xref: /netbsd-src/sys/kern/kern_time.c (revision 95d875fb90b1458e4f1de6950286ddcd6644bc61)
1 /*	$NetBSD: kern_time.c,v 1.41 1999/10/10 18:41:53 hwr Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
36  */
37 
38 #include "fs_nfs.h"
39 #include "opt_nfsserver.h"
40 
41 #include <sys/param.h>
42 #include <sys/resourcevar.h>
43 #include <sys/kernel.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/vnode.h>
47 #include <sys/signalvar.h>
48 #include <sys/syslog.h>
49 
50 #include <sys/mount.h>
51 #include <sys/syscallargs.h>
52 
53 #include <vm/vm.h>
54 #include <uvm/uvm_extern.h>
55 
56 #if defined(NFS) || defined(NFSSERVER)
57 #include <nfs/rpcv2.h>
58 #include <nfs/nfsproto.h>
59 #include <nfs/nfs_var.h>
60 #endif
61 
62 #include <machine/cpu.h>
63 
64 /*
65  * Time of day and interval timer support.
66  *
67  * These routines provide the kernel entry points to get and set
68  * the time-of-day and per-process interval timers.  Subroutines
69  * here provide support for adding and subtracting timeval structures
70  * and decrementing interval timers, optionally reloading the interval
71  * timers when they expire.
72  */
73 
74 /* This function is used by clock_settime and settimeofday */
75 int
76 settime(tv)
77 	struct timeval *tv;
78 {
79 	struct timeval delta;
80 	int s;
81 
82 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
83 	s = splclock();
84 	timersub(tv, &time, &delta);
85 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
86 		return (EPERM);
87 #ifdef notyet
88 	if ((delta.tv_sec < 86400) && securelevel > 0)
89 		return (EPERM);
90 #endif
91 	time = *tv;
92 	(void) spllowersoftclock();
93 	timeradd(&boottime, &delta, &boottime);
94 	timeradd(&runtime, &delta, &runtime);
95 #	if defined(NFS) || defined(NFSSERVER)
96 		nqnfs_lease_updatetime(delta.tv_sec);
97 #	endif
98 	splx(s);
99 	resettodr();
100 	return (0);
101 }
102 
103 /* ARGSUSED */
104 int
105 sys_clock_gettime(p, v, retval)
106 	struct proc *p;
107 	void *v;
108 	register_t *retval;
109 {
110 	register struct sys_clock_gettime_args /* {
111 		syscallarg(clockid_t) clock_id;
112 		syscallarg(struct timespec *) tp;
113 	} */ *uap = v;
114 	clockid_t clock_id;
115 	struct timeval atv;
116 	struct timespec ats;
117 
118 	clock_id = SCARG(uap, clock_id);
119 	if (clock_id != CLOCK_REALTIME)
120 		return (EINVAL);
121 
122 	microtime(&atv);
123 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
124 
125 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
126 }
127 
128 /* ARGSUSED */
129 int
130 sys_clock_settime(p, v, retval)
131 	struct proc *p;
132 	void *v;
133 	register_t *retval;
134 {
135 	register struct sys_clock_settime_args /* {
136 		syscallarg(clockid_t) clock_id;
137 		syscallarg(const struct timespec *) tp;
138 	} */ *uap = v;
139 	clockid_t clock_id;
140 	struct timeval atv;
141 	struct timespec ats;
142 	int error;
143 
144 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
145 		return (error);
146 
147 	clock_id = SCARG(uap, clock_id);
148 	if (clock_id != CLOCK_REALTIME)
149 		return (EINVAL);
150 
151 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
152 		return (error);
153 
154 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
155 	if ((error = settime(&atv)))
156 		return (error);
157 
158 	return 0;
159 }
160 
161 int
162 sys_clock_getres(p, v, retval)
163 	struct proc *p;
164 	void *v;
165 	register_t *retval;
166 {
167 	register struct sys_clock_getres_args /* {
168 		syscallarg(clockid_t) clock_id;
169 		syscallarg(struct timespec *) tp;
170 	} */ *uap = v;
171 	clockid_t clock_id;
172 	struct timespec ts;
173 	int error = 0;
174 
175 	clock_id = SCARG(uap, clock_id);
176 	if (clock_id != CLOCK_REALTIME)
177 		return (EINVAL);
178 
179 	if (SCARG(uap, tp)) {
180 		ts.tv_sec = 0;
181 		ts.tv_nsec = 1000000000 / hz;
182 
183 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
184 	}
185 
186 	return error;
187 }
188 
189 /* ARGSUSED */
190 int
191 sys_nanosleep(p, v, retval)
192 	struct proc *p;
193 	void *v;
194 	register_t *retval;
195 {
196 	static int nanowait;
197 	register struct sys_nanosleep_args/* {
198 		syscallarg(struct timespec *) rqtp;
199 		syscallarg(struct timespec *) rmtp;
200 	} */ *uap = v;
201 	struct timespec rqt;
202 	struct timespec rmt;
203 	struct timeval atv, utv;
204 	int error, s, timo;
205 
206 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
207 		       sizeof(struct timespec));
208 	if (error)
209 		return (error);
210 
211 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
212 	if (itimerfix(&atv))
213 		return (EINVAL);
214 
215 	s = splclock();
216 	timeradd(&atv,&time,&atv);
217 	timo = hzto(&atv);
218 	/*
219 	 * Avoid inadvertantly sleeping forever
220 	 */
221 	if (timo == 0)
222 		timo = 1;
223 	splx(s);
224 
225 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
226 	if (error == ERESTART)
227 		error = EINTR;
228 	if (error == EWOULDBLOCK)
229 		error = 0;
230 
231 	if (SCARG(uap, rmtp)) {
232 		int error;
233 
234 		s = splclock();
235 		utv = time;
236 		splx(s);
237 
238 		timersub(&atv, &utv, &utv);
239 		if (utv.tv_sec < 0)
240 			timerclear(&utv);
241 
242 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
243 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
244 			sizeof(rmt));
245 		if (error)
246 			return (error);
247 	}
248 
249 	return error;
250 }
251 
252 /* ARGSUSED */
253 int
254 sys_gettimeofday(p, v, retval)
255 	struct proc *p;
256 	void *v;
257 	register_t *retval;
258 {
259 	register struct sys_gettimeofday_args /* {
260 		syscallarg(struct timeval *) tp;
261 		syscallarg(struct timezone *) tzp;
262 	} */ *uap = v;
263 	struct timeval atv;
264 	int error = 0;
265 	struct timezone tzfake;
266 
267 	if (SCARG(uap, tp)) {
268 		microtime(&atv);
269 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
270 		if (error)
271 			return (error);
272 	}
273 	if (SCARG(uap, tzp)) {
274 		/*
275 		 * NetBSD has no kernel notion of time zone, so we just
276 		 * fake up a timezone struct and return it if demanded.
277 		 */
278 		tzfake.tz_minuteswest = 0;
279 		tzfake.tz_dsttime = 0;
280 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
281 	}
282 	return (error);
283 }
284 
285 /* ARGSUSED */
286 int
287 sys_settimeofday(p, v, retval)
288 	struct proc *p;
289 	void *v;
290 	register_t *retval;
291 {
292 	struct sys_settimeofday_args /* {
293 		syscallarg(const struct timeval *) tv;
294 		syscallarg(const struct timezone *) tzp;
295 	} */ *uap = v;
296 	struct timeval atv;
297 	struct timezone atz;
298 	int error;
299 
300 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
301 		return (error);
302 	/* Verify all parameters before changing time. */
303 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
304 	    &atv, sizeof(atv))))
305 		return (error);
306 	/* XXX since we don't use tz, probably no point in doing copyin. */
307 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
308 	    &atz, sizeof(atz))))
309 		return (error);
310 	if (SCARG(uap, tv))
311 		if ((error = settime(&atv)))
312 			return (error);
313 	/*
314 	 * NetBSD has no kernel notion of time zone, and only an
315 	 * obsolete program would try to set it, so we log a warning.
316 	 */
317 	if (SCARG(uap, tzp))
318 		log(LOG_WARNING, "pid %d attempted to set the "
319 		    "(obsolete) kernel time zone\n", p->p_pid);
320 	return (0);
321 }
322 
323 int	tickdelta;			/* current clock skew, us. per tick */
324 long	timedelta;			/* unapplied time correction, us. */
325 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
326 
327 /* ARGSUSED */
328 int
329 sys_adjtime(p, v, retval)
330 	struct proc *p;
331 	void *v;
332 	register_t *retval;
333 {
334 	register struct sys_adjtime_args /* {
335 		syscallarg(const struct timeval *) delta;
336 		syscallarg(struct timeval *) olddelta;
337 	} */ *uap = v;
338 	struct timeval atv;
339 	register long ndelta, ntickdelta, odelta;
340 	int s, error;
341 
342 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
343 		return (error);
344 
345 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
346 	if (error)
347 		return (error);
348 	if (SCARG(uap, olddelta) != NULL &&
349 	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
350 	     B_WRITE) == FALSE)
351 		return (EFAULT);
352 
353 	/*
354 	 * Compute the total correction and the rate at which to apply it.
355 	 * Round the adjustment down to a whole multiple of the per-tick
356 	 * delta, so that after some number of incremental changes in
357 	 * hardclock(), tickdelta will become zero, lest the correction
358 	 * overshoot and start taking us away from the desired final time.
359 	 */
360 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
361 	if (ndelta > bigadj || ndelta < -bigadj)
362 		ntickdelta = 10 * tickadj;
363 	else
364 		ntickdelta = tickadj;
365 	if (ndelta % ntickdelta)
366 		ndelta = ndelta / ntickdelta * ntickdelta;
367 
368 	/*
369 	 * To make hardclock()'s job easier, make the per-tick delta negative
370 	 * if we want time to run slower; then hardclock can simply compute
371 	 * tick + tickdelta, and subtract tickdelta from timedelta.
372 	 */
373 	if (ndelta < 0)
374 		ntickdelta = -ntickdelta;
375 	s = splclock();
376 	odelta = timedelta;
377 	timedelta = ndelta;
378 	tickdelta = ntickdelta;
379 	splx(s);
380 
381 	if (SCARG(uap, olddelta)) {
382 		atv.tv_sec = odelta / 1000000;
383 		atv.tv_usec = odelta % 1000000;
384 		(void) copyout(&atv, SCARG(uap, olddelta),
385 		    sizeof(struct timeval));
386 	}
387 	return (0);
388 }
389 
390 /*
391  * Get value of an interval timer.  The process virtual and
392  * profiling virtual time timers are kept in the p_stats area, since
393  * they can be swapped out.  These are kept internally in the
394  * way they are specified externally: in time until they expire.
395  *
396  * The real time interval timer is kept in the process table slot
397  * for the process, and its value (it_value) is kept as an
398  * absolute time rather than as a delta, so that it is easy to keep
399  * periodic real-time signals from drifting.
400  *
401  * Virtual time timers are processed in the hardclock() routine of
402  * kern_clock.c.  The real time timer is processed by a timeout
403  * routine, called from the softclock() routine.  Since a callout
404  * may be delayed in real time due to interrupt processing in the system,
405  * it is possible for the real time timeout routine (realitexpire, given below),
406  * to be delayed in real time past when it is supposed to occur.  It
407  * does not suffice, therefore, to reload the real timer .it_value from the
408  * real time timers .it_interval.  Rather, we compute the next time in
409  * absolute time the timer should go off.
410  */
411 /* ARGSUSED */
412 int
413 sys_getitimer(p, v, retval)
414 	struct proc *p;
415 	void *v;
416 	register_t *retval;
417 {
418 	register struct sys_getitimer_args /* {
419 		syscallarg(int) which;
420 		syscallarg(struct itimerval *) itv;
421 	} */ *uap = v;
422 	int which = SCARG(uap, which);
423 	struct itimerval aitv;
424 	int s;
425 
426 	if ((u_int)which > ITIMER_PROF)
427 		return (EINVAL);
428 	s = splclock();
429 	if (which == ITIMER_REAL) {
430 		/*
431 		 * Convert from absolute to relative time in .it_value
432 		 * part of real time timer.  If time for real time timer
433 		 * has passed return 0, else return difference between
434 		 * current time and time for the timer to go off.
435 		 */
436 		aitv = p->p_realtimer;
437 		if (timerisset(&aitv.it_value)) {
438 			if (timercmp(&aitv.it_value, &time, <))
439 				timerclear(&aitv.it_value);
440 			else
441 				timersub(&aitv.it_value, &time, &aitv.it_value);
442 		}
443 	} else
444 		aitv = p->p_stats->p_timer[which];
445 	splx(s);
446 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
447 }
448 
449 /* ARGSUSED */
450 int
451 sys_setitimer(p, v, retval)
452 	struct proc *p;
453 	register void *v;
454 	register_t *retval;
455 {
456 	register struct sys_setitimer_args /* {
457 		syscallarg(int) which;
458 		syscallarg(const struct itimerval *) itv;
459 		syscallarg(struct itimerval *) oitv;
460 	} */ *uap = v;
461 	int which = SCARG(uap, which);
462 	struct sys_getitimer_args getargs;
463 	struct itimerval aitv;
464 	register const struct itimerval *itvp;
465 	int s, error;
466 
467 	if ((u_int)which > ITIMER_PROF)
468 		return (EINVAL);
469 	itvp = SCARG(uap, itv);
470 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
471 		return (error);
472 	if (SCARG(uap, oitv) != NULL) {
473 		SCARG(&getargs, which) = which;
474 		SCARG(&getargs, itv) = SCARG(uap, oitv);
475 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
476 			return (error);
477 	}
478 	if (itvp == 0)
479 		return (0);
480 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
481 		return (EINVAL);
482 	s = splclock();
483 	if (which == ITIMER_REAL) {
484 		untimeout(realitexpire, p);
485 		if (timerisset(&aitv.it_value)) {
486 			timeradd(&aitv.it_value, &time, &aitv.it_value);
487 			timeout(realitexpire, p, hzto(&aitv.it_value));
488 		}
489 		p->p_realtimer = aitv;
490 	} else
491 		p->p_stats->p_timer[which] = aitv;
492 	splx(s);
493 	return (0);
494 }
495 
496 /*
497  * Real interval timer expired:
498  * send process whose timer expired an alarm signal.
499  * If time is not set up to reload, then just return.
500  * Else compute next time timer should go off which is > current time.
501  * This is where delay in processing this timeout causes multiple
502  * SIGALRM calls to be compressed into one.
503  */
504 void
505 realitexpire(arg)
506 	void *arg;
507 {
508 	register struct proc *p;
509 	int s;
510 
511 	p = (struct proc *)arg;
512 	psignal(p, SIGALRM);
513 	if (!timerisset(&p->p_realtimer.it_interval)) {
514 		timerclear(&p->p_realtimer.it_value);
515 		return;
516 	}
517 	for (;;) {
518 		s = splclock();
519 		timeradd(&p->p_realtimer.it_value,
520 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
521 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
522 			timeout(realitexpire, p,
523 			    hzto(&p->p_realtimer.it_value));
524 			splx(s);
525 			return;
526 		}
527 		splx(s);
528 	}
529 }
530 
531 /*
532  * Check that a proposed value to load into the .it_value or
533  * .it_interval part of an interval timer is acceptable, and
534  * fix it to have at least minimal value (i.e. if it is less
535  * than the resolution of the clock, round it up.)
536  */
537 int
538 itimerfix(tv)
539 	struct timeval *tv;
540 {
541 
542 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
543 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
544 		return (EINVAL);
545 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
546 		tv->tv_usec = tick;
547 	return (0);
548 }
549 
550 /*
551  * Decrement an interval timer by a specified number
552  * of microseconds, which must be less than a second,
553  * i.e. < 1000000.  If the timer expires, then reload
554  * it.  In this case, carry over (usec - old value) to
555  * reduce the value reloaded into the timer so that
556  * the timer does not drift.  This routine assumes
557  * that it is called in a context where the timers
558  * on which it is operating cannot change in value.
559  */
560 int
561 itimerdecr(itp, usec)
562 	register struct itimerval *itp;
563 	int usec;
564 {
565 
566 	if (itp->it_value.tv_usec < usec) {
567 		if (itp->it_value.tv_sec == 0) {
568 			/* expired, and already in next interval */
569 			usec -= itp->it_value.tv_usec;
570 			goto expire;
571 		}
572 		itp->it_value.tv_usec += 1000000;
573 		itp->it_value.tv_sec--;
574 	}
575 	itp->it_value.tv_usec -= usec;
576 	usec = 0;
577 	if (timerisset(&itp->it_value))
578 		return (1);
579 	/* expired, exactly at end of interval */
580 expire:
581 	if (timerisset(&itp->it_interval)) {
582 		itp->it_value = itp->it_interval;
583 		itp->it_value.tv_usec -= usec;
584 		if (itp->it_value.tv_usec < 0) {
585 			itp->it_value.tv_usec += 1000000;
586 			itp->it_value.tv_sec--;
587 		}
588 	} else
589 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
590 	return (0);
591 }
592