xref: /netbsd-src/sys/kern/kern_time.c (revision ce099b40997c43048fb78bd578195f81d2456523)
1 /*	$NetBSD: kern_time.c,v 1.146 2008/04/28 20:24:03 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christopher G. Demetriou.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.146 2008/04/28 20:24:03 martin Exp $");
65 
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80 
81 #include <uvm/uvm_extern.h>
82 
83 static void	timer_intr(void *);
84 static void	itimerfire(struct ptimer *);
85 static void	itimerfree(struct ptimers *, int);
86 
87 kmutex_t	time_lock;
88 kmutex_t	timer_lock;
89 
90 static void	*timer_sih;
91 static TAILQ_HEAD(, ptimer) timer_queue;
92 
93 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
94     &pool_allocator_nointr, IPL_NONE);
95 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
96     &pool_allocator_nointr, IPL_NONE);
97 
98 /*
99  * Initialize timekeeping.
100  */
101 void
102 time_init(void)
103 {
104 
105 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
106 }
107 
108 void
109 time_init2(void)
110 {
111 
112 	TAILQ_INIT(&timer_queue);
113 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
114 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
115 	    timer_intr, NULL);
116 }
117 
118 /* Time of day and interval timer support.
119  *
120  * These routines provide the kernel entry points to get and set
121  * the time-of-day and per-process interval timers.  Subroutines
122  * here provide support for adding and subtracting timeval structures
123  * and decrementing interval timers, optionally reloading the interval
124  * timers when they expire.
125  */
126 
127 /* This function is used by clock_settime and settimeofday */
128 static int
129 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
130 {
131 	struct timeval delta, tv;
132 	struct timeval now;
133 	struct timespec ts1;
134 	struct bintime btdelta;
135 	lwp_t *l;
136 	int s;
137 
138 	TIMESPEC_TO_TIMEVAL(&tv, ts);
139 
140 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
141 	s = splclock();
142 	microtime(&now);
143 	timersub(&tv, &now, &delta);
144 
145 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
146 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
147 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
148 		splx(s);
149 		return (EPERM);
150 	}
151 
152 #ifdef notyet
153 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
154 		splx(s);
155 		return (EPERM);
156 	}
157 #endif
158 
159 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
160 	tc_setclock(&ts1);
161 
162 	timeradd(&boottime, &delta, &boottime);
163 
164 	/*
165 	 * XXXSMP: There is a short race between setting the time above
166 	 * and adjusting LWP's run times.  Fixing this properly means
167 	 * pausing all CPUs while we adjust the clock.
168 	 */
169 	timeval2bintime(&delta, &btdelta);
170 	mutex_enter(proc_lock);
171 	LIST_FOREACH(l, &alllwp, l_list) {
172 		lwp_lock(l);
173 		bintime_add(&l->l_stime, &btdelta);
174 		lwp_unlock(l);
175 	}
176 	mutex_exit(proc_lock);
177 	resettodr();
178 	splx(s);
179 
180 	return (0);
181 }
182 
183 int
184 settime(struct proc *p, struct timespec *ts)
185 {
186 	return (settime1(p, ts, true));
187 }
188 
189 /* ARGSUSED */
190 int
191 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
192     register_t *retval)
193 {
194 	/* {
195 		syscallarg(clockid_t) clock_id;
196 		syscallarg(struct timespec *) tp;
197 	} */
198 	clockid_t clock_id;
199 	struct timespec ats;
200 
201 	clock_id = SCARG(uap, clock_id);
202 	switch (clock_id) {
203 	case CLOCK_REALTIME:
204 		nanotime(&ats);
205 		break;
206 	case CLOCK_MONOTONIC:
207 		nanouptime(&ats);
208 		break;
209 	default:
210 		return (EINVAL);
211 	}
212 
213 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
214 }
215 
216 /* ARGSUSED */
217 int
218 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
219     register_t *retval)
220 {
221 	/* {
222 		syscallarg(clockid_t) clock_id;
223 		syscallarg(const struct timespec *) tp;
224 	} */
225 
226 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
227 	    true);
228 }
229 
230 
231 int
232 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
233     bool check_kauth)
234 {
235 	struct timespec ats;
236 	int error;
237 
238 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
239 		return (error);
240 
241 	switch (clock_id) {
242 	case CLOCK_REALTIME:
243 		if ((error = settime1(p, &ats, check_kauth)) != 0)
244 			return (error);
245 		break;
246 	case CLOCK_MONOTONIC:
247 		return (EINVAL);	/* read-only clock */
248 	default:
249 		return (EINVAL);
250 	}
251 
252 	return 0;
253 }
254 
255 int
256 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
257     register_t *retval)
258 {
259 	/* {
260 		syscallarg(clockid_t) clock_id;
261 		syscallarg(struct timespec *) tp;
262 	} */
263 	clockid_t clock_id;
264 	struct timespec ts;
265 	int error = 0;
266 
267 	clock_id = SCARG(uap, clock_id);
268 	switch (clock_id) {
269 	case CLOCK_REALTIME:
270 	case CLOCK_MONOTONIC:
271 		ts.tv_sec = 0;
272 		if (tc_getfrequency() > 1000000000)
273 			ts.tv_nsec = 1;
274 		else
275 			ts.tv_nsec = 1000000000 / tc_getfrequency();
276 		break;
277 	default:
278 		return (EINVAL);
279 	}
280 
281 	if (SCARG(uap, tp))
282 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
283 
284 	return error;
285 }
286 
287 /* ARGSUSED */
288 int
289 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
290     register_t *retval)
291 {
292 	/* {
293 		syscallarg(struct timespec *) rqtp;
294 		syscallarg(struct timespec *) rmtp;
295 	} */
296 	struct timespec rmt, rqt;
297 	int error, error1;
298 
299 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
300 	if (error)
301 		return (error);
302 
303 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
304 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
305 		return error;
306 
307 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
308 	return error1 ? error1 : error;
309 }
310 
311 int
312 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
313 {
314 	struct timespec rmtstart;
315 	int error, timo;
316 
317 	if (itimespecfix(rqt))
318 		return (EINVAL);
319 
320 	timo = tstohz(rqt);
321 	/*
322 	 * Avoid inadvertantly sleeping forever
323 	 */
324 	if (timo == 0)
325 		timo = 1;
326 	getnanouptime(&rmtstart);
327 again:
328 	error = kpause("nanoslp", true, timo, NULL);
329 	if (rmt != NULL || error == 0) {
330 		struct timespec rmtend;
331 		struct timespec t0;
332 		struct timespec *t;
333 
334 		getnanouptime(&rmtend);
335 		t = (rmt != NULL) ? rmt : &t0;
336 		timespecsub(&rmtend, &rmtstart, t);
337 		timespecsub(rqt, t, t);
338 		if (t->tv_sec < 0)
339 			timespecclear(t);
340 		if (error == 0) {
341 			timo = tstohz(t);
342 			if (timo > 0)
343 				goto again;
344 		}
345 	}
346 
347 	if (error == ERESTART)
348 		error = EINTR;
349 	if (error == EWOULDBLOCK)
350 		error = 0;
351 
352 	return error;
353 }
354 
355 /* ARGSUSED */
356 int
357 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
358     register_t *retval)
359 {
360 	/* {
361 		syscallarg(struct timeval *) tp;
362 		syscallarg(void *) tzp;		really "struct timezone *";
363 	} */
364 	struct timeval atv;
365 	int error = 0;
366 	struct timezone tzfake;
367 
368 	if (SCARG(uap, tp)) {
369 		microtime(&atv);
370 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
371 		if (error)
372 			return (error);
373 	}
374 	if (SCARG(uap, tzp)) {
375 		/*
376 		 * NetBSD has no kernel notion of time zone, so we just
377 		 * fake up a timezone struct and return it if demanded.
378 		 */
379 		tzfake.tz_minuteswest = 0;
380 		tzfake.tz_dsttime = 0;
381 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
382 	}
383 	return (error);
384 }
385 
386 /* ARGSUSED */
387 int
388 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
389     register_t *retval)
390 {
391 	/* {
392 		syscallarg(const struct timeval *) tv;
393 		syscallarg(const void *) tzp; really "const struct timezone *";
394 	} */
395 
396 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
397 }
398 
399 int
400 settimeofday1(const struct timeval *utv, bool userspace,
401     const void *utzp, struct lwp *l, bool check_kauth)
402 {
403 	struct timeval atv;
404 	struct timespec ts;
405 	int error;
406 
407 	/* Verify all parameters before changing time. */
408 
409 	/*
410 	 * NetBSD has no kernel notion of time zone, and only an
411 	 * obsolete program would try to set it, so we log a warning.
412 	 */
413 	if (utzp)
414 		log(LOG_WARNING, "pid %d attempted to set the "
415 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
416 
417 	if (utv == NULL)
418 		return 0;
419 
420 	if (userspace) {
421 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
422 			return error;
423 		utv = &atv;
424 	}
425 
426 	TIMEVAL_TO_TIMESPEC(utv, &ts);
427 	return settime1(l->l_proc, &ts, check_kauth);
428 }
429 
430 int	time_adjusted;			/* set if an adjustment is made */
431 
432 /* ARGSUSED */
433 int
434 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
435     register_t *retval)
436 {
437 	/* {
438 		syscallarg(const struct timeval *) delta;
439 		syscallarg(struct timeval *) olddelta;
440 	} */
441 	int error;
442 
443 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
444 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
445 		return (error);
446 
447 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
448 }
449 
450 int
451 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
452 {
453 	struct timeval atv;
454 	int error = 0;
455 
456 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
457 
458 	if (olddelta) {
459 		mutex_spin_enter(&timecounter_lock);
460 		atv.tv_sec = time_adjtime / 1000000;
461 		atv.tv_usec = time_adjtime % 1000000;
462 		mutex_spin_exit(&timecounter_lock);
463 		if (atv.tv_usec < 0) {
464 			atv.tv_usec += 1000000;
465 			atv.tv_sec--;
466 		}
467 		error = copyout(&atv, olddelta, sizeof(struct timeval));
468 		if (error)
469 			return (error);
470 	}
471 
472 	if (delta) {
473 		error = copyin(delta, &atv, sizeof(struct timeval));
474 		if (error)
475 			return (error);
476 
477 		mutex_spin_enter(&timecounter_lock);
478 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
479 			atv.tv_usec;
480 		if (time_adjtime) {
481 			/* We need to save the system time during shutdown */
482 			time_adjusted |= 1;
483 		}
484 		mutex_spin_exit(&timecounter_lock);
485 	}
486 
487 	return error;
488 }
489 
490 /*
491  * Interval timer support. Both the BSD getitimer() family and the POSIX
492  * timer_*() family of routines are supported.
493  *
494  * All timers are kept in an array pointed to by p_timers, which is
495  * allocated on demand - many processes don't use timers at all. The
496  * first three elements in this array are reserved for the BSD timers:
497  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
498  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
499  * syscall.
500  *
501  * Realtime timers are kept in the ptimer structure as an absolute
502  * time; virtual time timers are kept as a linked list of deltas.
503  * Virtual time timers are processed in the hardclock() routine of
504  * kern_clock.c.  The real time timer is processed by a callout
505  * routine, called from the softclock() routine.  Since a callout may
506  * be delayed in real time due to interrupt processing in the system,
507  * it is possible for the real time timeout routine (realtimeexpire,
508  * given below), to be delayed in real time past when it is supposed
509  * to occur.  It does not suffice, therefore, to reload the real timer
510  * .it_value from the real time timers .it_interval.  Rather, we
511  * compute the next time in absolute time the timer should go off.  */
512 
513 /* Allocate a POSIX realtime timer. */
514 int
515 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
516     register_t *retval)
517 {
518 	/* {
519 		syscallarg(clockid_t) clock_id;
520 		syscallarg(struct sigevent *) evp;
521 		syscallarg(timer_t *) timerid;
522 	} */
523 
524 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
525 	    SCARG(uap, evp), copyin, l);
526 }
527 
528 int
529 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
530     copyin_t fetch_event, struct lwp *l)
531 {
532 	int error;
533 	timer_t timerid;
534 	struct ptimers *pts;
535 	struct ptimer *pt;
536 	struct proc *p;
537 
538 	p = l->l_proc;
539 
540 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
541 		return (EINVAL);
542 
543 	if ((pts = p->p_timers) == NULL)
544 		pts = timers_alloc(p);
545 
546 	pt = pool_get(&ptimer_pool, PR_WAITOK);
547 	if (evp != NULL) {
548 		if (((error =
549 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
550 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
551 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
552 			pool_put(&ptimer_pool, pt);
553 			return (error ? error : EINVAL);
554 		}
555 	}
556 
557 	/* Find a free timer slot, skipping those reserved for setitimer(). */
558 	mutex_spin_enter(&timer_lock);
559 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
560 		if (pts->pts_timers[timerid] == NULL)
561 			break;
562 	if (timerid == TIMER_MAX) {
563 		mutex_spin_exit(&timer_lock);
564 		pool_put(&ptimer_pool, pt);
565 		return EAGAIN;
566 	}
567 	if (evp == NULL) {
568 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
569 		switch (id) {
570 		case CLOCK_REALTIME:
571 			pt->pt_ev.sigev_signo = SIGALRM;
572 			break;
573 		case CLOCK_VIRTUAL:
574 			pt->pt_ev.sigev_signo = SIGVTALRM;
575 			break;
576 		case CLOCK_PROF:
577 			pt->pt_ev.sigev_signo = SIGPROF;
578 			break;
579 		}
580 		pt->pt_ev.sigev_value.sival_int = timerid;
581 	}
582 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
583 	pt->pt_info.ksi_errno = 0;
584 	pt->pt_info.ksi_code = 0;
585 	pt->pt_info.ksi_pid = p->p_pid;
586 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
587 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
588 	pt->pt_type = id;
589 	pt->pt_proc = p;
590 	pt->pt_overruns = 0;
591 	pt->pt_poverruns = 0;
592 	pt->pt_entry = timerid;
593 	pt->pt_queued = false;
594 	pt->pt_active = 0;
595 	timerclear(&pt->pt_time.it_value);
596 	callout_init(&pt->pt_ch, 0);
597 	pts->pts_timers[timerid] = pt;
598 	mutex_spin_exit(&timer_lock);
599 
600 	return copyout(&timerid, tid, sizeof(timerid));
601 }
602 
603 /* Delete a POSIX realtime timer */
604 int
605 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
606     register_t *retval)
607 {
608 	/* {
609 		syscallarg(timer_t) timerid;
610 	} */
611 	struct proc *p = l->l_proc;
612 	timer_t timerid;
613 	struct ptimers *pts;
614 	struct ptimer *pt, *ptn;
615 
616 	timerid = SCARG(uap, timerid);
617 	pts = p->p_timers;
618 
619 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
620 		return (EINVAL);
621 
622 	mutex_spin_enter(&timer_lock);
623 	if ((pt = pts->pts_timers[timerid]) == NULL) {
624 		mutex_spin_exit(&timer_lock);
625 		return (EINVAL);
626 	}
627 	if (pt->pt_active) {
628 		ptn = LIST_NEXT(pt, pt_list);
629 		LIST_REMOVE(pt, pt_list);
630 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
631 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
632 			    &ptn->pt_time.it_value);
633 		pt->pt_active = 0;
634 	}
635 	itimerfree(pts, timerid);
636 
637 	return (0);
638 }
639 
640 /*
641  * Set up the given timer. The value in pt->pt_time.it_value is taken
642  * to be an absolute time for CLOCK_REALTIME timers and a relative
643  * time for virtual timers.
644  * Must be called at splclock().
645  */
646 void
647 timer_settime(struct ptimer *pt)
648 {
649 	struct ptimer *ptn, *pptn;
650 	struct ptlist *ptl;
651 
652 	KASSERT(mutex_owned(&timer_lock));
653 
654 	if (pt->pt_type == CLOCK_REALTIME) {
655 		callout_stop(&pt->pt_ch);
656 		if (timerisset(&pt->pt_time.it_value)) {
657 			/*
658 			 * Don't need to check hzto() return value, here.
659 			 * callout_reset() does it for us.
660 			 */
661 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
662 			    realtimerexpire, pt);
663 		}
664 	} else {
665 		if (pt->pt_active) {
666 			ptn = LIST_NEXT(pt, pt_list);
667 			LIST_REMOVE(pt, pt_list);
668 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
669 				timeradd(&pt->pt_time.it_value,
670 				    &ptn->pt_time.it_value,
671 				    &ptn->pt_time.it_value);
672 		}
673 		if (timerisset(&pt->pt_time.it_value)) {
674 			if (pt->pt_type == CLOCK_VIRTUAL)
675 				ptl = &pt->pt_proc->p_timers->pts_virtual;
676 			else
677 				ptl = &pt->pt_proc->p_timers->pts_prof;
678 
679 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
680 			     ptn && timercmp(&pt->pt_time.it_value,
681 				 &ptn->pt_time.it_value, >);
682 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
683 				timersub(&pt->pt_time.it_value,
684 				    &ptn->pt_time.it_value,
685 				    &pt->pt_time.it_value);
686 
687 			if (pptn)
688 				LIST_INSERT_AFTER(pptn, pt, pt_list);
689 			else
690 				LIST_INSERT_HEAD(ptl, pt, pt_list);
691 
692 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
693 				timersub(&ptn->pt_time.it_value,
694 				    &pt->pt_time.it_value,
695 				    &ptn->pt_time.it_value);
696 
697 			pt->pt_active = 1;
698 		} else
699 			pt->pt_active = 0;
700 	}
701 }
702 
703 void
704 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
705 {
706 	struct timeval now;
707 	struct ptimer *ptn;
708 
709 	KASSERT(mutex_owned(&timer_lock));
710 
711 	*aitv = pt->pt_time;
712 	if (pt->pt_type == CLOCK_REALTIME) {
713 		/*
714 		 * Convert from absolute to relative time in .it_value
715 		 * part of real time timer.  If time for real time
716 		 * timer has passed return 0, else return difference
717 		 * between current time and time for the timer to go
718 		 * off.
719 		 */
720 		if (timerisset(&aitv->it_value)) {
721 			getmicrotime(&now);
722 			if (timercmp(&aitv->it_value, &now, <))
723 				timerclear(&aitv->it_value);
724 			else
725 				timersub(&aitv->it_value, &now,
726 				    &aitv->it_value);
727 		}
728 	} else if (pt->pt_active) {
729 		if (pt->pt_type == CLOCK_VIRTUAL)
730 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
731 		else
732 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
733 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
734 			timeradd(&aitv->it_value,
735 			    &ptn->pt_time.it_value, &aitv->it_value);
736 		KASSERT(ptn != NULL); /* pt should be findable on the list */
737 	} else
738 		timerclear(&aitv->it_value);
739 }
740 
741 
742 
743 /* Set and arm a POSIX realtime timer */
744 int
745 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
746     register_t *retval)
747 {
748 	/* {
749 		syscallarg(timer_t) timerid;
750 		syscallarg(int) flags;
751 		syscallarg(const struct itimerspec *) value;
752 		syscallarg(struct itimerspec *) ovalue;
753 	} */
754 	int error;
755 	struct itimerspec value, ovalue, *ovp = NULL;
756 
757 	if ((error = copyin(SCARG(uap, value), &value,
758 	    sizeof(struct itimerspec))) != 0)
759 		return (error);
760 
761 	if (SCARG(uap, ovalue))
762 		ovp = &ovalue;
763 
764 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
765 	    SCARG(uap, flags), l->l_proc)) != 0)
766 		return error;
767 
768 	if (ovp)
769 		return copyout(&ovalue, SCARG(uap, ovalue),
770 		    sizeof(struct itimerspec));
771 	return 0;
772 }
773 
774 int
775 dotimer_settime(int timerid, struct itimerspec *value,
776     struct itimerspec *ovalue, int flags, struct proc *p)
777 {
778 	struct timeval now;
779 	struct itimerval val, oval;
780 	struct ptimers *pts;
781 	struct ptimer *pt;
782 
783 	pts = p->p_timers;
784 
785 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
786 		return EINVAL;
787 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
788 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
789 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
790 		return (EINVAL);
791 
792 	mutex_spin_enter(&timer_lock);
793 	if ((pt = pts->pts_timers[timerid]) == NULL) {
794 		mutex_spin_exit(&timer_lock);
795 		return (EINVAL);
796 	}
797 
798 	oval = pt->pt_time;
799 	pt->pt_time = val;
800 
801 	/*
802 	 * If we've been passed a relative time for a realtime timer,
803 	 * convert it to absolute; if an absolute time for a virtual
804 	 * timer, convert it to relative and make sure we don't set it
805 	 * to zero, which would cancel the timer, or let it go
806 	 * negative, which would confuse the comparison tests.
807 	 */
808 	if (timerisset(&pt->pt_time.it_value)) {
809 		if (pt->pt_type == CLOCK_REALTIME) {
810 			if ((flags & TIMER_ABSTIME) == 0) {
811 				getmicrotime(&now);
812 				timeradd(&pt->pt_time.it_value, &now,
813 				    &pt->pt_time.it_value);
814 			}
815 		} else {
816 			if ((flags & TIMER_ABSTIME) != 0) {
817 				getmicrotime(&now);
818 				timersub(&pt->pt_time.it_value, &now,
819 				    &pt->pt_time.it_value);
820 				if (!timerisset(&pt->pt_time.it_value) ||
821 				    pt->pt_time.it_value.tv_sec < 0) {
822 					pt->pt_time.it_value.tv_sec = 0;
823 					pt->pt_time.it_value.tv_usec = 1;
824 				}
825 			}
826 		}
827 	}
828 
829 	timer_settime(pt);
830 	mutex_spin_exit(&timer_lock);
831 
832 	if (ovalue) {
833 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
834 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
835 	}
836 
837 	return (0);
838 }
839 
840 /* Return the time remaining until a POSIX timer fires. */
841 int
842 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
843     register_t *retval)
844 {
845 	/* {
846 		syscallarg(timer_t) timerid;
847 		syscallarg(struct itimerspec *) value;
848 	} */
849 	struct itimerspec its;
850 	int error;
851 
852 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
853 	    &its)) != 0)
854 		return error;
855 
856 	return copyout(&its, SCARG(uap, value), sizeof(its));
857 }
858 
859 int
860 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
861 {
862 	struct ptimer *pt;
863 	struct ptimers *pts;
864 	struct itimerval aitv;
865 
866 	pts = p->p_timers;
867 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
868 		return (EINVAL);
869 	mutex_spin_enter(&timer_lock);
870 	if ((pt = pts->pts_timers[timerid]) == NULL) {
871 		mutex_spin_exit(&timer_lock);
872 		return (EINVAL);
873 	}
874 	timer_gettime(pt, &aitv);
875 	mutex_spin_exit(&timer_lock);
876 
877 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
878 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
879 
880 	return 0;
881 }
882 
883 /*
884  * Return the count of the number of times a periodic timer expired
885  * while a notification was already pending. The counter is reset when
886  * a timer expires and a notification can be posted.
887  */
888 int
889 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
890     register_t *retval)
891 {
892 	/* {
893 		syscallarg(timer_t) timerid;
894 	} */
895 	struct proc *p = l->l_proc;
896 	struct ptimers *pts;
897 	int timerid;
898 	struct ptimer *pt;
899 
900 	timerid = SCARG(uap, timerid);
901 
902 	pts = p->p_timers;
903 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
904 		return (EINVAL);
905 	mutex_spin_enter(&timer_lock);
906 	if ((pt = pts->pts_timers[timerid]) == NULL) {
907 		mutex_spin_exit(&timer_lock);
908 		return (EINVAL);
909 	}
910 	*retval = pt->pt_poverruns;
911 	mutex_spin_exit(&timer_lock);
912 
913 	return (0);
914 }
915 
916 /*
917  * Real interval timer expired:
918  * send process whose timer expired an alarm signal.
919  * If time is not set up to reload, then just return.
920  * Else compute next time timer should go off which is > current time.
921  * This is where delay in processing this timeout causes multiple
922  * SIGALRM calls to be compressed into one.
923  */
924 void
925 realtimerexpire(void *arg)
926 {
927 	struct timeval now;
928 	struct ptimer *pt;
929 
930 	pt = arg;
931 
932 	mutex_spin_enter(&timer_lock);
933 	itimerfire(pt);
934 
935 	if (!timerisset(&pt->pt_time.it_interval)) {
936 		timerclear(&pt->pt_time.it_value);
937 		mutex_spin_exit(&timer_lock);
938 		return;
939 	}
940 	for (;;) {
941 		timeradd(&pt->pt_time.it_value,
942 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
943 		getmicrotime(&now);
944 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
945 			/*
946 			 * Don't need to check hzto() return value, here.
947 			 * callout_reset() does it for us.
948 			 */
949 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
950 			    realtimerexpire, pt);
951 			mutex_spin_exit(&timer_lock);
952 			return;
953 		}
954 		mutex_spin_exit(&timer_lock);
955 		pt->pt_overruns++;
956 		mutex_spin_enter(&timer_lock);
957 	}
958 }
959 
960 /* BSD routine to get the value of an interval timer. */
961 /* ARGSUSED */
962 int
963 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
964     register_t *retval)
965 {
966 	/* {
967 		syscallarg(int) which;
968 		syscallarg(struct itimerval *) itv;
969 	} */
970 	struct proc *p = l->l_proc;
971 	struct itimerval aitv;
972 	int error;
973 
974 	error = dogetitimer(p, SCARG(uap, which), &aitv);
975 	if (error)
976 		return error;
977 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
978 }
979 
980 int
981 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
982 {
983 	struct ptimers *pts;
984 	struct ptimer *pt;
985 
986 	if ((u_int)which > ITIMER_PROF)
987 		return (EINVAL);
988 
989 	mutex_spin_enter(&timer_lock);
990 	pts = p->p_timers;
991 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
992 		timerclear(&itvp->it_value);
993 		timerclear(&itvp->it_interval);
994 	} else
995 		timer_gettime(pt, itvp);
996 	mutex_spin_exit(&timer_lock);
997 
998 	return 0;
999 }
1000 
1001 /* BSD routine to set/arm an interval timer. */
1002 /* ARGSUSED */
1003 int
1004 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1005     register_t *retval)
1006 {
1007 	/* {
1008 		syscallarg(int) which;
1009 		syscallarg(const struct itimerval *) itv;
1010 		syscallarg(struct itimerval *) oitv;
1011 	} */
1012 	struct proc *p = l->l_proc;
1013 	int which = SCARG(uap, which);
1014 	struct sys_getitimer_args getargs;
1015 	const struct itimerval *itvp;
1016 	struct itimerval aitv;
1017 	int error;
1018 
1019 	if ((u_int)which > ITIMER_PROF)
1020 		return (EINVAL);
1021 	itvp = SCARG(uap, itv);
1022 	if (itvp &&
1023 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1024 		return (error);
1025 	if (SCARG(uap, oitv) != NULL) {
1026 		SCARG(&getargs, which) = which;
1027 		SCARG(&getargs, itv) = SCARG(uap, oitv);
1028 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1029 			return (error);
1030 	}
1031 	if (itvp == 0)
1032 		return (0);
1033 
1034 	return dosetitimer(p, which, &aitv);
1035 }
1036 
1037 int
1038 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1039 {
1040 	struct timeval now;
1041 	struct ptimers *pts;
1042 	struct ptimer *pt, *spare;
1043 
1044 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1045 		return (EINVAL);
1046 
1047 	/*
1048 	 * Don't bother allocating data structures if the process just
1049 	 * wants to clear the timer.
1050 	 */
1051 	spare = NULL;
1052 	pts = p->p_timers;
1053  retry:
1054 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1055 	    pts->pts_timers[which] == NULL))
1056 		return (0);
1057 	if (pts == NULL)
1058 		pts = timers_alloc(p);
1059 	mutex_spin_enter(&timer_lock);
1060 	pt = pts->pts_timers[which];
1061 	if (pt == NULL) {
1062 		if (spare == NULL) {
1063 			mutex_spin_exit(&timer_lock);
1064 			spare = pool_get(&ptimer_pool, PR_WAITOK);
1065 			goto retry;
1066 		}
1067 		pt = spare;
1068 		spare = NULL;
1069 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1070 		pt->pt_ev.sigev_value.sival_int = which;
1071 		pt->pt_overruns = 0;
1072 		pt->pt_proc = p;
1073 		pt->pt_type = which;
1074 		pt->pt_entry = which;
1075 		pt->pt_active = 0;
1076 		pt->pt_queued = false;
1077 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1078 		switch (which) {
1079 		case ITIMER_REAL:
1080 			pt->pt_ev.sigev_signo = SIGALRM;
1081 			break;
1082 		case ITIMER_VIRTUAL:
1083 			pt->pt_ev.sigev_signo = SIGVTALRM;
1084 			break;
1085 		case ITIMER_PROF:
1086 			pt->pt_ev.sigev_signo = SIGPROF;
1087 			break;
1088 		}
1089 		pts->pts_timers[which] = pt;
1090 	}
1091 	pt->pt_time = *itvp;
1092 
1093 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1094 		/* Convert to absolute time */
1095 		/* XXX need to wrap in splclock for timecounters case? */
1096 		getmicrotime(&now);
1097 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1098 	}
1099 	timer_settime(pt);
1100 	mutex_spin_exit(&timer_lock);
1101 	if (spare != NULL)
1102 		pool_put(&ptimer_pool, spare);
1103 
1104 	return (0);
1105 }
1106 
1107 /* Utility routines to manage the array of pointers to timers. */
1108 struct ptimers *
1109 timers_alloc(struct proc *p)
1110 {
1111 	struct ptimers *pts;
1112 	int i;
1113 
1114 	pts = pool_get(&ptimers_pool, PR_WAITOK);
1115 	LIST_INIT(&pts->pts_virtual);
1116 	LIST_INIT(&pts->pts_prof);
1117 	for (i = 0; i < TIMER_MAX; i++)
1118 		pts->pts_timers[i] = NULL;
1119 	pts->pts_fired = 0;
1120 	mutex_spin_enter(&timer_lock);
1121 	if (p->p_timers == NULL) {
1122 		p->p_timers = pts;
1123 		mutex_spin_exit(&timer_lock);
1124 		return pts;
1125 	}
1126 	mutex_spin_exit(&timer_lock);
1127 	pool_put(&ptimers_pool, pts);
1128 	return p->p_timers;
1129 }
1130 
1131 /*
1132  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1133  * then clean up all timers and free all the data structures. If
1134  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1135  * by timer_create(), not the BSD setitimer() timers, and only free the
1136  * structure if none of those remain.
1137  */
1138 void
1139 timers_free(struct proc *p, int which)
1140 {
1141 	struct ptimers *pts;
1142 	struct ptimer *ptn;
1143 	struct timeval tv;
1144 	int i;
1145 
1146 	if (p->p_timers == NULL)
1147 		return;
1148 
1149 	pts = p->p_timers;
1150 	mutex_spin_enter(&timer_lock);
1151 	if (which == TIMERS_ALL) {
1152 		p->p_timers = NULL;
1153 		i = 0;
1154 	} else {
1155 		timerclear(&tv);
1156 		for (ptn = LIST_FIRST(&pts->pts_virtual);
1157 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1158 		     ptn = LIST_NEXT(ptn, pt_list))
1159 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
1160 		LIST_FIRST(&pts->pts_virtual) = NULL;
1161 		if (ptn) {
1162 			timeradd(&tv, &ptn->pt_time.it_value,
1163 			    &ptn->pt_time.it_value);
1164 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1165 		}
1166 		timerclear(&tv);
1167 		for (ptn = LIST_FIRST(&pts->pts_prof);
1168 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1169 		     ptn = LIST_NEXT(ptn, pt_list))
1170 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
1171 		LIST_FIRST(&pts->pts_prof) = NULL;
1172 		if (ptn) {
1173 			timeradd(&tv, &ptn->pt_time.it_value,
1174 			    &ptn->pt_time.it_value);
1175 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1176 		}
1177 		i = 3;
1178 	}
1179 	for ( ; i < TIMER_MAX; i++) {
1180 		if (pts->pts_timers[i] != NULL) {
1181 			itimerfree(pts, i);
1182 			mutex_spin_enter(&timer_lock);
1183 		}
1184 	}
1185 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1186 	    pts->pts_timers[2] == NULL) {
1187 		p->p_timers = NULL;
1188 		mutex_spin_exit(&timer_lock);
1189 		pool_put(&ptimers_pool, pts);
1190 	} else
1191 		mutex_spin_exit(&timer_lock);
1192 }
1193 
1194 static void
1195 itimerfree(struct ptimers *pts, int index)
1196 {
1197 	struct ptimer *pt;
1198 
1199 	KASSERT(mutex_owned(&timer_lock));
1200 
1201 	pt = pts->pts_timers[index];
1202 	pts->pts_timers[index] = NULL;
1203 	if (pt->pt_type == CLOCK_REALTIME)
1204 		callout_halt(&pt->pt_ch, &timer_lock);
1205 	else if (pt->pt_queued)
1206 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1207 	mutex_spin_exit(&timer_lock);
1208 	callout_destroy(&pt->pt_ch);
1209 	pool_put(&ptimer_pool, pt);
1210 }
1211 
1212 /*
1213  * Decrement an interval timer by a specified number
1214  * of microseconds, which must be less than a second,
1215  * i.e. < 1000000.  If the timer expires, then reload
1216  * it.  In this case, carry over (usec - old value) to
1217  * reduce the value reloaded into the timer so that
1218  * the timer does not drift.  This routine assumes
1219  * that it is called in a context where the timers
1220  * on which it is operating cannot change in value.
1221  */
1222 static int
1223 itimerdecr(struct ptimer *pt, int usec)
1224 {
1225 	struct itimerval *itp;
1226 
1227 	KASSERT(mutex_owned(&timer_lock));
1228 
1229 	itp = &pt->pt_time;
1230 	if (itp->it_value.tv_usec < usec) {
1231 		if (itp->it_value.tv_sec == 0) {
1232 			/* expired, and already in next interval */
1233 			usec -= itp->it_value.tv_usec;
1234 			goto expire;
1235 		}
1236 		itp->it_value.tv_usec += 1000000;
1237 		itp->it_value.tv_sec--;
1238 	}
1239 	itp->it_value.tv_usec -= usec;
1240 	usec = 0;
1241 	if (timerisset(&itp->it_value))
1242 		return (1);
1243 	/* expired, exactly at end of interval */
1244 expire:
1245 	if (timerisset(&itp->it_interval)) {
1246 		itp->it_value = itp->it_interval;
1247 		itp->it_value.tv_usec -= usec;
1248 		if (itp->it_value.tv_usec < 0) {
1249 			itp->it_value.tv_usec += 1000000;
1250 			itp->it_value.tv_sec--;
1251 		}
1252 		timer_settime(pt);
1253 	} else
1254 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1255 	return (0);
1256 }
1257 
1258 static void
1259 itimerfire(struct ptimer *pt)
1260 {
1261 
1262 	KASSERT(mutex_owned(&timer_lock));
1263 
1264 	/*
1265 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1266 	 * XXX Relying on the clock interrupt is stupid.
1267 	 */
1268 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
1269 		return;
1270 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1271 	pt->pt_queued = true;
1272 	softint_schedule(timer_sih);
1273 }
1274 
1275 void
1276 timer_tick(lwp_t *l, bool user)
1277 {
1278 	struct ptimers *pts;
1279 	struct ptimer *pt;
1280 	proc_t *p;
1281 
1282 	p = l->l_proc;
1283 	if (p->p_timers == NULL)
1284 		return;
1285 
1286 	mutex_spin_enter(&timer_lock);
1287 	if ((pts = l->l_proc->p_timers) != NULL) {
1288 		/*
1289 		 * Run current process's virtual and profile time, as needed.
1290 		 */
1291 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1292 			if (itimerdecr(pt, tick) == 0)
1293 				itimerfire(pt);
1294 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1295 			if (itimerdecr(pt, tick) == 0)
1296 				itimerfire(pt);
1297 	}
1298 	mutex_spin_exit(&timer_lock);
1299 }
1300 
1301 static void
1302 timer_intr(void *cookie)
1303 {
1304 	ksiginfo_t ksi;
1305 	struct ptimer *pt;
1306 	proc_t *p;
1307 
1308 	mutex_spin_enter(&timer_lock);
1309 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1310 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1311 		KASSERT(pt->pt_queued);
1312 		pt->pt_queued = false;
1313 
1314 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1315 			continue;
1316 		p = pt->pt_proc;
1317 		if (pt->pt_proc->p_timers == NULL) {
1318 			/* Process is dying. */
1319 			continue;
1320 		}
1321 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1322 			pt->pt_overruns++;
1323 			continue;
1324 		}
1325 
1326 		KSI_INIT(&ksi);
1327 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1328 		ksi.ksi_code = SI_TIMER;
1329 		ksi.ksi_value = pt->pt_ev.sigev_value;
1330 		pt->pt_poverruns = pt->pt_overruns;
1331 		pt->pt_overruns = 0;
1332 		mutex_spin_exit(&timer_lock);
1333 
1334 		mutex_enter(proc_lock);
1335 		kpsignal(p, &ksi, NULL);
1336 		mutex_exit(proc_lock);
1337 
1338 		mutex_spin_enter(&timer_lock);
1339 	}
1340 	mutex_spin_exit(&timer_lock);
1341 }
1342 
1343 /*
1344  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1345  * for usage and rationale.
1346  */
1347 int
1348 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1349 {
1350 	struct timeval tv, delta;
1351 	int rv = 0;
1352 
1353 	getmicrouptime(&tv);
1354 	timersub(&tv, lasttime, &delta);
1355 
1356 	/*
1357 	 * check for 0,0 is so that the message will be seen at least once,
1358 	 * even if interval is huge.
1359 	 */
1360 	if (timercmp(&delta, mininterval, >=) ||
1361 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1362 		*lasttime = tv;
1363 		rv = 1;
1364 	}
1365 
1366 	return (rv);
1367 }
1368 
1369 /*
1370  * ppsratecheck(): packets (or events) per second limitation.
1371  */
1372 int
1373 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1374 {
1375 	struct timeval tv, delta;
1376 	int rv;
1377 
1378 	getmicrouptime(&tv);
1379 	timersub(&tv, lasttime, &delta);
1380 
1381 	/*
1382 	 * check for 0,0 is so that the message will be seen at least once.
1383 	 * if more than one second have passed since the last update of
1384 	 * lasttime, reset the counter.
1385 	 *
1386 	 * we do increment *curpps even in *curpps < maxpps case, as some may
1387 	 * try to use *curpps for stat purposes as well.
1388 	 */
1389 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1390 	    delta.tv_sec >= 1) {
1391 		*lasttime = tv;
1392 		*curpps = 0;
1393 	}
1394 	if (maxpps < 0)
1395 		rv = 1;
1396 	else if (*curpps < maxpps)
1397 		rv = 1;
1398 	else
1399 		rv = 0;
1400 
1401 #if 1 /*DIAGNOSTIC?*/
1402 	/* be careful about wrap-around */
1403 	if (*curpps + 1 > *curpps)
1404 		*curpps = *curpps + 1;
1405 #else
1406 	/*
1407 	 * assume that there's not too many calls to this function.
1408 	 * not sure if the assumption holds, as it depends on *caller's*
1409 	 * behavior, not the behavior of this function.
1410 	 * IMHO it is wrong to make assumption on the caller's behavior,
1411 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1412 	 */
1413 	*curpps = *curpps + 1;
1414 #endif
1415 
1416 	return (rv);
1417 }
1418