1 /* $NetBSD: kern_time.c,v 1.169 2011/07/27 14:35:34 uebayasi Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Christopher G. Demetriou, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.169 2011/07/27 14:35:34 uebayasi Exp $"); 65 66 #include <sys/param.h> 67 #include <sys/resourcevar.h> 68 #include <sys/kernel.h> 69 #include <sys/systm.h> 70 #include <sys/proc.h> 71 #include <sys/vnode.h> 72 #include <sys/signalvar.h> 73 #include <sys/syslog.h> 74 #include <sys/timetc.h> 75 #include <sys/timex.h> 76 #include <sys/kauth.h> 77 #include <sys/mount.h> 78 #include <sys/sa.h> 79 #include <sys/savar.h> 80 #include <sys/syscallargs.h> 81 #include <sys/cpu.h> 82 83 #include "opt_sa.h" 84 85 static void timer_intr(void *); 86 static void itimerfire(struct ptimer *); 87 static void itimerfree(struct ptimers *, int); 88 89 kmutex_t timer_lock; 90 91 static void *timer_sih; 92 static TAILQ_HEAD(, ptimer) timer_queue; 93 94 struct pool ptimer_pool, ptimers_pool; 95 96 #define CLOCK_VIRTUAL_P(clockid) \ 97 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF) 98 99 CTASSERT(ITIMER_REAL == CLOCK_REALTIME); 100 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL); 101 CTASSERT(ITIMER_PROF == CLOCK_PROF); 102 103 /* 104 * Initialize timekeeping. 105 */ 106 void 107 time_init(void) 108 { 109 110 pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl", 111 &pool_allocator_nointr, IPL_NONE); 112 pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl", 113 &pool_allocator_nointr, IPL_NONE); 114 } 115 116 void 117 time_init2(void) 118 { 119 120 TAILQ_INIT(&timer_queue); 121 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED); 122 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, 123 timer_intr, NULL); 124 } 125 126 /* Time of day and interval timer support. 127 * 128 * These routines provide the kernel entry points to get and set 129 * the time-of-day and per-process interval timers. Subroutines 130 * here provide support for adding and subtracting timeval structures 131 * and decrementing interval timers, optionally reloading the interval 132 * timers when they expire. 133 */ 134 135 /* This function is used by clock_settime and settimeofday */ 136 static int 137 settime1(struct proc *p, const struct timespec *ts, bool check_kauth) 138 { 139 struct timespec delta, now; 140 int s; 141 142 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ 143 s = splclock(); 144 nanotime(&now); 145 timespecsub(ts, &now, &delta); 146 147 if (check_kauth && kauth_authorize_system(kauth_cred_get(), 148 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts), 149 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) { 150 splx(s); 151 return (EPERM); 152 } 153 154 #ifdef notyet 155 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */ 156 splx(s); 157 return (EPERM); 158 } 159 #endif 160 161 tc_setclock(ts); 162 163 timespecadd(&boottime, &delta, &boottime); 164 165 resettodr(); 166 splx(s); 167 168 return (0); 169 } 170 171 int 172 settime(struct proc *p, struct timespec *ts) 173 { 174 return (settime1(p, ts, true)); 175 } 176 177 /* ARGSUSED */ 178 int 179 sys___clock_gettime50(struct lwp *l, 180 const struct sys___clock_gettime50_args *uap, register_t *retval) 181 { 182 /* { 183 syscallarg(clockid_t) clock_id; 184 syscallarg(struct timespec *) tp; 185 } */ 186 int error; 187 struct timespec ats; 188 189 error = clock_gettime1(SCARG(uap, clock_id), &ats); 190 if (error != 0) 191 return error; 192 193 return copyout(&ats, SCARG(uap, tp), sizeof(ats)); 194 } 195 196 int 197 clock_gettime1(clockid_t clock_id, struct timespec *ts) 198 { 199 200 switch (clock_id) { 201 case CLOCK_REALTIME: 202 nanotime(ts); 203 break; 204 case CLOCK_MONOTONIC: 205 nanouptime(ts); 206 break; 207 default: 208 return EINVAL; 209 } 210 211 return 0; 212 } 213 214 /* ARGSUSED */ 215 int 216 sys___clock_settime50(struct lwp *l, 217 const struct sys___clock_settime50_args *uap, register_t *retval) 218 { 219 /* { 220 syscallarg(clockid_t) clock_id; 221 syscallarg(const struct timespec *) tp; 222 } */ 223 int error; 224 struct timespec ats; 225 226 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) 227 return error; 228 229 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true); 230 } 231 232 233 int 234 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp, 235 bool check_kauth) 236 { 237 int error; 238 239 switch (clock_id) { 240 case CLOCK_REALTIME: 241 if ((error = settime1(p, tp, check_kauth)) != 0) 242 return (error); 243 break; 244 case CLOCK_MONOTONIC: 245 return (EINVAL); /* read-only clock */ 246 default: 247 return (EINVAL); 248 } 249 250 return 0; 251 } 252 253 int 254 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap, 255 register_t *retval) 256 { 257 /* { 258 syscallarg(clockid_t) clock_id; 259 syscallarg(struct timespec *) tp; 260 } */ 261 struct timespec ts; 262 int error = 0; 263 264 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0) 265 return error; 266 267 if (SCARG(uap, tp)) 268 error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); 269 270 return error; 271 } 272 273 int 274 clock_getres1(clockid_t clock_id, struct timespec *ts) 275 { 276 277 switch (clock_id) { 278 case CLOCK_REALTIME: 279 case CLOCK_MONOTONIC: 280 ts->tv_sec = 0; 281 if (tc_getfrequency() > 1000000000) 282 ts->tv_nsec = 1; 283 else 284 ts->tv_nsec = 1000000000 / tc_getfrequency(); 285 break; 286 default: 287 return EINVAL; 288 } 289 290 return 0; 291 } 292 293 /* ARGSUSED */ 294 int 295 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap, 296 register_t *retval) 297 { 298 /* { 299 syscallarg(struct timespec *) rqtp; 300 syscallarg(struct timespec *) rmtp; 301 } */ 302 struct timespec rmt, rqt; 303 int error, error1; 304 305 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec)); 306 if (error) 307 return (error); 308 309 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL); 310 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR)) 311 return error; 312 313 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt)); 314 return error1 ? error1 : error; 315 } 316 317 int 318 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt) 319 { 320 struct timespec rmtstart; 321 int error, timo; 322 323 if ((error = itimespecfix(rqt)) != 0) 324 return error; 325 326 timo = tstohz(rqt); 327 /* 328 * Avoid inadvertantly sleeping forever 329 */ 330 if (timo == 0) 331 timo = 1; 332 getnanouptime(&rmtstart); 333 again: 334 error = kpause("nanoslp", true, timo, NULL); 335 if (rmt != NULL || error == 0) { 336 struct timespec rmtend; 337 struct timespec t0; 338 struct timespec *t; 339 340 getnanouptime(&rmtend); 341 t = (rmt != NULL) ? rmt : &t0; 342 timespecsub(&rmtend, &rmtstart, t); 343 timespecsub(rqt, t, t); 344 if (t->tv_sec < 0) 345 timespecclear(t); 346 if (error == 0) { 347 timo = tstohz(t); 348 if (timo > 0) 349 goto again; 350 } 351 } 352 353 if (error == ERESTART) 354 error = EINTR; 355 if (error == EWOULDBLOCK) 356 error = 0; 357 358 return error; 359 } 360 361 /* ARGSUSED */ 362 int 363 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap, 364 register_t *retval) 365 { 366 /* { 367 syscallarg(struct timeval *) tp; 368 syscallarg(void *) tzp; really "struct timezone *"; 369 } */ 370 struct timeval atv; 371 int error = 0; 372 struct timezone tzfake; 373 374 if (SCARG(uap, tp)) { 375 microtime(&atv); 376 error = copyout(&atv, SCARG(uap, tp), sizeof(atv)); 377 if (error) 378 return (error); 379 } 380 if (SCARG(uap, tzp)) { 381 /* 382 * NetBSD has no kernel notion of time zone, so we just 383 * fake up a timezone struct and return it if demanded. 384 */ 385 tzfake.tz_minuteswest = 0; 386 tzfake.tz_dsttime = 0; 387 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake)); 388 } 389 return (error); 390 } 391 392 /* ARGSUSED */ 393 int 394 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap, 395 register_t *retval) 396 { 397 /* { 398 syscallarg(const struct timeval *) tv; 399 syscallarg(const void *) tzp; really "const struct timezone *"; 400 } */ 401 402 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true); 403 } 404 405 int 406 settimeofday1(const struct timeval *utv, bool userspace, 407 const void *utzp, struct lwp *l, bool check_kauth) 408 { 409 struct timeval atv; 410 struct timespec ts; 411 int error; 412 413 /* Verify all parameters before changing time. */ 414 415 /* 416 * NetBSD has no kernel notion of time zone, and only an 417 * obsolete program would try to set it, so we log a warning. 418 */ 419 if (utzp) 420 log(LOG_WARNING, "pid %d attempted to set the " 421 "(obsolete) kernel time zone\n", l->l_proc->p_pid); 422 423 if (utv == NULL) 424 return 0; 425 426 if (userspace) { 427 if ((error = copyin(utv, &atv, sizeof(atv))) != 0) 428 return error; 429 utv = &atv; 430 } 431 432 TIMEVAL_TO_TIMESPEC(utv, &ts); 433 return settime1(l->l_proc, &ts, check_kauth); 434 } 435 436 int time_adjusted; /* set if an adjustment is made */ 437 438 /* ARGSUSED */ 439 int 440 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap, 441 register_t *retval) 442 { 443 /* { 444 syscallarg(const struct timeval *) delta; 445 syscallarg(struct timeval *) olddelta; 446 } */ 447 int error = 0; 448 struct timeval atv, oldatv; 449 450 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME, 451 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0) 452 return error; 453 454 if (SCARG(uap, delta)) { 455 error = copyin(SCARG(uap, delta), &atv, 456 sizeof(*SCARG(uap, delta))); 457 if (error) 458 return (error); 459 } 460 adjtime1(SCARG(uap, delta) ? &atv : NULL, 461 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc); 462 if (SCARG(uap, olddelta)) 463 error = copyout(&oldatv, SCARG(uap, olddelta), 464 sizeof(*SCARG(uap, olddelta))); 465 return error; 466 } 467 468 void 469 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p) 470 { 471 extern int64_t time_adjtime; /* in kern_ntptime.c */ 472 473 if (olddelta) { 474 mutex_spin_enter(&timecounter_lock); 475 olddelta->tv_sec = time_adjtime / 1000000; 476 olddelta->tv_usec = time_adjtime % 1000000; 477 if (olddelta->tv_usec < 0) { 478 olddelta->tv_usec += 1000000; 479 olddelta->tv_sec--; 480 } 481 mutex_spin_exit(&timecounter_lock); 482 } 483 484 if (delta) { 485 mutex_spin_enter(&timecounter_lock); 486 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec; 487 488 if (time_adjtime) { 489 /* We need to save the system time during shutdown */ 490 time_adjusted |= 1; 491 } 492 mutex_spin_exit(&timecounter_lock); 493 } 494 } 495 496 /* 497 * Interval timer support. Both the BSD getitimer() family and the POSIX 498 * timer_*() family of routines are supported. 499 * 500 * All timers are kept in an array pointed to by p_timers, which is 501 * allocated on demand - many processes don't use timers at all. The 502 * first three elements in this array are reserved for the BSD timers: 503 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element 504 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create() 505 * syscall. 506 * 507 * Realtime timers are kept in the ptimer structure as an absolute 508 * time; virtual time timers are kept as a linked list of deltas. 509 * Virtual time timers are processed in the hardclock() routine of 510 * kern_clock.c. The real time timer is processed by a callout 511 * routine, called from the softclock() routine. Since a callout may 512 * be delayed in real time due to interrupt processing in the system, 513 * it is possible for the real time timeout routine (realtimeexpire, 514 * given below), to be delayed in real time past when it is supposed 515 * to occur. It does not suffice, therefore, to reload the real timer 516 * .it_value from the real time timers .it_interval. Rather, we 517 * compute the next time in absolute time the timer should go off. */ 518 519 /* Allocate a POSIX realtime timer. */ 520 int 521 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, 522 register_t *retval) 523 { 524 /* { 525 syscallarg(clockid_t) clock_id; 526 syscallarg(struct sigevent *) evp; 527 syscallarg(timer_t *) timerid; 528 } */ 529 530 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id), 531 SCARG(uap, evp), copyin, l); 532 } 533 534 int 535 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp, 536 copyin_t fetch_event, struct lwp *l) 537 { 538 int error; 539 timer_t timerid; 540 struct ptimers *pts; 541 struct ptimer *pt; 542 struct proc *p; 543 544 p = l->l_proc; 545 546 if (id != CLOCK_REALTIME && id != CLOCK_VIRTUAL && 547 id != CLOCK_PROF && id != CLOCK_MONOTONIC) 548 return (EINVAL); 549 550 if ((pts = p->p_timers) == NULL) 551 pts = timers_alloc(p); 552 553 pt = pool_get(&ptimer_pool, PR_WAITOK); 554 if (evp != NULL) { 555 if (((error = 556 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) || 557 ((pt->pt_ev.sigev_notify < SIGEV_NONE) || 558 (pt->pt_ev.sigev_notify > SIGEV_SA)) || 559 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL && 560 (pt->pt_ev.sigev_signo <= 0 || 561 pt->pt_ev.sigev_signo >= NSIG))) { 562 pool_put(&ptimer_pool, pt); 563 return (error ? error : EINVAL); 564 } 565 } 566 567 /* Find a free timer slot, skipping those reserved for setitimer(). */ 568 mutex_spin_enter(&timer_lock); 569 for (timerid = 3; timerid < TIMER_MAX; timerid++) 570 if (pts->pts_timers[timerid] == NULL) 571 break; 572 if (timerid == TIMER_MAX) { 573 mutex_spin_exit(&timer_lock); 574 pool_put(&ptimer_pool, pt); 575 return EAGAIN; 576 } 577 if (evp == NULL) { 578 pt->pt_ev.sigev_notify = SIGEV_SIGNAL; 579 switch (id) { 580 case CLOCK_REALTIME: 581 case CLOCK_MONOTONIC: 582 pt->pt_ev.sigev_signo = SIGALRM; 583 break; 584 case CLOCK_VIRTUAL: 585 pt->pt_ev.sigev_signo = SIGVTALRM; 586 break; 587 case CLOCK_PROF: 588 pt->pt_ev.sigev_signo = SIGPROF; 589 break; 590 } 591 pt->pt_ev.sigev_value.sival_int = timerid; 592 } 593 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo; 594 pt->pt_info.ksi_errno = 0; 595 pt->pt_info.ksi_code = 0; 596 pt->pt_info.ksi_pid = p->p_pid; 597 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred); 598 pt->pt_info.ksi_value = pt->pt_ev.sigev_value; 599 pt->pt_type = id; 600 pt->pt_proc = p; 601 pt->pt_overruns = 0; 602 pt->pt_poverruns = 0; 603 pt->pt_entry = timerid; 604 pt->pt_queued = false; 605 timespecclear(&pt->pt_time.it_value); 606 if (!CLOCK_VIRTUAL_P(id)) 607 callout_init(&pt->pt_ch, CALLOUT_MPSAFE); 608 else 609 pt->pt_active = 0; 610 611 pts->pts_timers[timerid] = pt; 612 mutex_spin_exit(&timer_lock); 613 614 return copyout(&timerid, tid, sizeof(timerid)); 615 } 616 617 /* Delete a POSIX realtime timer */ 618 int 619 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, 620 register_t *retval) 621 { 622 /* { 623 syscallarg(timer_t) timerid; 624 } */ 625 struct proc *p = l->l_proc; 626 timer_t timerid; 627 struct ptimers *pts; 628 struct ptimer *pt, *ptn; 629 630 timerid = SCARG(uap, timerid); 631 pts = p->p_timers; 632 633 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 634 return (EINVAL); 635 636 mutex_spin_enter(&timer_lock); 637 if ((pt = pts->pts_timers[timerid]) == NULL) { 638 mutex_spin_exit(&timer_lock); 639 return (EINVAL); 640 } 641 if (CLOCK_VIRTUAL_P(pt->pt_type)) { 642 if (pt->pt_active) { 643 ptn = LIST_NEXT(pt, pt_list); 644 LIST_REMOVE(pt, pt_list); 645 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) 646 timespecadd(&pt->pt_time.it_value, 647 &ptn->pt_time.it_value, 648 &ptn->pt_time.it_value); 649 pt->pt_active = 0; 650 } 651 } 652 itimerfree(pts, timerid); 653 654 return (0); 655 } 656 657 /* 658 * Set up the given timer. The value in pt->pt_time.it_value is taken 659 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and 660 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers. 661 */ 662 void 663 timer_settime(struct ptimer *pt) 664 { 665 struct ptimer *ptn, *pptn; 666 struct ptlist *ptl; 667 668 KASSERT(mutex_owned(&timer_lock)); 669 670 if (!CLOCK_VIRTUAL_P(pt->pt_type)) { 671 callout_halt(&pt->pt_ch, &timer_lock); 672 if (timespecisset(&pt->pt_time.it_value)) { 673 /* 674 * Don't need to check tshzto() return value, here. 675 * callout_reset() does it for us. 676 */ 677 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value), 678 realtimerexpire, pt); 679 } 680 } else { 681 if (pt->pt_active) { 682 ptn = LIST_NEXT(pt, pt_list); 683 LIST_REMOVE(pt, pt_list); 684 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list)) 685 timespecadd(&pt->pt_time.it_value, 686 &ptn->pt_time.it_value, 687 &ptn->pt_time.it_value); 688 } 689 if (timespecisset(&pt->pt_time.it_value)) { 690 if (pt->pt_type == CLOCK_VIRTUAL) 691 ptl = &pt->pt_proc->p_timers->pts_virtual; 692 else 693 ptl = &pt->pt_proc->p_timers->pts_prof; 694 695 for (ptn = LIST_FIRST(ptl), pptn = NULL; 696 ptn && timespeccmp(&pt->pt_time.it_value, 697 &ptn->pt_time.it_value, >); 698 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list)) 699 timespecsub(&pt->pt_time.it_value, 700 &ptn->pt_time.it_value, 701 &pt->pt_time.it_value); 702 703 if (pptn) 704 LIST_INSERT_AFTER(pptn, pt, pt_list); 705 else 706 LIST_INSERT_HEAD(ptl, pt, pt_list); 707 708 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list)) 709 timespecsub(&ptn->pt_time.it_value, 710 &pt->pt_time.it_value, 711 &ptn->pt_time.it_value); 712 713 pt->pt_active = 1; 714 } else 715 pt->pt_active = 0; 716 } 717 } 718 719 void 720 timer_gettime(struct ptimer *pt, struct itimerspec *aits) 721 { 722 struct timespec now; 723 struct ptimer *ptn; 724 725 KASSERT(mutex_owned(&timer_lock)); 726 727 *aits = pt->pt_time; 728 if (!CLOCK_VIRTUAL_P(pt->pt_type)) { 729 /* 730 * Convert from absolute to relative time in .it_value 731 * part of real time timer. If time for real time 732 * timer has passed return 0, else return difference 733 * between current time and time for the timer to go 734 * off. 735 */ 736 if (timespecisset(&aits->it_value)) { 737 if (pt->pt_type == CLOCK_REALTIME) { 738 getnanotime(&now); 739 } else { /* CLOCK_MONOTONIC */ 740 getnanouptime(&now); 741 } 742 if (timespeccmp(&aits->it_value, &now, <)) 743 timespecclear(&aits->it_value); 744 else 745 timespecsub(&aits->it_value, &now, 746 &aits->it_value); 747 } 748 } else if (pt->pt_active) { 749 if (pt->pt_type == CLOCK_VIRTUAL) 750 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual); 751 else 752 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof); 753 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list)) 754 timespecadd(&aits->it_value, 755 &ptn->pt_time.it_value, &aits->it_value); 756 KASSERT(ptn != NULL); /* pt should be findable on the list */ 757 } else 758 timespecclear(&aits->it_value); 759 } 760 761 762 763 /* Set and arm a POSIX realtime timer */ 764 int 765 sys___timer_settime50(struct lwp *l, 766 const struct sys___timer_settime50_args *uap, 767 register_t *retval) 768 { 769 /* { 770 syscallarg(timer_t) timerid; 771 syscallarg(int) flags; 772 syscallarg(const struct itimerspec *) value; 773 syscallarg(struct itimerspec *) ovalue; 774 } */ 775 int error; 776 struct itimerspec value, ovalue, *ovp = NULL; 777 778 if ((error = copyin(SCARG(uap, value), &value, 779 sizeof(struct itimerspec))) != 0) 780 return (error); 781 782 if (SCARG(uap, ovalue)) 783 ovp = &ovalue; 784 785 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp, 786 SCARG(uap, flags), l->l_proc)) != 0) 787 return error; 788 789 if (ovp) 790 return copyout(&ovalue, SCARG(uap, ovalue), 791 sizeof(struct itimerspec)); 792 return 0; 793 } 794 795 int 796 dotimer_settime(int timerid, struct itimerspec *value, 797 struct itimerspec *ovalue, int flags, struct proc *p) 798 { 799 struct timespec now; 800 struct itimerspec val, oval; 801 struct ptimers *pts; 802 struct ptimer *pt; 803 int error; 804 805 pts = p->p_timers; 806 807 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 808 return EINVAL; 809 val = *value; 810 if ((error = itimespecfix(&val.it_value)) != 0 || 811 (error = itimespecfix(&val.it_interval)) != 0) 812 return error; 813 814 mutex_spin_enter(&timer_lock); 815 if ((pt = pts->pts_timers[timerid]) == NULL) { 816 mutex_spin_exit(&timer_lock); 817 return EINVAL; 818 } 819 820 oval = pt->pt_time; 821 pt->pt_time = val; 822 823 /* 824 * If we've been passed a relative time for a realtime timer, 825 * convert it to absolute; if an absolute time for a virtual 826 * timer, convert it to relative and make sure we don't set it 827 * to zero, which would cancel the timer, or let it go 828 * negative, which would confuse the comparison tests. 829 */ 830 if (timespecisset(&pt->pt_time.it_value)) { 831 if (!CLOCK_VIRTUAL_P(pt->pt_type)) { 832 if ((flags & TIMER_ABSTIME) == 0) { 833 if (pt->pt_type == CLOCK_REALTIME) { 834 getnanotime(&now); 835 } else { /* CLOCK_MONOTONIC */ 836 getnanouptime(&now); 837 } 838 timespecadd(&pt->pt_time.it_value, &now, 839 &pt->pt_time.it_value); 840 } 841 } else { 842 if ((flags & TIMER_ABSTIME) != 0) { 843 getnanotime(&now); 844 timespecsub(&pt->pt_time.it_value, &now, 845 &pt->pt_time.it_value); 846 if (!timespecisset(&pt->pt_time.it_value) || 847 pt->pt_time.it_value.tv_sec < 0) { 848 pt->pt_time.it_value.tv_sec = 0; 849 pt->pt_time.it_value.tv_nsec = 1; 850 } 851 } 852 } 853 } 854 855 timer_settime(pt); 856 mutex_spin_exit(&timer_lock); 857 858 if (ovalue) 859 *ovalue = oval; 860 861 return (0); 862 } 863 864 /* Return the time remaining until a POSIX timer fires. */ 865 int 866 sys___timer_gettime50(struct lwp *l, 867 const struct sys___timer_gettime50_args *uap, register_t *retval) 868 { 869 /* { 870 syscallarg(timer_t) timerid; 871 syscallarg(struct itimerspec *) value; 872 } */ 873 struct itimerspec its; 874 int error; 875 876 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc, 877 &its)) != 0) 878 return error; 879 880 return copyout(&its, SCARG(uap, value), sizeof(its)); 881 } 882 883 int 884 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its) 885 { 886 struct ptimer *pt; 887 struct ptimers *pts; 888 889 pts = p->p_timers; 890 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 891 return (EINVAL); 892 mutex_spin_enter(&timer_lock); 893 if ((pt = pts->pts_timers[timerid]) == NULL) { 894 mutex_spin_exit(&timer_lock); 895 return (EINVAL); 896 } 897 timer_gettime(pt, its); 898 mutex_spin_exit(&timer_lock); 899 900 return 0; 901 } 902 903 /* 904 * Return the count of the number of times a periodic timer expired 905 * while a notification was already pending. The counter is reset when 906 * a timer expires and a notification can be posted. 907 */ 908 int 909 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, 910 register_t *retval) 911 { 912 /* { 913 syscallarg(timer_t) timerid; 914 } */ 915 struct proc *p = l->l_proc; 916 struct ptimers *pts; 917 int timerid; 918 struct ptimer *pt; 919 920 timerid = SCARG(uap, timerid); 921 922 pts = p->p_timers; 923 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 924 return (EINVAL); 925 mutex_spin_enter(&timer_lock); 926 if ((pt = pts->pts_timers[timerid]) == NULL) { 927 mutex_spin_exit(&timer_lock); 928 return (EINVAL); 929 } 930 *retval = pt->pt_poverruns; 931 mutex_spin_exit(&timer_lock); 932 933 return (0); 934 } 935 936 #ifdef KERN_SA 937 /* Glue function that triggers an upcall; called from userret(). */ 938 void 939 timerupcall(struct lwp *l) 940 { 941 struct ptimers *pt = l->l_proc->p_timers; 942 struct proc *p = l->l_proc; 943 unsigned int i, fired, done; 944 945 KDASSERT(l->l_proc->p_sa); 946 /* Bail out if we do not own the virtual processor */ 947 if (l->l_savp->savp_lwp != l) 948 return ; 949 950 mutex_enter(p->p_lock); 951 952 fired = pt->pts_fired; 953 done = 0; 954 while ((i = ffs(fired)) != 0) { 955 siginfo_t *si; 956 int mask = 1 << --i; 957 int f; 958 959 f = ~l->l_pflag & LP_SA_NOBLOCK; 960 l->l_pflag |= LP_SA_NOBLOCK; 961 si = siginfo_alloc(PR_WAITOK); 962 si->_info = pt->pts_timers[i]->pt_info.ksi_info; 963 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l, 964 sizeof(*si), si, siginfo_free) != 0) { 965 siginfo_free(si); 966 /* XXX What do we do here?? */ 967 } else 968 done |= mask; 969 fired &= ~mask; 970 l->l_pflag ^= f; 971 } 972 pt->pts_fired &= ~done; 973 if (pt->pts_fired == 0) 974 l->l_proc->p_timerpend = 0; 975 976 mutex_exit(p->p_lock); 977 } 978 #endif /* KERN_SA */ 979 980 /* 981 * Real interval timer expired: 982 * send process whose timer expired an alarm signal. 983 * If time is not set up to reload, then just return. 984 * Else compute next time timer should go off which is > current time. 985 * This is where delay in processing this timeout causes multiple 986 * SIGALRM calls to be compressed into one. 987 */ 988 void 989 realtimerexpire(void *arg) 990 { 991 uint64_t last_val, next_val, interval, now_ns; 992 struct timespec now, next; 993 struct ptimer *pt; 994 int backwards; 995 996 pt = arg; 997 998 mutex_spin_enter(&timer_lock); 999 itimerfire(pt); 1000 1001 if (!timespecisset(&pt->pt_time.it_interval)) { 1002 timespecclear(&pt->pt_time.it_value); 1003 mutex_spin_exit(&timer_lock); 1004 return; 1005 } 1006 1007 getnanotime(&now); 1008 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >)); 1009 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next); 1010 /* Handle the easy case of non-overflown timers first. */ 1011 if (!backwards && timespeccmp(&next, &now, >)) { 1012 pt->pt_time.it_value = next; 1013 } else { 1014 now_ns = timespec2ns(&now); 1015 last_val = timespec2ns(&pt->pt_time.it_value); 1016 interval = timespec2ns(&pt->pt_time.it_interval); 1017 1018 next_val = now_ns + 1019 (now_ns - last_val + interval - 1) % interval; 1020 1021 if (backwards) 1022 next_val += interval; 1023 else 1024 pt->pt_overruns += (now_ns - last_val) / interval; 1025 1026 pt->pt_time.it_value.tv_sec = next_val / 1000000000; 1027 pt->pt_time.it_value.tv_nsec = next_val % 1000000000; 1028 } 1029 1030 /* 1031 * Don't need to check tshzto() return value, here. 1032 * callout_reset() does it for us. 1033 */ 1034 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value), 1035 realtimerexpire, pt); 1036 mutex_spin_exit(&timer_lock); 1037 } 1038 1039 /* BSD routine to get the value of an interval timer. */ 1040 /* ARGSUSED */ 1041 int 1042 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap, 1043 register_t *retval) 1044 { 1045 /* { 1046 syscallarg(int) which; 1047 syscallarg(struct itimerval *) itv; 1048 } */ 1049 struct proc *p = l->l_proc; 1050 struct itimerval aitv; 1051 int error; 1052 1053 error = dogetitimer(p, SCARG(uap, which), &aitv); 1054 if (error) 1055 return error; 1056 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval))); 1057 } 1058 1059 int 1060 dogetitimer(struct proc *p, int which, struct itimerval *itvp) 1061 { 1062 struct ptimers *pts; 1063 struct ptimer *pt; 1064 struct itimerspec its; 1065 1066 if ((u_int)which > ITIMER_PROF) 1067 return (EINVAL); 1068 1069 mutex_spin_enter(&timer_lock); 1070 pts = p->p_timers; 1071 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) { 1072 timerclear(&itvp->it_value); 1073 timerclear(&itvp->it_interval); 1074 } else { 1075 timer_gettime(pt, &its); 1076 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value); 1077 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval); 1078 } 1079 mutex_spin_exit(&timer_lock); 1080 1081 return 0; 1082 } 1083 1084 /* BSD routine to set/arm an interval timer. */ 1085 /* ARGSUSED */ 1086 int 1087 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap, 1088 register_t *retval) 1089 { 1090 /* { 1091 syscallarg(int) which; 1092 syscallarg(const struct itimerval *) itv; 1093 syscallarg(struct itimerval *) oitv; 1094 } */ 1095 struct proc *p = l->l_proc; 1096 int which = SCARG(uap, which); 1097 struct sys___getitimer50_args getargs; 1098 const struct itimerval *itvp; 1099 struct itimerval aitv; 1100 int error; 1101 1102 if ((u_int)which > ITIMER_PROF) 1103 return (EINVAL); 1104 itvp = SCARG(uap, itv); 1105 if (itvp && 1106 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0)) 1107 return (error); 1108 if (SCARG(uap, oitv) != NULL) { 1109 SCARG(&getargs, which) = which; 1110 SCARG(&getargs, itv) = SCARG(uap, oitv); 1111 if ((error = sys___getitimer50(l, &getargs, retval)) != 0) 1112 return (error); 1113 } 1114 if (itvp == 0) 1115 return (0); 1116 1117 return dosetitimer(p, which, &aitv); 1118 } 1119 1120 int 1121 dosetitimer(struct proc *p, int which, struct itimerval *itvp) 1122 { 1123 struct timespec now; 1124 struct ptimers *pts; 1125 struct ptimer *pt, *spare; 1126 1127 KASSERT(which == CLOCK_REALTIME || which == CLOCK_VIRTUAL || 1128 which == CLOCK_PROF); 1129 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval)) 1130 return (EINVAL); 1131 1132 /* 1133 * Don't bother allocating data structures if the process just 1134 * wants to clear the timer. 1135 */ 1136 spare = NULL; 1137 pts = p->p_timers; 1138 retry: 1139 if (!timerisset(&itvp->it_value) && (pts == NULL || 1140 pts->pts_timers[which] == NULL)) 1141 return (0); 1142 if (pts == NULL) 1143 pts = timers_alloc(p); 1144 mutex_spin_enter(&timer_lock); 1145 pt = pts->pts_timers[which]; 1146 if (pt == NULL) { 1147 if (spare == NULL) { 1148 mutex_spin_exit(&timer_lock); 1149 spare = pool_get(&ptimer_pool, PR_WAITOK); 1150 goto retry; 1151 } 1152 pt = spare; 1153 spare = NULL; 1154 pt->pt_ev.sigev_notify = SIGEV_SIGNAL; 1155 pt->pt_ev.sigev_value.sival_int = which; 1156 pt->pt_overruns = 0; 1157 pt->pt_proc = p; 1158 pt->pt_type = which; 1159 pt->pt_entry = which; 1160 pt->pt_queued = false; 1161 if (pt->pt_type == CLOCK_REALTIME) 1162 callout_init(&pt->pt_ch, CALLOUT_MPSAFE); 1163 else 1164 pt->pt_active = 0; 1165 1166 switch (which) { 1167 case ITIMER_REAL: 1168 pt->pt_ev.sigev_signo = SIGALRM; 1169 break; 1170 case ITIMER_VIRTUAL: 1171 pt->pt_ev.sigev_signo = SIGVTALRM; 1172 break; 1173 case ITIMER_PROF: 1174 pt->pt_ev.sigev_signo = SIGPROF; 1175 break; 1176 } 1177 pts->pts_timers[which] = pt; 1178 } 1179 1180 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value); 1181 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval); 1182 1183 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) { 1184 /* Convert to absolute time */ 1185 /* XXX need to wrap in splclock for timecounters case? */ 1186 getnanotime(&now); 1187 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value); 1188 } 1189 timer_settime(pt); 1190 mutex_spin_exit(&timer_lock); 1191 if (spare != NULL) 1192 pool_put(&ptimer_pool, spare); 1193 1194 return (0); 1195 } 1196 1197 /* Utility routines to manage the array of pointers to timers. */ 1198 struct ptimers * 1199 timers_alloc(struct proc *p) 1200 { 1201 struct ptimers *pts; 1202 int i; 1203 1204 pts = pool_get(&ptimers_pool, PR_WAITOK); 1205 LIST_INIT(&pts->pts_virtual); 1206 LIST_INIT(&pts->pts_prof); 1207 for (i = 0; i < TIMER_MAX; i++) 1208 pts->pts_timers[i] = NULL; 1209 pts->pts_fired = 0; 1210 mutex_spin_enter(&timer_lock); 1211 if (p->p_timers == NULL) { 1212 p->p_timers = pts; 1213 mutex_spin_exit(&timer_lock); 1214 return pts; 1215 } 1216 mutex_spin_exit(&timer_lock); 1217 pool_put(&ptimers_pool, pts); 1218 return p->p_timers; 1219 } 1220 1221 /* 1222 * Clean up the per-process timers. If "which" is set to TIMERS_ALL, 1223 * then clean up all timers and free all the data structures. If 1224 * "which" is set to TIMERS_POSIX, only clean up the timers allocated 1225 * by timer_create(), not the BSD setitimer() timers, and only free the 1226 * structure if none of those remain. 1227 */ 1228 void 1229 timers_free(struct proc *p, int which) 1230 { 1231 struct ptimers *pts; 1232 struct ptimer *ptn; 1233 struct timespec ts; 1234 int i; 1235 1236 if (p->p_timers == NULL) 1237 return; 1238 1239 pts = p->p_timers; 1240 mutex_spin_enter(&timer_lock); 1241 if (which == TIMERS_ALL) { 1242 p->p_timers = NULL; 1243 i = 0; 1244 } else { 1245 timespecclear(&ts); 1246 for (ptn = LIST_FIRST(&pts->pts_virtual); 1247 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL]; 1248 ptn = LIST_NEXT(ptn, pt_list)) { 1249 KASSERT(ptn->pt_type == CLOCK_VIRTUAL); 1250 timespecadd(&ts, &ptn->pt_time.it_value, &ts); 1251 } 1252 LIST_FIRST(&pts->pts_virtual) = NULL; 1253 if (ptn) { 1254 KASSERT(ptn->pt_type == CLOCK_VIRTUAL); 1255 timespecadd(&ts, &ptn->pt_time.it_value, 1256 &ptn->pt_time.it_value); 1257 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list); 1258 } 1259 timespecclear(&ts); 1260 for (ptn = LIST_FIRST(&pts->pts_prof); 1261 ptn && ptn != pts->pts_timers[ITIMER_PROF]; 1262 ptn = LIST_NEXT(ptn, pt_list)) { 1263 KASSERT(ptn->pt_type == CLOCK_PROF); 1264 timespecadd(&ts, &ptn->pt_time.it_value, &ts); 1265 } 1266 LIST_FIRST(&pts->pts_prof) = NULL; 1267 if (ptn) { 1268 KASSERT(ptn->pt_type == CLOCK_PROF); 1269 timespecadd(&ts, &ptn->pt_time.it_value, 1270 &ptn->pt_time.it_value); 1271 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list); 1272 } 1273 i = 3; 1274 } 1275 for ( ; i < TIMER_MAX; i++) { 1276 if (pts->pts_timers[i] != NULL) { 1277 itimerfree(pts, i); 1278 mutex_spin_enter(&timer_lock); 1279 } 1280 } 1281 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL && 1282 pts->pts_timers[2] == NULL) { 1283 p->p_timers = NULL; 1284 mutex_spin_exit(&timer_lock); 1285 pool_put(&ptimers_pool, pts); 1286 } else 1287 mutex_spin_exit(&timer_lock); 1288 } 1289 1290 static void 1291 itimerfree(struct ptimers *pts, int index) 1292 { 1293 struct ptimer *pt; 1294 1295 KASSERT(mutex_owned(&timer_lock)); 1296 1297 pt = pts->pts_timers[index]; 1298 pts->pts_timers[index] = NULL; 1299 if (!CLOCK_VIRTUAL_P(pt->pt_type)) 1300 callout_halt(&pt->pt_ch, &timer_lock); 1301 if (pt->pt_queued) 1302 TAILQ_REMOVE(&timer_queue, pt, pt_chain); 1303 mutex_spin_exit(&timer_lock); 1304 if (!CLOCK_VIRTUAL_P(pt->pt_type)) 1305 callout_destroy(&pt->pt_ch); 1306 pool_put(&ptimer_pool, pt); 1307 } 1308 1309 /* 1310 * Decrement an interval timer by a specified number 1311 * of nanoseconds, which must be less than a second, 1312 * i.e. < 1000000000. If the timer expires, then reload 1313 * it. In this case, carry over (nsec - old value) to 1314 * reduce the value reloaded into the timer so that 1315 * the timer does not drift. This routine assumes 1316 * that it is called in a context where the timers 1317 * on which it is operating cannot change in value. 1318 */ 1319 static int 1320 itimerdecr(struct ptimer *pt, int nsec) 1321 { 1322 struct itimerspec *itp; 1323 1324 KASSERT(mutex_owned(&timer_lock)); 1325 KASSERT(CLOCK_VIRTUAL_P(pt->pt_type)); 1326 1327 itp = &pt->pt_time; 1328 if (itp->it_value.tv_nsec < nsec) { 1329 if (itp->it_value.tv_sec == 0) { 1330 /* expired, and already in next interval */ 1331 nsec -= itp->it_value.tv_nsec; 1332 goto expire; 1333 } 1334 itp->it_value.tv_nsec += 1000000000; 1335 itp->it_value.tv_sec--; 1336 } 1337 itp->it_value.tv_nsec -= nsec; 1338 nsec = 0; 1339 if (timespecisset(&itp->it_value)) 1340 return (1); 1341 /* expired, exactly at end of interval */ 1342 expire: 1343 if (timespecisset(&itp->it_interval)) { 1344 itp->it_value = itp->it_interval; 1345 itp->it_value.tv_nsec -= nsec; 1346 if (itp->it_value.tv_nsec < 0) { 1347 itp->it_value.tv_nsec += 1000000000; 1348 itp->it_value.tv_sec--; 1349 } 1350 timer_settime(pt); 1351 } else 1352 itp->it_value.tv_nsec = 0; /* sec is already 0 */ 1353 return (0); 1354 } 1355 1356 static void 1357 itimerfire(struct ptimer *pt) 1358 { 1359 1360 KASSERT(mutex_owned(&timer_lock)); 1361 1362 /* 1363 * XXX Can overrun, but we don't do signal queueing yet, anyway. 1364 * XXX Relying on the clock interrupt is stupid. 1365 */ 1366 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) || 1367 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL && 1368 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued) 1369 return; 1370 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain); 1371 pt->pt_queued = true; 1372 softint_schedule(timer_sih); 1373 } 1374 1375 void 1376 timer_tick(lwp_t *l, bool user) 1377 { 1378 struct ptimers *pts; 1379 struct ptimer *pt; 1380 proc_t *p; 1381 1382 p = l->l_proc; 1383 if (p->p_timers == NULL) 1384 return; 1385 1386 mutex_spin_enter(&timer_lock); 1387 if ((pts = l->l_proc->p_timers) != NULL) { 1388 /* 1389 * Run current process's virtual and profile time, as needed. 1390 */ 1391 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL) 1392 if (itimerdecr(pt, tick * 1000) == 0) 1393 itimerfire(pt); 1394 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL) 1395 if (itimerdecr(pt, tick * 1000) == 0) 1396 itimerfire(pt); 1397 } 1398 mutex_spin_exit(&timer_lock); 1399 } 1400 1401 #ifdef KERN_SA 1402 /* 1403 * timer_sa_intr: 1404 * 1405 * SIGEV_SA handling for timer_intr(). We are called (and return) 1406 * with the timer lock held. We know that the process had SA enabled 1407 * when this timer was enqueued. As timer_intr() is a soft interrupt 1408 * handler, SA should still be enabled by the time we get here. 1409 */ 1410 static void 1411 timer_sa_intr(struct ptimer *pt, proc_t *p) 1412 { 1413 unsigned int i; 1414 struct sadata *sa; 1415 struct sadata_vp *vp; 1416 1417 /* Cause the process to generate an upcall when it returns. */ 1418 if (!p->p_timerpend) { 1419 /* 1420 * XXX stop signals can be processed inside tsleep, 1421 * which can be inside sa_yield's inner loop, which 1422 * makes testing for sa_idle alone insuffucent to 1423 * determine if we really should call setrunnable. 1424 */ 1425 pt->pt_poverruns = pt->pt_overruns; 1426 pt->pt_overruns = 0; 1427 i = 1 << pt->pt_entry; 1428 p->p_timers->pts_fired = i; 1429 p->p_timerpend = 1; 1430 1431 sa = p->p_sa; 1432 mutex_enter(&sa->sa_mutex); 1433 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) { 1434 struct lwp *vp_lwp = vp->savp_lwp; 1435 lwp_lock(vp_lwp); 1436 lwp_need_userret(vp_lwp); 1437 if (vp_lwp->l_flag & LW_SA_IDLE) { 1438 vp_lwp->l_flag &= ~LW_SA_IDLE; 1439 lwp_unsleep(vp_lwp, true); 1440 break; 1441 } 1442 lwp_unlock(vp_lwp); 1443 } 1444 mutex_exit(&sa->sa_mutex); 1445 } else { 1446 i = 1 << pt->pt_entry; 1447 if ((p->p_timers->pts_fired & i) == 0) { 1448 pt->pt_poverruns = pt->pt_overruns; 1449 pt->pt_overruns = 0; 1450 p->p_timers->pts_fired |= i; 1451 } else 1452 pt->pt_overruns++; 1453 } 1454 } 1455 #endif /* KERN_SA */ 1456 1457 static void 1458 timer_intr(void *cookie) 1459 { 1460 ksiginfo_t ksi; 1461 struct ptimer *pt; 1462 proc_t *p; 1463 1464 mutex_enter(proc_lock); 1465 mutex_spin_enter(&timer_lock); 1466 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) { 1467 TAILQ_REMOVE(&timer_queue, pt, pt_chain); 1468 KASSERT(pt->pt_queued); 1469 pt->pt_queued = false; 1470 1471 if (pt->pt_proc->p_timers == NULL) { 1472 /* Process is dying. */ 1473 continue; 1474 } 1475 p = pt->pt_proc; 1476 #ifdef KERN_SA 1477 if (pt->pt_ev.sigev_notify == SIGEV_SA) { 1478 timer_sa_intr(pt, p); 1479 continue; 1480 } 1481 #endif /* KERN_SA */ 1482 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) 1483 continue; 1484 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) { 1485 pt->pt_overruns++; 1486 continue; 1487 } 1488 1489 KSI_INIT(&ksi); 1490 ksi.ksi_signo = pt->pt_ev.sigev_signo; 1491 ksi.ksi_code = SI_TIMER; 1492 ksi.ksi_value = pt->pt_ev.sigev_value; 1493 pt->pt_poverruns = pt->pt_overruns; 1494 pt->pt_overruns = 0; 1495 mutex_spin_exit(&timer_lock); 1496 kpsignal(p, &ksi, NULL); 1497 mutex_spin_enter(&timer_lock); 1498 } 1499 mutex_spin_exit(&timer_lock); 1500 mutex_exit(proc_lock); 1501 } 1502 1503 /* 1504 * Check if the time will wrap if set to ts. 1505 * 1506 * ts - timespec describing the new time 1507 * delta - the delta between the current time and ts 1508 */ 1509 bool 1510 time_wraps(struct timespec *ts, struct timespec *delta) 1511 { 1512 1513 /* 1514 * Don't allow the time to be set forward so far it 1515 * will wrap and become negative, thus allowing an 1516 * attacker to bypass the next check below. The 1517 * cutoff is 1 year before rollover occurs, so even 1518 * if the attacker uses adjtime(2) to move the time 1519 * past the cutoff, it will take a very long time 1520 * to get to the wrap point. 1521 */ 1522 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) || 1523 (delta->tv_sec < 0 || delta->tv_nsec < 0)) 1524 return true; 1525 1526 return false; 1527 } 1528