1 /* $NetBSD: kern_time.c,v 1.160 2009/03/29 19:21:19 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Christopher G. Demetriou, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.160 2009/03/29 19:21:19 christos Exp $"); 65 66 #include <sys/param.h> 67 #include <sys/resourcevar.h> 68 #include <sys/kernel.h> 69 #include <sys/systm.h> 70 #include <sys/proc.h> 71 #include <sys/vnode.h> 72 #include <sys/signalvar.h> 73 #include <sys/syslog.h> 74 #include <sys/timetc.h> 75 #include <sys/timex.h> 76 #include <sys/kauth.h> 77 #include <sys/mount.h> 78 #include <sys/sa.h> 79 #include <sys/savar.h> 80 #include <sys/syscallargs.h> 81 #include <sys/cpu.h> 82 83 #include <uvm/uvm_extern.h> 84 85 #include "opt_sa.h" 86 87 static void timer_intr(void *); 88 static void itimerfire(struct ptimer *); 89 static void itimerfree(struct ptimers *, int); 90 91 kmutex_t timer_lock; 92 93 static void *timer_sih; 94 static TAILQ_HEAD(, ptimer) timer_queue; 95 96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl", 97 &pool_allocator_nointr, IPL_NONE); 98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl", 99 &pool_allocator_nointr, IPL_NONE); 100 101 /* 102 * Initialize timekeeping. 103 */ 104 void 105 time_init(void) 106 { 107 108 /* nothing yet */ 109 } 110 111 void 112 time_init2(void) 113 { 114 115 TAILQ_INIT(&timer_queue); 116 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED); 117 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, 118 timer_intr, NULL); 119 } 120 121 /* Time of day and interval timer support. 122 * 123 * These routines provide the kernel entry points to get and set 124 * the time-of-day and per-process interval timers. Subroutines 125 * here provide support for adding and subtracting timeval structures 126 * and decrementing interval timers, optionally reloading the interval 127 * timers when they expire. 128 */ 129 130 /* This function is used by clock_settime and settimeofday */ 131 static int 132 settime1(struct proc *p, const struct timespec *ts, bool check_kauth) 133 { 134 struct timespec delta, now; 135 int s; 136 137 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ 138 s = splclock(); 139 nanotime(&now); 140 timespecsub(ts, &now, &delta); 141 142 if (check_kauth && kauth_authorize_system(kauth_cred_get(), 143 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts), 144 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) { 145 splx(s); 146 return (EPERM); 147 } 148 149 #ifdef notyet 150 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */ 151 splx(s); 152 return (EPERM); 153 } 154 #endif 155 156 tc_setclock(ts); 157 158 timespecadd(&boottime, &delta, &boottime); 159 160 resettodr(); 161 splx(s); 162 163 return (0); 164 } 165 166 int 167 settime(struct proc *p, struct timespec *ts) 168 { 169 return (settime1(p, ts, true)); 170 } 171 172 /* ARGSUSED */ 173 int 174 sys___clock_gettime50(struct lwp *l, 175 const struct sys___clock_gettime50_args *uap, register_t *retval) 176 { 177 /* { 178 syscallarg(clockid_t) clock_id; 179 syscallarg(struct timespec *) tp; 180 } */ 181 clockid_t clock_id; 182 struct timespec ats; 183 184 clock_id = SCARG(uap, clock_id); 185 switch (clock_id) { 186 case CLOCK_REALTIME: 187 nanotime(&ats); 188 break; 189 case CLOCK_MONOTONIC: 190 nanouptime(&ats); 191 break; 192 default: 193 return (EINVAL); 194 } 195 196 return copyout(&ats, SCARG(uap, tp), sizeof(ats)); 197 } 198 199 /* ARGSUSED */ 200 int 201 sys___clock_settime50(struct lwp *l, 202 const struct sys___clock_settime50_args *uap, register_t *retval) 203 { 204 /* { 205 syscallarg(clockid_t) clock_id; 206 syscallarg(const struct timespec *) tp; 207 } */ 208 int error; 209 struct timespec ats; 210 211 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) 212 return error; 213 214 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true); 215 } 216 217 218 int 219 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp, 220 bool check_kauth) 221 { 222 int error; 223 224 switch (clock_id) { 225 case CLOCK_REALTIME: 226 if ((error = settime1(p, tp, check_kauth)) != 0) 227 return (error); 228 break; 229 case CLOCK_MONOTONIC: 230 return (EINVAL); /* read-only clock */ 231 default: 232 return (EINVAL); 233 } 234 235 return 0; 236 } 237 238 int 239 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap, 240 register_t *retval) 241 { 242 /* { 243 syscallarg(clockid_t) clock_id; 244 syscallarg(struct timespec *) tp; 245 } */ 246 clockid_t clock_id; 247 struct timespec ts; 248 int error = 0; 249 250 clock_id = SCARG(uap, clock_id); 251 switch (clock_id) { 252 case CLOCK_REALTIME: 253 case CLOCK_MONOTONIC: 254 ts.tv_sec = 0; 255 if (tc_getfrequency() > 1000000000) 256 ts.tv_nsec = 1; 257 else 258 ts.tv_nsec = 1000000000 / tc_getfrequency(); 259 break; 260 default: 261 return (EINVAL); 262 } 263 264 if (SCARG(uap, tp)) 265 error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); 266 267 return error; 268 } 269 270 /* ARGSUSED */ 271 int 272 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap, 273 register_t *retval) 274 { 275 /* { 276 syscallarg(struct timespec *) rqtp; 277 syscallarg(struct timespec *) rmtp; 278 } */ 279 struct timespec rmt, rqt; 280 int error, error1; 281 282 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec)); 283 if (error) 284 return (error); 285 286 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL); 287 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR)) 288 return error; 289 290 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt)); 291 return error1 ? error1 : error; 292 } 293 294 int 295 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt) 296 { 297 struct timespec rmtstart; 298 int error, timo; 299 300 if ((error = itimespecfix(rqt)) != 0) 301 return error; 302 303 timo = tstohz(rqt); 304 /* 305 * Avoid inadvertantly sleeping forever 306 */ 307 if (timo == 0) 308 timo = 1; 309 getnanouptime(&rmtstart); 310 again: 311 error = kpause("nanoslp", true, timo, NULL); 312 if (rmt != NULL || error == 0) { 313 struct timespec rmtend; 314 struct timespec t0; 315 struct timespec *t; 316 317 getnanouptime(&rmtend); 318 t = (rmt != NULL) ? rmt : &t0; 319 timespecsub(&rmtend, &rmtstart, t); 320 timespecsub(rqt, t, t); 321 if (t->tv_sec < 0) 322 timespecclear(t); 323 if (error == 0) { 324 timo = tstohz(t); 325 if (timo > 0) 326 goto again; 327 } 328 } 329 330 if (error == ERESTART) 331 error = EINTR; 332 if (error == EWOULDBLOCK) 333 error = 0; 334 335 return error; 336 } 337 338 /* ARGSUSED */ 339 int 340 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap, 341 register_t *retval) 342 { 343 /* { 344 syscallarg(struct timeval *) tp; 345 syscallarg(void *) tzp; really "struct timezone *"; 346 } */ 347 struct timeval atv; 348 int error = 0; 349 struct timezone tzfake; 350 351 if (SCARG(uap, tp)) { 352 microtime(&atv); 353 error = copyout(&atv, SCARG(uap, tp), sizeof(atv)); 354 if (error) 355 return (error); 356 } 357 if (SCARG(uap, tzp)) { 358 /* 359 * NetBSD has no kernel notion of time zone, so we just 360 * fake up a timezone struct and return it if demanded. 361 */ 362 tzfake.tz_minuteswest = 0; 363 tzfake.tz_dsttime = 0; 364 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake)); 365 } 366 return (error); 367 } 368 369 /* ARGSUSED */ 370 int 371 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap, 372 register_t *retval) 373 { 374 /* { 375 syscallarg(const struct timeval *) tv; 376 syscallarg(const void *) tzp; really "const struct timezone *"; 377 } */ 378 379 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true); 380 } 381 382 int 383 settimeofday1(const struct timeval *utv, bool userspace, 384 const void *utzp, struct lwp *l, bool check_kauth) 385 { 386 struct timeval atv; 387 struct timespec ts; 388 int error; 389 390 /* Verify all parameters before changing time. */ 391 392 /* 393 * NetBSD has no kernel notion of time zone, and only an 394 * obsolete program would try to set it, so we log a warning. 395 */ 396 if (utzp) 397 log(LOG_WARNING, "pid %d attempted to set the " 398 "(obsolete) kernel time zone\n", l->l_proc->p_pid); 399 400 if (utv == NULL) 401 return 0; 402 403 if (userspace) { 404 if ((error = copyin(utv, &atv, sizeof(atv))) != 0) 405 return error; 406 utv = &atv; 407 } 408 409 TIMEVAL_TO_TIMESPEC(utv, &ts); 410 return settime1(l->l_proc, &ts, check_kauth); 411 } 412 413 int time_adjusted; /* set if an adjustment is made */ 414 415 /* ARGSUSED */ 416 int 417 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap, 418 register_t *retval) 419 { 420 /* { 421 syscallarg(const struct timeval *) delta; 422 syscallarg(struct timeval *) olddelta; 423 } */ 424 int error = 0; 425 struct timeval atv, oldatv; 426 427 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME, 428 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0) 429 return error; 430 431 if (SCARG(uap, delta)) { 432 error = copyin(SCARG(uap, delta), &atv, 433 sizeof(*SCARG(uap, delta))); 434 if (error) 435 return (error); 436 } 437 adjtime1(SCARG(uap, delta) ? &atv : NULL, 438 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc); 439 if (SCARG(uap, olddelta)) 440 error = copyout(&oldatv, SCARG(uap, olddelta), 441 sizeof(*SCARG(uap, olddelta))); 442 return error; 443 } 444 445 void 446 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p) 447 { 448 extern int64_t time_adjtime; /* in kern_ntptime.c */ 449 450 if (olddelta) { 451 mutex_spin_enter(&timecounter_lock); 452 olddelta->tv_sec = time_adjtime / 1000000; 453 olddelta->tv_usec = time_adjtime % 1000000; 454 if (olddelta->tv_usec < 0) { 455 olddelta->tv_usec += 1000000; 456 olddelta->tv_sec--; 457 } 458 mutex_spin_exit(&timecounter_lock); 459 } 460 461 if (delta) { 462 mutex_spin_enter(&timecounter_lock); 463 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec; 464 465 if (time_adjtime) { 466 /* We need to save the system time during shutdown */ 467 time_adjusted |= 1; 468 } 469 mutex_spin_exit(&timecounter_lock); 470 } 471 } 472 473 /* 474 * Interval timer support. Both the BSD getitimer() family and the POSIX 475 * timer_*() family of routines are supported. 476 * 477 * All timers are kept in an array pointed to by p_timers, which is 478 * allocated on demand - many processes don't use timers at all. The 479 * first three elements in this array are reserved for the BSD timers: 480 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element 481 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create() 482 * syscall. 483 * 484 * Realtime timers are kept in the ptimer structure as an absolute 485 * time; virtual time timers are kept as a linked list of deltas. 486 * Virtual time timers are processed in the hardclock() routine of 487 * kern_clock.c. The real time timer is processed by a callout 488 * routine, called from the softclock() routine. Since a callout may 489 * be delayed in real time due to interrupt processing in the system, 490 * it is possible for the real time timeout routine (realtimeexpire, 491 * given below), to be delayed in real time past when it is supposed 492 * to occur. It does not suffice, therefore, to reload the real timer 493 * .it_value from the real time timers .it_interval. Rather, we 494 * compute the next time in absolute time the timer should go off. */ 495 496 /* Allocate a POSIX realtime timer. */ 497 int 498 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, 499 register_t *retval) 500 { 501 /* { 502 syscallarg(clockid_t) clock_id; 503 syscallarg(struct sigevent *) evp; 504 syscallarg(timer_t *) timerid; 505 } */ 506 507 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id), 508 SCARG(uap, evp), copyin, l); 509 } 510 511 int 512 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp, 513 copyin_t fetch_event, struct lwp *l) 514 { 515 int error; 516 timer_t timerid; 517 struct ptimers *pts; 518 struct ptimer *pt; 519 struct proc *p; 520 521 p = l->l_proc; 522 523 if (id < CLOCK_REALTIME || id > CLOCK_PROF) 524 return (EINVAL); 525 526 if ((pts = p->p_timers) == NULL) 527 pts = timers_alloc(p); 528 529 pt = pool_get(&ptimer_pool, PR_WAITOK); 530 if (evp != NULL) { 531 if (((error = 532 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) || 533 ((pt->pt_ev.sigev_notify < SIGEV_NONE) || 534 (pt->pt_ev.sigev_notify > SIGEV_SA))) { 535 pool_put(&ptimer_pool, pt); 536 return (error ? error : EINVAL); 537 } 538 } 539 540 /* Find a free timer slot, skipping those reserved for setitimer(). */ 541 mutex_spin_enter(&timer_lock); 542 for (timerid = 3; timerid < TIMER_MAX; timerid++) 543 if (pts->pts_timers[timerid] == NULL) 544 break; 545 if (timerid == TIMER_MAX) { 546 mutex_spin_exit(&timer_lock); 547 pool_put(&ptimer_pool, pt); 548 return EAGAIN; 549 } 550 if (evp == NULL) { 551 pt->pt_ev.sigev_notify = SIGEV_SIGNAL; 552 switch (id) { 553 case CLOCK_REALTIME: 554 pt->pt_ev.sigev_signo = SIGALRM; 555 break; 556 case CLOCK_VIRTUAL: 557 pt->pt_ev.sigev_signo = SIGVTALRM; 558 break; 559 case CLOCK_PROF: 560 pt->pt_ev.sigev_signo = SIGPROF; 561 break; 562 } 563 pt->pt_ev.sigev_value.sival_int = timerid; 564 } 565 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo; 566 pt->pt_info.ksi_errno = 0; 567 pt->pt_info.ksi_code = 0; 568 pt->pt_info.ksi_pid = p->p_pid; 569 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred); 570 pt->pt_info.ksi_value = pt->pt_ev.sigev_value; 571 pt->pt_type = id; 572 pt->pt_proc = p; 573 pt->pt_overruns = 0; 574 pt->pt_poverruns = 0; 575 pt->pt_entry = timerid; 576 pt->pt_queued = false; 577 timespecclear(&pt->pt_time.it_value); 578 if (id == CLOCK_REALTIME) 579 callout_init(&pt->pt_ch, 0); 580 else 581 pt->pt_active = 0; 582 583 pts->pts_timers[timerid] = pt; 584 mutex_spin_exit(&timer_lock); 585 586 return copyout(&timerid, tid, sizeof(timerid)); 587 } 588 589 /* Delete a POSIX realtime timer */ 590 int 591 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, 592 register_t *retval) 593 { 594 /* { 595 syscallarg(timer_t) timerid; 596 } */ 597 struct proc *p = l->l_proc; 598 timer_t timerid; 599 struct ptimers *pts; 600 struct ptimer *pt, *ptn; 601 602 timerid = SCARG(uap, timerid); 603 pts = p->p_timers; 604 605 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 606 return (EINVAL); 607 608 mutex_spin_enter(&timer_lock); 609 if ((pt = pts->pts_timers[timerid]) == NULL) { 610 mutex_spin_exit(&timer_lock); 611 return (EINVAL); 612 } 613 if (pt->pt_type != CLOCK_REALTIME) { 614 if (pt->pt_active) { 615 ptn = LIST_NEXT(pt, pt_list); 616 LIST_REMOVE(pt, pt_list); 617 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) 618 timespecadd(&pt->pt_time.it_value, 619 &ptn->pt_time.it_value, 620 &ptn->pt_time.it_value); 621 pt->pt_active = 0; 622 } 623 } 624 itimerfree(pts, timerid); 625 626 return (0); 627 } 628 629 /* 630 * Set up the given timer. The value in pt->pt_time.it_value is taken 631 * to be an absolute time for CLOCK_REALTIME timers and a relative 632 * time for virtual timers. 633 * Must be called at splclock(). 634 */ 635 void 636 timer_settime(struct ptimer *pt) 637 { 638 struct ptimer *ptn, *pptn; 639 struct ptlist *ptl; 640 641 KASSERT(mutex_owned(&timer_lock)); 642 643 if (pt->pt_type == CLOCK_REALTIME) { 644 callout_stop(&pt->pt_ch); 645 if (timespecisset(&pt->pt_time.it_value)) { 646 /* 647 * Don't need to check tshzto() return value, here. 648 * callout_reset() does it for us. 649 */ 650 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value), 651 realtimerexpire, pt); 652 } 653 } else { 654 if (pt->pt_active) { 655 ptn = LIST_NEXT(pt, pt_list); 656 LIST_REMOVE(pt, pt_list); 657 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) 658 timespecadd(&pt->pt_time.it_value, 659 &ptn->pt_time.it_value, 660 &ptn->pt_time.it_value); 661 } 662 if (timespecisset(&pt->pt_time.it_value)) { 663 if (pt->pt_type == CLOCK_VIRTUAL) 664 ptl = &pt->pt_proc->p_timers->pts_virtual; 665 else 666 ptl = &pt->pt_proc->p_timers->pts_prof; 667 668 for (ptn = LIST_FIRST(ptl), pptn = NULL; 669 ptn && timespeccmp(&pt->pt_time.it_value, 670 &ptn->pt_time.it_value, >); 671 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list)) 672 timespecsub(&pt->pt_time.it_value, 673 &ptn->pt_time.it_value, 674 &pt->pt_time.it_value); 675 676 if (pptn) 677 LIST_INSERT_AFTER(pptn, pt, pt_list); 678 else 679 LIST_INSERT_HEAD(ptl, pt, pt_list); 680 681 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list)) 682 timespecsub(&ptn->pt_time.it_value, 683 &pt->pt_time.it_value, 684 &ptn->pt_time.it_value); 685 686 pt->pt_active = 1; 687 } else 688 pt->pt_active = 0; 689 } 690 } 691 692 void 693 timer_gettime(struct ptimer *pt, struct itimerspec *aits) 694 { 695 struct timespec now; 696 struct ptimer *ptn; 697 698 KASSERT(mutex_owned(&timer_lock)); 699 700 *aits = pt->pt_time; 701 if (pt->pt_type == CLOCK_REALTIME) { 702 /* 703 * Convert from absolute to relative time in .it_value 704 * part of real time timer. If time for real time 705 * timer has passed return 0, else return difference 706 * between current time and time for the timer to go 707 * off. 708 */ 709 if (timespecisset(&aits->it_value)) { 710 getnanotime(&now); 711 if (timespeccmp(&aits->it_value, &now, <)) 712 timespecclear(&aits->it_value); 713 else 714 timespecsub(&aits->it_value, &now, 715 &aits->it_value); 716 } 717 } else if (pt->pt_active) { 718 if (pt->pt_type == CLOCK_VIRTUAL) 719 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual); 720 else 721 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof); 722 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list)) 723 timespecadd(&aits->it_value, 724 &ptn->pt_time.it_value, &aits->it_value); 725 KASSERT(ptn != NULL); /* pt should be findable on the list */ 726 } else 727 timespecclear(&aits->it_value); 728 } 729 730 731 732 /* Set and arm a POSIX realtime timer */ 733 int 734 sys___timer_settime50(struct lwp *l, 735 const struct sys___timer_settime50_args *uap, 736 register_t *retval) 737 { 738 /* { 739 syscallarg(timer_t) timerid; 740 syscallarg(int) flags; 741 syscallarg(const struct itimerspec *) value; 742 syscallarg(struct itimerspec *) ovalue; 743 } */ 744 int error; 745 struct itimerspec value, ovalue, *ovp = NULL; 746 747 if ((error = copyin(SCARG(uap, value), &value, 748 sizeof(struct itimerspec))) != 0) 749 return (error); 750 751 if (SCARG(uap, ovalue)) 752 ovp = &ovalue; 753 754 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp, 755 SCARG(uap, flags), l->l_proc)) != 0) 756 return error; 757 758 if (ovp) 759 return copyout(&ovalue, SCARG(uap, ovalue), 760 sizeof(struct itimerspec)); 761 return 0; 762 } 763 764 int 765 dotimer_settime(int timerid, struct itimerspec *value, 766 struct itimerspec *ovalue, int flags, struct proc *p) 767 { 768 struct timespec now; 769 struct itimerspec val, oval; 770 struct ptimers *pts; 771 struct ptimer *pt; 772 int error; 773 774 pts = p->p_timers; 775 776 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 777 return EINVAL; 778 val = *value; 779 if ((error = itimespecfix(&val.it_value)) != 0 || 780 (error = itimespecfix(&val.it_interval)) != 0) 781 return error; 782 783 mutex_spin_enter(&timer_lock); 784 if ((pt = pts->pts_timers[timerid]) == NULL) { 785 mutex_spin_exit(&timer_lock); 786 return EINVAL; 787 } 788 789 oval = pt->pt_time; 790 pt->pt_time = val; 791 792 /* 793 * If we've been passed a relative time for a realtime timer, 794 * convert it to absolute; if an absolute time for a virtual 795 * timer, convert it to relative and make sure we don't set it 796 * to zero, which would cancel the timer, or let it go 797 * negative, which would confuse the comparison tests. 798 */ 799 if (timespecisset(&pt->pt_time.it_value)) { 800 if (pt->pt_type == CLOCK_REALTIME) { 801 if ((flags & TIMER_ABSTIME) == 0) { 802 getnanotime(&now); 803 timespecadd(&pt->pt_time.it_value, &now, 804 &pt->pt_time.it_value); 805 } 806 } else { 807 if ((flags & TIMER_ABSTIME) != 0) { 808 getnanotime(&now); 809 timespecsub(&pt->pt_time.it_value, &now, 810 &pt->pt_time.it_value); 811 if (!timespecisset(&pt->pt_time.it_value) || 812 pt->pt_time.it_value.tv_sec < 0) { 813 pt->pt_time.it_value.tv_sec = 0; 814 pt->pt_time.it_value.tv_nsec = 1; 815 } 816 } 817 } 818 } 819 820 timer_settime(pt); 821 mutex_spin_exit(&timer_lock); 822 823 if (ovalue) 824 *ovalue = oval; 825 826 return (0); 827 } 828 829 /* Return the time remaining until a POSIX timer fires. */ 830 int 831 sys___timer_gettime50(struct lwp *l, 832 const struct sys___timer_gettime50_args *uap, register_t *retval) 833 { 834 /* { 835 syscallarg(timer_t) timerid; 836 syscallarg(struct itimerspec *) value; 837 } */ 838 struct itimerspec its; 839 int error; 840 841 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc, 842 &its)) != 0) 843 return error; 844 845 return copyout(&its, SCARG(uap, value), sizeof(its)); 846 } 847 848 int 849 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its) 850 { 851 struct ptimer *pt; 852 struct ptimers *pts; 853 854 pts = p->p_timers; 855 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 856 return (EINVAL); 857 mutex_spin_enter(&timer_lock); 858 if ((pt = pts->pts_timers[timerid]) == NULL) { 859 mutex_spin_exit(&timer_lock); 860 return (EINVAL); 861 } 862 timer_gettime(pt, its); 863 mutex_spin_exit(&timer_lock); 864 865 return 0; 866 } 867 868 /* 869 * Return the count of the number of times a periodic timer expired 870 * while a notification was already pending. The counter is reset when 871 * a timer expires and a notification can be posted. 872 */ 873 int 874 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, 875 register_t *retval) 876 { 877 /* { 878 syscallarg(timer_t) timerid; 879 } */ 880 struct proc *p = l->l_proc; 881 struct ptimers *pts; 882 int timerid; 883 struct ptimer *pt; 884 885 timerid = SCARG(uap, timerid); 886 887 pts = p->p_timers; 888 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 889 return (EINVAL); 890 mutex_spin_enter(&timer_lock); 891 if ((pt = pts->pts_timers[timerid]) == NULL) { 892 mutex_spin_exit(&timer_lock); 893 return (EINVAL); 894 } 895 *retval = pt->pt_poverruns; 896 mutex_spin_exit(&timer_lock); 897 898 return (0); 899 } 900 901 #ifdef KERN_SA 902 /* Glue function that triggers an upcall; called from userret(). */ 903 void 904 timerupcall(struct lwp *l) 905 { 906 struct ptimers *pt = l->l_proc->p_timers; 907 struct proc *p = l->l_proc; 908 unsigned int i, fired, done; 909 910 KDASSERT(l->l_proc->p_sa); 911 /* Bail out if we do not own the virtual processor */ 912 if (l->l_savp->savp_lwp != l) 913 return ; 914 915 mutex_enter(p->p_lock); 916 917 fired = pt->pts_fired; 918 done = 0; 919 while ((i = ffs(fired)) != 0) { 920 siginfo_t *si; 921 int mask = 1 << --i; 922 int f; 923 924 f = ~l->l_pflag & LP_SA_NOBLOCK; 925 l->l_pflag |= LP_SA_NOBLOCK; 926 si = siginfo_alloc(PR_WAITOK); 927 si->_info = pt->pts_timers[i]->pt_info.ksi_info; 928 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l, 929 sizeof(*si), si, siginfo_free) != 0) { 930 siginfo_free(si); 931 /* XXX What do we do here?? */ 932 } else 933 done |= mask; 934 fired &= ~mask; 935 l->l_pflag ^= f; 936 } 937 pt->pts_fired &= ~done; 938 if (pt->pts_fired == 0) 939 l->l_proc->p_timerpend = 0; 940 941 mutex_exit(p->p_lock); 942 } 943 #endif /* KERN_SA */ 944 945 /* 946 * Real interval timer expired: 947 * send process whose timer expired an alarm signal. 948 * If time is not set up to reload, then just return. 949 * Else compute next time timer should go off which is > current time. 950 * This is where delay in processing this timeout causes multiple 951 * SIGALRM calls to be compressed into one. 952 */ 953 void 954 realtimerexpire(void *arg) 955 { 956 uint64_t last_val, next_val, interval, now_ms; 957 struct timespec now, next; 958 struct ptimer *pt; 959 int backwards; 960 961 pt = arg; 962 963 mutex_spin_enter(&timer_lock); 964 itimerfire(pt); 965 966 if (!timespecisset(&pt->pt_time.it_interval)) { 967 timespecclear(&pt->pt_time.it_value); 968 mutex_spin_exit(&timer_lock); 969 return; 970 } 971 972 getnanotime(&now); 973 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >)); 974 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next); 975 /* Handle the easy case of non-overflown timers first. */ 976 if (!backwards && timespeccmp(&next, &now, >)) { 977 pt->pt_time.it_value = next; 978 } else { 979 now_ms = timespec2ns(&now); 980 last_val = timespec2ns(&pt->pt_time.it_value); 981 interval = timespec2ns(&pt->pt_time.it_interval); 982 983 next_val = now_ms + 984 (now_ms - last_val + interval - 1) % interval; 985 986 if (backwards) 987 next_val += interval; 988 else 989 pt->pt_overruns += (now_ms - last_val) / interval; 990 991 pt->pt_time.it_value.tv_sec = next_val / 1000000000; 992 pt->pt_time.it_value.tv_nsec = next_val % 1000000000; 993 } 994 995 /* 996 * Don't need to check tshzto() return value, here. 997 * callout_reset() does it for us. 998 */ 999 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value), 1000 realtimerexpire, pt); 1001 mutex_spin_exit(&timer_lock); 1002 } 1003 1004 /* BSD routine to get the value of an interval timer. */ 1005 /* ARGSUSED */ 1006 int 1007 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap, 1008 register_t *retval) 1009 { 1010 /* { 1011 syscallarg(int) which; 1012 syscallarg(struct itimerval *) itv; 1013 } */ 1014 struct proc *p = l->l_proc; 1015 struct itimerval aitv; 1016 int error; 1017 1018 error = dogetitimer(p, SCARG(uap, which), &aitv); 1019 if (error) 1020 return error; 1021 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval))); 1022 } 1023 1024 int 1025 dogetitimer(struct proc *p, int which, struct itimerval *itvp) 1026 { 1027 struct ptimers *pts; 1028 struct ptimer *pt; 1029 struct itimerspec its; 1030 1031 if ((u_int)which > ITIMER_PROF) 1032 return (EINVAL); 1033 1034 mutex_spin_enter(&timer_lock); 1035 pts = p->p_timers; 1036 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) { 1037 timerclear(&itvp->it_value); 1038 timerclear(&itvp->it_interval); 1039 } else { 1040 timer_gettime(pt, &its); 1041 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value); 1042 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval); 1043 } 1044 mutex_spin_exit(&timer_lock); 1045 1046 return 0; 1047 } 1048 1049 /* BSD routine to set/arm an interval timer. */ 1050 /* ARGSUSED */ 1051 int 1052 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap, 1053 register_t *retval) 1054 { 1055 /* { 1056 syscallarg(int) which; 1057 syscallarg(const struct itimerval *) itv; 1058 syscallarg(struct itimerval *) oitv; 1059 } */ 1060 struct proc *p = l->l_proc; 1061 int which = SCARG(uap, which); 1062 struct sys___getitimer50_args getargs; 1063 const struct itimerval *itvp; 1064 struct itimerval aitv; 1065 int error; 1066 1067 if ((u_int)which > ITIMER_PROF) 1068 return (EINVAL); 1069 itvp = SCARG(uap, itv); 1070 if (itvp && 1071 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0)) 1072 return (error); 1073 if (SCARG(uap, oitv) != NULL) { 1074 SCARG(&getargs, which) = which; 1075 SCARG(&getargs, itv) = SCARG(uap, oitv); 1076 if ((error = sys___getitimer50(l, &getargs, retval)) != 0) 1077 return (error); 1078 } 1079 if (itvp == 0) 1080 return (0); 1081 1082 return dosetitimer(p, which, &aitv); 1083 } 1084 1085 int 1086 dosetitimer(struct proc *p, int which, struct itimerval *itvp) 1087 { 1088 struct timespec now; 1089 struct ptimers *pts; 1090 struct ptimer *pt, *spare; 1091 1092 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval)) 1093 return (EINVAL); 1094 1095 /* 1096 * Don't bother allocating data structures if the process just 1097 * wants to clear the timer. 1098 */ 1099 spare = NULL; 1100 pts = p->p_timers; 1101 retry: 1102 if (!timerisset(&itvp->it_value) && (pts == NULL || 1103 pts->pts_timers[which] == NULL)) 1104 return (0); 1105 if (pts == NULL) 1106 pts = timers_alloc(p); 1107 mutex_spin_enter(&timer_lock); 1108 pt = pts->pts_timers[which]; 1109 if (pt == NULL) { 1110 if (spare == NULL) { 1111 mutex_spin_exit(&timer_lock); 1112 spare = pool_get(&ptimer_pool, PR_WAITOK); 1113 goto retry; 1114 } 1115 pt = spare; 1116 spare = NULL; 1117 pt->pt_ev.sigev_notify = SIGEV_SIGNAL; 1118 pt->pt_ev.sigev_value.sival_int = which; 1119 pt->pt_overruns = 0; 1120 pt->pt_proc = p; 1121 pt->pt_type = which; 1122 pt->pt_entry = which; 1123 pt->pt_queued = false; 1124 if (pt->pt_type == CLOCK_REALTIME) 1125 callout_init(&pt->pt_ch, CALLOUT_MPSAFE); 1126 else 1127 pt->pt_active = 0; 1128 1129 switch (which) { 1130 case ITIMER_REAL: 1131 pt->pt_ev.sigev_signo = SIGALRM; 1132 break; 1133 case ITIMER_VIRTUAL: 1134 pt->pt_ev.sigev_signo = SIGVTALRM; 1135 break; 1136 case ITIMER_PROF: 1137 pt->pt_ev.sigev_signo = SIGPROF; 1138 break; 1139 } 1140 pts->pts_timers[which] = pt; 1141 } 1142 1143 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value); 1144 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval); 1145 1146 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) { 1147 /* Convert to absolute time */ 1148 /* XXX need to wrap in splclock for timecounters case? */ 1149 getnanotime(&now); 1150 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value); 1151 } 1152 timer_settime(pt); 1153 mutex_spin_exit(&timer_lock); 1154 if (spare != NULL) 1155 pool_put(&ptimer_pool, spare); 1156 1157 return (0); 1158 } 1159 1160 /* Utility routines to manage the array of pointers to timers. */ 1161 struct ptimers * 1162 timers_alloc(struct proc *p) 1163 { 1164 struct ptimers *pts; 1165 int i; 1166 1167 pts = pool_get(&ptimers_pool, PR_WAITOK); 1168 LIST_INIT(&pts->pts_virtual); 1169 LIST_INIT(&pts->pts_prof); 1170 for (i = 0; i < TIMER_MAX; i++) 1171 pts->pts_timers[i] = NULL; 1172 pts->pts_fired = 0; 1173 mutex_spin_enter(&timer_lock); 1174 if (p->p_timers == NULL) { 1175 p->p_timers = pts; 1176 mutex_spin_exit(&timer_lock); 1177 return pts; 1178 } 1179 mutex_spin_exit(&timer_lock); 1180 pool_put(&ptimers_pool, pts); 1181 return p->p_timers; 1182 } 1183 1184 /* 1185 * Clean up the per-process timers. If "which" is set to TIMERS_ALL, 1186 * then clean up all timers and free all the data structures. If 1187 * "which" is set to TIMERS_POSIX, only clean up the timers allocated 1188 * by timer_create(), not the BSD setitimer() timers, and only free the 1189 * structure if none of those remain. 1190 */ 1191 void 1192 timers_free(struct proc *p, int which) 1193 { 1194 struct ptimers *pts; 1195 struct ptimer *ptn; 1196 struct timespec ts; 1197 int i; 1198 1199 if (p->p_timers == NULL) 1200 return; 1201 1202 pts = p->p_timers; 1203 mutex_spin_enter(&timer_lock); 1204 if (which == TIMERS_ALL) { 1205 p->p_timers = NULL; 1206 i = 0; 1207 } else { 1208 timespecclear(&ts); 1209 for (ptn = LIST_FIRST(&pts->pts_virtual); 1210 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL]; 1211 ptn = LIST_NEXT(ptn, pt_list)) { 1212 KASSERT(ptn->pt_type != CLOCK_REALTIME); 1213 timespecadd(&ts, &ptn->pt_time.it_value, &ts); 1214 } 1215 LIST_FIRST(&pts->pts_virtual) = NULL; 1216 if (ptn) { 1217 KASSERT(ptn->pt_type != CLOCK_REALTIME); 1218 timespecadd(&ts, &ptn->pt_time.it_value, 1219 &ptn->pt_time.it_value); 1220 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list); 1221 } 1222 timespecclear(&ts); 1223 for (ptn = LIST_FIRST(&pts->pts_prof); 1224 ptn && ptn != pts->pts_timers[ITIMER_PROF]; 1225 ptn = LIST_NEXT(ptn, pt_list)) { 1226 KASSERT(ptn->pt_type != CLOCK_REALTIME); 1227 timespecadd(&ts, &ptn->pt_time.it_value, &ts); 1228 } 1229 LIST_FIRST(&pts->pts_prof) = NULL; 1230 if (ptn) { 1231 KASSERT(ptn->pt_type != CLOCK_REALTIME); 1232 timespecadd(&ts, &ptn->pt_time.it_value, 1233 &ptn->pt_time.it_value); 1234 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list); 1235 } 1236 i = 3; 1237 } 1238 for ( ; i < TIMER_MAX; i++) { 1239 if (pts->pts_timers[i] != NULL) { 1240 itimerfree(pts, i); 1241 mutex_spin_enter(&timer_lock); 1242 } 1243 } 1244 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL && 1245 pts->pts_timers[2] == NULL) { 1246 p->p_timers = NULL; 1247 mutex_spin_exit(&timer_lock); 1248 pool_put(&ptimers_pool, pts); 1249 } else 1250 mutex_spin_exit(&timer_lock); 1251 } 1252 1253 static void 1254 itimerfree(struct ptimers *pts, int index) 1255 { 1256 struct ptimer *pt; 1257 1258 KASSERT(mutex_owned(&timer_lock)); 1259 1260 pt = pts->pts_timers[index]; 1261 pts->pts_timers[index] = NULL; 1262 if (pt->pt_type == CLOCK_REALTIME) 1263 callout_halt(&pt->pt_ch, &timer_lock); 1264 else if (pt->pt_queued) 1265 TAILQ_REMOVE(&timer_queue, pt, pt_chain); 1266 mutex_spin_exit(&timer_lock); 1267 if (pt->pt_type == CLOCK_REALTIME) 1268 callout_destroy(&pt->pt_ch); 1269 pool_put(&ptimer_pool, pt); 1270 } 1271 1272 /* 1273 * Decrement an interval timer by a specified number 1274 * of nanoseconds, which must be less than a second, 1275 * i.e. < 1000000000. If the timer expires, then reload 1276 * it. In this case, carry over (nsec - old value) to 1277 * reduce the value reloaded into the timer so that 1278 * the timer does not drift. This routine assumes 1279 * that it is called in a context where the timers 1280 * on which it is operating cannot change in value. 1281 */ 1282 static int 1283 itimerdecr(struct ptimer *pt, int nsec) 1284 { 1285 struct itimerspec *itp; 1286 1287 KASSERT(mutex_owned(&timer_lock)); 1288 1289 itp = &pt->pt_time; 1290 if (itp->it_value.tv_nsec < nsec) { 1291 if (itp->it_value.tv_sec == 0) { 1292 /* expired, and already in next interval */ 1293 nsec -= itp->it_value.tv_nsec; 1294 goto expire; 1295 } 1296 itp->it_value.tv_nsec += 1000000000; 1297 itp->it_value.tv_sec--; 1298 } 1299 itp->it_value.tv_nsec -= nsec; 1300 nsec = 0; 1301 if (timespecisset(&itp->it_value)) 1302 return (1); 1303 /* expired, exactly at end of interval */ 1304 expire: 1305 if (timespecisset(&itp->it_interval)) { 1306 itp->it_value = itp->it_interval; 1307 itp->it_value.tv_nsec -= nsec; 1308 if (itp->it_value.tv_nsec < 0) { 1309 itp->it_value.tv_nsec += 1000000000; 1310 itp->it_value.tv_sec--; 1311 } 1312 timer_settime(pt); 1313 } else 1314 itp->it_value.tv_nsec = 0; /* sec is already 0 */ 1315 return (0); 1316 } 1317 1318 static void 1319 itimerfire(struct ptimer *pt) 1320 { 1321 1322 KASSERT(mutex_owned(&timer_lock)); 1323 1324 /* 1325 * XXX Can overrun, but we don't do signal queueing yet, anyway. 1326 * XXX Relying on the clock interrupt is stupid. 1327 */ 1328 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) || 1329 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL && 1330 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued) 1331 return; 1332 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain); 1333 pt->pt_queued = true; 1334 softint_schedule(timer_sih); 1335 } 1336 1337 void 1338 timer_tick(lwp_t *l, bool user) 1339 { 1340 struct ptimers *pts; 1341 struct ptimer *pt; 1342 proc_t *p; 1343 1344 p = l->l_proc; 1345 if (p->p_timers == NULL) 1346 return; 1347 1348 mutex_spin_enter(&timer_lock); 1349 if ((pts = l->l_proc->p_timers) != NULL) { 1350 /* 1351 * Run current process's virtual and profile time, as needed. 1352 */ 1353 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL) 1354 if (itimerdecr(pt, tick * 1000) == 0) 1355 itimerfire(pt); 1356 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL) 1357 if (itimerdecr(pt, tick * 1000) == 0) 1358 itimerfire(pt); 1359 } 1360 mutex_spin_exit(&timer_lock); 1361 } 1362 1363 #ifdef KERN_SA 1364 /* 1365 * timer_sa_intr: 1366 * 1367 * SIGEV_SA handling for timer_intr(). We are called (and return) 1368 * with the timer lock held. We know that the process had SA enabled 1369 * when this timer was enqueued. As timer_intr() is a soft interrupt 1370 * handler, SA should still be enabled by the time we get here. 1371 */ 1372 static void 1373 timer_sa_intr(struct ptimer *pt, proc_t *p) 1374 { 1375 unsigned int i; 1376 struct sadata *sa; 1377 struct sadata_vp *vp; 1378 1379 /* Cause the process to generate an upcall when it returns. */ 1380 if (!p->p_timerpend) { 1381 /* 1382 * XXX stop signals can be processed inside tsleep, 1383 * which can be inside sa_yield's inner loop, which 1384 * makes testing for sa_idle alone insuffucent to 1385 * determine if we really should call setrunnable. 1386 */ 1387 pt->pt_poverruns = pt->pt_overruns; 1388 pt->pt_overruns = 0; 1389 i = 1 << pt->pt_entry; 1390 p->p_timers->pts_fired = i; 1391 p->p_timerpend = 1; 1392 1393 sa = p->p_sa; 1394 mutex_enter(&sa->sa_mutex); 1395 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) { 1396 struct lwp *vp_lwp = vp->savp_lwp; 1397 lwp_lock(vp_lwp); 1398 lwp_need_userret(vp_lwp); 1399 if (vp_lwp->l_flag & LW_SA_IDLE) { 1400 vp_lwp->l_flag &= ~LW_SA_IDLE; 1401 lwp_unsleep(vp_lwp, true); 1402 break; 1403 } 1404 lwp_unlock(vp_lwp); 1405 } 1406 mutex_exit(&sa->sa_mutex); 1407 } else { 1408 i = 1 << pt->pt_entry; 1409 if ((p->p_timers->pts_fired & i) == 0) { 1410 pt->pt_poverruns = pt->pt_overruns; 1411 pt->pt_overruns = 0; 1412 p->p_timers->pts_fired |= i; 1413 } else 1414 pt->pt_overruns++; 1415 } 1416 } 1417 #endif /* KERN_SA */ 1418 1419 static void 1420 timer_intr(void *cookie) 1421 { 1422 ksiginfo_t ksi; 1423 struct ptimer *pt; 1424 proc_t *p; 1425 1426 mutex_enter(proc_lock); 1427 mutex_spin_enter(&timer_lock); 1428 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) { 1429 TAILQ_REMOVE(&timer_queue, pt, pt_chain); 1430 KASSERT(pt->pt_queued); 1431 pt->pt_queued = false; 1432 1433 if (pt->pt_proc->p_timers == NULL) { 1434 /* Process is dying. */ 1435 continue; 1436 } 1437 p = pt->pt_proc; 1438 #ifdef KERN_SA 1439 if (pt->pt_ev.sigev_notify == SIGEV_SA) { 1440 timer_sa_intr(pt, p); 1441 continue; 1442 } 1443 #endif /* KERN_SA */ 1444 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) 1445 continue; 1446 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) { 1447 pt->pt_overruns++; 1448 continue; 1449 } 1450 1451 KSI_INIT(&ksi); 1452 ksi.ksi_signo = pt->pt_ev.sigev_signo; 1453 ksi.ksi_code = SI_TIMER; 1454 ksi.ksi_value = pt->pt_ev.sigev_value; 1455 pt->pt_poverruns = pt->pt_overruns; 1456 pt->pt_overruns = 0; 1457 mutex_spin_exit(&timer_lock); 1458 kpsignal(p, &ksi, NULL); 1459 mutex_spin_enter(&timer_lock); 1460 } 1461 mutex_spin_exit(&timer_lock); 1462 mutex_exit(proc_lock); 1463 } 1464