1 /* 2 * Copyright (c) 1982, 1986, 1989 Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)kern_time.c 7.15 (Berkeley) 3/17/91 34 * $Id: kern_time.c,v 1.4 1993/07/13 22:13:28 cgd Exp $ 35 */ 36 37 #include "param.h" 38 #include "systm.h" 39 #include "resourcevar.h" 40 #include "kernel.h" 41 #include "proc.h" 42 43 #include "machine/cpu.h" 44 45 /* 46 * Time of day and interval timer support. 47 * 48 * These routines provide the kernel entry points to get and set 49 * the time-of-day and per-process interval timers. Subroutines 50 * here provide support for adding and subtracting timeval structures 51 * and decrementing interval timers, optionally reloading the interval 52 * timers when they expire. 53 */ 54 55 struct gettimeofday_args { 56 struct timeval *tp; 57 struct timezone *tzp; 58 }; 59 60 /* ARGSUSED */ 61 int 62 gettimeofday(p, uap, retval) 63 struct proc *p; 64 register struct gettimeofday_args *uap; 65 int *retval; 66 { 67 struct timeval atv; 68 int error = 0; 69 70 if (uap->tp) { 71 microtime(&atv); 72 if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp, 73 sizeof (atv))) 74 return (error); 75 } 76 if (uap->tzp) 77 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp, 78 sizeof (tz)); 79 return (error); 80 } 81 82 struct settimeofday_args { 83 struct timeval *tv; 84 struct timezone *tzp; 85 }; 86 87 /* ARGSUSED */ 88 int 89 settimeofday(p, uap, retval) 90 struct proc *p; 91 struct settimeofday_args *uap; 92 int *retval; 93 { 94 struct timeval atv; 95 struct timezone atz; 96 int error, s; 97 98 if (error = suser(p->p_ucred, &p->p_acflag)) 99 return (error); 100 if (uap->tv) { 101 if (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, 102 sizeof (struct timeval))) 103 return (error); 104 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ 105 boottime.tv_sec += atv.tv_sec - time.tv_sec; 106 s = splhigh(); time = atv; splx(s); 107 resettodr(); 108 } 109 if (uap->tzp && (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, 110 sizeof (atz))) == 0) 111 tz = atz; 112 return (error); 113 } 114 115 extern int tickadj; /* "standard" clock skew, us./tick */ 116 int tickdelta; /* current clock skew, us. per tick */ 117 long timedelta; /* unapplied time correction, us. */ 118 long bigadj = 1000000; /* use 10x skew above bigadj us. */ 119 120 struct adjtime_args { 121 struct timeval *delta; 122 struct timeval *olddelta; 123 }; 124 125 /* ARGSUSED */ 126 int 127 adjtime(p, uap, retval) 128 struct proc *p; 129 register struct adjtime_args *uap; 130 int *retval; 131 { 132 struct timeval atv, oatv; 133 register long ndelta; 134 int s, error; 135 136 if (error = suser(p->p_ucred, &p->p_acflag)) 137 return (error); 138 if (error = 139 copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof (struct timeval))) 140 return (error); 141 ndelta = atv.tv_sec * 1000000 + atv.tv_usec; 142 if (timedelta == 0) 143 if (ndelta > bigadj) 144 tickdelta = 10 * tickadj; 145 else 146 tickdelta = tickadj; 147 if (ndelta % tickdelta) 148 ndelta = ndelta / tickadj * tickadj; 149 150 s = splclock(); 151 if (uap->olddelta) { 152 oatv.tv_sec = timedelta / 1000000; 153 oatv.tv_usec = timedelta % 1000000; 154 } 155 timedelta = ndelta; 156 splx(s); 157 158 if (uap->olddelta) 159 (void) copyout((caddr_t)&oatv, (caddr_t)uap->olddelta, 160 sizeof (struct timeval)); 161 return (0); 162 } 163 164 /* 165 * Get value of an interval timer. The process virtual and 166 * profiling virtual time timers are kept in the p_stats area, since 167 * they can be swapped out. These are kept internally in the 168 * way they are specified externally: in time until they expire. 169 * 170 * The real time interval timer is kept in the process table slot 171 * for the process, and its value (it_value) is kept as an 172 * absolute time rather than as a delta, so that it is easy to keep 173 * periodic real-time signals from drifting. 174 * 175 * Virtual time timers are processed in the hardclock() routine of 176 * kern_clock.c. The real time timer is processed by a timeout 177 * routine, called from the softclock() routine. Since a callout 178 * may be delayed in real time due to interrupt processing in the system, 179 * it is possible for the real time timeout routine (realitexpire, given below), 180 * to be delayed in real time past when it is supposed to occur. It 181 * does not suffice, therefore, to reload the real timer .it_value from the 182 * real time timers .it_interval. Rather, we compute the next time in 183 * absolute time the timer should go off. 184 */ 185 186 struct getitimer_args { 187 u_int which; 188 struct itimerval *itv; 189 }; 190 191 /* ARGSUSED */ 192 int 193 getitimer(p, uap, retval) 194 struct proc *p; 195 register struct getitimer_args *uap; 196 int *retval; 197 { 198 struct itimerval aitv; 199 int s; 200 201 if (uap->which > ITIMER_PROF) 202 return (EINVAL); 203 s = splclock(); 204 if (uap->which == ITIMER_REAL) { 205 /* 206 * Convert from absoulte to relative time in .it_value 207 * part of real time timer. If time for real time timer 208 * has passed return 0, else return difference between 209 * current time and time for the timer to go off. 210 */ 211 aitv = p->p_realtimer; 212 if (timerisset(&aitv.it_value)) 213 if (timercmp(&aitv.it_value, &time, <)) 214 timerclear(&aitv.it_value); 215 else 216 timevalsub(&aitv.it_value, &time); 217 } else 218 aitv = p->p_stats->p_timer[uap->which]; 219 splx(s); 220 return (copyout((caddr_t)&aitv, (caddr_t)uap->itv, 221 sizeof (struct itimerval))); 222 } 223 224 struct setitimer_args { 225 u_int which; 226 struct itimerval *itv, *oitv; 227 }; 228 229 /* ARGSUSED */ 230 int 231 setitimer(p, uap, retval) 232 struct proc *p; 233 register struct setitimer_args *uap; 234 int *retval; 235 { 236 struct itimerval aitv; 237 register struct itimerval *itvp; 238 int s, error; 239 240 if (uap->which > ITIMER_PROF) 241 return (EINVAL); 242 itvp = uap->itv; 243 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv, 244 sizeof(struct itimerval)))) 245 return (error); 246 if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval))) 247 return (error); 248 if (itvp == 0) 249 return (0); 250 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) 251 return (EINVAL); 252 s = splclock(); 253 if (uap->which == ITIMER_REAL) { 254 untimeout((timeout_t)realitexpire, (caddr_t)p); 255 if (timerisset(&aitv.it_value)) { 256 timevaladd(&aitv.it_value, &time); 257 timeout((timeout_t)realitexpire, (caddr_t)p, hzto(&aitv.it_value)); 258 } 259 p->p_realtimer = aitv; 260 } else 261 p->p_stats->p_timer[uap->which] = aitv; 262 splx(s); 263 return (0); 264 } 265 266 /* 267 * Real interval timer expired: 268 * send process whose timer expired an alarm signal. 269 * If time is not set up to reload, then just return. 270 * Else compute next time timer should go off which is > current time. 271 * This is where delay in processing this timeout causes multiple 272 * SIGALRM calls to be compressed into one. 273 */ 274 void 275 realitexpire(p) 276 register struct proc *p; 277 { 278 int s; 279 280 psignal(p, SIGALRM); 281 if (!timerisset(&p->p_realtimer.it_interval)) { 282 timerclear(&p->p_realtimer.it_value); 283 return; 284 } 285 for (;;) { 286 s = splclock(); 287 timevaladd(&p->p_realtimer.it_value, 288 &p->p_realtimer.it_interval); 289 if (timercmp(&p->p_realtimer.it_value, &time, >)) { 290 timeout((timeout_t)realitexpire, (caddr_t)p, 291 hzto(&p->p_realtimer.it_value)); 292 splx(s); 293 return; 294 } 295 splx(s); 296 } 297 } 298 299 /* 300 * Check that a proposed value to load into the .it_value or 301 * .it_interval part of an interval timer is acceptable, and 302 * fix it to have at least minimal value (i.e. if it is less 303 * than the resolution of the clock, round it up.) 304 */ 305 int 306 itimerfix(tv) 307 struct timeval *tv; 308 { 309 310 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || 311 tv->tv_usec < 0 || tv->tv_usec >= 1000000) 312 return (EINVAL); 313 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) 314 tv->tv_usec = tick; 315 return (0); 316 } 317 318 /* 319 * Decrement an interval timer by a specified number 320 * of microseconds, which must be less than a second, 321 * i.e. < 1000000. If the timer expires, then reload 322 * it. In this case, carry over (usec - old value) to 323 * reducint the value reloaded into the timer so that 324 * the timer does not drift. This routine assumes 325 * that it is called in a context where the timers 326 * on which it is operating cannot change in value. 327 */ 328 int 329 itimerdecr(itp, usec) 330 register struct itimerval *itp; 331 int usec; 332 { 333 334 if (itp->it_value.tv_usec < usec) { 335 if (itp->it_value.tv_sec == 0) { 336 /* expired, and already in next interval */ 337 usec -= itp->it_value.tv_usec; 338 goto expire; 339 } 340 itp->it_value.tv_usec += 1000000; 341 itp->it_value.tv_sec--; 342 } 343 itp->it_value.tv_usec -= usec; 344 usec = 0; 345 if (timerisset(&itp->it_value)) 346 return (1); 347 /* expired, exactly at end of interval */ 348 expire: 349 if (timerisset(&itp->it_interval)) { 350 itp->it_value = itp->it_interval; 351 itp->it_value.tv_usec -= usec; 352 if (itp->it_value.tv_usec < 0) { 353 itp->it_value.tv_usec += 1000000; 354 itp->it_value.tv_sec--; 355 } 356 } else 357 itp->it_value.tv_usec = 0; /* sec is already 0 */ 358 return (0); 359 } 360 361 /* 362 * Add and subtract routines for timevals. 363 * N.B.: subtract routine doesn't deal with 364 * results which are before the beginning, 365 * it just gets very confused in this case. 366 * Caveat emptor. 367 */ 368 void 369 timevaladd(t1, t2) 370 struct timeval *t1, *t2; 371 { 372 373 t1->tv_sec += t2->tv_sec; 374 t1->tv_usec += t2->tv_usec; 375 timevalfix(t1); 376 } 377 378 void 379 timevalsub(t1, t2) 380 struct timeval *t1, *t2; 381 { 382 383 t1->tv_sec -= t2->tv_sec; 384 t1->tv_usec -= t2->tv_usec; 385 timevalfix(t1); 386 } 387 388 void 389 timevalfix(t1) 390 struct timeval *t1; 391 { 392 393 if (t1->tv_usec < 0) { 394 t1->tv_sec--; 395 t1->tv_usec += 1000000; 396 } 397 if (t1->tv_usec >= 1000000) { 398 t1->tv_sec++; 399 t1->tv_usec -= 1000000; 400 } 401 } 402