xref: /netbsd-src/sys/kern/kern_time.c (revision 705ee976cfe4e85b18732519865b1f7b6cbb2322)
1 /*	$NetBSD: kern_time.c,v 1.11 1994/10/20 04:22:59 cgd Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/param.h>
39 #include <sys/resourcevar.h>
40 #include <sys/kernel.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44 
45 #include <sys/mount.h>
46 #include <sys/syscallargs.h>
47 
48 #include <machine/cpu.h>
49 
50 /*
51  * Time of day and interval timer support.
52  *
53  * These routines provide the kernel entry points to get and set
54  * the time-of-day and per-process interval timers.  Subroutines
55  * here provide support for adding and subtracting timeval structures
56  * and decrementing interval timers, optionally reloading the interval
57  * timers when they expire.
58  */
59 
60 /* ARGSUSED */
61 int
62 gettimeofday(p, uap, retval)
63 	struct proc *p;
64 	register struct gettimeofday_args /* {
65 		syscallarg(struct timeval *) tp;
66 		syscallarg(struct timezone *) tzp;
67 	} */ *uap;
68 	register_t *retval;
69 {
70 	struct timeval atv;
71 	int error = 0;
72 
73 	if (SCARG(uap, tp)) {
74 		microtime(&atv);
75 		if (error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
76 		    sizeof (atv)))
77 			return (error);
78 	}
79 	if (SCARG(uap, tzp))
80 		error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
81 		    sizeof (tz));
82 	return (error);
83 }
84 
85 /* ARGSUSED */
86 int
87 settimeofday(p, uap, retval)
88 	struct proc *p;
89 	struct settimeofday_args /* {
90 		syscallarg(struct timeval *) tv;
91 		syscallarg(struct timezone *) tzp;
92 	} */ *uap;
93 	register_t *retval;
94 {
95 	struct timeval atv, delta;
96 	struct timezone atz;
97 	int error, s;
98 
99 	if (error = suser(p->p_ucred, &p->p_acflag))
100 		return (error);
101 	/* Verify all parameters before changing time. */
102 	if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
103 	    (caddr_t)&atv, sizeof(atv))))
104 		return (error);
105 	if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
106 	    (caddr_t)&atz, sizeof(atz))))
107 		return (error);
108 	if (SCARG(uap, tv)) {
109 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
110 		s = splclock();
111 		/* nb. delta.tv_usec may be < 0, but this is OK here */
112 		delta.tv_sec = atv.tv_sec - time.tv_sec;
113 		delta.tv_usec = atv.tv_usec - time.tv_usec;
114 		time = atv;
115 		(void) splsoftclock();
116 		timevaladd(&boottime, &delta);
117 		timevalfix(&boottime);
118 		timevaladd(&runtime, &delta);
119 		timevalfix(&runtime);
120 		LEASE_UPDATETIME(delta.tv_sec);
121 		splx(s);
122 		resettodr();
123 	}
124 	if (SCARG(uap, tzp))
125 		tz = atz;
126 	return (0);
127 }
128 
129 int	tickdelta;			/* current clock skew, us. per tick */
130 long	timedelta;			/* unapplied time correction, us. */
131 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
132 
133 /* ARGSUSED */
134 int
135 adjtime(p, uap, retval)
136 	struct proc *p;
137 	register struct adjtime_args /* {
138 		syscallarg(struct timeval *) delta;
139 		syscallarg(struct timeval *) olddelta;
140 	} */ *uap;
141 	register_t *retval;
142 {
143 	struct timeval atv;
144 	register long ndelta, ntickdelta, odelta;
145 	int s, error;
146 
147 	if (error = suser(p->p_ucred, &p->p_acflag))
148 		return (error);
149 	if (error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
150 	    sizeof(struct timeval)))
151 		return (error);
152 
153 	/*
154 	 * Compute the total correction and the rate at which to apply it.
155 	 * Round the adjustment down to a whole multiple of the per-tick
156 	 * delta, so that after some number of incremental changes in
157 	 * hardclock(), tickdelta will become zero, lest the correction
158 	 * overshoot and start taking us away from the desired final time.
159 	 */
160 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
161 	if (ndelta > bigadj)
162 		ntickdelta = 10 * tickadj;
163 	else
164 		ntickdelta = tickadj;
165 	if (ndelta % ntickdelta)
166 		ndelta = ndelta / ntickdelta * ntickdelta;
167 
168 	/*
169 	 * To make hardclock()'s job easier, make the per-tick delta negative
170 	 * if we want time to run slower; then hardclock can simply compute
171 	 * tick + tickdelta, and subtract tickdelta from timedelta.
172 	 */
173 	if (ndelta < 0)
174 		ntickdelta = -ntickdelta;
175 	s = splclock();
176 	odelta = timedelta;
177 	timedelta = ndelta;
178 	tickdelta = ntickdelta;
179 	splx(s);
180 
181 	if (SCARG(uap, olddelta)) {
182 		atv.tv_sec = odelta / 1000000;
183 		atv.tv_usec = odelta % 1000000;
184 		(void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
185 		    sizeof(struct timeval));
186 	}
187 	return (0);
188 }
189 
190 /*
191  * Get value of an interval timer.  The process virtual and
192  * profiling virtual time timers are kept in the p_stats area, since
193  * they can be swapped out.  These are kept internally in the
194  * way they are specified externally: in time until they expire.
195  *
196  * The real time interval timer is kept in the process table slot
197  * for the process, and its value (it_value) is kept as an
198  * absolute time rather than as a delta, so that it is easy to keep
199  * periodic real-time signals from drifting.
200  *
201  * Virtual time timers are processed in the hardclock() routine of
202  * kern_clock.c.  The real time timer is processed by a timeout
203  * routine, called from the softclock() routine.  Since a callout
204  * may be delayed in real time due to interrupt processing in the system,
205  * it is possible for the real time timeout routine (realitexpire, given below),
206  * to be delayed in real time past when it is supposed to occur.  It
207  * does not suffice, therefore, to reload the real timer .it_value from the
208  * real time timers .it_interval.  Rather, we compute the next time in
209  * absolute time the timer should go off.
210  */
211 /* ARGSUSED */
212 int
213 getitimer(p, uap, retval)
214 	struct proc *p;
215 	register struct getitimer_args /* {
216 		syscallarg(u_int) which;
217 		syscallarg(struct itimerval *) itv;
218 	} */ *uap;
219 	register_t *retval;
220 {
221 	struct itimerval aitv;
222 	int s;
223 
224 	if (SCARG(uap, which) > ITIMER_PROF)
225 		return (EINVAL);
226 	s = splclock();
227 	if (SCARG(uap, which) == ITIMER_REAL) {
228 		/*
229 		 * Convert from absoulte to relative time in .it_value
230 		 * part of real time timer.  If time for real time timer
231 		 * has passed return 0, else return difference between
232 		 * current time and time for the timer to go off.
233 		 */
234 		aitv = p->p_realtimer;
235 		if (timerisset(&aitv.it_value))
236 			if (timercmp(&aitv.it_value, &time, <))
237 				timerclear(&aitv.it_value);
238 			else
239 				timevalsub(&aitv.it_value,
240 				    (struct timeval *)&time);
241 	} else
242 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
243 	splx(s);
244 	return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
245 	    sizeof (struct itimerval)));
246 }
247 
248 /* ARGSUSED */
249 int
250 setitimer(p, uap, retval)
251 	struct proc *p;
252 	register struct setitimer_args /* {
253 		syscallarg(u_int) which;
254 		syscallarg(struct itimerval *) itv;
255 		syscallarg(struct itimerval *) oitv;
256 	} */ *uap;
257 	register_t *retval;
258 {
259 	struct itimerval aitv;
260 	register struct itimerval *itvp;
261 	int s, error;
262 
263 	if (SCARG(uap, which) > ITIMER_PROF)
264 		return (EINVAL);
265 	itvp = SCARG(uap, itv);
266 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
267 	    sizeof(struct itimerval))))
268 		return (error);
269 	if ((SCARG(uap, itv) = SCARG(uap, oitv)) &&
270 	    (error = getitimer(p, uap, retval)))
271 		return (error);
272 	if (itvp == 0)
273 		return (0);
274 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
275 		return (EINVAL);
276 	s = splclock();
277 	if (SCARG(uap, which) == ITIMER_REAL) {
278 		untimeout(realitexpire, p);
279 		if (timerisset(&aitv.it_value)) {
280 			timevaladd(&aitv.it_value, (struct timeval *)&time);
281 			timeout(realitexpire, p, hzto(&aitv.it_value));
282 		}
283 		p->p_realtimer = aitv;
284 	} else
285 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
286 	splx(s);
287 	return (0);
288 }
289 
290 /*
291  * Real interval timer expired:
292  * send process whose timer expired an alarm signal.
293  * If time is not set up to reload, then just return.
294  * Else compute next time timer should go off which is > current time.
295  * This is where delay in processing this timeout causes multiple
296  * SIGALRM calls to be compressed into one.
297  */
298 void
299 realitexpire(arg)
300 	void *arg;
301 {
302 	register struct proc *p;
303 	int s;
304 
305 	p = (struct proc *)arg;
306 	psignal(p, SIGALRM);
307 	if (!timerisset(&p->p_realtimer.it_interval)) {
308 		timerclear(&p->p_realtimer.it_value);
309 		return;
310 	}
311 	for (;;) {
312 		s = splclock();
313 		timevaladd(&p->p_realtimer.it_value,
314 		    &p->p_realtimer.it_interval);
315 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
316 			timeout(realitexpire, p,
317 			    hzto(&p->p_realtimer.it_value));
318 			splx(s);
319 			return;
320 		}
321 		splx(s);
322 	}
323 }
324 
325 /*
326  * Check that a proposed value to load into the .it_value or
327  * .it_interval part of an interval timer is acceptable, and
328  * fix it to have at least minimal value (i.e. if it is less
329  * than the resolution of the clock, round it up.)
330  */
331 int
332 itimerfix(tv)
333 	struct timeval *tv;
334 {
335 
336 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
337 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
338 		return (EINVAL);
339 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
340 		tv->tv_usec = tick;
341 	return (0);
342 }
343 
344 /*
345  * Decrement an interval timer by a specified number
346  * of microseconds, which must be less than a second,
347  * i.e. < 1000000.  If the timer expires, then reload
348  * it.  In this case, carry over (usec - old value) to
349  * reduce the value reloaded into the timer so that
350  * the timer does not drift.  This routine assumes
351  * that it is called in a context where the timers
352  * on which it is operating cannot change in value.
353  */
354 int
355 itimerdecr(itp, usec)
356 	register struct itimerval *itp;
357 	int usec;
358 {
359 
360 	if (itp->it_value.tv_usec < usec) {
361 		if (itp->it_value.tv_sec == 0) {
362 			/* expired, and already in next interval */
363 			usec -= itp->it_value.tv_usec;
364 			goto expire;
365 		}
366 		itp->it_value.tv_usec += 1000000;
367 		itp->it_value.tv_sec--;
368 	}
369 	itp->it_value.tv_usec -= usec;
370 	usec = 0;
371 	if (timerisset(&itp->it_value))
372 		return (1);
373 	/* expired, exactly at end of interval */
374 expire:
375 	if (timerisset(&itp->it_interval)) {
376 		itp->it_value = itp->it_interval;
377 		itp->it_value.tv_usec -= usec;
378 		if (itp->it_value.tv_usec < 0) {
379 			itp->it_value.tv_usec += 1000000;
380 			itp->it_value.tv_sec--;
381 		}
382 	} else
383 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
384 	return (0);
385 }
386 
387 /*
388  * Add and subtract routines for timevals.
389  * N.B.: subtract routine doesn't deal with
390  * results which are before the beginning,
391  * it just gets very confused in this case.
392  * Caveat emptor.
393  */
394 void
395 timevaladd(t1, t2)
396 	struct timeval *t1, *t2;
397 {
398 
399 	t1->tv_sec += t2->tv_sec;
400 	t1->tv_usec += t2->tv_usec;
401 	timevalfix(t1);
402 }
403 
404 void
405 timevalsub(t1, t2)
406 	struct timeval *t1, *t2;
407 {
408 
409 	t1->tv_sec -= t2->tv_sec;
410 	t1->tv_usec -= t2->tv_usec;
411 	timevalfix(t1);
412 }
413 
414 void
415 timevalfix(t1)
416 	struct timeval *t1;
417 {
418 
419 	if (t1->tv_usec < 0) {
420 		t1->tv_sec--;
421 		t1->tv_usec += 1000000;
422 	}
423 	if (t1->tv_usec >= 1000000) {
424 		t1->tv_sec++;
425 		t1->tv_usec -= 1000000;
426 	}
427 }
428