xref: /netbsd-src/sys/kern/kern_time.c (revision d0fed6c87ddc40a8bffa6f99e7433ddfc864dd83)
1 /*	$NetBSD: kern_time.c,v 1.28 1997/04/21 16:56:54 jtc Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/param.h>
39 #include <sys/resourcevar.h>
40 #include <sys/kernel.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44 #include <sys/signalvar.h>
45 #include <sys/syslog.h>
46 
47 #include <sys/mount.h>
48 #include <sys/syscallargs.h>
49 
50 #if defined(NFS) || defined(NFSSERVER)
51 #include <nfs/rpcv2.h>
52 #include <nfs/nfsproto.h>
53 #include <nfs/nfs_var.h>
54 #endif
55 
56 #include <machine/cpu.h>
57 
58 static void	settime __P((struct timeval *));
59 
60 /*
61  * Time of day and interval timer support.
62  *
63  * These routines provide the kernel entry points to get and set
64  * the time-of-day and per-process interval timers.  Subroutines
65  * here provide support for adding and subtracting timeval structures
66  * and decrementing interval timers, optionally reloading the interval
67  * timers when they expire.
68  */
69 
70 /* This function is used by clock_settime and settimeofday */
71 static void
72 settime(tv)
73 	struct timeval *tv;
74 {
75 	struct timeval delta;
76 	int s;
77 
78 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
79 	s = splclock();
80 	timersub(tv, &time, &delta);
81 	time = *tv;
82 	(void) splsoftclock();
83 	timeradd(&boottime, &delta, &boottime);
84 	timeradd(&runtime, &delta, &runtime);
85 #	if defined(NFS) || defined(NFSSERVER)
86 		nqnfs_lease_updatetime(delta.tv_sec);
87 #	endif
88 	splx(s);
89 	resettodr();
90 }
91 
92 /* ARGSUSED */
93 int
94 sys_clock_gettime(p, v, retval)
95 	struct proc *p;
96 	void *v;
97 	register_t *retval;
98 {
99 	register struct sys_clock_gettime_args /* {
100 		syscallarg(clockid_t) clock_id;
101 		syscallarg(struct timespec *) tp;
102 	} */ *uap = v;
103 	clockid_t clock_id;
104 	struct timeval atv;
105 	struct timespec ats;
106 
107 	clock_id = SCARG(uap, clock_id);
108 	if (clock_id != CLOCK_REALTIME)
109 		return (EINVAL);
110 
111 	microtime(&atv);
112 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
113 
114 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
115 }
116 
117 /* ARGSUSED */
118 int
119 sys_clock_settime(p, v, retval)
120 	struct proc *p;
121 	void *v;
122 	register_t *retval;
123 {
124 	register struct sys_clock_settime_args /* {
125 		syscallarg(clockid_t) clock_id;
126 		syscallarg(const struct timespec *) tp;
127 	} */ *uap = v;
128 	clockid_t clock_id;
129 	struct timeval atv;
130 	struct timespec ats;
131 	int error;
132 
133 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
134 		return (error);
135 
136 	clock_id = SCARG(uap, clock_id);
137 	if (clock_id != CLOCK_REALTIME)
138 		return (EINVAL);
139 
140 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
141 		return (error);
142 
143 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
144 	settime(&atv);
145 
146 	return 0;
147 }
148 
149 int
150 sys_clock_getres(p, v, retval)
151 	struct proc *p;
152 	void *v;
153 	register_t *retval;
154 {
155 	register struct sys_clock_getres_args /* {
156 		syscallarg(clockid_t) clock_id;
157 		syscallarg(struct timespec *) tp;
158 	} */ *uap = v;
159 	clockid_t clock_id;
160 	struct timespec ts;
161 	int error = 0;
162 
163 	clock_id = SCARG(uap, clock_id);
164 	if (clock_id != CLOCK_REALTIME)
165 		return (EINVAL);
166 
167 	if (SCARG(uap, tp)) {
168 		ts.tv_sec = 0;
169 		ts.tv_nsec = 1000000000 / hz;
170 
171 		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
172 	}
173 
174 	return error;
175 }
176 
177 /* ARGSUSED */
178 int
179 sys_nanosleep(p, v, retval)
180 	struct proc *p;
181 	void *v;
182 	register_t *retval;
183 {
184 	static int nanowait;
185 	register struct sys_nanosleep_args/* {
186 		syscallarg(struct timespec *) rqtp;
187 		syscallarg(struct timespec *) rmtp;
188 	} */ *uap = v;
189 	struct timespec rqt;
190 	struct timespec rmt;
191 	struct timeval atv, utv;
192 	int error, s, timo;
193 
194 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
195 		       sizeof(struct timespec));
196 	if (error)
197 		return (error);
198 
199 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
200 	if (itimerfix(&atv))
201 		return (EINVAL);
202 
203 	s = splclock();
204 	timeradd(&atv,&time,&atv);
205 	timo = hzto(&atv);
206 	/*
207 	 * Avoid inadvertantly sleeping forever
208 	 */
209 	if (timo == 0)
210 		timo = 1;
211 	splx(s);
212 
213 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
214 	if (error == ERESTART)
215 		error = EINTR;
216 	if (error == EWOULDBLOCK)
217 		error = 0;
218 
219 	if (SCARG(uap, rmtp)) {
220 		int error;
221 
222 		s = splclock();
223 		utv = time;
224 		splx(s);
225 
226 		timersub(&atv, &utv, &utv);
227 		if (utv.tv_sec < 0)
228 			timerclear(&utv);
229 
230 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
231 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
232 			sizeof(rmt));
233 		if (error)
234 			return (error);
235 	}
236 
237 	return error;
238 }
239 
240 /* ARGSUSED */
241 int
242 sys_gettimeofday(p, v, retval)
243 	struct proc *p;
244 	void *v;
245 	register_t *retval;
246 {
247 	register struct sys_gettimeofday_args /* {
248 		syscallarg(struct timeval *) tp;
249 		syscallarg(struct timezone *) tzp;
250 	} */ *uap = v;
251 	struct timeval atv;
252 	int error = 0;
253 	struct timezone tzfake;
254 
255 	if (SCARG(uap, tp)) {
256 		microtime(&atv);
257 		error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
258 		if (error)
259 			return (error);
260 	}
261 	if (SCARG(uap, tzp)) {
262 		/*
263 		 * NetBSD has no kernel notion of timezone, so we just
264 		 * fake up a timezone struct and return it if demanded.
265 		 */
266 		tzfake.tz_minuteswest = 0;
267 		tzfake.tz_dsttime = 0;
268 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
269 	}
270 	return (error);
271 }
272 
273 /* ARGSUSED */
274 int
275 sys_settimeofday(p, v, retval)
276 	struct proc *p;
277 	void *v;
278 	register_t *retval;
279 {
280 	struct sys_settimeofday_args /* {
281 		syscallarg(const struct timeval *) tv;
282 		syscallarg(const struct timezone *) tzp;
283 	} */ *uap = v;
284 	struct timeval atv;
285 	struct timezone atz;
286 	int error;
287 
288 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
289 		return (error);
290 	/* Verify all parameters before changing time. */
291 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
292 	    &atv, sizeof(atv))))
293 		return (error);
294 	/* XXX since we don't use tz, probably no point in doing copyin. */
295 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
296 	    &atz, sizeof(atz))))
297 		return (error);
298 	if (SCARG(uap, tv))
299 		settime(&atv);
300 	/*
301 	 * NetBSD has no kernel notion of timezone, and only an
302 	 * obsolete program would try to set it, so we log a warning.
303 	 */
304 	if (SCARG(uap, tzp))
305 		log(LOG_WARNING, "pid %d attempted to set the "
306 		    "(obsolete) kernel timezone.", p->p_pid);
307 	return (0);
308 }
309 
310 int	tickdelta;			/* current clock skew, us. per tick */
311 long	timedelta;			/* unapplied time correction, us. */
312 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
313 
314 /* ARGSUSED */
315 int
316 sys_adjtime(p, v, retval)
317 	struct proc *p;
318 	void *v;
319 	register_t *retval;
320 {
321 	register struct sys_adjtime_args /* {
322 		syscallarg(const struct timeval *) delta;
323 		syscallarg(struct timeval *) olddelta;
324 	} */ *uap = v;
325 	struct timeval atv;
326 	register long ndelta, ntickdelta, odelta;
327 	int s, error;
328 
329 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
330 		return (error);
331 
332 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
333 	if (error)
334 		return (error);
335 
336 	/*
337 	 * Compute the total correction and the rate at which to apply it.
338 	 * Round the adjustment down to a whole multiple of the per-tick
339 	 * delta, so that after some number of incremental changes in
340 	 * hardclock(), tickdelta will become zero, lest the correction
341 	 * overshoot and start taking us away from the desired final time.
342 	 */
343 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
344 	if (ndelta > bigadj)
345 		ntickdelta = 10 * tickadj;
346 	else
347 		ntickdelta = tickadj;
348 	if (ndelta % ntickdelta)
349 		ndelta = ndelta / ntickdelta * ntickdelta;
350 
351 	/*
352 	 * To make hardclock()'s job easier, make the per-tick delta negative
353 	 * if we want time to run slower; then hardclock can simply compute
354 	 * tick + tickdelta, and subtract tickdelta from timedelta.
355 	 */
356 	if (ndelta < 0)
357 		ntickdelta = -ntickdelta;
358 	s = splclock();
359 	odelta = timedelta;
360 	timedelta = ndelta;
361 	tickdelta = ntickdelta;
362 	splx(s);
363 
364 	if (SCARG(uap, olddelta)) {
365 		atv.tv_sec = odelta / 1000000;
366 		atv.tv_usec = odelta % 1000000;
367 		(void) copyout(&atv, SCARG(uap, olddelta),
368 		    sizeof(struct timeval));
369 	}
370 	return (0);
371 }
372 
373 /*
374  * Get value of an interval timer.  The process virtual and
375  * profiling virtual time timers are kept in the p_stats area, since
376  * they can be swapped out.  These are kept internally in the
377  * way they are specified externally: in time until they expire.
378  *
379  * The real time interval timer is kept in the process table slot
380  * for the process, and its value (it_value) is kept as an
381  * absolute time rather than as a delta, so that it is easy to keep
382  * periodic real-time signals from drifting.
383  *
384  * Virtual time timers are processed in the hardclock() routine of
385  * kern_clock.c.  The real time timer is processed by a timeout
386  * routine, called from the softclock() routine.  Since a callout
387  * may be delayed in real time due to interrupt processing in the system,
388  * it is possible for the real time timeout routine (realitexpire, given below),
389  * to be delayed in real time past when it is supposed to occur.  It
390  * does not suffice, therefore, to reload the real timer .it_value from the
391  * real time timers .it_interval.  Rather, we compute the next time in
392  * absolute time the timer should go off.
393  */
394 /* ARGSUSED */
395 int
396 sys_getitimer(p, v, retval)
397 	struct proc *p;
398 	void *v;
399 	register_t *retval;
400 {
401 	register struct sys_getitimer_args /* {
402 		syscallarg(u_int) which;
403 		syscallarg(struct itimerval *) itv;
404 	} */ *uap = v;
405 	struct itimerval aitv;
406 	int s;
407 
408 	if (SCARG(uap, which) > ITIMER_PROF)
409 		return (EINVAL);
410 	s = splclock();
411 	if (SCARG(uap, which) == ITIMER_REAL) {
412 		/*
413 		 * Convert from absolute to relative time in .it_value
414 		 * part of real time timer.  If time for real time timer
415 		 * has passed return 0, else return difference between
416 		 * current time and time for the timer to go off.
417 		 */
418 		aitv = p->p_realtimer;
419 		if (timerisset(&aitv.it_value))
420 			if (timercmp(&aitv.it_value, &time, <))
421 				timerclear(&aitv.it_value);
422 			else
423 				timersub(&aitv.it_value, &time, &aitv.it_value);
424 	} else
425 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
426 	splx(s);
427 	return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
428 }
429 
430 /* ARGSUSED */
431 int
432 sys_setitimer(p, v, retval)
433 	struct proc *p;
434 	register void *v;
435 	register_t *retval;
436 {
437 	register struct sys_setitimer_args /* {
438 		syscallarg(u_int) which;
439 		syscallarg(const struct itimerval *) itv;
440 		syscallarg(struct itimerval *) oitv;
441 	} */ *uap = v;
442 	struct sys_getitimer_args getargs;
443 	struct itimerval aitv;
444 	register const struct itimerval *itvp;
445 	int s, error;
446 
447 	if (SCARG(uap, which) > ITIMER_PROF)
448 		return (EINVAL);
449 	itvp = SCARG(uap, itv);
450 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
451 		return (error);
452 	if (SCARG(uap, oitv) != NULL) {
453 		SCARG(&getargs, which) = SCARG(uap, which);
454 		SCARG(&getargs, itv) = SCARG(uap, oitv);
455 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
456 			return (error);
457 	}
458 	if (itvp == 0)
459 		return (0);
460 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
461 		return (EINVAL);
462 	s = splclock();
463 	if (SCARG(uap, which) == ITIMER_REAL) {
464 		untimeout(realitexpire, p);
465 		if (timerisset(&aitv.it_value)) {
466 			timeradd(&aitv.it_value, &time, &aitv.it_value);
467 			timeout(realitexpire, p, hzto(&aitv.it_value));
468 		}
469 		p->p_realtimer = aitv;
470 	} else
471 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
472 	splx(s);
473 	return (0);
474 }
475 
476 /*
477  * Real interval timer expired:
478  * send process whose timer expired an alarm signal.
479  * If time is not set up to reload, then just return.
480  * Else compute next time timer should go off which is > current time.
481  * This is where delay in processing this timeout causes multiple
482  * SIGALRM calls to be compressed into one.
483  */
484 void
485 realitexpire(arg)
486 	void *arg;
487 {
488 	register struct proc *p;
489 	int s;
490 
491 	p = (struct proc *)arg;
492 	psignal(p, SIGALRM);
493 	if (!timerisset(&p->p_realtimer.it_interval)) {
494 		timerclear(&p->p_realtimer.it_value);
495 		return;
496 	}
497 	for (;;) {
498 		s = splclock();
499 		timeradd(&p->p_realtimer.it_value,
500 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
501 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
502 			timeout(realitexpire, p,
503 			    hzto(&p->p_realtimer.it_value));
504 			splx(s);
505 			return;
506 		}
507 		splx(s);
508 	}
509 }
510 
511 /*
512  * Check that a proposed value to load into the .it_value or
513  * .it_interval part of an interval timer is acceptable, and
514  * fix it to have at least minimal value (i.e. if it is less
515  * than the resolution of the clock, round it up.)
516  */
517 int
518 itimerfix(tv)
519 	struct timeval *tv;
520 {
521 
522 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
523 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
524 		return (EINVAL);
525 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
526 		tv->tv_usec = tick;
527 	return (0);
528 }
529 
530 /*
531  * Decrement an interval timer by a specified number
532  * of microseconds, which must be less than a second,
533  * i.e. < 1000000.  If the timer expires, then reload
534  * it.  In this case, carry over (usec - old value) to
535  * reduce the value reloaded into the timer so that
536  * the timer does not drift.  This routine assumes
537  * that it is called in a context where the timers
538  * on which it is operating cannot change in value.
539  */
540 int
541 itimerdecr(itp, usec)
542 	register struct itimerval *itp;
543 	int usec;
544 {
545 
546 	if (itp->it_value.tv_usec < usec) {
547 		if (itp->it_value.tv_sec == 0) {
548 			/* expired, and already in next interval */
549 			usec -= itp->it_value.tv_usec;
550 			goto expire;
551 		}
552 		itp->it_value.tv_usec += 1000000;
553 		itp->it_value.tv_sec--;
554 	}
555 	itp->it_value.tv_usec -= usec;
556 	usec = 0;
557 	if (timerisset(&itp->it_value))
558 		return (1);
559 	/* expired, exactly at end of interval */
560 expire:
561 	if (timerisset(&itp->it_interval)) {
562 		itp->it_value = itp->it_interval;
563 		itp->it_value.tv_usec -= usec;
564 		if (itp->it_value.tv_usec < 0) {
565 			itp->it_value.tv_usec += 1000000;
566 			itp->it_value.tv_sec--;
567 		}
568 	} else
569 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
570 	return (0);
571 }
572