xref: /netbsd-src/sys/kern/kern_time.c (revision 7c7c171d130af9949261bc7dce2150a03c3d239c)
1 /*	$NetBSD: kern_time.c,v 1.33 1998/03/01 02:22:31 fvdl Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
36  */
37 
38 #include "fs_nfs.h"
39 
40 #include <sys/param.h>
41 #include <sys/resourcevar.h>
42 #include <sys/kernel.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/signalvar.h>
47 #include <sys/syslog.h>
48 
49 #include <sys/mount.h>
50 #include <sys/syscallargs.h>
51 
52 #if defined(NFS) || defined(NFSSERVER)
53 #include <nfs/rpcv2.h>
54 #include <nfs/nfsproto.h>
55 #include <nfs/nfs_var.h>
56 #endif
57 
58 #include <machine/cpu.h>
59 
60 static int	settime __P((struct timeval *));
61 
62 /*
63  * Time of day and interval timer support.
64  *
65  * These routines provide the kernel entry points to get and set
66  * the time-of-day and per-process interval timers.  Subroutines
67  * here provide support for adding and subtracting timeval structures
68  * and decrementing interval timers, optionally reloading the interval
69  * timers when they expire.
70  */
71 
72 /* This function is used by clock_settime and settimeofday */
73 static int
74 settime(tv)
75 	struct timeval *tv;
76 {
77 	struct timeval delta;
78 	int s;
79 
80 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
81 	s = splclock();
82 	timersub(tv, &time, &delta);
83 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
84 		return (EPERM);
85 #ifdef notyet
86 	if ((delta.tv_sec < 86400) && securelevel > 0)
87 		return (EPERM);
88 #endif
89 	time = *tv;
90 	(void) splsoftclock();
91 	timeradd(&boottime, &delta, &boottime);
92 	timeradd(&runtime, &delta, &runtime);
93 #	if defined(NFS) || defined(NFSSERVER)
94 		nqnfs_lease_updatetime(delta.tv_sec);
95 #	endif
96 	splx(s);
97 	resettodr();
98 	return (0);
99 }
100 
101 /* ARGSUSED */
102 int
103 sys_clock_gettime(p, v, retval)
104 	struct proc *p;
105 	void *v;
106 	register_t *retval;
107 {
108 	register struct sys_clock_gettime_args /* {
109 		syscallarg(clockid_t) clock_id;
110 		syscallarg(struct timespec *) tp;
111 	} */ *uap = v;
112 	clockid_t clock_id;
113 	struct timeval atv;
114 	struct timespec ats;
115 
116 	clock_id = SCARG(uap, clock_id);
117 	if (clock_id != CLOCK_REALTIME)
118 		return (EINVAL);
119 
120 	microtime(&atv);
121 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
122 
123 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
124 }
125 
126 /* ARGSUSED */
127 int
128 sys_clock_settime(p, v, retval)
129 	struct proc *p;
130 	void *v;
131 	register_t *retval;
132 {
133 	register struct sys_clock_settime_args /* {
134 		syscallarg(clockid_t) clock_id;
135 		syscallarg(const struct timespec *) tp;
136 	} */ *uap = v;
137 	clockid_t clock_id;
138 	struct timeval atv;
139 	struct timespec ats;
140 	int error;
141 
142 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
143 		return (error);
144 
145 	clock_id = SCARG(uap, clock_id);
146 	if (clock_id != CLOCK_REALTIME)
147 		return (EINVAL);
148 
149 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
150 		return (error);
151 
152 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
153 	if ((error = settime(&atv)))
154 		return (error);
155 
156 	return 0;
157 }
158 
159 int
160 sys_clock_getres(p, v, retval)
161 	struct proc *p;
162 	void *v;
163 	register_t *retval;
164 {
165 	register struct sys_clock_getres_args /* {
166 		syscallarg(clockid_t) clock_id;
167 		syscallarg(struct timespec *) tp;
168 	} */ *uap = v;
169 	clockid_t clock_id;
170 	struct timespec ts;
171 	int error = 0;
172 
173 	clock_id = SCARG(uap, clock_id);
174 	if (clock_id != CLOCK_REALTIME)
175 		return (EINVAL);
176 
177 	if (SCARG(uap, tp)) {
178 		ts.tv_sec = 0;
179 		ts.tv_nsec = 1000000000 / hz;
180 
181 		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
182 	}
183 
184 	return error;
185 }
186 
187 /* ARGSUSED */
188 int
189 sys_nanosleep(p, v, retval)
190 	struct proc *p;
191 	void *v;
192 	register_t *retval;
193 {
194 	static int nanowait;
195 	register struct sys_nanosleep_args/* {
196 		syscallarg(struct timespec *) rqtp;
197 		syscallarg(struct timespec *) rmtp;
198 	} */ *uap = v;
199 	struct timespec rqt;
200 	struct timespec rmt;
201 	struct timeval atv, utv;
202 	int error, s, timo;
203 
204 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
205 		       sizeof(struct timespec));
206 	if (error)
207 		return (error);
208 
209 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
210 	if (itimerfix(&atv))
211 		return (EINVAL);
212 
213 	s = splclock();
214 	timeradd(&atv,&time,&atv);
215 	timo = hzto(&atv);
216 	/*
217 	 * Avoid inadvertantly sleeping forever
218 	 */
219 	if (timo == 0)
220 		timo = 1;
221 	splx(s);
222 
223 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
224 	if (error == ERESTART)
225 		error = EINTR;
226 	if (error == EWOULDBLOCK)
227 		error = 0;
228 
229 	if (SCARG(uap, rmtp)) {
230 		int error;
231 
232 		s = splclock();
233 		utv = time;
234 		splx(s);
235 
236 		timersub(&atv, &utv, &utv);
237 		if (utv.tv_sec < 0)
238 			timerclear(&utv);
239 
240 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
241 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
242 			sizeof(rmt));
243 		if (error)
244 			return (error);
245 	}
246 
247 	return error;
248 }
249 
250 /* ARGSUSED */
251 int
252 sys_gettimeofday(p, v, retval)
253 	struct proc *p;
254 	void *v;
255 	register_t *retval;
256 {
257 	register struct sys_gettimeofday_args /* {
258 		syscallarg(struct timeval *) tp;
259 		syscallarg(struct timezone *) tzp;
260 	} */ *uap = v;
261 	struct timeval atv;
262 	int error = 0;
263 	struct timezone tzfake;
264 
265 	if (SCARG(uap, tp)) {
266 		microtime(&atv);
267 		error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
268 		if (error)
269 			return (error);
270 	}
271 	if (SCARG(uap, tzp)) {
272 		/*
273 		 * NetBSD has no kernel notion of time zone, so we just
274 		 * fake up a timezone struct and return it if demanded.
275 		 */
276 		tzfake.tz_minuteswest = 0;
277 		tzfake.tz_dsttime = 0;
278 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
279 	}
280 	return (error);
281 }
282 
283 /* ARGSUSED */
284 int
285 sys_settimeofday(p, v, retval)
286 	struct proc *p;
287 	void *v;
288 	register_t *retval;
289 {
290 	struct sys_settimeofday_args /* {
291 		syscallarg(const struct timeval *) tv;
292 		syscallarg(const struct timezone *) tzp;
293 	} */ *uap = v;
294 	struct timeval atv;
295 	struct timezone atz;
296 	int error;
297 
298 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
299 		return (error);
300 	/* Verify all parameters before changing time. */
301 	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
302 	    &atv, sizeof(atv))))
303 		return (error);
304 	/* XXX since we don't use tz, probably no point in doing copyin. */
305 	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
306 	    &atz, sizeof(atz))))
307 		return (error);
308 	if (SCARG(uap, tv))
309 		if ((error = settime(&atv)))
310 			return (error);
311 	/*
312 	 * NetBSD has no kernel notion of time zone, and only an
313 	 * obsolete program would try to set it, so we log a warning.
314 	 */
315 	if (SCARG(uap, tzp))
316 		log(LOG_WARNING, "pid %d attempted to set the "
317 		    "(obsolete) kernel time zone\n", p->p_pid);
318 	return (0);
319 }
320 
321 int	tickdelta;			/* current clock skew, us. per tick */
322 long	timedelta;			/* unapplied time correction, us. */
323 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
324 
325 /* ARGSUSED */
326 int
327 sys_adjtime(p, v, retval)
328 	struct proc *p;
329 	void *v;
330 	register_t *retval;
331 {
332 	register struct sys_adjtime_args /* {
333 		syscallarg(const struct timeval *) delta;
334 		syscallarg(struct timeval *) olddelta;
335 	} */ *uap = v;
336 	struct timeval atv;
337 	register long ndelta, ntickdelta, odelta;
338 	int s, error;
339 
340 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
341 		return (error);
342 
343 	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
344 	if (error)
345 		return (error);
346 
347 	/*
348 	 * Compute the total correction and the rate at which to apply it.
349 	 * Round the adjustment down to a whole multiple of the per-tick
350 	 * delta, so that after some number of incremental changes in
351 	 * hardclock(), tickdelta will become zero, lest the correction
352 	 * overshoot and start taking us away from the desired final time.
353 	 */
354 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
355 	if (ndelta > bigadj)
356 		ntickdelta = 10 * tickadj;
357 	else
358 		ntickdelta = tickadj;
359 	if (ndelta % ntickdelta)
360 		ndelta = ndelta / ntickdelta * ntickdelta;
361 
362 	/*
363 	 * To make hardclock()'s job easier, make the per-tick delta negative
364 	 * if we want time to run slower; then hardclock can simply compute
365 	 * tick + tickdelta, and subtract tickdelta from timedelta.
366 	 */
367 	if (ndelta < 0)
368 		ntickdelta = -ntickdelta;
369 	s = splclock();
370 	odelta = timedelta;
371 	timedelta = ndelta;
372 	tickdelta = ntickdelta;
373 	splx(s);
374 
375 	if (SCARG(uap, olddelta)) {
376 		atv.tv_sec = odelta / 1000000;
377 		atv.tv_usec = odelta % 1000000;
378 		(void) copyout(&atv, SCARG(uap, olddelta),
379 		    sizeof(struct timeval));
380 	}
381 	return (0);
382 }
383 
384 /*
385  * Get value of an interval timer.  The process virtual and
386  * profiling virtual time timers are kept in the p_stats area, since
387  * they can be swapped out.  These are kept internally in the
388  * way they are specified externally: in time until they expire.
389  *
390  * The real time interval timer is kept in the process table slot
391  * for the process, and its value (it_value) is kept as an
392  * absolute time rather than as a delta, so that it is easy to keep
393  * periodic real-time signals from drifting.
394  *
395  * Virtual time timers are processed in the hardclock() routine of
396  * kern_clock.c.  The real time timer is processed by a timeout
397  * routine, called from the softclock() routine.  Since a callout
398  * may be delayed in real time due to interrupt processing in the system,
399  * it is possible for the real time timeout routine (realitexpire, given below),
400  * to be delayed in real time past when it is supposed to occur.  It
401  * does not suffice, therefore, to reload the real timer .it_value from the
402  * real time timers .it_interval.  Rather, we compute the next time in
403  * absolute time the timer should go off.
404  */
405 /* ARGSUSED */
406 int
407 sys_getitimer(p, v, retval)
408 	struct proc *p;
409 	void *v;
410 	register_t *retval;
411 {
412 	register struct sys_getitimer_args /* {
413 		syscallarg(int) which;
414 		syscallarg(struct itimerval *) itv;
415 	} */ *uap = v;
416 	int which = SCARG(uap, which);
417 	struct itimerval aitv;
418 	int s;
419 
420 	if ((u_int)which > ITIMER_PROF)
421 		return (EINVAL);
422 	s = splclock();
423 	if (which == ITIMER_REAL) {
424 		/*
425 		 * Convert from absolute to relative time in .it_value
426 		 * part of real time timer.  If time for real time timer
427 		 * has passed return 0, else return difference between
428 		 * current time and time for the timer to go off.
429 		 */
430 		aitv = p->p_realtimer;
431 		if (timerisset(&aitv.it_value))
432 			if (timercmp(&aitv.it_value, &time, <))
433 				timerclear(&aitv.it_value);
434 			else
435 				timersub(&aitv.it_value, &time, &aitv.it_value);
436 	} else
437 		aitv = p->p_stats->p_timer[which];
438 	splx(s);
439 	return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
440 }
441 
442 /* ARGSUSED */
443 int
444 sys_setitimer(p, v, retval)
445 	struct proc *p;
446 	register void *v;
447 	register_t *retval;
448 {
449 	register struct sys_setitimer_args /* {
450 		syscallarg(int) which;
451 		syscallarg(const struct itimerval *) itv;
452 		syscallarg(struct itimerval *) oitv;
453 	} */ *uap = v;
454 	int which = SCARG(uap, which);
455 	struct sys_getitimer_args getargs;
456 	struct itimerval aitv;
457 	register const struct itimerval *itvp;
458 	int s, error;
459 
460 	if ((u_int)which > ITIMER_PROF)
461 		return (EINVAL);
462 	itvp = SCARG(uap, itv);
463 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
464 		return (error);
465 	if (SCARG(uap, oitv) != NULL) {
466 		SCARG(&getargs, which) = which;
467 		SCARG(&getargs, itv) = SCARG(uap, oitv);
468 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
469 			return (error);
470 	}
471 	if (itvp == 0)
472 		return (0);
473 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
474 		return (EINVAL);
475 	s = splclock();
476 	if (which == ITIMER_REAL) {
477 		untimeout(realitexpire, p);
478 		if (timerisset(&aitv.it_value)) {
479 			timeradd(&aitv.it_value, &time, &aitv.it_value);
480 			timeout(realitexpire, p, hzto(&aitv.it_value));
481 		}
482 		p->p_realtimer = aitv;
483 	} else
484 		p->p_stats->p_timer[which] = aitv;
485 	splx(s);
486 	return (0);
487 }
488 
489 /*
490  * Real interval timer expired:
491  * send process whose timer expired an alarm signal.
492  * If time is not set up to reload, then just return.
493  * Else compute next time timer should go off which is > current time.
494  * This is where delay in processing this timeout causes multiple
495  * SIGALRM calls to be compressed into one.
496  */
497 void
498 realitexpire(arg)
499 	void *arg;
500 {
501 	register struct proc *p;
502 	int s;
503 
504 	p = (struct proc *)arg;
505 	psignal(p, SIGALRM);
506 	if (!timerisset(&p->p_realtimer.it_interval)) {
507 		timerclear(&p->p_realtimer.it_value);
508 		return;
509 	}
510 	for (;;) {
511 		s = splclock();
512 		timeradd(&p->p_realtimer.it_value,
513 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
514 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
515 			timeout(realitexpire, p,
516 			    hzto(&p->p_realtimer.it_value));
517 			splx(s);
518 			return;
519 		}
520 		splx(s);
521 	}
522 }
523 
524 /*
525  * Check that a proposed value to load into the .it_value or
526  * .it_interval part of an interval timer is acceptable, and
527  * fix it to have at least minimal value (i.e. if it is less
528  * than the resolution of the clock, round it up.)
529  */
530 int
531 itimerfix(tv)
532 	struct timeval *tv;
533 {
534 
535 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
536 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
537 		return (EINVAL);
538 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
539 		tv->tv_usec = tick;
540 	return (0);
541 }
542 
543 /*
544  * Decrement an interval timer by a specified number
545  * of microseconds, which must be less than a second,
546  * i.e. < 1000000.  If the timer expires, then reload
547  * it.  In this case, carry over (usec - old value) to
548  * reduce the value reloaded into the timer so that
549  * the timer does not drift.  This routine assumes
550  * that it is called in a context where the timers
551  * on which it is operating cannot change in value.
552  */
553 int
554 itimerdecr(itp, usec)
555 	register struct itimerval *itp;
556 	int usec;
557 {
558 
559 	if (itp->it_value.tv_usec < usec) {
560 		if (itp->it_value.tv_sec == 0) {
561 			/* expired, and already in next interval */
562 			usec -= itp->it_value.tv_usec;
563 			goto expire;
564 		}
565 		itp->it_value.tv_usec += 1000000;
566 		itp->it_value.tv_sec--;
567 	}
568 	itp->it_value.tv_usec -= usec;
569 	usec = 0;
570 	if (timerisset(&itp->it_value))
571 		return (1);
572 	/* expired, exactly at end of interval */
573 expire:
574 	if (timerisset(&itp->it_interval)) {
575 		itp->it_value = itp->it_interval;
576 		itp->it_value.tv_usec -= usec;
577 		if (itp->it_value.tv_usec < 0) {
578 			itp->it_value.tv_usec += 1000000;
579 			itp->it_value.tv_sec--;
580 		}
581 	} else
582 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
583 	return (0);
584 }
585