xref: /netbsd-src/sys/kern/kern_time.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: kern_time.c,v 1.134 2007/12/08 13:31:56 elad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christopher G. Demetriou.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1982, 1986, 1989, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.134 2007/12/08 13:31:56 elad Exp $");
72 
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #include <sys/timetc.h>
82 #ifndef __HAVE_TIMECOUNTER
83 #include <sys/timevar.h>
84 #endif /* !__HAVE_TIMECOUNTER */
85 #include <sys/kauth.h>
86 
87 #include <sys/mount.h>
88 #include <sys/syscallargs.h>
89 
90 #include <uvm/uvm_extern.h>
91 
92 #include <sys/cpu.h>
93 
94 kmutex_t	time_lock;
95 
96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
97     &pool_allocator_nointr, IPL_NONE);
98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
99     &pool_allocator_nointr, IPL_NONE);
100 
101 /*
102  * Initialize timekeeping.
103  */
104 void
105 time_init(void)
106 {
107 
108 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
109 }
110 
111 /* Time of day and interval timer support.
112  *
113  * These routines provide the kernel entry points to get and set
114  * the time-of-day and per-process interval timers.  Subroutines
115  * here provide support for adding and subtracting timeval structures
116  * and decrementing interval timers, optionally reloading the interval
117  * timers when they expire.
118  */
119 
120 /* This function is used by clock_settime and settimeofday */
121 static int
122 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
123 {
124 	struct timeval delta, tv;
125 #ifdef __HAVE_TIMECOUNTER
126 	struct timeval now;
127 	struct timespec ts1;
128 #endif /* !__HAVE_TIMECOUNTER */
129 	lwp_t *l;
130 	int s;
131 
132 	TIMESPEC_TO_TIMEVAL(&tv, ts);
133 
134 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
135 	s = splclock();
136 #ifdef __HAVE_TIMECOUNTER
137 	microtime(&now);
138 	timersub(&tv, &now, &delta);
139 #else /* !__HAVE_TIMECOUNTER */
140 	timersub(&tv, &time, &delta);
141 #endif /* !__HAVE_TIMECOUNTER */
142 
143 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
144 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
145 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
146 		splx(s);
147 		return (EPERM);
148 	}
149 
150 #ifdef notyet
151 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
152 		splx(s);
153 		return (EPERM);
154 	}
155 #endif
156 
157 #ifdef __HAVE_TIMECOUNTER
158 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
159 	tc_setclock(&ts1);
160 #else /* !__HAVE_TIMECOUNTER */
161 	time = tv;
162 #endif /* !__HAVE_TIMECOUNTER */
163 
164 	timeradd(&boottime, &delta, &boottime);
165 
166 	/*
167 	 * XXXSMP: There is a short race between setting the time above
168 	 * and adjusting LWP's run times.  Fixing this properly means
169 	 * pausing all CPUs while we adjust the clock.
170 	 */
171 	mutex_enter(&proclist_lock);
172 	LIST_FOREACH(l, &alllwp, l_list) {
173 		lwp_lock(l);
174 		timeradd(&l->l_stime, &delta, &l->l_stime);
175 		lwp_unlock(l);
176 	}
177 	mutex_exit(&proclist_lock);
178 	resettodr();
179 	splx(s);
180 
181 	return (0);
182 }
183 
184 int
185 settime(struct proc *p, struct timespec *ts)
186 {
187 	return (settime1(p, ts, true));
188 }
189 
190 /* ARGSUSED */
191 int
192 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
193 {
194 	struct sys_clock_gettime_args /* {
195 		syscallarg(clockid_t) clock_id;
196 		syscallarg(struct timespec *) tp;
197 	} */ *uap = v;
198 	clockid_t clock_id;
199 	struct timespec ats;
200 
201 	clock_id = SCARG(uap, clock_id);
202 	switch (clock_id) {
203 	case CLOCK_REALTIME:
204 		nanotime(&ats);
205 		break;
206 	case CLOCK_MONOTONIC:
207 		nanouptime(&ats);
208 		break;
209 	default:
210 		return (EINVAL);
211 	}
212 
213 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
214 }
215 
216 /* ARGSUSED */
217 int
218 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
219 {
220 	struct sys_clock_settime_args /* {
221 		syscallarg(clockid_t) clock_id;
222 		syscallarg(const struct timespec *) tp;
223 	} */ *uap = v;
224 
225 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
226 	    true);
227 }
228 
229 
230 int
231 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232     bool check_kauth)
233 {
234 	struct timespec ats;
235 	int error;
236 
237 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
238 		return (error);
239 
240 	switch (clock_id) {
241 	case CLOCK_REALTIME:
242 		if ((error = settime1(p, &ats, check_kauth)) != 0)
243 			return (error);
244 		break;
245 	case CLOCK_MONOTONIC:
246 		return (EINVAL);	/* read-only clock */
247 	default:
248 		return (EINVAL);
249 	}
250 
251 	return 0;
252 }
253 
254 int
255 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
256 {
257 	struct sys_clock_getres_args /* {
258 		syscallarg(clockid_t) clock_id;
259 		syscallarg(struct timespec *) tp;
260 	} */ *uap = v;
261 	clockid_t clock_id;
262 	struct timespec ts;
263 	int error = 0;
264 
265 	clock_id = SCARG(uap, clock_id);
266 	switch (clock_id) {
267 	case CLOCK_REALTIME:
268 	case CLOCK_MONOTONIC:
269 		ts.tv_sec = 0;
270 		if (tc_getfrequency() > 1000000000)
271 			ts.tv_nsec = 1;
272 		else
273 			ts.tv_nsec = 1000000000 / tc_getfrequency();
274 		break;
275 	default:
276 		return (EINVAL);
277 	}
278 
279 	if (SCARG(uap, tp))
280 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
281 
282 	return error;
283 }
284 
285 /* ARGSUSED */
286 int
287 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
288 {
289 	struct sys_nanosleep_args/* {
290 		syscallarg(struct timespec *) rqtp;
291 		syscallarg(struct timespec *) rmtp;
292 	} */ *uap = v;
293 	struct timespec rmt, rqt;
294 	int error, error1;
295 
296 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
297 	if (error)
298 		return (error);
299 
300 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
301 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
302 		return error;
303 
304 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
305 	return error1 ? error1 : error;
306 }
307 
308 int
309 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
310 {
311 #ifdef __HAVE_TIMECOUNTER
312 	int error, timo;
313 
314 	if (itimespecfix(rqt))
315 		return (EINVAL);
316 
317 	timo = tstohz(rqt);
318 	/*
319 	 * Avoid inadvertantly sleeping forever
320 	 */
321 	if (timo == 0)
322 		timo = 1;
323 
324 	if (rmt != NULL)
325 		getnanouptime(rmt);
326 
327 	error = kpause("nanoslp", true, timo, NULL);
328 	if (error == ERESTART)
329 		error = EINTR;
330 	if (error == EWOULDBLOCK)
331 		error = 0;
332 
333 	if (rmt!= NULL) {
334 		struct timespec rmtend;
335 
336 		getnanouptime(&rmtend);
337 
338 		timespecsub(&rmtend, rmt, rmt);
339 		timespecsub(rqt, rmt, rmt);
340 		if (rmt->tv_sec < 0)
341 			timespecclear(rmt);
342 	}
343 
344 	return error;
345 #else /* !__HAVE_TIMECOUNTER */
346 	struct timeval atv, utv;
347 	int error, s, timo;
348 
349 	TIMESPEC_TO_TIMEVAL(&atv, rqt);
350 	if (itimerfix(&atv))
351 		return (EINVAL);
352 
353 	s = splclock();
354 	timeradd(&atv,&time,&atv);
355 	timo = hzto(&atv);
356 	/*
357 	 * Avoid inadvertantly sleeping forever
358 	 */
359 	if (timo == 0)
360 		timo = 1;
361 	splx(s);
362 
363 	error = kpause("nanoslp", true, timo, NULL);
364 	if (error == ERESTART)
365 		error = EINTR;
366 	if (error == EWOULDBLOCK)
367 		error = 0;
368 
369 	if (rmt != NULL) {
370 		s = splclock();
371 		utv = time;
372 		splx(s);
373 
374 		timersub(&atv, &utv, &utv);
375 		if (utv.tv_sec < 0)
376 			timerclear(&utv);
377 
378 		TIMEVAL_TO_TIMESPEC(&utv, rmt);
379 	}
380 
381 	return error;
382 #endif /* !__HAVE_TIMECOUNTER */
383 }
384 
385 /* ARGSUSED */
386 int
387 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
388 {
389 	struct sys_gettimeofday_args /* {
390 		syscallarg(struct timeval *) tp;
391 		syscallarg(void *) tzp;		really "struct timezone *"
392 	} */ *uap = v;
393 	struct timeval atv;
394 	int error = 0;
395 	struct timezone tzfake;
396 
397 	if (SCARG(uap, tp)) {
398 		microtime(&atv);
399 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
400 		if (error)
401 			return (error);
402 	}
403 	if (SCARG(uap, tzp)) {
404 		/*
405 		 * NetBSD has no kernel notion of time zone, so we just
406 		 * fake up a timezone struct and return it if demanded.
407 		 */
408 		tzfake.tz_minuteswest = 0;
409 		tzfake.tz_dsttime = 0;
410 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
411 	}
412 	return (error);
413 }
414 
415 /* ARGSUSED */
416 int
417 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
418 {
419 	struct sys_settimeofday_args /* {
420 		syscallarg(const struct timeval *) tv;
421 		syscallarg(const void *) tzp;	really "const struct timezone *"
422 	} */ *uap = v;
423 
424 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
425 }
426 
427 int
428 settimeofday1(const struct timeval *utv, bool userspace,
429     const void *utzp, struct lwp *l, bool check_kauth)
430 {
431 	struct timeval atv;
432 	struct timespec ts;
433 	int error;
434 
435 	/* Verify all parameters before changing time. */
436 
437 	/*
438 	 * NetBSD has no kernel notion of time zone, and only an
439 	 * obsolete program would try to set it, so we log a warning.
440 	 */
441 	if (utzp)
442 		log(LOG_WARNING, "pid %d attempted to set the "
443 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
444 
445 	if (utv == NULL)
446 		return 0;
447 
448 	if (userspace) {
449 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
450 			return error;
451 		utv = &atv;
452 	}
453 
454 	TIMEVAL_TO_TIMESPEC(utv, &ts);
455 	return settime1(l->l_proc, &ts, check_kauth);
456 }
457 
458 #ifndef __HAVE_TIMECOUNTER
459 int	tickdelta;			/* current clock skew, us. per tick */
460 long	timedelta;			/* unapplied time correction, us. */
461 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
462 #endif
463 
464 int	time_adjusted;			/* set if an adjustment is made */
465 
466 /* ARGSUSED */
467 int
468 sys_adjtime(struct lwp *l, void *v, register_t *retval)
469 {
470 	struct sys_adjtime_args /* {
471 		syscallarg(const struct timeval *) delta;
472 		syscallarg(struct timeval *) olddelta;
473 	} */ *uap = v;
474 	int error;
475 
476 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
477 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
478 		return (error);
479 
480 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
481 }
482 
483 int
484 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
485 {
486 	struct timeval atv;
487 	int error = 0;
488 
489 #ifdef __HAVE_TIMECOUNTER
490 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
491 #else /* !__HAVE_TIMECOUNTER */
492 	long ndelta, ntickdelta, odelta;
493 	int s;
494 #endif /* !__HAVE_TIMECOUNTER */
495 
496 #ifdef __HAVE_TIMECOUNTER
497 	if (olddelta) {
498 		atv.tv_sec = time_adjtime / 1000000;
499 		atv.tv_usec = time_adjtime % 1000000;
500 		if (atv.tv_usec < 0) {
501 			atv.tv_usec += 1000000;
502 			atv.tv_sec--;
503 		}
504 		error = copyout(&atv, olddelta, sizeof(struct timeval));
505 		if (error)
506 			return (error);
507 	}
508 
509 	if (delta) {
510 		error = copyin(delta, &atv, sizeof(struct timeval));
511 		if (error)
512 			return (error);
513 
514 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
515 			atv.tv_usec;
516 
517 		if (time_adjtime)
518 			/* We need to save the system time during shutdown */
519 			time_adjusted |= 1;
520 	}
521 #else /* !__HAVE_TIMECOUNTER */
522 	error = copyin(delta, &atv, sizeof(struct timeval));
523 	if (error)
524 		return (error);
525 
526 	/*
527 	 * Compute the total correction and the rate at which to apply it.
528 	 * Round the adjustment down to a whole multiple of the per-tick
529 	 * delta, so that after some number of incremental changes in
530 	 * hardclock(), tickdelta will become zero, lest the correction
531 	 * overshoot and start taking us away from the desired final time.
532 	 */
533 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
534 	if (ndelta > bigadj || ndelta < -bigadj)
535 		ntickdelta = 10 * tickadj;
536 	else
537 		ntickdelta = tickadj;
538 	if (ndelta % ntickdelta)
539 		ndelta = ndelta / ntickdelta * ntickdelta;
540 
541 	/*
542 	 * To make hardclock()'s job easier, make the per-tick delta negative
543 	 * if we want time to run slower; then hardclock can simply compute
544 	 * tick + tickdelta, and subtract tickdelta from timedelta.
545 	 */
546 	if (ndelta < 0)
547 		ntickdelta = -ntickdelta;
548 	if (ndelta != 0)
549 		/* We need to save the system clock time during shutdown */
550 		time_adjusted |= 1;
551 	s = splclock();
552 	odelta = timedelta;
553 	timedelta = ndelta;
554 	tickdelta = ntickdelta;
555 	splx(s);
556 
557 	if (olddelta) {
558 		atv.tv_sec = odelta / 1000000;
559 		atv.tv_usec = odelta % 1000000;
560 		error = copyout(&atv, olddelta, sizeof(struct timeval));
561 	}
562 #endif /* __HAVE_TIMECOUNTER */
563 
564 	return error;
565 }
566 
567 /*
568  * Interval timer support. Both the BSD getitimer() family and the POSIX
569  * timer_*() family of routines are supported.
570  *
571  * All timers are kept in an array pointed to by p_timers, which is
572  * allocated on demand - many processes don't use timers at all. The
573  * first three elements in this array are reserved for the BSD timers:
574  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
575  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
576  * syscall.
577  *
578  * Realtime timers are kept in the ptimer structure as an absolute
579  * time; virtual time timers are kept as a linked list of deltas.
580  * Virtual time timers are processed in the hardclock() routine of
581  * kern_clock.c.  The real time timer is processed by a callout
582  * routine, called from the softclock() routine.  Since a callout may
583  * be delayed in real time due to interrupt processing in the system,
584  * it is possible for the real time timeout routine (realtimeexpire,
585  * given below), to be delayed in real time past when it is supposed
586  * to occur.  It does not suffice, therefore, to reload the real timer
587  * .it_value from the real time timers .it_interval.  Rather, we
588  * compute the next time in absolute time the timer should go off.  */
589 
590 /* Allocate a POSIX realtime timer. */
591 int
592 sys_timer_create(struct lwp *l, void *v, register_t *retval)
593 {
594 	struct sys_timer_create_args /* {
595 		syscallarg(clockid_t) clock_id;
596 		syscallarg(struct sigevent *) evp;
597 		syscallarg(timer_t *) timerid;
598 	} */ *uap = v;
599 
600 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
601 	    SCARG(uap, evp), copyin, l);
602 }
603 
604 int
605 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
606     copyin_t fetch_event, struct lwp *l)
607 {
608 	int error;
609 	timer_t timerid;
610 	struct ptimer *pt;
611 	struct proc *p;
612 
613 	p = l->l_proc;
614 
615 	if (id < CLOCK_REALTIME ||
616 	    id > CLOCK_PROF)
617 		return (EINVAL);
618 
619 	if (p->p_timers == NULL)
620 		timers_alloc(p);
621 
622 	/* Find a free timer slot, skipping those reserved for setitimer(). */
623 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
624 		if (p->p_timers->pts_timers[timerid] == NULL)
625 			break;
626 
627 	if (timerid == TIMER_MAX)
628 		return EAGAIN;
629 
630 	pt = pool_get(&ptimer_pool, PR_WAITOK);
631 	if (evp) {
632 		if (((error =
633 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
634 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
635 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
636 			pool_put(&ptimer_pool, pt);
637 			return (error ? error : EINVAL);
638 		}
639 	} else {
640 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
641 		switch (id) {
642 		case CLOCK_REALTIME:
643 			pt->pt_ev.sigev_signo = SIGALRM;
644 			break;
645 		case CLOCK_VIRTUAL:
646 			pt->pt_ev.sigev_signo = SIGVTALRM;
647 			break;
648 		case CLOCK_PROF:
649 			pt->pt_ev.sigev_signo = SIGPROF;
650 			break;
651 		}
652 		pt->pt_ev.sigev_value.sival_int = timerid;
653 	}
654 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
655 	pt->pt_info.ksi_errno = 0;
656 	pt->pt_info.ksi_code = 0;
657 	pt->pt_info.ksi_pid = p->p_pid;
658 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
659 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
660 
661 	pt->pt_type = id;
662 	pt->pt_proc = p;
663 	pt->pt_overruns = 0;
664 	pt->pt_poverruns = 0;
665 	pt->pt_entry = timerid;
666 	timerclear(&pt->pt_time.it_value);
667 	if (id == CLOCK_REALTIME)
668 		callout_init(&pt->pt_ch, 0);
669 	else
670 		pt->pt_active = 0;
671 
672 	p->p_timers->pts_timers[timerid] = pt;
673 
674 	return copyout(&timerid, tid, sizeof(timerid));
675 }
676 
677 /* Delete a POSIX realtime timer */
678 int
679 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
680 {
681 	struct sys_timer_delete_args /*  {
682 		syscallarg(timer_t) timerid;
683 	} */ *uap = v;
684 	struct proc *p = l->l_proc;
685 	timer_t timerid;
686 	struct ptimer *pt, *ptn;
687 	int s;
688 
689 	timerid = SCARG(uap, timerid);
690 
691 	if ((p->p_timers == NULL) ||
692 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
693 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
694 		return (EINVAL);
695 
696 	if (pt->pt_type == CLOCK_REALTIME) {
697 		callout_stop(&pt->pt_ch);
698 		callout_destroy(&pt->pt_ch);
699 	} else if (pt->pt_active) {
700 		s = splclock();
701 		ptn = LIST_NEXT(pt, pt_list);
702 		LIST_REMOVE(pt, pt_list);
703 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
704 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
705 			    &ptn->pt_time.it_value);
706 		splx(s);
707 	}
708 
709 	p->p_timers->pts_timers[timerid] = NULL;
710 	pool_put(&ptimer_pool, pt);
711 
712 	return (0);
713 }
714 
715 /*
716  * Set up the given timer. The value in pt->pt_time.it_value is taken
717  * to be an absolute time for CLOCK_REALTIME timers and a relative
718  * time for virtual timers.
719  * Must be called at splclock().
720  */
721 void
722 timer_settime(struct ptimer *pt)
723 {
724 	struct ptimer *ptn, *pptn;
725 	struct ptlist *ptl;
726 
727 	if (pt->pt_type == CLOCK_REALTIME) {
728 		callout_stop(&pt->pt_ch);
729 		if (timerisset(&pt->pt_time.it_value)) {
730 			/*
731 			 * Don't need to check hzto() return value, here.
732 			 * callout_reset() does it for us.
733 			 */
734 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
735 			    realtimerexpire, pt);
736 		}
737 	} else {
738 		if (pt->pt_active) {
739 			ptn = LIST_NEXT(pt, pt_list);
740 			LIST_REMOVE(pt, pt_list);
741 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
742 				timeradd(&pt->pt_time.it_value,
743 				    &ptn->pt_time.it_value,
744 				    &ptn->pt_time.it_value);
745 		}
746 		if (timerisset(&pt->pt_time.it_value)) {
747 			if (pt->pt_type == CLOCK_VIRTUAL)
748 				ptl = &pt->pt_proc->p_timers->pts_virtual;
749 			else
750 				ptl = &pt->pt_proc->p_timers->pts_prof;
751 
752 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
753 			     ptn && timercmp(&pt->pt_time.it_value,
754 				 &ptn->pt_time.it_value, >);
755 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
756 				timersub(&pt->pt_time.it_value,
757 				    &ptn->pt_time.it_value,
758 				    &pt->pt_time.it_value);
759 
760 			if (pptn)
761 				LIST_INSERT_AFTER(pptn, pt, pt_list);
762 			else
763 				LIST_INSERT_HEAD(ptl, pt, pt_list);
764 
765 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
766 				timersub(&ptn->pt_time.it_value,
767 				    &pt->pt_time.it_value,
768 				    &ptn->pt_time.it_value);
769 
770 			pt->pt_active = 1;
771 		} else
772 			pt->pt_active = 0;
773 	}
774 }
775 
776 void
777 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
778 {
779 #ifdef __HAVE_TIMECOUNTER
780 	struct timeval now;
781 #endif
782 	struct ptimer *ptn;
783 
784 	*aitv = pt->pt_time;
785 	if (pt->pt_type == CLOCK_REALTIME) {
786 		/*
787 		 * Convert from absolute to relative time in .it_value
788 		 * part of real time timer.  If time for real time
789 		 * timer has passed return 0, else return difference
790 		 * between current time and time for the timer to go
791 		 * off.
792 		 */
793 		if (timerisset(&aitv->it_value)) {
794 #ifdef __HAVE_TIMECOUNTER
795 			getmicrotime(&now);
796 			if (timercmp(&aitv->it_value, &now, <))
797 				timerclear(&aitv->it_value);
798 			else
799 				timersub(&aitv->it_value, &now,
800 				    &aitv->it_value);
801 #else /* !__HAVE_TIMECOUNTER */
802 			if (timercmp(&aitv->it_value, &time, <))
803 				timerclear(&aitv->it_value);
804 			else
805 				timersub(&aitv->it_value, &time,
806 				    &aitv->it_value);
807 #endif /* !__HAVE_TIMECOUNTER */
808 		}
809 	} else if (pt->pt_active) {
810 		if (pt->pt_type == CLOCK_VIRTUAL)
811 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
812 		else
813 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
814 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
815 			timeradd(&aitv->it_value,
816 			    &ptn->pt_time.it_value, &aitv->it_value);
817 		KASSERT(ptn != NULL); /* pt should be findable on the list */
818 	} else
819 		timerclear(&aitv->it_value);
820 }
821 
822 
823 
824 /* Set and arm a POSIX realtime timer */
825 int
826 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
827 {
828 	struct sys_timer_settime_args /* {
829 		syscallarg(timer_t) timerid;
830 		syscallarg(int) flags;
831 		syscallarg(const struct itimerspec *) value;
832 		syscallarg(struct itimerspec *) ovalue;
833 	} */ *uap = v;
834 	int error;
835 	struct itimerspec value, ovalue, *ovp = NULL;
836 
837 	if ((error = copyin(SCARG(uap, value), &value,
838 	    sizeof(struct itimerspec))) != 0)
839 		return (error);
840 
841 	if (SCARG(uap, ovalue))
842 		ovp = &ovalue;
843 
844 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
845 	    SCARG(uap, flags), l->l_proc)) != 0)
846 		return error;
847 
848 	if (ovp)
849 		return copyout(&ovalue, SCARG(uap, ovalue),
850 		    sizeof(struct itimerspec));
851 	return 0;
852 }
853 
854 int
855 dotimer_settime(int timerid, struct itimerspec *value,
856     struct itimerspec *ovalue, int flags, struct proc *p)
857 {
858 #ifdef __HAVE_TIMECOUNTER
859 	struct timeval now;
860 #endif
861 	struct itimerval val, oval;
862 	struct ptimer *pt;
863 	int s;
864 
865 	if ((p->p_timers == NULL) ||
866 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
867 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
868 		return (EINVAL);
869 
870 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
871 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
872 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
873 		return (EINVAL);
874 
875 	oval = pt->pt_time;
876 	pt->pt_time = val;
877 
878 	s = splclock();
879 	/*
880 	 * If we've been passed a relative time for a realtime timer,
881 	 * convert it to absolute; if an absolute time for a virtual
882 	 * timer, convert it to relative and make sure we don't set it
883 	 * to zero, which would cancel the timer, or let it go
884 	 * negative, which would confuse the comparison tests.
885 	 */
886 	if (timerisset(&pt->pt_time.it_value)) {
887 		if (pt->pt_type == CLOCK_REALTIME) {
888 #ifdef __HAVE_TIMECOUNTER
889 			if ((flags & TIMER_ABSTIME) == 0) {
890 				getmicrotime(&now);
891 				timeradd(&pt->pt_time.it_value, &now,
892 				    &pt->pt_time.it_value);
893 			}
894 #else /* !__HAVE_TIMECOUNTER */
895 			if ((flags & TIMER_ABSTIME) == 0)
896 				timeradd(&pt->pt_time.it_value, &time,
897 				    &pt->pt_time.it_value);
898 #endif /* !__HAVE_TIMECOUNTER */
899 		} else {
900 			if ((flags & TIMER_ABSTIME) != 0) {
901 #ifdef __HAVE_TIMECOUNTER
902 				getmicrotime(&now);
903 				timersub(&pt->pt_time.it_value, &now,
904 				    &pt->pt_time.it_value);
905 #else /* !__HAVE_TIMECOUNTER */
906 				timersub(&pt->pt_time.it_value, &time,
907 				    &pt->pt_time.it_value);
908 #endif /* !__HAVE_TIMECOUNTER */
909 				if (!timerisset(&pt->pt_time.it_value) ||
910 				    pt->pt_time.it_value.tv_sec < 0) {
911 					pt->pt_time.it_value.tv_sec = 0;
912 					pt->pt_time.it_value.tv_usec = 1;
913 				}
914 			}
915 		}
916 	}
917 
918 	timer_settime(pt);
919 	splx(s);
920 
921 	if (ovalue) {
922 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
923 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
924 	}
925 
926 	return (0);
927 }
928 
929 /* Return the time remaining until a POSIX timer fires. */
930 int
931 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
932 {
933 	struct sys_timer_gettime_args /* {
934 		syscallarg(timer_t) timerid;
935 		syscallarg(struct itimerspec *) value;
936 	} */ *uap = v;
937 	struct itimerspec its;
938 	int error;
939 
940 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
941 	    &its)) != 0)
942 		return error;
943 
944 	return copyout(&its, SCARG(uap, value), sizeof(its));
945 }
946 
947 int
948 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
949 {
950 	int s;
951 	struct ptimer *pt;
952 	struct itimerval aitv;
953 
954 	if ((p->p_timers == NULL) ||
955 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
956 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
957 		return (EINVAL);
958 
959 	s = splclock();
960 	timer_gettime(pt, &aitv);
961 	splx(s);
962 
963 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
964 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
965 
966 	return 0;
967 }
968 
969 /*
970  * Return the count of the number of times a periodic timer expired
971  * while a notification was already pending. The counter is reset when
972  * a timer expires and a notification can be posted.
973  */
974 int
975 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
976 {
977 	struct sys_timer_getoverrun_args /* {
978 		syscallarg(timer_t) timerid;
979 	} */ *uap = v;
980 	struct proc *p = l->l_proc;
981 	int timerid;
982 	struct ptimer *pt;
983 
984 	timerid = SCARG(uap, timerid);
985 
986 	if ((p->p_timers == NULL) ||
987 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
988 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
989 		return (EINVAL);
990 
991 	*retval = pt->pt_poverruns;
992 
993 	return (0);
994 }
995 
996 /*
997  * Real interval timer expired:
998  * send process whose timer expired an alarm signal.
999  * If time is not set up to reload, then just return.
1000  * Else compute next time timer should go off which is > current time.
1001  * This is where delay in processing this timeout causes multiple
1002  * SIGALRM calls to be compressed into one.
1003  */
1004 void
1005 realtimerexpire(void *arg)
1006 {
1007 #ifdef __HAVE_TIMECOUNTER
1008 	struct timeval now;
1009 #endif
1010 	struct ptimer *pt;
1011 	int s;
1012 
1013 	pt = (struct ptimer *)arg;
1014 
1015 	itimerfire(pt);
1016 
1017 	if (!timerisset(&pt->pt_time.it_interval)) {
1018 		timerclear(&pt->pt_time.it_value);
1019 		return;
1020 	}
1021 #ifdef __HAVE_TIMECOUNTER
1022 	for (;;) {
1023 		s = splclock();	/* XXX need spl now? */
1024 		timeradd(&pt->pt_time.it_value,
1025 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1026 		getmicrotime(&now);
1027 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
1028 			/*
1029 			 * Don't need to check hzto() return value, here.
1030 			 * callout_reset() does it for us.
1031 			 */
1032 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1033 			    realtimerexpire, pt);
1034 			splx(s);
1035 			return;
1036 		}
1037 		splx(s);
1038 		pt->pt_overruns++;
1039 	}
1040 #else /* !__HAVE_TIMECOUNTER */
1041 	for (;;) {
1042 		s = splclock();
1043 		timeradd(&pt->pt_time.it_value,
1044 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1045 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
1046 			/*
1047 			 * Don't need to check hzto() return value, here.
1048 			 * callout_reset() does it for us.
1049 			 */
1050 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1051 			    realtimerexpire, pt);
1052 			splx(s);
1053 			return;
1054 		}
1055 		splx(s);
1056 		pt->pt_overruns++;
1057 	}
1058 #endif /* !__HAVE_TIMECOUNTER */
1059 }
1060 
1061 /* BSD routine to get the value of an interval timer. */
1062 /* ARGSUSED */
1063 int
1064 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1065 {
1066 	struct sys_getitimer_args /* {
1067 		syscallarg(int) which;
1068 		syscallarg(struct itimerval *) itv;
1069 	} */ *uap = v;
1070 	struct proc *p = l->l_proc;
1071 	struct itimerval aitv;
1072 	int error;
1073 
1074 	error = dogetitimer(p, SCARG(uap, which), &aitv);
1075 	if (error)
1076 		return error;
1077 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1078 }
1079 
1080 int
1081 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1082 {
1083 	int s;
1084 
1085 	if ((u_int)which > ITIMER_PROF)
1086 		return (EINVAL);
1087 
1088 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1089 		timerclear(&itvp->it_value);
1090 		timerclear(&itvp->it_interval);
1091 	} else {
1092 		s = splclock();
1093 		timer_gettime(p->p_timers->pts_timers[which], itvp);
1094 		splx(s);
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 /* BSD routine to set/arm an interval timer. */
1101 /* ARGSUSED */
1102 int
1103 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1104 {
1105 	struct sys_setitimer_args /* {
1106 		syscallarg(int) which;
1107 		syscallarg(const struct itimerval *) itv;
1108 		syscallarg(struct itimerval *) oitv;
1109 	} */ *uap = v;
1110 	struct proc *p = l->l_proc;
1111 	int which = SCARG(uap, which);
1112 	struct sys_getitimer_args getargs;
1113 	const struct itimerval *itvp;
1114 	struct itimerval aitv;
1115 	int error;
1116 
1117 	if ((u_int)which > ITIMER_PROF)
1118 		return (EINVAL);
1119 	itvp = SCARG(uap, itv);
1120 	if (itvp &&
1121 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1122 		return (error);
1123 	if (SCARG(uap, oitv) != NULL) {
1124 		SCARG(&getargs, which) = which;
1125 		SCARG(&getargs, itv) = SCARG(uap, oitv);
1126 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1127 			return (error);
1128 	}
1129 	if (itvp == 0)
1130 		return (0);
1131 
1132 	return dosetitimer(p, which, &aitv);
1133 }
1134 
1135 int
1136 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1137 {
1138 #ifdef __HAVE_TIMECOUNTER
1139 	struct timeval now;
1140 #endif
1141 	struct ptimer *pt;
1142 	int s;
1143 
1144 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1145 		return (EINVAL);
1146 
1147 	/*
1148 	 * Don't bother allocating data structures if the process just
1149 	 * wants to clear the timer.
1150 	 */
1151 	if (!timerisset(&itvp->it_value) &&
1152 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1153 		return (0);
1154 
1155 	if (p->p_timers == NULL)
1156 		timers_alloc(p);
1157 	if (p->p_timers->pts_timers[which] == NULL) {
1158 		pt = pool_get(&ptimer_pool, PR_WAITOK);
1159 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1160 		pt->pt_ev.sigev_value.sival_int = which;
1161 		pt->pt_overruns = 0;
1162 		pt->pt_proc = p;
1163 		pt->pt_type = which;
1164 		pt->pt_entry = which;
1165 		switch (which) {
1166 		case ITIMER_REAL:
1167 			callout_init(&pt->pt_ch, 0);
1168 			pt->pt_ev.sigev_signo = SIGALRM;
1169 			break;
1170 		case ITIMER_VIRTUAL:
1171 			pt->pt_active = 0;
1172 			pt->pt_ev.sigev_signo = SIGVTALRM;
1173 			break;
1174 		case ITIMER_PROF:
1175 			pt->pt_active = 0;
1176 			pt->pt_ev.sigev_signo = SIGPROF;
1177 			break;
1178 		}
1179 	} else
1180 		pt = p->p_timers->pts_timers[which];
1181 
1182 	pt->pt_time = *itvp;
1183 	p->p_timers->pts_timers[which] = pt;
1184 
1185 	s = splclock();
1186 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1187 		/* Convert to absolute time */
1188 #ifdef __HAVE_TIMECOUNTER
1189 		/* XXX need to wrap in splclock for timecounters case? */
1190 		getmicrotime(&now);
1191 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1192 #else /* !__HAVE_TIMECOUNTER */
1193 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1194 #endif /* !__HAVE_TIMECOUNTER */
1195 	}
1196 	timer_settime(pt);
1197 	splx(s);
1198 
1199 	return (0);
1200 }
1201 
1202 /* Utility routines to manage the array of pointers to timers. */
1203 void
1204 timers_alloc(struct proc *p)
1205 {
1206 	int i;
1207 	struct ptimers *pts;
1208 
1209 	pts = pool_get(&ptimers_pool, PR_WAITOK);
1210 	LIST_INIT(&pts->pts_virtual);
1211 	LIST_INIT(&pts->pts_prof);
1212 	for (i = 0; i < TIMER_MAX; i++)
1213 		pts->pts_timers[i] = NULL;
1214 	pts->pts_fired = 0;
1215 	p->p_timers = pts;
1216 }
1217 
1218 /*
1219  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1220  * then clean up all timers and free all the data structures. If
1221  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1222  * by timer_create(), not the BSD setitimer() timers, and only free the
1223  * structure if none of those remain.
1224  */
1225 void
1226 timers_free(struct proc *p, int which)
1227 {
1228 	int i, s;
1229 	struct ptimers *pts;
1230 	struct ptimer *pt, *ptn;
1231 	struct timeval tv;
1232 
1233 	if (p->p_timers) {
1234 		pts = p->p_timers;
1235 		if (which == TIMERS_ALL)
1236 			i = 0;
1237 		else {
1238 			s = splclock();
1239 			timerclear(&tv);
1240 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1241 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1242 			     ptn = LIST_NEXT(ptn, pt_list))
1243 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1244 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1245 			if (ptn) {
1246 				timeradd(&tv, &ptn->pt_time.it_value,
1247 				    &ptn->pt_time.it_value);
1248 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1249 				    ptn, pt_list);
1250 			}
1251 
1252 			timerclear(&tv);
1253 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1254 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1255 			     ptn = LIST_NEXT(ptn, pt_list))
1256 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1257 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1258 			if (ptn) {
1259 				timeradd(&tv, &ptn->pt_time.it_value,
1260 				    &ptn->pt_time.it_value);
1261 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1262 				    pt_list);
1263 			}
1264 			splx(s);
1265 			i = 3;
1266 		}
1267 		for ( ; i < TIMER_MAX; i++)
1268 			if ((pt = pts->pts_timers[i]) != NULL) {
1269 				if (pt->pt_type == CLOCK_REALTIME) {
1270 					callout_stop(&pt->pt_ch);
1271 					callout_destroy(&pt->pt_ch);
1272 				}
1273 				pts->pts_timers[i] = NULL;
1274 				pool_put(&ptimer_pool, pt);
1275 			}
1276 		if ((pts->pts_timers[0] == NULL) &&
1277 		    (pts->pts_timers[1] == NULL) &&
1278 		    (pts->pts_timers[2] == NULL)) {
1279 			p->p_timers = NULL;
1280 			pool_put(&ptimers_pool, pts);
1281 		}
1282 	}
1283 }
1284 
1285 /*
1286  * Decrement an interval timer by a specified number
1287  * of microseconds, which must be less than a second,
1288  * i.e. < 1000000.  If the timer expires, then reload
1289  * it.  In this case, carry over (usec - old value) to
1290  * reduce the value reloaded into the timer so that
1291  * the timer does not drift.  This routine assumes
1292  * that it is called in a context where the timers
1293  * on which it is operating cannot change in value.
1294  */
1295 int
1296 itimerdecr(struct ptimer *pt, int usec)
1297 {
1298 	struct itimerval *itp;
1299 
1300 	itp = &pt->pt_time;
1301 	if (itp->it_value.tv_usec < usec) {
1302 		if (itp->it_value.tv_sec == 0) {
1303 			/* expired, and already in next interval */
1304 			usec -= itp->it_value.tv_usec;
1305 			goto expire;
1306 		}
1307 		itp->it_value.tv_usec += 1000000;
1308 		itp->it_value.tv_sec--;
1309 	}
1310 	itp->it_value.tv_usec -= usec;
1311 	usec = 0;
1312 	if (timerisset(&itp->it_value))
1313 		return (1);
1314 	/* expired, exactly at end of interval */
1315 expire:
1316 	if (timerisset(&itp->it_interval)) {
1317 		itp->it_value = itp->it_interval;
1318 		itp->it_value.tv_usec -= usec;
1319 		if (itp->it_value.tv_usec < 0) {
1320 			itp->it_value.tv_usec += 1000000;
1321 			itp->it_value.tv_sec--;
1322 		}
1323 		timer_settime(pt);
1324 	} else
1325 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1326 	return (0);
1327 }
1328 
1329 void
1330 itimerfire(struct ptimer *pt)
1331 {
1332 	struct proc *p = pt->pt_proc;
1333 
1334 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1335 		/*
1336 		 * No RT signal infrastructure exists at this time;
1337 		 * just post the signal number and throw away the
1338 		 * value.
1339 		 */
1340 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1341 			pt->pt_overruns++;
1342 		else {
1343 			ksiginfo_t ksi;
1344 			KSI_INIT(&ksi);
1345 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1346 			ksi.ksi_code = SI_TIMER;
1347 			ksi.ksi_value = pt->pt_ev.sigev_value;
1348 			pt->pt_poverruns = pt->pt_overruns;
1349 			pt->pt_overruns = 0;
1350 			mutex_enter(&proclist_mutex);
1351 			kpsignal(p, &ksi, NULL);
1352 			mutex_exit(&proclist_mutex);
1353 		}
1354 	}
1355 }
1356 
1357 /*
1358  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1359  * for usage and rationale.
1360  */
1361 int
1362 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1363 {
1364 	struct timeval tv, delta;
1365 	int rv = 0;
1366 #ifndef __HAVE_TIMECOUNTER
1367 	int s;
1368 #endif
1369 
1370 #ifdef __HAVE_TIMECOUNTER
1371 	getmicrouptime(&tv);
1372 #else /* !__HAVE_TIMECOUNTER */
1373 	s = splclock();
1374 	tv = mono_time;
1375 	splx(s);
1376 #endif /* !__HAVE_TIMECOUNTER */
1377 	timersub(&tv, lasttime, &delta);
1378 
1379 	/*
1380 	 * check for 0,0 is so that the message will be seen at least once,
1381 	 * even if interval is huge.
1382 	 */
1383 	if (timercmp(&delta, mininterval, >=) ||
1384 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1385 		*lasttime = tv;
1386 		rv = 1;
1387 	}
1388 
1389 	return (rv);
1390 }
1391 
1392 /*
1393  * ppsratecheck(): packets (or events) per second limitation.
1394  */
1395 int
1396 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1397 {
1398 	struct timeval tv, delta;
1399 	int rv;
1400 #ifndef __HAVE_TIMECOUNTER
1401 	int s;
1402 #endif
1403 
1404 #ifdef __HAVE_TIMECOUNTER
1405 	getmicrouptime(&tv);
1406 #else /* !__HAVE_TIMECOUNTER */
1407 	s = splclock();
1408 	tv = mono_time;
1409 	splx(s);
1410 #endif /* !__HAVE_TIMECOUNTER */
1411 	timersub(&tv, lasttime, &delta);
1412 
1413 	/*
1414 	 * check for 0,0 is so that the message will be seen at least once.
1415 	 * if more than one second have passed since the last update of
1416 	 * lasttime, reset the counter.
1417 	 *
1418 	 * we do increment *curpps even in *curpps < maxpps case, as some may
1419 	 * try to use *curpps for stat purposes as well.
1420 	 */
1421 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1422 	    delta.tv_sec >= 1) {
1423 		*lasttime = tv;
1424 		*curpps = 0;
1425 	}
1426 	if (maxpps < 0)
1427 		rv = 1;
1428 	else if (*curpps < maxpps)
1429 		rv = 1;
1430 	else
1431 		rv = 0;
1432 
1433 #if 1 /*DIAGNOSTIC?*/
1434 	/* be careful about wrap-around */
1435 	if (*curpps + 1 > *curpps)
1436 		*curpps = *curpps + 1;
1437 #else
1438 	/*
1439 	 * assume that there's not too many calls to this function.
1440 	 * not sure if the assumption holds, as it depends on *caller's*
1441 	 * behavior, not the behavior of this function.
1442 	 * IMHO it is wrong to make assumption on the caller's behavior,
1443 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1444 	 */
1445 	*curpps = *curpps + 1;
1446 #endif
1447 
1448 	return (rv);
1449 }
1450