xref: /netbsd-src/sys/kern/kern_time.c (revision 9573504567626934c7ee01c7dce0c4bb1dfe7403)
1 /*	$NetBSD: kern_time.c,v 1.16 1995/10/07 06:28:28 mycroft Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/param.h>
39 #include <sys/resourcevar.h>
40 #include <sys/kernel.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44 
45 #include <sys/mount.h>
46 #include <sys/syscallargs.h>
47 
48 #include <machine/cpu.h>
49 
50 /*
51  * Time of day and interval timer support.
52  *
53  * These routines provide the kernel entry points to get and set
54  * the time-of-day and per-process interval timers.  Subroutines
55  * here provide support for adding and subtracting timeval structures
56  * and decrementing interval timers, optionally reloading the interval
57  * timers when they expire.
58  */
59 
60 /* ARGSUSED */
61 int
62 sys_gettimeofday(p, v, retval)
63 	struct proc *p;
64 	void *v;
65 	register_t *retval;
66 {
67 	register struct sys_gettimeofday_args /* {
68 		syscallarg(struct timeval *) tp;
69 		syscallarg(struct timezone *) tzp;
70 	} */ *uap = v;
71 	struct timeval atv;
72 	int error = 0;
73 
74 	if (SCARG(uap, tp)) {
75 		microtime(&atv);
76 		if (error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
77 		    sizeof (atv)))
78 			return (error);
79 	}
80 	if (SCARG(uap, tzp))
81 		error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
82 		    sizeof (tz));
83 	return (error);
84 }
85 
86 /* ARGSUSED */
87 int
88 sys_settimeofday(p, v, retval)
89 	struct proc *p;
90 	void *v;
91 	register_t *retval;
92 {
93 	struct sys_settimeofday_args /* {
94 		syscallarg(struct timeval *) tv;
95 		syscallarg(struct timezone *) tzp;
96 	} */ *uap = v;
97 	struct timeval atv, delta;
98 	struct timezone atz;
99 	int error, s;
100 
101 	if (error = suser(p->p_ucred, &p->p_acflag))
102 		return (error);
103 	/* Verify all parameters before changing time. */
104 	if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
105 	    (caddr_t)&atv, sizeof(atv))))
106 		return (error);
107 	if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
108 	    (caddr_t)&atz, sizeof(atz))))
109 		return (error);
110 	if (SCARG(uap, tv)) {
111 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
112 		s = splclock();
113 		timersub(&atv, &time, &delta);
114 		time = atv;
115 		(void) splsoftclock();
116 		timeradd(&boottime, &delta, &boottime);
117 		timeradd(&runtime, &delta, &runtime);
118 # 		if defined(NFSCLIENT) || defined(NFSSERVER)
119 			lease_updatetime(delta.tv_sec);
120 #		endif
121 		splx(s);
122 		resettodr();
123 	}
124 	if (SCARG(uap, tzp))
125 		tz = atz;
126 	return (0);
127 }
128 
129 int	tickdelta;			/* current clock skew, us. per tick */
130 long	timedelta;			/* unapplied time correction, us. */
131 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
132 
133 /* ARGSUSED */
134 int
135 sys_adjtime(p, v, retval)
136 	struct proc *p;
137 	void *v;
138 	register_t *retval;
139 {
140 	register struct sys_adjtime_args /* {
141 		syscallarg(struct timeval *) delta;
142 		syscallarg(struct timeval *) olddelta;
143 	} */ *uap = v;
144 	struct timeval atv;
145 	register long ndelta, ntickdelta, odelta;
146 	int s, error;
147 
148 	if (error = suser(p->p_ucred, &p->p_acflag))
149 		return (error);
150 	if (error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
151 	    sizeof(struct timeval)))
152 		return (error);
153 
154 	/*
155 	 * Compute the total correction and the rate at which to apply it.
156 	 * Round the adjustment down to a whole multiple of the per-tick
157 	 * delta, so that after some number of incremental changes in
158 	 * hardclock(), tickdelta will become zero, lest the correction
159 	 * overshoot and start taking us away from the desired final time.
160 	 */
161 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
162 	if (ndelta > bigadj)
163 		ntickdelta = 10 * tickadj;
164 	else
165 		ntickdelta = tickadj;
166 	if (ndelta % ntickdelta)
167 		ndelta = ndelta / ntickdelta * ntickdelta;
168 
169 	/*
170 	 * To make hardclock()'s job easier, make the per-tick delta negative
171 	 * if we want time to run slower; then hardclock can simply compute
172 	 * tick + tickdelta, and subtract tickdelta from timedelta.
173 	 */
174 	if (ndelta < 0)
175 		ntickdelta = -ntickdelta;
176 	s = splclock();
177 	odelta = timedelta;
178 	timedelta = ndelta;
179 	tickdelta = ntickdelta;
180 	splx(s);
181 
182 	if (SCARG(uap, olddelta)) {
183 		atv.tv_sec = odelta / 1000000;
184 		atv.tv_usec = odelta % 1000000;
185 		(void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
186 		    sizeof(struct timeval));
187 	}
188 	return (0);
189 }
190 
191 /*
192  * Get value of an interval timer.  The process virtual and
193  * profiling virtual time timers are kept in the p_stats area, since
194  * they can be swapped out.  These are kept internally in the
195  * way they are specified externally: in time until they expire.
196  *
197  * The real time interval timer is kept in the process table slot
198  * for the process, and its value (it_value) is kept as an
199  * absolute time rather than as a delta, so that it is easy to keep
200  * periodic real-time signals from drifting.
201  *
202  * Virtual time timers are processed in the hardclock() routine of
203  * kern_clock.c.  The real time timer is processed by a timeout
204  * routine, called from the softclock() routine.  Since a callout
205  * may be delayed in real time due to interrupt processing in the system,
206  * it is possible for the real time timeout routine (realitexpire, given below),
207  * to be delayed in real time past when it is supposed to occur.  It
208  * does not suffice, therefore, to reload the real timer .it_value from the
209  * real time timers .it_interval.  Rather, we compute the next time in
210  * absolute time the timer should go off.
211  */
212 /* ARGSUSED */
213 int
214 sys_getitimer(p, v, retval)
215 	struct proc *p;
216 	void *v;
217 	register_t *retval;
218 {
219 	register struct sys_getitimer_args /* {
220 		syscallarg(u_int) which;
221 		syscallarg(struct itimerval *) itv;
222 	} */ *uap = v;
223 	struct itimerval aitv;
224 	int s;
225 
226 	if (SCARG(uap, which) > ITIMER_PROF)
227 		return (EINVAL);
228 	s = splclock();
229 	if (SCARG(uap, which) == ITIMER_REAL) {
230 		/*
231 		 * Convert from absolute to relative time in .it_value
232 		 * part of real time timer.  If time for real time timer
233 		 * has passed return 0, else return difference between
234 		 * current time and time for the timer to go off.
235 		 */
236 		aitv = p->p_realtimer;
237 		if (timerisset(&aitv.it_value))
238 			if (timercmp(&aitv.it_value, &time, <))
239 				timerclear(&aitv.it_value);
240 			else
241 				timersub(&aitv.it_value, &time, &aitv.it_value);
242 	} else
243 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
244 	splx(s);
245 	return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
246 	    sizeof (struct itimerval)));
247 }
248 
249 /* ARGSUSED */
250 int
251 sys_setitimer(p, v, retval)
252 	struct proc *p;
253 	void *v;
254 	register_t *retval;
255 {
256 	register struct sys_setitimer_args /* {
257 		syscallarg(u_int) which;
258 		syscallarg(struct itimerval *) itv;
259 		syscallarg(struct itimerval *) oitv;
260 	} */ *uap = v;
261 	struct itimerval aitv;
262 	register struct itimerval *itvp;
263 	int s, error;
264 
265 	if (SCARG(uap, which) > ITIMER_PROF)
266 		return (EINVAL);
267 	itvp = SCARG(uap, itv);
268 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
269 	    sizeof(struct itimerval))))
270 		return (error);
271 	if ((SCARG(uap, itv) = SCARG(uap, oitv)) &&
272 	    (error = sys_getitimer(p, uap, retval)))
273 		return (error);
274 	if (itvp == 0)
275 		return (0);
276 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
277 		return (EINVAL);
278 	s = splclock();
279 	if (SCARG(uap, which) == ITIMER_REAL) {
280 		untimeout(realitexpire, p);
281 		if (timerisset(&aitv.it_value)) {
282 			timeradd(&aitv.it_value, &time, &aitv.it_value);
283 			timeout(realitexpire, p, hzto(&aitv.it_value));
284 		}
285 		p->p_realtimer = aitv;
286 	} else
287 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
288 	splx(s);
289 	return (0);
290 }
291 
292 /*
293  * Real interval timer expired:
294  * send process whose timer expired an alarm signal.
295  * If time is not set up to reload, then just return.
296  * Else compute next time timer should go off which is > current time.
297  * This is where delay in processing this timeout causes multiple
298  * SIGALRM calls to be compressed into one.
299  */
300 void
301 realitexpire(arg)
302 	void *arg;
303 {
304 	register struct proc *p;
305 	int s;
306 
307 	p = (struct proc *)arg;
308 	psignal(p, SIGALRM);
309 	if (!timerisset(&p->p_realtimer.it_interval)) {
310 		timerclear(&p->p_realtimer.it_value);
311 		return;
312 	}
313 	for (;;) {
314 		s = splclock();
315 		timeradd(&p->p_realtimer.it_value,
316 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
317 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
318 			timeout(realitexpire, p,
319 			    hzto(&p->p_realtimer.it_value));
320 			splx(s);
321 			return;
322 		}
323 		splx(s);
324 	}
325 }
326 
327 /*
328  * Check that a proposed value to load into the .it_value or
329  * .it_interval part of an interval timer is acceptable, and
330  * fix it to have at least minimal value (i.e. if it is less
331  * than the resolution of the clock, round it up.)
332  */
333 int
334 itimerfix(tv)
335 	struct timeval *tv;
336 {
337 
338 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
339 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
340 		return (EINVAL);
341 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
342 		tv->tv_usec = tick;
343 	return (0);
344 }
345 
346 /*
347  * Decrement an interval timer by a specified number
348  * of microseconds, which must be less than a second,
349  * i.e. < 1000000.  If the timer expires, then reload
350  * it.  In this case, carry over (usec - old value) to
351  * reduce the value reloaded into the timer so that
352  * the timer does not drift.  This routine assumes
353  * that it is called in a context where the timers
354  * on which it is operating cannot change in value.
355  */
356 int
357 itimerdecr(itp, usec)
358 	register struct itimerval *itp;
359 	int usec;
360 {
361 
362 	if (itp->it_value.tv_usec < usec) {
363 		if (itp->it_value.tv_sec == 0) {
364 			/* expired, and already in next interval */
365 			usec -= itp->it_value.tv_usec;
366 			goto expire;
367 		}
368 		itp->it_value.tv_usec += 1000000;
369 		itp->it_value.tv_sec--;
370 	}
371 	itp->it_value.tv_usec -= usec;
372 	usec = 0;
373 	if (timerisset(&itp->it_value))
374 		return (1);
375 	/* expired, exactly at end of interval */
376 expire:
377 	if (timerisset(&itp->it_interval)) {
378 		itp->it_value = itp->it_interval;
379 		itp->it_value.tv_usec -= usec;
380 		if (itp->it_value.tv_usec < 0) {
381 			itp->it_value.tv_usec += 1000000;
382 			itp->it_value.tv_sec--;
383 		}
384 	} else
385 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
386 	return (0);
387 }
388