getnanotime(&now); 847 timespecsub(&pt->pt_time.it_value, &now, 848 &pt->pt_time.it_value); 849 if (!timespecisset(&pt->pt_time.it_value) || 850 pt->pt_time.it_value.tv_sec < 0) { 851 pt->pt_time.it_value.tv_sec = 0; 852 pt->pt_time.it_value.tv_nsec = 1; 853 } 854 } 855 } 856 } 857 858 timer_settime(pt); 859 mutex_spin_exit(&timer_lock); 860 861 if (ovalue) 862 *ovalue = oval; 863 864 return (0); 865 } 866 867 /* Return the time remaining until a POSIX timer fires. */ 868 int 869 sys___timer_gettime50(struct lwp *l, 870 const struct sys___timer_gettime50_args *uap, register_t *retval) 871 { 872 /* { 873 syscallarg(timer_t) timerid; 874 syscallarg(struct itimerspec *) value; 875 } */ 876 struct itimerspec its; 877 int error; 878 879 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc, 880 &its)) != 0) 881 return error; 882 883 return copyout(&its, SCARG(uap, value), sizeof(its)); 884 } 885 886 int 887 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its) 888 { 889 struct ptimer *pt; 890 struct ptimers *pts; 891 892 pts = p->p_timers; 893 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 894 return (EINVAL); 895 mutex_spin_enter(&timer_lock); 896 if ((pt = pts->pts_timers[timerid]) == NULL) { 897 mutex_spin_exit(&timer_lock); 898 return (EINVAL); 899 } 900 timer_gettime(pt, its); 901 mutex_spin_exit(&timer_lock); 902 903 return 0; 904 } 905 906 /* 907 * Return the count of the number of times a periodic timer expired 908 * while a notification was already pending. The counter is reset when 909 * a timer expires and a notification can be posted. 910 */ 911 int 912 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, 913 register_t *retval) 914 { 915 /* { 916 syscallarg(timer_t) timerid; 917 } */ 918 struct proc *p = l->l_proc; 919 struct ptimers *pts; 920 int timerid; 921 struct ptimer *pt; 922 923 timerid = SCARG(uap, timerid); 924 925 pts = p->p_timers; 926 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 927 return (EINVAL); 928 mutex_spin_enter(&timer_lock); 929 if ((pt = pts->pts_timers[timerid]) == NULL) { 930 mutex_spin_exit(&timer_lock); 931 return (EINVAL); 932 } 933 *retval = pt->pt_poverruns; 934 mutex_spin_exit(&timer_lock); 935 936 return (0); 937 } 938 939 #ifdef KERN_SA 940 /* Glue function that triggers an upcall; called from userret(). */ 941 void 942 timerupcall(struct lwp *l) 943 { 944 struct ptimers *pt = l->l_proc->p_timers; 945 struct proc *p = l->l_proc; 946 unsigned int i, fired, done; 947 948 KDASSERT(l->l_proc->p_sa); 949 /* Bail out if we do not own the virtual processor */ 950 if (l->l_savp->savp_lwp != l) 951 return ; 952 953 mutex_enter(p->p_lock); 954 955 fired = pt->pts_fired; 956 done = 0; 957 while ((i = ffs(fired)) != 0) { 958 siginfo_t *si; 959 int mask = 1 << --i; 960 int f; 961 962 f = ~l->l_pflag & LP_SA_NOBLOCK; 963 l->l_pflag |= LP_SA_NOBLOCK; 964 si = siginfo_alloc(PR_WAITOK); 965 si->_info = pt->pts_timers[i]->pt_info.ksi_info; 966 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l, 967 sizeof(*si), si, siginfo_free) != 0) { 968 siginfo_free(si); 969 /* XXX What do we do here?? */ 970 } else 971 done |= mask; 972 fired &= ~mask; 973 l->l_pflag ^= f; 974 } 975 pt->pts_fired &= ~done; 976 if (pt->pts_fired == 0) 977 l->l_proc->p_timerpend = 0; 978 979 mutex_exit(p->p_lock); 980 } 981 #endif /* KERN_SA */ 982 983 /* 984 * Real interval timer expired: 985 * send process whose timer expired an alarm signal. 986 * If time is not set up to reload, then just return. 987 * Else compute next time timer should go off which is > current time. 988 * This is where delay in processing this timeout causes multiple 989 * SIGALRM calls to be compressed into one. 990 */ 991 void 992 realtimerexpire(void *arg) 993 { 994 uint64_t last_val, next_val, interval, now_ns; 995 struct timespec now, next; 996 struct ptimer *pt; 997 int backwards; 998 999 pt = arg; 1000 1001 mutex_spin_enter(&timer_lock); 1002 itimerfire(pt); 1003 1004 if (!timespecisset(&pt->pt_time.it_interval)) { 1005 timespecclear(&pt->pt_time.it_value); 1006 mutex_spin_exit(&timer_lock); 1007 return; 1008 } 1009 1010 if (pt->pt_type == CLOCK_MONOTONIC) { 1011 getnanouptime(&now); 1012 } else { 1013 getnanotime(&now); 1014 } 1015 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >)); 1016 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next); 1017 /* Handle the easy case of non-overflown timers first. */ 1018 if (!backwards && timespeccmp(&next, &now, >)) { 1019 pt->pt_time.it_value = next; 1020 } else { 1021 now_ns = timespec2ns(&now); 1022 last_val = timespec2ns(&pt->pt_time.it_value); 1023 interval = timespec2ns(&pt->pt_time.it_interval); 1024 1025 next_val = now_ns + 1026 (now_ns - last_val + interval - 1) % interval; 1027 1028 if (backwards) 1029 next_val += interval; 1030 else 1031 pt->pt_overruns += (now_ns - last_val) / interval; 1032 1033 pt->pt_time.it_value.tv_sec = next_val / 1000000000; 1034 pt->pt_time.it_value.tv_nsec = next_val % 1000000000; 1035 } 1036 1037 /* 1038 * Don't need to check tshzto() return value, here. 1039 * callout_reset() does it for us. 1040 */ 1041 callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ? 1042 tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value), 1043 realtimerexpire, pt); 1044 mutex_spin_exit(&timer_lock); 1045 } 1046 1047 /* BSD routine to get the value of an interval timer. */ 1048 /* ARGSUSED */ 1049 int 1050 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap, 1051 register_t *retval) 1052 { 1053 /* { 1054 syscallarg(int) which; 1055 syscallarg(struct itimerval *) itv; 1056 } */ 1057 struct proc *p = l->l_proc; 1058 struct itimerval aitv; 1059 int error; 1060 1061 error = dogetitimer(p, SCARG(uap, which), &aitv); 1062 if (error) 1063 return error; 1064 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval))); 1065 } 1066 1067 int 1068 dogetitimer(struct proc *p, int which, struct itimerval *itvp) 1069 { 1070 struct ptimers *pts; 1071 struct ptimer *pt; 1072 struct itimerspec its; 1073 1074 if ((u_int)which > ITIMER_MONOTONIC) 1075 return (EINVAL); 1076 1077 mutex_spin_enter(&timer_lock); 1078 pts = p->p_timers; 1079 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) { 1080 timerclear(&itvp->it_value); 1081 timerclear(&itvp->it_interval); 1082 } else { 1083 timer_gettime(pt, &its); 1084 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value); 1085 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval); 1086 } 1087 mutex_spin_exit(&timer_lock); 1088 1089 return 0; 1090 } 1091 1092 /* BSD routine to set/arm an interval timer. */ 1093 /* ARGSUSED */ 1094 int 1095 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap, 1096 register_t *retval) 1097 { 1098 /* { 1099 syscallarg(int) which; 1100 syscallarg(const struct itimerval *) itv; 1101 syscallarg(struct itimerval *) oitv; 1102 } */ 1103 struct proc *p = l->l_proc; 1104 int which = SCARG(uap, which); 1105 struct sys___getitimer50_args getargs; 1106 const struct itimerval *itvp; 1107 struct itimerval aitv; 1108 int error; 1109 1110 if ((u_int)which > ITIMER_MONOTONIC) 1111 return (EINVAL); 1112 itvp = SCARG(uap, itv); 1113 if (itvp && 1114 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0)) 1115 return (error); 1116 if (SCARG(uap, oitv) != NULL) { 1117 SCARG(&getargs, which) = which; 1118 SCARG(&getargs, itv) = SCARG(uap, oitv); 1119 if ((error = sys___getitimer50(l, &getargs, retval)) != 0) 1120 return (error); 1121 } 1122 if (itvp == 0) 1123 return (0); 1124 1125 return dosetitimer(p, which, &aitv); 1126 } 1127 1128 int 1129 dosetitimer(struct proc *p, int which, struct itimerval *itvp) 1130 { 1131 struct timespec now; 1132 struct ptimers *pts; 1133 struct ptimer *pt, *spare; 1134 1135 KASSERT((u_int)which <= CLOCK_MONOTONIC); 1136 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval)) 1137 return (EINVAL); 1138 1139 /* 1140 * Don't bother allocating data structures if the process just 1141 * wants to clear the timer. 1142 */ 1143 spare = NULL; 1144 pts = p->p_timers; 1145 retry: 1146 if (!timerisset(&itvp->it_value) && (pts == NULL || 1147 pts->pts_timers[which] == NULL)) 1148 return (0); 1149 if (pts == NULL) 1150 pts = timers_alloc(p); 1151 mutex_spin_enter(&timer_lock); 1152 pt = pts->pts_timers[which]; 1153 if (pt == NULL) { 1154 if (spare == NULL) { 1155 mutex_spin_exit(&timer_lock); 1156 spare = pool_get(&ptimer_pool, PR_WAITOK); 1157 goto retry; 1158 } 1159 pt = spare; 1160 spare = NULL; 1161 pt->pt_ev.sigev_notify = SIGEV_SIGNAL; 1162 pt->pt_ev.sigev_value.sival_int = which; 1163 pt->pt_overruns = 0; 1164 pt->pt_proc = p; 1165 pt->pt_type = which; 1166 pt->pt_entry = which; 1167 pt->pt_queued = false; 1168 if (pt->pt_type == CLOCK_REALTIME) 1169 callout_init(&pt->pt_ch, CALLOUT_MPSAFE); 1170 else 1171 pt->pt_active = 0; 1172 1173 switch (which) { 1174 case ITIMER_REAL: 1175 case ITIMER_MONOTONIC: 1176 pt->pt_ev.sigev_signo = SIGALRM; 1177 break; 1178 case ITIMER_VIRTUAL: 1179 pt->pt_ev.sigev_signo = SIGVTALRM; 1180 break; 1181 case ITIMER_PROF: 1182 pt->pt_ev.sigev_signo = SIGPROF; 1183 break; 1184 } 1185 pts->pts_timers[which] = pt; 1186 } 1187 1188 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value); 1189 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval); 1190 1191 if (timespecisset(&pt->pt_time.it_value)) { 1192 /* Convert to absolute time */ 1193 /* XXX need to wrap in splclock for timecounters case? */ 1194 switch (which) { 1195 case ITIMER_REAL: 1196 getnanotime(&now); 1197 timespecadd(&pt->pt_time.it_value, &now, 1198 &pt->pt_time.it_value); 1199 break; 1200 case ITIMER_MONOTONIC: 1201 getnanouptime(&now); 1202 timespecadd(&pt->pt_time.it_value, &now, 1203 &pt->pt_time.it_value); 1204 break; 1205 default: 1206 break; 1207 } 1208 } 1209 timer_settime(pt); 1210 mutex_spin_exit(&timer_lock); 1211 if (spare != NULL) 1212 pool_put(&ptimer_pool, spare); 1213 1214 return (0); 1215 } 1216 1217 /* Utility routines to manage the array of pointers to timers. */ 1218 struct ptimers * 1219 timers_alloc(struct proc *p) 1220 { 1221 struct ptimers *pts; 1222 int i; 1223 1224 pts = pool_get(&ptimers_pool, PR_WAITOK); 1225 LIST_INIT(&pts->pts_virtual); 1226 LIST_INIT(&pts->pts_prof); 1227 for (i = 0; i < TIMER_MAX; i++) 1228 pts->pts_timers[i] = NULL; 1229 pts->pts_fired = 0; 1230 mutex_spin_enter(&timer_lock); 1231 if (p->p_timers == NULL) { 1232 p->p_timers = pts; 1233 mutex_spin_exit(&timer_lock); 1234 return pts; 1235 } 1236 mutex_spin_exit(&timer_lock); 1237 pool_put(&ptimers_pool, pts); 1238 return p->p_timers; 1239 } 1240 1241 /* 1242 * Clean up the per-process timers. If "which" is set to TIMERS_ALL, 1243 * then clean up all timers and free all the data structures. If 1244 * "which" is set to TIMERS_POSIX, only clean up the timers allocated 1245 * by timer_create(), not the BSD setitimer() timers, and only free the 1246 * structure if none of those remain. 1247 */ 1248 void 1249 timers_free(struct proc *p, int which) 1250 { 1251 struct ptimers *pts; 1252 struct ptimer *ptn; 1253 struct timespec ts; 1254 int i; 1255 1256 if (p->p_timers == NULL) 1257 return; 1258 1259 pts = p->p_timers; 1260 mutex_spin_enter(&timer_lock); 1261 if (which == TIMERS_ALL) { 1262 p->p_timers = NULL; 1263 i = 0; 1264 } else { 1265 timespecclear(&ts); 1266 for (ptn = LIST_FIRST(&pts->pts_virtual); 1267 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL]; 1268 ptn = LIST_NEXT(ptn, pt_list)) { 1269 KASSERT(ptn->pt_type == CLOCK_VIRTUAL); 1270 timespecadd(&ts, &ptn->pt_time.it_value, &ts); 1271 } 1272 LIST_FIRST(&pts->pts_virtual) = NULL; 1273 if (ptn) { 1274 KASSERT(ptn->pt_type == CLOCK_VIRTUAL); 1275 timespecadd(&ts, &ptn->pt_time.it_value, 1276 &ptn->pt_time.it_value); 1277 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list); 1278 } 1279 timespecclear(&ts); 1280 for (ptn = LIST_FIRST(&pts->pts_prof); 1281 ptn && ptn != pts->pts_timers[ITIMER_PROF]; 1282 ptn = LIST_NEXT(ptn, pt_list)) { 1283 KASSERT(ptn->pt_type == CLOCK_PROF); 1284 timespecadd(&ts, &ptn->pt_time.it_value, &ts); 1285 } 1286 LIST_FIRST(&pts->pts_prof) = NULL; 1287 if (ptn) { 1288 KASSERT(ptn->pt_type == CLOCK_PROF); 1289 timespecadd(&ts, &ptn->pt_time.it_value, 1290 &ptn->pt_time.it_value); 1291 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list); 1292 } 1293 i = 3; 1294 } 1295 for ( ; i < TIMER_MAX; i++) { 1296 if (pts->pts_timers[i] != NULL) { 1297 itimerfree(pts, i); 1298 mutex_spin_enter(&timer_lock); 1299 } 1300 } 1301 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL && 1302 pts->pts_timers[2] == NULL) { 1303 p->p_timers = NULL; 1304 mutex_spin_exit(&timer_lock); 1305 pool_put(&ptimers_pool, pts); 1306 } else 1307 mutex_spin_exit(&timer_lock); 1308 } 1309 1310 static void 1311 itimerfree(struct ptimers *pts, int index) 1312 { 1313 struct ptimer *pt; 1314 1315 KASSERT(mutex_owned(&timer_lock)); 1316 1317 pt = pts->pts_timers[index]; 1318 pts->pts_timers[index] = NULL; 1319 if (!CLOCK_VIRTUAL_P(pt->pt_type)) 1320 callout_halt(&pt->pt_ch, &timer_lock); 1321 if (pt->pt_queued) 1322 TAILQ_REMOVE(&timer_queue, pt, pt_chain); 1323 mutex_spin_exit(&timer_lock); 1324 if (!CLOCK_VIRTUAL_P(pt->pt_type)) 1325 callout_destroy(&pt->pt_ch); 1326 pool_put(&ptimer_pool, pt); 1327 } 1328 1329 /* 1330 * Decrement an interval timer by a specified number 1331 * of nanoseconds, which must be less than a second, 1332 * i.e. < 1000000000. If the timer expires, then reload 1333 * it. In this case, carry over (nsec - old value) to 1334 * reduce the value reloaded into the timer so that 1335 * the timer does not drift. This routine assumes 1336 * that it is called in a context where the timers 1337 * on which it is operating cannot change in value. 1338 */ 1339 static int 1340 itimerdecr(struct ptimer *pt, int nsec) 1341 { 1342 struct itimerspec *itp; 1343 1344 KASSERT(mutex_owned(&timer_lock)); 1345 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type)); 1346 1347 itp = &pt->pt_time; 1348 if (itp->it_value.tv_nsec < nsec) { 1349 if (itp->it_value.tv_sec == 0) { 1350 /* expired, and already in next interval */ 1351 nsec -= itp->it_value.tv_nsec; 1352 goto expire; 1353 } 1354 itp->it_value.tv_nsec += 1000000000; 1355 itp->it_value.tv_sec--; 1356 } 1357 itp->it_value.tv_nsec -= nsec; 1358 nsec = 0; 1359 if (timespecisset(&itp->it_value)) 1360 return (1); 1361 /* expired, exactly at end of interval */ 1362 expire: 1363 if (timespecisset(&itp->it_interval)) { 1364 itp->it_value = itp->it_interval; 1365 itp->it_value.tv_nsec -= nsec; 1366 if (itp->it_value.tv_nsec < 0) { 1367 itp->it_value.tv_nsec += 1000000000; 1368 itp->it_value.tv_sec--; 1369 } 1370 timer_settime(pt); 1371 } else 1372 itp->it_value.tv_nsec = 0; /* sec is already 0 */ 1373 return (0); 1374 } 1375 1376 static void 1377 itimerfire(struct ptimer *pt) 1378 { 1379 1380 KASSERT(mutex_owned(&timer_lock)); 1381 1382 /* 1383 * XXX Can overrun, but we don't do signal queueing yet, anyway. 1384 * XXX Relying on the clock interrupt is stupid. 1385 */ 1386 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) || 1387 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL && 1388 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued) 1389 return; 1390 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain); 1391 pt->pt_queued = true; 1392 softint_schedule(timer_sih); 1393 } 1394 1395 void 1396 timer_tick(lwp_t *l, bool user) 1397 { 1398 struct ptimers *pts; 1399 struct ptimer *pt; 1400 proc_t *p; 1401 1402 p = l->l_proc; 1403 if (p->p_timers == NULL) 1404 return; 1405 1406 mutex_spin_enter(&timer_lock); 1407 if ((pts = l->l_proc->p_timers) != NULL) { 1408 /* 1409 * Run current process's virtual and profile time, as needed. 1410 */ 1411 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL) 1412 if (itimerdecr(pt, tick * 1000) == 0) 1413 itimerfire(pt); 1414 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL) 1415 if (itimerdecr(pt, tick * 1000) == 0) 1416 itimerfire(pt); 1417 } 1418 mutex_spin_exit(&timer_lock); 1419 } 1420 1421 #ifdef KERN_SA 1422 /* 1423 * timer_sa_intr: 1424 * 1425 * SIGEV_SA handling for timer_intr(). We are called (and return) 1426 * with the timer lock held. We know that the process had SA enabled 1427 * when this timer was enqueued. As timer_intr() is a soft interrupt 1428 * handler, SA should still be enabled by the time we get here. 1429 */ 1430 static void 1431 timer_sa_intr(struct ptimer *pt, proc_t *p) 1432 { 1433 unsigned int i; 1434 struct sadata *sa; 1435 struct sadata_vp *vp; 1436 1437 /* Cause the process to generate an upcall when it returns. */ 1438 if (!p->p_timerpend) { 1439 /* 1440 * XXX stop signals can be processed inside tsleep, 1441 * which can be inside sa_yield's inner loop, which 1442 * makes testing for sa_idle alone insuffucent to 1443 * determine if we really should call setrunnable. 1444 */ 1445 pt->pt_poverruns = pt->pt_overruns; 1446 pt->pt_overruns = 0; 1447 i = 1 << pt->pt_entry; 1448 p->p_timers->pts_fired = i; 1449 p->p_timerpend = 1; 1450 1451 sa = p->p_sa; 1452 mutex_enter(&sa->sa_mutex); 1453 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) { 1454 struct lwp *vp_lwp = vp->savp_lwp; 1455 lwp_lock(vp_lwp); 1456 lwp_need_userret(vp_lwp); 1457 if (vp_lwp->l_flag & LW_SA_IDLE) { 1458 vp_lwp->l_flag &= ~LW_SA_IDLE; 1459 lwp_unsleep(vp_lwp, true); 1460 break; 1461 } 1462 lwp_unlock(vp_lwp); 1463 } 1464 mutex_exit(&sa->sa_mutex); 1465 } else { 1466 i = 1 << pt->pt_entry; 1467 if ((p->p_timers->pts_fired & i) == 0) { 1468 pt->pt_poverruns = pt->pt_overruns; 1469 pt->pt_overruns = 0; 1470 p->p_timers->pts_fired |= i; 1471 } else 1472 pt->pt_overruns++; 1473 } 1474 } 1475 #endif /* KERN_SA */ 1476 1477 static void 1478 timer_intr(void *cookie) 1479 { 1480 ksiginfo_t ksi; 1481 struct ptimer *pt; 1482 proc_t *p; 1483 1484 mutex_enter(proc_lock); 1485 mutex_spin_enter(&timer_lock); 1486 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) { 1487 TAILQ_REMOVE(&timer_queue, pt, pt_chain); 1488 KASSERT(pt->pt_queued); 1489 pt->pt_queued = false; 1490 1491 if (pt->pt_proc->p_timers == NULL) { 1492 /* Process is dying. */ 1493 continue; 1494 } 1495 p = pt->pt_proc; 1496 #ifdef KERN_SA 1497 if (pt->pt_ev.sigev_notify == SIGEV_SA) { 1498 timer_sa_intr(pt, p); 1499 continue; 1500 } 1501 #endif /* KERN_SA */ 1502 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) 1503 continue; 1504 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) { 1505 pt->pt_overruns++; 1506 continue; 1507 } 1508 1509 KSI_INIT(&ksi); 1510 ksi.ksi_signo = pt->pt_ev.sigev_signo; 1511 ksi.ksi_code = SI_TIMER; 1512 ksi.ksi_value = pt->pt_ev.sigev_value; 1513 pt->pt_poverruns = pt->pt_overruns; 1514 pt->pt_overruns = 0; 1515 mutex_spin_exit(&timer_lock); 1516 kpsignal(p, &ksi, NULL); 1517 mutex_spin_enter(&timer_lock); 1518 } 1519 mutex_spin_exit(&timer_lock); 1520 mutex_exit(proc_lock); 1521 } 1522 1523 /* 1524 * Check if the time will wrap if set to ts. 1525 * 1526 * ts - timespec describing the new time 1527 * delta - the delta between the current time and ts 1528 */ 1529 bool 1530 time_wraps(struct timespec *ts, struct timespec *delta) 1531 { 1532 1533 /* 1534 * Don't allow the time to be set forward so far it 1535 * will wrap and become negative, thus allowing an 1536 * attacker to bypass the next check below. The 1537 * cutoff is 1 year before rollover occurs, so even 1538 * if the attacker uses adjtime(2) to move the time 1539 * past the cutoff, it will take a very long time 1540 * to get to the wrap point. 1541 */ 1542 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) || 1543 (delta->tv_sec < 0 || delta->tv_nsec < 0)) 1544 return true; 1545 1546 return false; 1547 } 1548