xref: /netbsd-src/sys/kern/kern_time.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*	$NetBSD: kern_time.c,v 1.23 1996/11/15 23:53:32 cgd Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/param.h>
39 #include <sys/resourcevar.h>
40 #include <sys/kernel.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44 #include <sys/signalvar.h>
45 
46 #include <sys/mount.h>
47 #include <sys/syscallargs.h>
48 
49 #if defined(NFSCLIENT) || defined(NFSSERVER)
50 #include <nfs/rpcv2.h>
51 #include <nfs/nfsproto.h>
52 #include <nfs/nfs_var.h>
53 #endif
54 
55 #include <machine/cpu.h>
56 
57 static void	settime __P((struct timeval *));
58 
59 /*
60  * Time of day and interval timer support.
61  *
62  * These routines provide the kernel entry points to get and set
63  * the time-of-day and per-process interval timers.  Subroutines
64  * here provide support for adding and subtracting timeval structures
65  * and decrementing interval timers, optionally reloading the interval
66  * timers when they expire.
67  */
68 
69 
70 /* This function is used by clock_settime and settimeofday */
71 static void
72 settime(tv)
73 	struct timeval *tv;
74 {
75 	struct timeval delta;
76 	int s;
77 
78 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
79 	s = splclock();
80 	timersub(tv, &time, &delta);
81 	time = *tv;
82 	(void) splsoftclock();
83 	timeradd(&boottime, &delta, &boottime);
84 	timeradd(&runtime, &delta, &runtime);
85 #	if defined(NFSCLIENT) || defined(NFSSERVER)
86 		nqnfs_lease_updatetime(delta.tv_sec);
87 #	endif
88 	splx(s);
89 	resettodr();
90 }
91 
92 /* ARGSUSED */
93 int
94 sys_clock_gettime(p, v, retval)
95 	struct proc *p;
96 	void *v;
97 	register_t *retval;
98 {
99 	register struct sys_clock_gettime_args /* {
100 		syscallarg(clockid_t) clock_id;
101 		syscallarg(struct timespec *) tp;
102 	} */ *uap = v;
103 	clockid_t clock_id;
104 	struct timeval atv;
105 	struct timespec ats;
106 
107 	clock_id = SCARG(uap, clock_id);
108 	if (clock_id != CLOCK_REALTIME)
109 		return (EINVAL);
110 
111 	microtime(&atv);
112 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
113 
114 	return copyout((caddr_t)&ats, SCARG(uap, tp), sizeof(ats));
115 }
116 
117 /* ARGSUSED */
118 int
119 sys_clock_settime(p, v, retval)
120 	struct proc *p;
121 	void *v;
122 	register_t *retval;
123 {
124 	register struct sys_clock_settime_args /* {
125 		syscallarg(clockid_t) clock_id;
126 		syscallarg(const struct timespec *) tp;
127 	} */ *uap = v;
128 	clockid_t clock_id;
129 	struct timeval atv;
130 	struct timespec ats;
131 	int error;
132 
133 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
134 		return (error);
135 
136 	clock_id = SCARG(uap, clock_id);
137 	if (clock_id != CLOCK_REALTIME)
138 		return (EINVAL);
139 
140 	if ((error = copyin((const char *)SCARG(uap, tp), (caddr_t)&ats,
141 	    sizeof(ats))) != 0)
142 		return (error);
143 
144 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
145 	settime(&atv);
146 
147 	return 0;
148 }
149 
150 int
151 sys_clock_getres(p, v, retval)
152 	struct proc *p;
153 	void *v;
154 	register_t *retval;
155 {
156 	register struct sys_clock_getres_args /* {
157 		syscallarg(clockid_t) clock_id;
158 		syscallarg(struct timespec *) tp;
159 	} */ *uap = v;
160 	clockid_t clock_id;
161 	struct timespec ts;
162 	int error = 0;
163 
164 	clock_id = SCARG(uap, clock_id);
165 	if (clock_id != CLOCK_REALTIME)
166 		return (EINVAL);
167 
168 	if (SCARG(uap, tp)) {
169 		ts.tv_sec = 0;
170 		ts.tv_nsec = 1000000000 / hz;
171 
172 		error = copyout((caddr_t)&ts, (caddr_t)SCARG(uap, tp),
173 			sizeof (ts));
174 	}
175 
176 	return error;
177 }
178 
179 
180 /* ARGSUSED */
181 int
182 sys_gettimeofday(p, v, retval)
183 	struct proc *p;
184 	void *v;
185 	register_t *retval;
186 {
187 	register struct sys_gettimeofday_args /* {
188 		syscallarg(struct timeval *) tp;
189 		syscallarg(struct timezone *) tzp;
190 	} */ *uap = v;
191 	struct timeval atv;
192 	int error = 0;
193 
194 	if (SCARG(uap, tp)) {
195 		microtime(&atv);
196 		error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
197 				sizeof (atv));
198 		if (error)
199 			return (error);
200 	}
201 	if (SCARG(uap, tzp))
202 		error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
203 		    sizeof (tz));
204 	return (error);
205 }
206 
207 /* ARGSUSED */
208 int
209 sys_settimeofday(p, v, retval)
210 	struct proc *p;
211 	void *v;
212 	register_t *retval;
213 {
214 	struct sys_settimeofday_args /* {
215 		syscallarg(struct timeval *) tv;
216 		syscallarg(struct timezone *) tzp;
217 	} */ *uap = v;
218 	struct timeval atv;
219 	struct timezone atz;
220 	int error;
221 
222 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
223 		return (error);
224 	/* Verify all parameters before changing time. */
225 	if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
226 	    (caddr_t)&atv, sizeof(atv))))
227 		return (error);
228 	if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
229 	    (caddr_t)&atz, sizeof(atz))))
230 		return (error);
231 	if (SCARG(uap, tv))
232 		settime(&atv);
233 	if (SCARG(uap, tzp))
234 		tz = atz;
235 	return (0);
236 }
237 
238 int	tickdelta;			/* current clock skew, us. per tick */
239 long	timedelta;			/* unapplied time correction, us. */
240 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
241 
242 /* ARGSUSED */
243 int
244 sys_adjtime(p, v, retval)
245 	struct proc *p;
246 	void *v;
247 	register_t *retval;
248 {
249 	register struct sys_adjtime_args /* {
250 		syscallarg(struct timeval *) delta;
251 		syscallarg(struct timeval *) olddelta;
252 	} */ *uap = v;
253 	struct timeval atv;
254 	register long ndelta, ntickdelta, odelta;
255 	int s, error;
256 
257 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
258 		return (error);
259 
260 	error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
261 	    sizeof(struct timeval));
262 	if (error)
263 		return (error);
264 
265 	/*
266 	 * Compute the total correction and the rate at which to apply it.
267 	 * Round the adjustment down to a whole multiple of the per-tick
268 	 * delta, so that after some number of incremental changes in
269 	 * hardclock(), tickdelta will become zero, lest the correction
270 	 * overshoot and start taking us away from the desired final time.
271 	 */
272 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
273 	if (ndelta > bigadj)
274 		ntickdelta = 10 * tickadj;
275 	else
276 		ntickdelta = tickadj;
277 	if (ndelta % ntickdelta)
278 		ndelta = ndelta / ntickdelta * ntickdelta;
279 
280 	/*
281 	 * To make hardclock()'s job easier, make the per-tick delta negative
282 	 * if we want time to run slower; then hardclock can simply compute
283 	 * tick + tickdelta, and subtract tickdelta from timedelta.
284 	 */
285 	if (ndelta < 0)
286 		ntickdelta = -ntickdelta;
287 	s = splclock();
288 	odelta = timedelta;
289 	timedelta = ndelta;
290 	tickdelta = ntickdelta;
291 	splx(s);
292 
293 	if (SCARG(uap, olddelta)) {
294 		atv.tv_sec = odelta / 1000000;
295 		atv.tv_usec = odelta % 1000000;
296 		(void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
297 		    sizeof(struct timeval));
298 	}
299 	return (0);
300 }
301 
302 /*
303  * Get value of an interval timer.  The process virtual and
304  * profiling virtual time timers are kept in the p_stats area, since
305  * they can be swapped out.  These are kept internally in the
306  * way they are specified externally: in time until they expire.
307  *
308  * The real time interval timer is kept in the process table slot
309  * for the process, and its value (it_value) is kept as an
310  * absolute time rather than as a delta, so that it is easy to keep
311  * periodic real-time signals from drifting.
312  *
313  * Virtual time timers are processed in the hardclock() routine of
314  * kern_clock.c.  The real time timer is processed by a timeout
315  * routine, called from the softclock() routine.  Since a callout
316  * may be delayed in real time due to interrupt processing in the system,
317  * it is possible for the real time timeout routine (realitexpire, given below),
318  * to be delayed in real time past when it is supposed to occur.  It
319  * does not suffice, therefore, to reload the real timer .it_value from the
320  * real time timers .it_interval.  Rather, we compute the next time in
321  * absolute time the timer should go off.
322  */
323 /* ARGSUSED */
324 int
325 sys_getitimer(p, v, retval)
326 	struct proc *p;
327 	void *v;
328 	register_t *retval;
329 {
330 	register struct sys_getitimer_args /* {
331 		syscallarg(u_int) which;
332 		syscallarg(struct itimerval *) itv;
333 	} */ *uap = v;
334 	struct itimerval aitv;
335 	int s;
336 
337 	if (SCARG(uap, which) > ITIMER_PROF)
338 		return (EINVAL);
339 	s = splclock();
340 	if (SCARG(uap, which) == ITIMER_REAL) {
341 		/*
342 		 * Convert from absolute to relative time in .it_value
343 		 * part of real time timer.  If time for real time timer
344 		 * has passed return 0, else return difference between
345 		 * current time and time for the timer to go off.
346 		 */
347 		aitv = p->p_realtimer;
348 		if (timerisset(&aitv.it_value))
349 			if (timercmp(&aitv.it_value, &time, <))
350 				timerclear(&aitv.it_value);
351 			else
352 				timersub(&aitv.it_value, &time, &aitv.it_value);
353 	} else
354 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
355 	splx(s);
356 	return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
357 	    sizeof (struct itimerval)));
358 }
359 
360 /* ARGSUSED */
361 int
362 sys_setitimer(p, v, retval)
363 	struct proc *p;
364 	register void *v;
365 	register_t *retval;
366 {
367 	register struct sys_setitimer_args /* {
368 		syscallarg(u_int) which;
369 		syscallarg(struct itimerval *) itv;
370 		syscallarg(struct itimerval *) oitv;
371 	} */ *uap = v;
372 	struct sys_getitimer_args getargs;
373 	struct itimerval aitv;
374 	register struct itimerval *itvp;
375 	int s, error;
376 
377 	if (SCARG(uap, which) > ITIMER_PROF)
378 		return (EINVAL);
379 	itvp = SCARG(uap, itv);
380 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
381 	    sizeof(struct itimerval))))
382 		return (error);
383 	if (SCARG(uap, oitv) != NULL) {
384 		SCARG(&getargs, which) = SCARG(uap, which);
385 		SCARG(&getargs, itv) = SCARG(uap, oitv);
386 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
387 			return (error);
388 	}
389 	if (itvp == 0)
390 		return (0);
391 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
392 		return (EINVAL);
393 	s = splclock();
394 	if (SCARG(uap, which) == ITIMER_REAL) {
395 		untimeout(realitexpire, p);
396 		if (timerisset(&aitv.it_value)) {
397 			timeradd(&aitv.it_value, &time, &aitv.it_value);
398 			timeout(realitexpire, p, hzto(&aitv.it_value));
399 		}
400 		p->p_realtimer = aitv;
401 	} else
402 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
403 	splx(s);
404 	return (0);
405 }
406 
407 /*
408  * Real interval timer expired:
409  * send process whose timer expired an alarm signal.
410  * If time is not set up to reload, then just return.
411  * Else compute next time timer should go off which is > current time.
412  * This is where delay in processing this timeout causes multiple
413  * SIGALRM calls to be compressed into one.
414  */
415 void
416 realitexpire(arg)
417 	void *arg;
418 {
419 	register struct proc *p;
420 	int s;
421 
422 	p = (struct proc *)arg;
423 	psignal(p, SIGALRM);
424 	if (!timerisset(&p->p_realtimer.it_interval)) {
425 		timerclear(&p->p_realtimer.it_value);
426 		return;
427 	}
428 	for (;;) {
429 		s = splclock();
430 		timeradd(&p->p_realtimer.it_value,
431 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
432 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
433 			timeout(realitexpire, p,
434 			    hzto(&p->p_realtimer.it_value));
435 			splx(s);
436 			return;
437 		}
438 		splx(s);
439 	}
440 }
441 
442 /*
443  * Check that a proposed value to load into the .it_value or
444  * .it_interval part of an interval timer is acceptable, and
445  * fix it to have at least minimal value (i.e. if it is less
446  * than the resolution of the clock, round it up.)
447  */
448 int
449 itimerfix(tv)
450 	struct timeval *tv;
451 {
452 
453 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
454 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
455 		return (EINVAL);
456 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
457 		tv->tv_usec = tick;
458 	return (0);
459 }
460 
461 /*
462  * Decrement an interval timer by a specified number
463  * of microseconds, which must be less than a second,
464  * i.e. < 1000000.  If the timer expires, then reload
465  * it.  In this case, carry over (usec - old value) to
466  * reduce the value reloaded into the timer so that
467  * the timer does not drift.  This routine assumes
468  * that it is called in a context where the timers
469  * on which it is operating cannot change in value.
470  */
471 int
472 itimerdecr(itp, usec)
473 	register struct itimerval *itp;
474 	int usec;
475 {
476 
477 	if (itp->it_value.tv_usec < usec) {
478 		if (itp->it_value.tv_sec == 0) {
479 			/* expired, and already in next interval */
480 			usec -= itp->it_value.tv_usec;
481 			goto expire;
482 		}
483 		itp->it_value.tv_usec += 1000000;
484 		itp->it_value.tv_sec--;
485 	}
486 	itp->it_value.tv_usec -= usec;
487 	usec = 0;
488 	if (timerisset(&itp->it_value))
489 		return (1);
490 	/* expired, exactly at end of interval */
491 expire:
492 	if (timerisset(&itp->it_interval)) {
493 		itp->it_value = itp->it_interval;
494 		itp->it_value.tv_usec -= usec;
495 		if (itp->it_value.tv_usec < 0) {
496 			itp->it_value.tv_usec += 1000000;
497 			itp->it_value.tv_sec--;
498 		}
499 	} else
500 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
501 	return (0);
502 }
503